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Abstract. A solution for the inverse kinematics problem of a planar parallel
3-legged platform with holonomic higher pairs is presented. Kinematic map-
ping is used to represent distinct planar displacements of the end-effector as
discrete points in the image space. Separate motion of each leg of the ma-
nipulator traces an hyperboloid of one sheet in this space. Therefore, points
of intersection of the three hyperboloids represent feasible end-effector dis-
placements. Determination of the three joint input variables required to
attain a desired feasible pose, from the respective hyperboloid equations, is
described and a numerical example is given.

1. Introduction

The goal of this paper is to present a novel and practical solution procedure
for the inverse kinematics (IK) problem of a planar parallel manipulator
with holonomic higher pairs. This procedure uses the inverse of a planar
kinematic mapping introduced independently by Blaschke and Grinwald
in 1911 (Bottema and Roth, 1979). Description of distinct displacements in
the plane requires three independent parameters. It follows that each dis-
tinct planar displacement maps to a unique point in this three dimensional
kinematic image space. We propose to extract a set of joint inputs from the
pre-image of given image points which represents feasible displacements.
This particular mapping is well suited to manipulators of the type dis-
cussed in this paper (see Fig. 1) since it is independent of the geometry of
the platform (Husty, 1995). This is important in our case as the platform at-
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tachment points are not fixed, but change continuously between poses. It is
important to note that the pure rolling nature of the higher pairs make the
manipulator in Fig. 1 markedly different from lower pair jointed Stewart-
Gough (SG) type platforms because the pure rolling condition renders IK
solutions completely dependent on the initial assembly configuration (IAC).
As a result the kinematic analysis employed by Gosselin et al. (1991) and
Wohlhart (1992) cannot be used.

Kinematic mapping has some recent
important applications to planar robots.
Various mappings are used in De Sa KCL@
et al. (1981) to classify one parameter
planar algebraic motions. The Blaschke-
Griinwald kinematic mapping is used in
Ravani et al. (1983) to study planar mo-
tion synthesis. Husty (1995) wove the
same mapping into the fabric of an el-
egant forward kinematics (FK) solution
procedure for planar 3-legged SG type
platforms. It was then used to analyse the
workspace of the same type of platform
(Husty, 1996a). We have also been suc-
cessful in using this mapping to develop a
solution procedure for the FK problem of
our planar parallel manipulator (Hayes et
al., 1996b; 1997). However, it has never,

to the best of our knowledge, been ap- .
plied to the TK problem. Figure 1. Planar platform.

Indeed, there exists no practical IK solution procedure for the manip-
ulator considered here. An algorithm is offered in Agrawal et al. (1992),
however, the authors fail to account for the orientation of the end-effector
in the inertial reference frame. They use instead a relative angle which can
change for certain displacements while the orientation of the end-effector
remains constant. The only other algorithm, Hayes et al. (1996a), yields
equations that are difficult to solve because they depend on a joint param-
eter which, it turns out, can not be directly evaluated.

2. Manipulator Description

The planar manipulator, shown in Fig. 1, consists of three closed kinematic
chains. The circular disk, modelled as a pinion, rolls without slip on each
of the three racks tangent to it. We call the kinematic connection between
the rack and pinion a gear (G) pair. It is a higher kinematic pair because
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of the point (or line) contact between the two links. Moreover, the rolling
constraints are holonomic due to the pure rolling and because the motion
is planar. Hence, the constraint equations can be expressed in terms of
displacement, i.e., in integral form. Each of the three legs connect a rack to
a base point via two revolute (R) pairs. This means each closed chain is an
-R-R-G-G-R-R- chain. The leg links are rigid and a rack is rigidly attached
to the disk end of each second link. The R-pairs connecting two links in a
leg shall be referred to as knee joints K4, Kp, K¢, and are constrained to
move on circles centred on the three points F4, F, F, which are grounded
to a fixed rigid base. The position and orientation of the pinion end-effector
are described by reference frame E, which has its origin on the disk centre
and moves with it. Frame ¥ has its origin at the base of leg A and is fixed.

3. A Kinematic Mapping of Planar Displacements

It is convenient to think of the relative planar motion between two rigid bod-
ies as the motion of a Cartesian reference coordinate system, F, attached
to one of the bodies, with respect to the Cartesian coordinate system, 3,
attached to the other. The position of a point in E relative to 3 can be
given by the homogeneous linear transformation

X cosp —sing a x
Y = singp cosp b vy |, (1)
VA 0 0 1 z

where (z/z,y/z) are the Cartesian coordinates of a point in E, (X/Z,Y/Z)
are those of the same point in 3. The Cartesian coordinates of the origin of
E measured in ¥ are (a,b). The rotation angle measured from the X-axis
to the z-axis is ¢, the positive sense being counter-clockwise.

The kinematic mapping used here is discussed in detail by Bottema and
Roth (1979), as well as by De Sa (1979) and Ravani (1982). The image of
the displacement parameters (a, b, ¢) under the kinematic mapping is called
the image point. Distinct displacements have unique image points, given by

(X1:X9:X3:Xy) = [(asin(p/2) —bcos(p/2) :
(acos(p/2) + bsin(p/2) :
2sin(p/2) : 2cos (p/2)]. (2)

Care must be taken because the mapping is injective, not bijective: there is
at most one pre-image for each of the points in the image space. Not every
point in the image space represents a displacement in the plane.

The ungrounded R-pair in a 2R mechanism is constrained to move on a
circle with a fixed centre. The image points that correspond to all possible
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displacements of the ungrounded link with respect to a fixed reference frame
constitute a quadric hyper-surface. If the circle centre has fixed homoge-
neous coordinates (X, : Y, : Z) and radius r, the constraint hyperboloid, H,
in the image space has an equation of the form (Bottema and Roth, 1979):

H: 0=22(X?+X2)+ (1/4)[(z* +y*) — 2C 122 — 2Cyyz + C32%| X2 +
(1/4)[(z? + y?) + 2C1z2 + 2Coyz + C32%] X3 + (C12z — x)2X1 X3 +
(Coz —y)2X9X3 — (y + Coz)2 X1 X4 + (Crz + 1)2 X2 X4 +
(Coz — C1y)2X3Xy, (3)

where

C, = —Xes
CZ = _Y(:7
C3 = (C}+0C2—rt)=(X24+Y2 1%,

4. An Application to the IK Problem
4.1. VIRTUAL PLATFORM

The IK problem may be stated as follows: given the position and orienta-
tion of the pinion, determine the joint input variables and corresponding
assembly modes required to attain the desired pose. Since the manipu-
lator has three degrees-of-freedom (DOF), three joint input variables are
required. We select these to be the change in arclength along the rack due
to the change in contact point (this choice was made to better suit compu-
tations). They are given by the three numbers Ad; = rA;, 1 € {4, B,C}.
The A7; are the change between the initial and final rack angles and are in-
dependent of the choice of coordinate reference frame. The pinion radius is
r. Since the racks are always in tangential contact with the disk, the change
in these angles represent the change in angle of disk tangents. Because the
bases are orthogonal, the change in tangent angle is the same as the change
in normal angle: Ar; = A;.

It is important to observe that the rolling constraints impose a kine-
matic dependency on the IAC. Displacement analysis requires the presence
of initial conditions in the kinematic closure equations. This dependency
on the TAC means that analysis is not possible using the techniques em-
ployed on lower pair jointed SG type platforms by Gosselin et al. (1991)
and Wohlhart (1992), for instance.
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To solve the problem using the inverse
of the procedure in Husty (1995) and Hayes
et al. (1997), fixed points in F which move
on fixed circles in ¥ are required. In or-
der to establish these points we must first
define the platform (or end-effector). The
only points bound to move on fixed circles
in 3 are points on the first link in each leg,
which are connected to the fixed base by an
R-pair. We will use the centres of the three
knee joints, K4, Kp, and K. Now, con-
sider a virtual platform (VP) formed by the
triangle whose vertices are the three knee

joints expressed relative to the disk frame o K”
E: Ka/p, Kp/g, Koyi (see Fig. 2). For a ' _
given assembly configuration, these virtual ~— Figure 2. VP for a set of inputs.

platform points (VPP) are fixed relative to each other, but change from pose
to pose. Although the VP geometry changes continuously during platform
motion, for any given displacement it can be considered a rigid body, since
we are only interested in the correspondence between an initial and a final
position. Hence, the VPP meet the requirements of being points in £ which
move on fixed circles in Y.

4.2. INVOLUTE INPUTS

The next task is to develop expressions for the VPP so they can be used
as inputs to the kinematic mapping. We require expressions for the VPP
in terms of the joint input variables, A7;. Consider, for now, only leg A
in Fig. 3 and observe that the knee joint K 4, which has a fixed position
in the reference frame attached to the rack, R4, moves on a circle in the
fixed frame, 3. But, it also has a relative motion in the moving disk frame
E. What is required is a description of that motion in terms of the joint
inputs. This turns out to be straightforward: fix the disk and observe that
the relative motion of the rack with respect to E is pure rolling with the
original contact point moving on an involute of the pinion (Husty, 1996b).
Because there is a bijective correspondence between positions of a given
rack point on its involute and knee joint positions, we now have a complete
description (in terms of the change in rack tangent angle) of the motion of
the knee joints with respect to both the moving frame, E, and the fixed
frame, 3. Due to their positional dependence on an involute, we call these
one parameter sets of knee joint positions involute inputs.

The motion of the knee joints of the remaining two legs must be the
same type as that of leg A relative to E, but the starting points of the
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involutes are different. Thus, for every set of three joint input parameters
one obtains a set of three VPP expressed in . With the VPP transformed
to involute inputs the kinematic mapping can be used.

We will now show how
the involute inputs can be de-
rived. Fig. 3 shows the refer-
ence coordinate systems used
to transform the position of
the knee joint from the mov-
ing rack reference frame, R4,
to the relatively fixed pinion
reference frame, E. The origin
of R4 moves along its involute
and R’ gives the new position
of R4 after a rotation Arty4.
The intermediate system, E,,
whose utility is discussed be-
low, is fixed relative to E. For
each leg, Ezl is rotated from E Figure 3. Leg A reference frames.
through 6; = (57/4), (7w /4),(7/2) for i € {A, B,C}. Examining Fig. 3, it
is easy to see that for each leg the required transformations to take the
coordinates of the knee joint K; from frame R; to frame E are

Try/e = Tr/eTryE
c; —sb; 0 —sA1; —cAt; r(cAT; + ATisAT;)
= 392' Cai 0 CATZ' —SATZ' ’I”(SATZ' — ATZ'CAT,') s
0 0 1 0 0 1

where ¢ = cos, and s = sin.

The geometrical significance of TR; /B! is seen when each column is
examined. The first column is the direction of the disk tangent in Ej (the
direction of the z-axis of frame R}). The second column is the direction in
E; (towards the centre of the pinion) of the normal at the new contact point.
The third column is the position of the origin of frame R} on the involute,
expressed again in E,. The remaining transformation, TE: !B depends on
the angle between the z-axis of frame E and the rack normal in the home
position, shown in Fig. 1.

The knee joints, shown in Fig. 1, all have the same coordinates in their

respective R; frames:
0
ki/Ri = _£2i .
1



INVERSE KINEMATICS 7

Once the arclength parameters (joint inputs), Ar;, are given, the coor-
dinates of the knee joints (involute inputs) in frame E, k; g, are easily
determined by left multiplying the k;, R! with the appropriate T R/E>

kig = Tryekir- (4)

5. Solution Procedure

Recall that the goal is to determine the inputs required to attain a desired
feasible end-effector pose. In our solution procedure we first examine the
constraint hyperboloids for each leg, given by equation (3). The image point
(X1 : X9 : X3: Xy) is fixed by the given pinion displacement parameters
(a,b, ). Furthermore, the constants (C1,Cy,C3) are known because the
circle centres and radii are all specified. This leaves the three homogeneous
VPP coordinates (z : y : z) as unknowns. Thus, we have three hyperboloid
equations and nine unknowns:

H; = fi(miayiazi)a (XS {AaBaC} (5)

Since no practical design requires the VP to have points on the line at
infinity, L,, we can safely set z; = 1, and reduce the quantity of unknowns
to six:

H; = fi(wi,yi), i€{A,B,C}. (6)

At least three more equations are required. Consider the involute input
equations (4). With z; = 1, these are a set of six equations expressing
the knee joint coordinates in the moving frame, E, in terms of the three
unknown rack tangent angle inputs, A7;. This gives nine equations and nine
unknowns, coming in independent sets of three. That is, x;, y;, A7; can be
solved independently for each i € {A, B, C}:

H; = fi(zi,y;)
Ty = gi(ATi) } y 1€ {A,B,C} (7)
yi = hi(An;)

where f; is a function in the two variables z; and y;, which are themselves
single variable functions g; and h;, respectively, in terms of A7;.

Substituting the expressions for z; = g(A7;) and y; = h(A7;) into H;
gives the single variable function

Hi(AT) = ao+ a1A7i + a3(AT)? + a3 cos Aty + agsin Aty +
AT;(as cos At + ag sin At;), (8)
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where the a; are coefficients in the field of real numbers. Solve H;(Ar;) for
AT7;, and use this value to determine z; and y; from the g; and h;. This
immediately yields the knee joint coordinates in the moving pinion frame.
H;(AT;) represents a quadric hyper-surface. Because of its quadratic nature
we can expect at most two real solutions for the change in rack tangent angle
AT;. It is a simple matter of plane trigonometry to extract the assembly
configuration(s) from the nine parameters, x;, y;, and A7;. The solutions
between legs are decoupled, so we have an upper bound on the number of
solutions to the IK problem given by

2", 9)
where n is the number of -R-R-G- legs.

6. Example

Table 1 gives the manipulator’s initial assembly configuration (IAC). The
Tr,/s and yp, /s, are the coordinates of the base of each leg expressed in the
fixed frame, 3. The initial rack normal angles in the moving frame, F, are
ni/E- The relative angles between the first link and base, and between the
second and first links are 6;, 9 and 6;,,1, respectively. The location of the
contact point along a rack measured in the corresponding rack frame, R;,
18 d;; /g, The link lengths, in generic units, are: r = 4; £4;; = 4; £;, = 10.
Note that in Fig. 1 the link reference frames, assigned using the Denavit-
Hartenberg convention, are not shown so as to avoid clutter.

TABLE 1. Initial assembly configuration (IAC).

i Tpyz Yr;/x Mg Y0 Vg1 dig/r,
A 0 0 225°  135°  270° 0
B 102 0 315° 45° 90° 1]
C 5V/2+4 9v2+14 90° 180°  90° 0

The desired pose of the end-effector and the corresponding image point
are:

X, —11.503
a 9.429 X, 9.807
b =845 |, | 2 =] oes
v (deg.) 3.716° 3 )

X4 1.999
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After making the appropriate substitutions, the following three univariate
functions are obtained.

Ha(AT4) = 408.489 + 16(A74)? — 422.777 cos ATy — 19.875sin A7y +
ATA(5.678 cos AT — 120.793 sin ATy),

Hp(ATg) = 341.710 4+ 16(A7p)? — 317.434 cos Atg + 161.514sin A7p —
ATp(46.147 cos At + 90.694 sin ATp),

Ho(Ae) = 405.104 + 16(A7c) — 413.715 cos Ato + 72.949 sin At —
A71¢(20.843 cos ATe + 118.204 sin A7().

The values of A7; from each solution are used to evaluate equations (4),
giving the corresponding knee joint coordinates (z;,1;). These are listed
in Table 2. The relative link angles for each assembly configuration are
determined using plane trigonometry and the given position and orientation
of the pinion end-effector (i.e., the moving frame, E). Fig. 4 illustrates one
of the eight real assembly configurations.

TABLE 2. Change in rack tangent angle and corresponding knee joint coordinates.

ATh TK,/E YK o /E ATp TKyp/E YKp/E Atc Tro/E YK /E

-17.5° -11.845  -7.548 -15° 7.907 -11.601 7.5° -1.308  13.949
25.04° -6.422 -12.563 -55.07° 0.783  -14.554 -35.46° 6.106  12.839

7. Conclusions

The solution to the IK problem is fundamen-
tal to further investigation of this type of
manipulator. Kinematic mapping has proven
to be a useful tool in our solution. To use
the mapping, the knee joint positions are
expressed as one-parameter motions of ini-
tial rack contact points along involutes of
the pinion. The constraint hyperboloid equa-
tions in the image space, along with the knee
joint position equations, are used to deter-
mine the joint input variables required to at-
tain the desired pose. The upper bound on
the number of real solutions is 2".

Figure 4. One solution.
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