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ABSTRACT

Pure rolling between bodies in contact� as is some�
times used for �ne�motion manipulation� is an impor�
tant research issue� Furthermore� inverse kinematic
�IK solutions are necessary to plan trajectories and
avoid obstacles� In this paper� closed form analytical
solutions to the IK problem of a ��degree�of�freedom
�DOF planar parallel manipulator with holonomic
higher pairs are presented� This manipulator is a sin�
gle closed loop kinematic chain whose end�e�ector is
a circular disk which rolls without slip along a straight
line on the non�grounded rigid links of each of two 	R
serial legs� The points of contact between the disk and
the legs constitute holonomic higher pairs� The pairs
are termed �holonomic� because the constraint equa�
tions are in integral form� The solution algorithm is
novel because the holonomic constraint equations and
the axiom of closure pertaining to the group of isome�
tries of the plane are exploited� It is shown that any
general plane motion of the disk within the physical
limits of the workspace is decomposable into a sin�
gle pure translation of the disk and a single rotation
of the disk about its centre� Furthermore� these spe�
ci�c translations and rotations commute� Five special
properties of the manipulator allow a set of intermedi�
ate joint variables� calculated for pure translation� to
be combined with a subsequent set for pure rotation�
given the desired and initial pose of the disk� Since the
solutions for the joint variables of each leg are uncou�
pled� the solution algorithm is generalized such that
joint variables can be determined for rolling systems
containing 	R legs of any number� n� There are no
more than �n real IK solutions� Three illustrative ex�
amples are given�

�� INTRODUCTION

Extensive recent research has been done in connection
with grasping and �ne�motion manipulation by multi�
�ngered robotic hands� ����� The Utah�MIT dextrous
hand is an example� Various types of contact between
�nger and hand have been studied extensively in �����
The kinematics of rolling contact for two surfaces of
arbitrary shape was examined in �
�� Control schemes
for parallel manipulators with rolling constraints were
put forward in ���� 
�� Rolling is found elsewhere� e�g��
automatically guided vehicles �AGV are used indus�
trially to convey cargo� The kinematics and dynamics
of a three wheeled 	 DOF AGV were studied in great
detail in �����
Robotic mechanical systems involving rolling con�

tact rarely use higher pair joints� For instance� most
robotic hands are constructed with lower pairs only
and the rolling contact is between end�e�ector and
workpiece� ����� In the case of the AGV� continuous

rolling contact is a by�product of constraints imposed
by the operating environment� It is not a design pa�
rameter a�ecting control �except to detect wheel slip
or kinematic synthesis�
With the exception of cams and gears� which are not

considered to be robotic mechanical devices� research
on mechanisms containing higher pairs is rare� The
rolling�without�slipping pair is considered here in this
regard because gearing is common� e�cient and reli�
able but uncommon in robotic manipulators�
If the rolling is restricted to a one parameter planar

motion� the rolling constraints are holonomic because
the constraint equations can be expressed in terms of
displacement� i�e�� in integral form� thereby simplify�
ing kinematic analysis� Very little literature on such
planar mechanisms was found� The e�ects of initial
assembly con�gurations on the reachable workspace of
a planar rolling system were examined in ���� Previ�
ously the same authors� �	�� described an algorithm
for the inverse kinematics �IK problem of the same
manipulator� However� they failed to account for the
orientation of the end�e�ector in the inertial reference
frame� That is� a relative angle� used to specify ori�
entation� can change while the orientation of the end
e�ector remains constant and so erroneous solutions
arise� We found no other reference to the IK problem
of such a planar manipulator�
Optimal trajectory planning and obstacle avoidance

in a crowded workspace requires fast computation of
IK solutions� Hence� with this in mind� the objec�
tive of this paper is to investigate the IK problem of
a ��DOF planar parallel manipulator with holonomic
higher pairs� We show that� when some concepts from
elementary planar Euclidean geometry are employed�
�trivial�� closed form solutions are obtained� Through�
out� we emphasize �geometric thinking�� ideas raised
in �	��� to formulate an IK solution� while its triviality
was revealed in �����
In the next section the manipulator is described�

Section � gives a detailed description of the nomen�
clature required for the generalization of the analysis
to manipulators of n 	R legs� The fourth section lists
�ve special properties observed from the kinematic ge�
ometry of the manipulator germane to the IK algo�
rithm� Section � discusses disk motions in the plane
and decompositions of general displacements� Section

 describes the four step solution algorithm� In section
� closed form analytic solutions to the inverse kinemat�
ics problem are presented� Three examples are given
in section � and an appendix contains their tabulated
results�

�� MANIPULATOR DESCRIPTION

A single closed loop manipulator is shown in Fig� ��
It consists of � articulated links� which move with

To appear in Proc� CSME FORUM��� � c� CSME ���




Figure �� A planar parallel manipulator with two holo�
nomic higher pairs�

constrained relative motion� and a grounded base�
These six members are connected by � revolute �R
joints �lower pairs and 	 points of pure rolling con�
tact �higher pairs� The end�e�ector� disk D� is the
link �G�G� in the �R�R�G�G�R�R� loop� Legs A and
B each consist of two links� The �rst link in each
leg is grounded to the base� connected by an R�pair
and to the second link by another R�pair� The disk
rolls� without slip� over the surface of the straight lines
QASA and QBSB which are perpendicular to lA� and
lB� of the serial legs A and B� These lines are con�
strained to remain in tangential contact with the disk�
although the points of tangency are varied by relative
rolling of the lines with respect to the disk� The points
of contact PA

C and PB
C between the disk and legs con�

stitute two holonomic higher kinematic pairs�
The inverse kinematics problem involves the deter�

mination of a set of feasible joint variables required to
attain a desired disk pose� The algebra is simpli�ed
by expressing each joint variable in its own reference
frame� Variables in the cascaded reference frames are
transformed to other reference frames as the problem
requires� Careful selection of frame origins will sim�
plify computation� Hence� link reference frames are
assigned using the well established procedure devel�
oped by Denavit and Hartenberg ��� ��� and adapted
for higher pairs here� The procedure is summarized
below�
�� Identify the point of intersection� or the common
normal of neighbouring joint axes i and i��� As�
sign the origin of the frame for link i at the point of
intersection� or where the common normal meets
the ith axis�

	� Assign the zi direction pointing along the i
th joint

axis�
�� Assign the xi direction pointing along the com�
mon normal� or if the axes intersect� assign xi to
be normal to the plane containing the two axes�

�� Assign the yi direction to complete a right�handed
coordinate system�

This procedure introduces the planar systems x�y and
y� z� These systems are used for their computational
convenience when concatenating the �� � DH param�
eter transformations� mentioned later on� to derive the
displacement equations� Fig� � shows the manipulator
with link frames assigned this way�

�� NOMENCLATURE

The kinematic analysis of a parallel manipulator is the
same as that for a serial manipulator� except that the

solution is repeated for each leg� ����� So joint and po�
sition variables along with link design parameters must
be generalized to allow for analysis of the manipulator
on a leg by leg basis� To minimize the confusion that
results from the handling of the kinematic relation�
ships in component form� a well de�ned� unambiguous
notation must be adopted� Therefore� each joint and
position variable is fully identi�ed by left and right
sub and super�scripts while link parameters require
only right sub and super�scripts as described below�

i� Left and right sub and super�scripts�

�� For a joint variable� the right sub�script i� i �
f�� 	� �g identi�es the joint number� For each ma�
nipulator leg� the joint number at the connection
between the �rst link and the base is �� Between
the �rst and second links is 	� The higher pair
between link 	 and the disk is ��

	� For a coordinate axis� the right sub�script i� i �
f�� �� 	� � � � � ig represents the link to which the co�
ordinate system is attached� � is for the base� � is
for the �rst link� etc��

�� The right super�script� j� j � fA�B� � � � � jg de�
notes a particular manipulator leg�

�� The left super�script� f � f � f�� �� 	 � � �� fg refers
to the reference frame in which the variable is rep�
resented�

�� The left sub�script� m indicates the type of pla�
nar motion� R is for pure rotation of the disk
about its centroid� T is for pure translation of
the disk centre� No left sub�script means either
general plane motion� or that the type of motion
is obvious from the context�

ii� Fixed link design parameters�

�� lji is the length of link i in leg j�

	� ljk�x is the projected distance along the horizontal
axis of the inertial reference frame� fA� g between
the origins of legs j and k� j � fA�B� � � � � jg� k �
fA�B� � � � � kg� j �� k� Note� For all analysis in this
paper the base frame fA� g of leg A is considered
as the inertial reference frame�

�� ljk�y is the projected distance along the vertical axis

of the inertial reference frame� fA� g between the
origins of legs j and k� j � fA�B� � � � � jg� k �
fA�B� � � � � kg� j �� k�

�� r is the radius of the disk�

iii� Joint variables�

�� f
m�

j
i is the joint angle i of leg j described in refer�

ence frame f with regard to m type of motion�
Positive angles are measured counter�clockwise
�CCW�

	� �
md

j
� is the distance from point P j to point P j

C

measured along yj�� Note that y
j
� and zj� are al�

ways parallel� So dj� could be measured in frame

fj�g along zj�� However� in order to later derive the
manipulator displacement equations using DH pa�
rameters� dj� must be expressed in frame fj�g�
In the home position shown in Fig� �� the points
P j and P j

C are coincident� The origin of the frame

f j
� g is superimposed on the point of contact be�

tween the straight line QjSj � and the disk D� and
translates with it along line QjSj �

	



iv� Position variables� The Pose Array�

The pose of the disk will be described by a ��� array
composed of the following variables� all expressed in
the inertial reference frame��

xD
yD
�D

�

Where

�� xD is the x cartesian coordinate of the disk centre�
	� yD is the y cartesian coordinate of the disk centre�
�� �D is the orientation of the disk expressed as the
angle between the xD axis and the xA� axis� In
the home position� the xD axis is parallel to the
xA� axis�

�� SPECIAL MANIPULATOR PROPERTIES

The general motion of the disk in the plane involves
relative motion between the disk and each serial 	R
leg� The rolling contact is conveniently modelled as
multiple racks and a single pinion� Each rack can roll
on the pinion� the pinion can roll on the racks� or there
can be a combination of the two motions� For general
planar motion the system� with link frames as assigned
in Fig� �� has the following properties which� for the
sake of brevity� are stated without proof�

�� If the pinion rolls on one rack� then it must roll
on both�

	� Either or both racks may roll on the pinion�
�� If� during general motion� the pinion is stationary
with respect to one rack while the other rack rolls
on the pinion there are two possibilities� First�
let�s suppose the higher pair in the A leg is locked�
If ��A� is constant the motion of the pinion is pure
curvilinear translation in the �xed base frame�
Second� if ��A� changes during the motion� then
the pinion rotates about a centre other than its
own axis by an angle equal to the change in ��A� �

�� If ��dA� has the same magnitude but opposite
sense as ��dB� � then the motion of the pinion
is pure rectilinear translation of its centre� Pure
curvilinear translation can also occur if the mag�
nitude condition is violated however� the opposite
sense condition must be met�

�� If ��dA� and �
�dB� have the same magnitude and

sense� then the motion of the pinion is pure �xed
axis rotation about its centre�

These properties may be extended to manipulators
with more than two legs by replacing the words �both�
 �either� with �all�  �any��

�� DISK MOTIONS IN THE PLANE

An Isometry of the Euclidean Plane is a one�to�one
mapping of the plane onto itself which leaves distance
invariant ���� The set of all planar isometries belong
to an algebraic group� A group consists of a set� G
together with a binary operator� � de�ned on G which
satis�es the following axioms� ����

� x � y � G � x� y � G
	 �x � y � z � x � �y � z � x� y� z � G
� � I � G � I � x � x � I � x�

� x � G
� � x�� � G � x � x�� � x�� � x � I�

� x � G

� through � are known as the closure� associativity�
identity� and inverse axioms� respectively� Note that
commutativity is not a group axiom�
A planar displacement consists of the direct isome�

tries only� The direct isometries are translations and
rotations� Since direct isometries preserve sense as well
as distance� the product of any number of direct isome�
tries is another direct isometry� It is easy to show that
the associativity axiom holds for the product of three
direct isometries� It is equally simple to show the exis�
tence of an identity displacement and that there is an
inverse for every displacement in the plane� Hence� the
set of all planar displacements is a sub�group of the
group of isometries of the plane� Note that the indi�
rect� or opposite isometries do not preserve sense and
therefore do not form a sub�group since the product
of opposite isometries is not necessarily opposite�
Let D be the sub�group of planar displacements�

The manipulator under study has � DOF� Two are
translations in the xA� and y

A
� directions� and one ro�

tation about the centre of the disk� The group oper�
ator in D� �� called �product�� represents successive
implementations of given isometries� By virtue of the
axiom of closure� all the products of all translations
and all rotations are also in D� Hence� The disk can
move in any combination of translation and rotation
within the physical limitations of its workspace�
It is well established� and quite simple to show that

any displacement of the disk� that is� any product
of translations and rotations about arbitrary parallel
axes normal to the plane may be decomposed into the
product of a single translation of the disk centre and a
single rotation through a �nite angle of the disk about
its centre� Furthermore� since it is the centre of ro�
tation which is translated� these speci�c translations
and rotations commute� The latter claim is shown by
the following� Let

Td � Translation through distance d�

S� � Rotation through angle ! about centre S�

Consider the arbitrary motion of the disk along some
path between an initial position� Pi� and a �nal posi�
tion Pf shown in Fig� 	� Td is the translation through

Figure �� Arbitrary motion of the disk between two points�

distance d of the disk centre from Pi to Pf � The dis�
tance d� evidently� is independent of the path between
the two points� In fact� d is the sum of the directed
displacements along any path between Pi and Pf �
Along any arbitrary path� the disk orientation can

change such that when it arrives at Pf � a reference

�



line painted on the disk has been displaced through
an angle !� This angle is the sum of all angu�
lar displacements of the disk about arbitrary parallel
axes �perpendicular to the plane of the disk encoun�
tered along the path� Evidently� the sum may be ex�
pressed as the di�erence between !f and !i� such that
!f � !i�mod	�� It follows that the sum of all an�
gular displacements along the path may be expressed
as a single rotation of the disk about its centre� S��
where ! � !f � !i�
Apparently then� any arbitrary motion of the disk

may be represented by a single translation of its centre
and a single rotation about its centre� The centre of
the disk is a point� Points can not rotate� they can only
translate� Since the centre of rotation is translated it
is evident that S� may occur independently from Td�
It then follows that�

Td � S� � S� � Td
It may then be said that Td and S� commute for de�
compositions of this type�

	� INVERSE KINEMATICS ALGORITHM

The problem at hand is� given �xD� yD� �D�
T deter�

mine ���j��
��j��

�dj��
T � A complicating factor in general

plane displacement is the ambiguity that the rolling
constraint introduces� That is� �D� the desired �nal
disk orientation does not divulge how much of the new
position was achieved by rotation of links � and 	 and
how much was achieved by pure rolling between the
disk and the legs� By how much has the disk rolled
on the racks and by how much has each rack rolled on
the disk" Is there a combination� and if so� what is the
ratio" These questions lead to di�culties in the calcu�
lation of the joint o�sets �dj�� To address these prob�
lems the special properties of the manipulator and the
group properties of D are invoked� Any feasible gen�
eral displacement of the disk can then be decomposed
into a pure translation of the disk and pure� �xed axis
rotation about the centre of the disk�
Given both the desired pose array and the initial

conditions� a set of intermediate joint variables may
be calculated for the pure translation component� The
translation set may then be combined with a subse�
quent set calculated for the pure rotation component�
As shown earlier� these rotations and translations com�
mute� Hence� the order of rotation and translation
is not important� This last fact will be used for the
sake of convention� The intermediate solutions for pure
translation will be calculated �rst� Then� using this in�
termediate set as new initial conditions� solutions will
be generated for �xed axis rotation� The �nal solution
set is simply the combination of the two solution sets�
Since the solutions for each leg are not coupled� �����

each leg is treated as an open four�bar chain and solved
for separately� Another convention� mentioned earlier�
is that the inertial reference frame will remain coin�
cident with the �xed reference frame of leg A� The
choice of leg A is arbitrary however� any subsequent
legs will be labelled B�C� � � � � j� CCW from leg A� Leg
A will always be solved for �rst� The inverse kine�
matics algorithm is summarized in the following four
steps�

Step �� Pure translation� Remove the higher pair
connection with all but the leg being considered� The
�rst iteration concerns leg A� Lock the higher pair so
that ��dA� � � and calculate the joint angles required
to reach the new position given by the ordered pair

�xD� yD� Call the new angles �
T�

A
���

�
T�

A
�� and

�
T�

A
��

�recall that �T�
A
�� �

�
T�

A
�� �

�
T�

A
�� 

Step �� Remove arti
cial angular o�set� Recall
special property �� If the disk is stationary with re�
spect to one rack while in motion� then the disk orien�
tation can change� Since pure translation of the disk is
required� any angular o�set created by step � must be
removed� This is accomplished by an imaginary �xed
axis rotation about the disk centre equal in magnitude�
but opposite in sense to �

T�
A
��� Calculate

�
Td

A
� � which is

the joint o�set required to e�ect the imaginary rota�
tion� Recalculate the joint angles� These are the joint
angles necessary to cause the pure translation of the
disk centre� Call these intermediate angles �T�

A
� �

�
T�

A
�

and �
T�

A
� � Of course� if there is no rotation component

to the motion� these are the �nal joint angles� If there
is no translation component� these angles are the same
as the initial joint angles�

Step �� Pure rotation� Recall special property ��
If ��dA� and �

�dB� have the same magnitude and sense�
then the motion of the disk is pure rotation about its
centre� Hence� ��dA� is simply calculated from the
arc length subtended by �D� and is the same for all
legs� Using the joint variables from step 	 as initial
conditions and the desired disk angle �D� calculate
��A� �

��A� � and
�dA�

Step �� Repeat Steps �� 	� and � for the remaining
legs�

�� CLOSED FORM ANALYTIC SOLUTION

The displacement equations for the two�legged ver�
sion of the manipulator are readily obtained by inspec�
tion� But� as the number of legs and kinematic loops
grows determining these equations becomes more dif�
�cult and the utility of the DH notation becomes evi�
dent� After assigning link reference frames by the pro�
cedure given in section 	� the following de�nitions of
link parameters apply ��� ���

ai � distance from zi to zi�� along xi�
�i � angle between zi  zi�� about xi�
di � distance from xi�� to xi along zi�
�i � angle between xi��  xi about zi�

Using homogeneous Cartesian coordinates ���� with
a homogenizing coordinate of w � �� the relative dis�
placement between adjacent links can be expressed as
a linear transformation of the form�

i��x � i��
i Tix

Where i��x and ix are the position vectors of points
in reference frames fi��g and fig respectively with x
having the form� �

��
x
y
z
�

�
��

Where either y or z will be set to zero� depending
on which reference plane is used �see Fig� �� The
third dimension is included for the sake of computation
and has no e�ect on the outcome� The operator i��i T
is a � � � transformation matrix which maps vectors

�



de�ned in frame i into frame i��� Employing the DH
parameters� it has the form�

i��
i T �

�
��

c�i �s�i � ai��
s�ic�i�� c�ic�i�� �s�i�� �s�i��di
s�is�i�� c�is�i�� c�i�� c�i��di

� � � �

�
��

Where c � cos and s � sin�
A transformationmatrixmust be calculated for each

link� The matrices may then be concatenated� in the
appropriate order� to obtain the transformationmatrix
which relates the pose of the disk in the disk frame�
fDg to the pose of the disk in the base frame of inter�
est� Since the base frame fA� g has been selected as the
inertial reference frame� the locations of the bases of
all other legs must be expressed with respect to fA� g
and incorporated into the calculations� The displace�
ment equations for each leg may then be obtained� by
inspection� from this transformation matrix�
After some algebra the following are obtained �note

the right super�script is dropped� since all variables
refer to the leg being solved for�

Kx � l�c� � �l� � rc�� � d�s�� ��

Ky � l�s� � �l� � rs�� � d�c�� �	

Where

Kx � xD � lAk�x

Ky � yD � lAk�y

c� � cos ����

c�� � cos ���� �
���

s� � sin ����

s�� � sin ���� �
���

For leg A� Kx � xD and Ky � yD�
Once the displacement equations are known� the fol�

lowing procedure may be used to solve for the set of
joint variables required to achieve a desired feasible
pose� Equations �� and �	 are squared and added�
��� is eliminated using the identities�

c�� � c�c� � s�s�
s�� � c�s� � s�c�

The following equation in two variables� ��� and �d��
is obtained�

� � 	l���l� � rc� � d�s� � l��	r � l� � l�� � d��

�r� �K�
x �K�

y ��

�d� can be determined because of special property
� and the fact that the general plane motion is decom�
posable into pure translational and rotational compo�
nents� In the algorithm� step � requires that the higher
pair be locked� Hence� there is no change in �d�� Step
	 recovers the angular o�set arti�cially caused by step
�� This is accomplished by �xed axis rotation of the
disk about its centre� Step � is the actual pure ro�
tational component of the motion� Again� it is pure
rotation about the disk centre� Thus �d� in each of
steps 	 and � is given by�

Step 	� �
Td� � �d�� � r��T��� � ���� ��

Step �� �d� � �
T d� � r��D � �D� ��

Determining the joint o�sets by using the pure rolling
constraint equations guarantees that the tangency con�
dition is met since tangency is a necessary �although
not su�cient condition for pure rolling�
Equation �� is now a function of just one unknown

variable� ���� Solving �� for ��� yields two solutions�

��� � 	arctan

�
K� 	 	

p
K�

	K�

	
�


Where

K� � �l�d�

K� � 	l���l
�
� � d�� � r� � �l�r�l

�
� � d�� �K�

x �K�
y 

�	d���l�� � r� � 	�K�
x �K�

y �l
�
� � l�� � d�� � r�

�	K�
xK

�
y � �l��r � 
r�l�� � �r�l� � l�� � l��

�d�� � r� �K�
x �K�

y

K� � l�� � l�� � d�� � r� �K�
x �K�

y � 	l��r � l�

�	l�r
Solving for angles using tan�� has an inherent am�

biguity concerning the quadrant in which the angle
lies� To remedy this� the two�argument inverse tan�
gent function� ATAN	�y� x is used� It is de�ned by�

ATAN	�y� x �

tan���y�x � � if x � �

tan���y�x � � sgn�y � �� � sgn�y if x � �

tan���
 sgn�y �
�

	
sgn�y if x � �

Where�

sgn�y �



� if y � �

�� if y � �

Thus� equation �
 becomes�

��� � 	ATAN	

�
K� 	 	

p
K�

	K�

	
��

For a general displacement� the four algorithm steps
produce the following� From step � two values of �T���
are obtained from equation ��� Corresponding to each
of these there is a unique value of �T��� that will sat�
isfy both equations �� and �	� From step 	� there is
one value of �Td� obtained for each value of

�
T��� deter�

mined in step �� Also� two values of each of �T�� and
�
T�� are obtained� Step � yields two values for

�d��
one for each of the values of �Td� determined in step
	� For each value of �d� there correspond two values
for each of ��� and ���� These are the elbow�up and
elbow�down solutions� Thus� for each leg there are up
to four solutions� The solutions for each leg are uncou�
pled� Hence� for a manipulator with n legs� there are
�n solutions� some of which may be complex conjugate
pairs�

� EXAMPLES

Fig� �� The following three numerical examples deal
with � pure rotation of the disk about its centre# 	
pure translation of the disk� no disk rotation# � com�
bined translation and rotation� In all three examples�

�



the home position shown in Fig� � is the initial posi�
tion� The �xed link parameters and initial conditions
are as follows� where lengths are in �generic� units and
angles are in degrees�

Fixed Link Parameters

r � �
lAB�x � ��

p
	

lAB�y � �
lA� � lB� � �
lA� � lB� � ��

Initial Joint Parameters

�dA�� � �dB�� � �
��A�� � ����
��B�� � ���
��A�� � 	���
��B�� � ���
��A�� � ���
��B�� � ����

Initial Pose Array

�
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yD�
�D�
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� �

p
	

�
p
	

��

�
�

Example �

Pure rotation of the disk about its centre is the sim�
plest motion for obtaining solutions� There are no in�
termediate joint parameters to calculate� As a result�
a maximum of only four solutions may be expected�
In this example� the disk centre remains in its home

position while it rotates through ���� The desired pose
array is� �

xD
yD
�D
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�

�
� �

p
	

�
p
	

���

�
�

The four solutions are given in Table � in the appendix
and illustrated in

Figure �� The solutions for pure rotation from Table ��

Example �

In this example� joint parameters are calculated for
the case of pure translation of the disk� Despite the
fact that no real rotation of the disk occurs� the algo�
rithm requires the calculation of a set of intermediate
joint variables� The desired pose array is��

xD
yD
�D

�
�

�
	�����
����	��
��

�

The �rst four solutions are shown in Fig� �� All
sixteen solutions are given in Table 	 in the appendix�

Figure �� The �rst four solutions for pure translation from
Table ��

Example �

The displacements of examples � and 	 are combined
to give a general plane displacement� The desired pose
array is� �

xD
yD
�D

�
�

�
	�����
����	��
���

�

Four of the sixteen solutions are illustrated in Fig� ��
All sixteen solutions are tabulated in Table � in the
appendix�

Figure �� The �rst four solutions for general plane motion
from Table ��

�� CONCLUSIONS

In this paper� we have introduced an algorithm for
solving the inverse kinematics problem of a class of






planar parallel manipulators with holonomic higher
pairs with n 	R legs� The seemingly complicated prob�
lem was reduced� at worst� to solution of quadratic
equations� This reduction was achieved by �geomet�
ric thinking�� That is� the kinematic geometry of the
manipulator was analyzed� revealing properties which
were in turn used to decompose the general inverse
kinematics problem into simpler stages of pure trans�
lation and rotation�
However� the kinematic analysis merely begins with

the inverse kinematics� The more complicated problem
of the forward kinematics� which invites an excursion
into the area of Gr$unwald�s kinematic mapping� has
yet to be addressed� Furthermore� issues of workspace
singularities and assembly modes� isotropy� etc�� are
ripe for investigation� There are also ample interest�
ing applications for this class of manipulator to war�
rant further study� For instance� a three legged version
could be adapted as a �universal� four�jaw chuck with
a variable axis�
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