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ABSTRACT

Pure rolling between bodies in contact, as is some-
times used for fine—-motion manipulation, is an impor-
tant research issue. Furthermore, inverse kinematic
(TK) solutions are necessary to plan trajectories and
avold obstacles. In this paper, closed form analytical
solutions to the IK problem of a 3-degree—of-freedom
(DOT) planar parallel manipulator with holonomic
higher pairs are presented. This manipulator is a sin-
gle closed loop kinematic chain whose end—effector is
a circular disk which rolls without slip along a straight
line on the non—grounded rigid links of each of two 2R
serial legs. The points of contact between the disk and
the legs constitute holonomic higher pairs. The pairs
are termed ‘holonomic’ because the constraint equa-
tions are in integral form. The solution algorithm is
novel because the holonomic constraint equations and
the axiom of closure pertaining to the group of isome-
tries of the plane are exploited. It is shown that any
general plane motion of the disk within the physical
limits of the workspace 1s decomposable into a sin-
gle pure translation of the disk and a single rotation
of the disk about its centre. Furthermore, these spe-
cific translations and rotations commute. Five special
properties of the manipulator allow a set of intermedi-
ate joint variables, calculated for pure translation, to
be combined with a subsequent set for pure rotation,
given the desired and initial pose of the disk. Since the
solutions for the joint variables of each leg are uncou-
pled, the solution algorithm is generalized such that
joint variables can be determined for rolling systems
containing 2R legs of any number, n. There are no
more than 47 real IK solutions. Three illustrative ex-
amples are given.

1. INTRODUCTION

Extensive recent research has been done in connection
with grasping and fine-motion manipulation by multi-
fingered robotic hands, [13]. The Utah/MIT dextrous
hand is an example. Various types of contact between
finger and hand have been studied extensively in [17].
The kinematics of rolling contact for two surfaces of
arbitrary shape was examined in [6]. Control schemes
for parallel manipulators with rolling constraints were
put forward in [19, 6]. Rolling is found elsewhere, e.g.,
automatically guided vehicles (AGV) are used indus-
trially to convey cargo. The kinematics and dynamics
of a three wheeled 2 DOF AGV were studied in great
detail in [15].

Robotic mechanical systems involving rolling con-
tact rarely use higher pair joints. For instance, most
robotic hands are constructed with lower pairs only
and the rolling contact is between end-—effector and
workpiece, [17]. In the case of the AGV, continuous
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rolling contact is a by—product of constraints imposed
by the operating environment. It is not a design pa-
rameter affecting control (except to detect wheel slip)
or kinematic synthesis.

With the exception of cams and gears, which are not
considered to be robotic mechanical devices, research
on mechanisms containing higher pairs is rare. The
rolling—without—slipping pair is considered here in this
regard because gearing is common, efficient and reli-
able but uncommon in robotic mampulators

If the rolling is restricted to a one parameter planar
motion, the rolling constraints are holonomic because
the constraint equations can be expressed in terms of
displacement, i.e., in integral form, thereby simplify-
ing kinematic analysis. Very little literature on such
planar mechanisms was found. The effects of initial
assembly configurations on the reachable workspace of
a planar rolling system were examined in [3]. Previ-
ously the same authors, [2], described an algorithm
for the inverse kinematics (IK) problem of the same
manipulator. However, they failed to account for the
orientation of the end—effector in the inertial reference
frame. That is, a relative angle, used to specify ori-
entation, can change while the orientation of the end
effector remains constant and so erroneous solutions
arise. We found no other reference to the IK problem
of such a planar manipulator.

Optimal trajectory planning and obstacle avoidance
in a crowded workspace requires fast computation of
IK solutions. Hence, with this in mind, the objec-
tive of this paper is to investigate the IKK problem of
a 3-DOF planar parallel manipulator with holonomic
higher pairs. We show that, when some concepts from
elementary planar Euclidean geometry are employed,
“trivial”, closed form solutions are obtained. Through-
out, we emphasize “geometric thinking”, ideas raised
in [20], to formulate an TK solution, while its triviality
was revealed in [10].

In the next section the manipulator is described.
Section 3 gives a detailed description of the nomen-
clature required for the generalization of the analysis
to manipulators of n 2R legs. The fourth section lists
five special properties observed from the kinematic ge-
ometry of the manipulator germane to the TK algo-
rithm. Section 5 discusses disk motions in the plane
and decompositions of general displacements. Section
6 describes the four step solution algorithm. In section
7 closed form analytic solutions to the inverse kinemat-
ics problem are presented. Three examples are given
in section 8 and an appendix contains their tabulated
results.

2. MANIPULATOR DESCRIPTION

A single closed loop manipulator is shown in Fig. 1.
It consists of 5 articulated links, which move with
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Figure 1. A planar parallel manipulator with two holo-
nomic higher pairs.

constrained relative motion, and a grounded base.
These six members are connected by 4 revolute (R)
joints (lower pairs) and 2 points of pure rolling con-
tact (higher pairs). The end—effector, disk D, 1s the
link -G-G- in the -R-R-G-G-R-R- loop. Legs A and
B each consist of two links. The first link in each
leg is grounded to the base, connected by an R-pair
and to the second link by another R-pair. The disk
rolls, without slip, over the surface of the straight lines
Q454 and QP S? which are perpendicular to /4 and

I8 of the serial legs A and B. These lines are con-
strained to remain in tangential contact with the disk,
although the points of tangency are varied by relative
rolling of the lines with respect to the disk. The points
of contact P4 and PZ between the disk and legs con-
stitute two holonomic higher kinematic pairs.

The inverse kinematics problem involves the deter-
mination of a set of feasible joint variables required to
attain a desired disk pose. The algebra is simplified
by expressing each joint variable in its own reference
frame. Variables in the cascaded reference frames are
transformed to other reference frames as the problem
requires. Careful selection of frame origins will sim-
plify computation. Hence, link reference frames are
assigned using the well established procedure devel-
oped by Denavit and Hartenberg [9, 11] and adapted
for higher pairs here. The procedure is summarized
below:

1. Identify the point of intersection, or the common
normal of neighbouring joint axes ¢ and ¢4+ 1. As-
sign the origin of the frame for link ¢ at the point of
intersection, or where the common normal meets
the " axis.

2. Assign the z; direction pointing along the ** joint
axis.

3. Assign the z; direction pointing along the com-
mon normal, or if the axes intersect, assign z; to
be normal to the plane containing the two axes.

4. Assign the y; direction to complete a right-handed
coordinate system.

This procedure introduces the planar systems x—y and
y — z. These systems are used for their computational
convenience when concatenating the 4 x 4 DH param-
eter transformations, mentioned later on, to derive the
displacement equations. Fig. 1 shows the manipulator
with link frames assigned this way.

3. NOMENCLATURE

The kinematic analysis of a parallel manipulator is the
same as that for a serial manipulator, except that the

solution is repeated for each leg, [10]. So joint and po-
sition variables along with link design parameters must
be generalized to allow for analysis of the manipulator
on a leg by leg basis. To minimize the confusion that
results from the handling of the kinematic relation-
ships in component form, a well defined, unambiguous
notation must be adopted. Therefore, each joint and
position variable is fully identified by left and right
sub and super—scripts while link parameters require
only right sub and super—scripts as described below.

i) Left and right sub and super—scripts.

1. For a joint variable, the right sub-script ¢, ¢ €
{1, 2,3} identifies the joint number. For each ma-
nipulator leg, the joint number at the connection
between the first link and the base is 1. Between
the first and second links is 2. The higher pair
between link 2 and the disk 1s 3.

2. For a coordinate axis, the right sub—script ¢, ¢ €
{0,1,2,...,i} represents the link to which the co-
ordinate system is attached. 0 is for the base, 1 is
for the first link, etc..

3. The right super—script, j, j € {A,B,...,j} de-
notes a particular manipulator leg.
4. The left super—script, f, f € {0,1,2..., f} refers

to the reference frame in which the variable is rep-
resented.

5. The left sub—script, m indicates the type of pla-
nar motion. R is for pure rotation of the disk
about its centroid. T is for pure translation of
the disk centre. No left sub—script means either
general plane motion, or that the type of motion
is obvious from the context.

ii) Fixed link design parameters.

1. I is the length of link i in leg j.
2. l‘é’; is the projected distance along the horizontal

axis of the inertial reference frame, {#} between
the origins of legs j and k, j € {A,B,...,j}, k €
{A,B, ...k}, j# k. Note: For all analysis in this

paper the base frame {{'} of leg A is considered
as. the inertial reference frame.
3. l] is the projected distance along the vertical axis

of the inertial reference frame, {{} between the
origins of legs j and k, j € {A,B,...,j}, k €

{A’B""’k}’jik'
4. r is the radius of the disk.

iii) Joint variables.

1. 5179‘27 is the joint angle ¢ of leg j described in refer-
ence frame f with regard to m type of motion.
Positive angles are measured counter—clockwise
(CCW)

2.2 d‘g,’ is the distance from point P? to point P]
measured along y% Note that y% and z3 are al-
ways parallel So d] could be measured in frame

{‘7} along z3. However, in order to later derive the
manipulator dlsplacement equations using DH pa-

rameters, d3 must be expressed in frame {1
In the home position shown in Fig. 1, the points

PJ and P are coincident. The origin of the frame
{ % } is superimposed on the point of contact be-
tween the straight line @757, and the disk D, and
translates with it along line Q757 .



iv) Position variables: The Pose Array.

The pose of the disk will be described by a 3x1 array
composed of the following variables, all expressed in
the inertial reference frame:

rp

YD

Up
Where

1. zp 1s the z cartesian coordinate of the disk centre.
2. yp is the y cartesian coordinate of the disk centre.
3. ¥p is the orientation of the disk expressed as the
angle between the zp axis and the z{ axis. In
the home position, the zp axis is parallel to the

ri axis.

4. SPECIAL MANIPULATOR PROPERTIES

The general motion of the disk in the plane involves
relative motion between the disk and each serial 2R
leg. The rolling contact is conveniently modelled as
multiple racks and a single pinion. Each rack can roll
on the pinion, the pinion can roll on the racks, or there
can be a combination of the two motions. For general
planar motion the system, with link frames as assigned
in Fig. 1, has the following properties which, for the
sake of brevity, are stated without proof:

1. If the pinion rolls on one rack, then it must roll
on both.

2. Either or both racks may roll on the pinion.

3. If, during general motion, the pinion is stationary
with respect to one rack while the other rack rolls
on the pinion there are two possibilities. First,
let’s suppose the higher pair in the A leg 1s locked.
If °94 is constant the motion of the pinion is pure
curvilinear translation in the fixed base frame.
Second, if %94 changes during the motion, then
the pinion rotates about a centre other than its
own axis by an angle equal to the change in Y94,

4. If A%d4 has the same magnitude but opposite

sense as AZd¥, then the motion of the pinion
is pure rectilinear translation of its centre. Pure
curvilinear translation can also occur if the mag-
nitude condition is violated however, the opposite
sense condition must be met.

5. If A%d% and A%d¥ have the same magnitude and
sense, then the motion of the pinion is pure fixed
axis rotation about its centre.

These properties may be extended to manipulators
with more than two legs by replacing the words ‘both’
& ‘either’ with ‘all’ & ‘any’.

5. DISK MOTIONS IN THE PLANE

An Isometry of the Euclidean Plane is a one—to—one
mapping of the plane onto itself which leaves distance
invariant [7]. The set of all planar isometries belong
to an algebraic group. A group consists of a set, G
together with a binary operator, * defined on G which
satisfies the following axioms, [4]:

Hexyeg Vre,yed

) (exy)xz=wx(yxz) Vayzeg

3)3T€q: Ixz=zx+xI=r,
Vaeeg

4)Fz~teg: exx t=x"tyvar=1,
Veeg

1) through 4) are known as the closure, associativity,
wdentity, and inverse axioms, respectively. Note that
commutativity is not a group axiom.

A planar displacement consists of the direct isome-
tries only. The direct isometries are translations and
rotations. Since direct isometries preserve sense as well
as distance, the product of any number of direct isome-
tries is another direct isometry. It 1s easy to show that
the associativity axiom holds for the product of three
direct isometries. It is equally simple to show the exis-
tence of an identity displacement and that there is an
inverse for every displacement in the plane. Hence, the
set of all planar displacements is a sub—group of the
group of isometries of the plane. Note that the indi-
rect, or opposite isometries do not preserve sense and
therefore do not form a sub-group since the product
of opposite 1sometries 1s not necessarily opposite.

Let D be the sub—group of planar displacements.
The manipulator under study has 3 DOF. Two are
translations in the z# and y§ directions, and one ro-
tation about the centre of the disk. The group oper-
ator in D, %, called “product”, represents successive
implementations of given isometries. By virtue of the
axiom of closure, all the products of all translations
and all rotations are also in D. Hence, The disk can
move in any combination of translation and rotation
within the physical limitations of its workspace.

It is well established, and quite simple to show that
any displacement of the disk, that is, any product
of translations and rotations about arbitrary parallel
axes normal to the plane may be decomposed into the
product of a single translation of the disk centre and a
single rotation through a finite angle of the disk about
its centre. Furthermore, since it is the centre of ro-
tation which is translated, these specific translations
and rotations commute. The latter claim is shown by
the following: Let

Ta« = Translation through distance d.
Sy = Rotation through angle ® about centre S.
Consider the arbitrary motion of the disk along some

path between an initial position, P;, and a final posi-
tion P; shown in Fig. 2. 75 is the translation through

Arbitrary path

Figure 2. Arbitrary motion of the disk between two points.

distance d of the disk centre from F; to P;. The dis-
tance d, evidently, is independent of the path between
the two points. In fact, d is the sum of the directed
displacements along any path between F; and FP;.
Along any arbitrary path, the disk orientation can
change such that when it arrives at Py, a reference



line painted on the disk has been displaced through
an angle ®. This angle is the sum of all angu-
lar displacements of the disk about arbitrary parallel
axes (perpendicular to the plane of the disk) encoun-
tered along the path. Evidently, the sum may be ex-
pressed as the difference between ®; and ®;, such that
®; = ®;(mod27). It follows that the sum of all an-
gular displacements along the path may be expressed
as a single rotation of the disk about its centre, Ss,
where ¢ = ¢; — ¢;.

Apparently then, any arbitrary motion of the disk
may be represented by a single translation of its centre
and a single rotation about its centre. The centre of
the disk is a point. Points can not rotate, they can only
translate. Since the centre of rotation is translated it
is evident that 8¢ may occur independently from 7.
It then follows that:

TaxSe = Sa*Ta

It may then be said that 74 and Sg commute for de-
compositions of this type.

6. INVERSE KINEMATICS ALGORITHM

The problem at hand is, given [zp,yp,Up]” deter-
mine ["9], 194 2d%]T. A complicating factor in general
plane displacement is the ambiguity that the rolling
constraint introduces. That is, ¥p, the desired final
disk orientation does not divulge how much of the new
position was achieved by rotation of links 1 and 2 and
how much was achieved by pure rolling between the
disk and the legs. By how much has the disk rolled
on the racks and by how much has each rack rolled on
the disk? Is there a combination, and if so, what is the
ratio? These questions lead to difficulties in the calcu-

lation of the joint offsets 2d%. To address these prob-
lems the special properties of the manipulator and the
group properties of D are invoked. Any feasible gen-
eral displacement of the disk can then be decomposed
into a pure translation of the disk and pure, fixed axis
rotation about the centre of the disk.

Given both the desired pose array and the initial
conditions, a set of intermediate joint variables may
be calculated for the pure translation component. The
translation set may then be combined with a subse-
quent set calculated for the pure rotation component.
As shown earlier, these rotations and translations com-
mute. Hence, the order of rotation and translation
is not important. This last fact will be used for the
sake of convention: The intermediate solutions for pure
translation will be calculated first. Then, using this in-
termediate set as new initial conditions, solutions will
be generated for fixed axis rotation. The final solution
set 1s simply the combination of the two solution sets.

Since the solutions for each leg are not coupled, [10],
each leg is treated as an open four—bar chain and solved
for separately. Another convention, mentioned earlier,
is that the inertial reference frame will remain coin-
cident with the fixed reference frame of leg A. The
choice of leg A is arbitrary however, any subsequent
legs will be labelled B, C, ..., 5, CCW from leg A. Leg
A will always be solved for first. The inverse kine-
matics algorithm is summarized in the following four
steps.

Step 1. Pure translation: Remove the higher pair
connection with all but the leg being considered. The
first iteration concerns leg A. Lock the higher pair so
that A%d4 = 0 and calculate the joint angles required
to reach the new position given by the ordered pair

(xp,yp). Call the new angles 394 Lo, and %94,
(recall that 304, = S04, + 194, )

Step 2. Remove artificial angular offset: Recall
special property 3): If the disk is stationary with re-
spect to one rack while in motion, then the disk orien-
tation can change. Since pure translation of the disk is
required, any angular offset created by step 1 must be
removed. This is accomplished by an imaginary fixed
axis rotation about the disk centre equal in magnitude,
but opposite in sense to %79‘240. Calculate %dg‘, which is
the joint offset required to effect the imaginary rota-
tion. Recalculate the joint angles. These are the joint
angles necessary to cause the pure translation of the
disk centre. Call these intermediate angles %94, L4
and %79‘24. Of course, if there is no rotation component
to the motion, these are the final joint angles. If there
is no translation component, these angles are the same
as the initial joint angles.

Step 3. Pure rotation: Recall special property 5):
If A%d4 and A%d% have the same magnitude and sense,
then the motion of the disk is pure rotation about its
centre. Hence, A%d4 is simply calculated from the
arc length subtended by ¥p, and is the same for all
legs. Using the joint variables from step 2 as initial
conditions and the desired disk angle ¥p, calculate
09t 19t and 2d4

Step 4. Repeat Steps 1, 2, and 3 for the remaining
legs.

7. CLOSED FORM ANALYTIC SOLUTION

The displacement equations for the two-legged ver-
sion of the manipulator are readily obtained by inspec-
tion. But, as the number of legs and kinematic loops
grows determining these equations becomes more dif-
ficult and the utility of the DH notation becomes evi-
dent. After assigning link reference frames by the pro-
cedure given in section 2, the following definitions of
link parameters apply [8, 9]:

a; = distance from z; to z; 41 along z;.
a; = angle between z; & z;41 about z;.
d; = distance from z;_1 to z; along z;.
¥; = angle between z;_1 & x; about z;.

Using homogeneous Cartesian coordinates [18] with
a homogenizing coordinate of w = 1, the relative dis-
placement between adjacent links can be expressed as
a linear transformation of the form:

i+1X — Z:+1TiX

Where “*t1x and x are the position vectors of points
in reference frames {i+ 1} and {i} respectively with x
having the form:

— Ny

Where either y or z will be set to zero, depending
on which reference plane is used (see Fig. 1). The
third dimension is included for the sake of computation
and has no effect on the outcome. The operator Z»‘HT
is a 4 x 4 transformation matrix which maps vectors



defined in frame ¢ into frame ¢+ 1. Employing the DH
parameters, 1t has the form:

6792' —8792' 0 a; 1
i+l _ st;ca;_1  cvijeo;_y  —say_y  —Ssay_1d;
i — | st;say_q c¥isa;_1 cag_q co;_1d;

0 0 0 1

Where ¢ = cos and s = sin.

A transformation matrix must be calculated for each
link. The matrices may then be concatenated, in the
appropriate order, to obtain the transformation matrix
which relates the pose of the disk in the disk frame,
{D} to the pose of the disk in the base frame of inter-

est. Since the base frame {4} has been selected as the
inertial reference frame, the locations of the bases of
all other legs must be expressed with respect to {4}
and incorporated into the calculations. The displace-
ment equations for each leg may then be obtained, by
inspection, from this transformation matrix.

After some algebra the following are obtained (note
the right super—script is dropped, since all variables
refer to the leg being solved for):

Ky, = lici+ (la+7)ci2 — dssia (1)
Ky = lLisi+(la+7)s12 + dseis (2)
Where
K, = ap—lg
Ky = yp-— 164yk
i = cos (")
c1a = cos (%0 + 1)
s; = sin("0y)
s1o = sin ("9 + 10,)

Forleg A, K, = zp and Ky = yp.

Once the displacement equations are known, the fol-
lowing procedure may be used to solve for the set of
joint variables required to achieve a desired feasible
pose. Equations (1) and (2) are squared and added.

99, is eliminated using the identities:

Clz2 = C1C2 — 8182
$12 = €182 + s1¢2

The following equation in two variables, '9, and ?ds,
is obtained:

0 = 20((la+7r)ey —dssz) + 1 (2r + 1) + 1§ + d3
+r’ — K - K] (3)

2ds can be determined because of special property
5) and the fact that the general plane motion is decom-
posable into pure translational and rotational compo-
nents. In the algorithm, step 1 requires that the higher
pair be locked. Hence, there is no change in ?ds. Step
2 recovers the angular offset artificially caused by step
1. This is accomplished by fixed axis rotation of the
disk about its centre. Step 3 is the actual pure ro-
tational component of the motion. Again, it is pure
rotation about the disk centre. Thus 2ds in each of
steps 2 and 3 is given by:

Step 2: 2d3 = ?dsg — r(30U20 — *¥20) (4)
Step 3: 2d3 =%ds+r(¥p — ¥po) (5)

Determining the joint offsets by using the pure rolling
constraint equations guarantees that the tangency con-
dition is met since tangency is a necessary (although
not sufficient) condition for pure rolling.

Equation (3) is now a function of just one unknown

variable, 1d5. Solving (3) for 19, yields two solutions:

Ky + NE] )

19, = 2arctan [

2K

Where

K, = 4lds

Ky = 2503+ d3+7") +4lor(lf —d3+ K2 4+ K,)
—2d3(15 + r*) 4+ 2(K] + K)) (5 + 15+ d5 + %)
—2K; K} — 4l5r — 61715 — 4r%ly — I} — I3
—ds—r' - K; - K,

Ky = B4+G+d3+r"— K, — K, +2s(r—1)

—2117“

Solving for angles using tan~! has an inherent am-
biguity concerning the quadrant in which the angle
lies. To remedy this, the two—argument inverse tan-
gent function, ATAN2(y, x) is used. It is defined by:

ATAN2(y,z) =
tan~'(y/x) = Vifxr>0
tan~ (y/z) +wsgn(y) = 94 7msgn(y)if 2 <0
tan—l(oo) sgn(y) = g sgn(y) if # = 0
Where:
1 ify>0
sgn(y) = { 1 ity

Thus, equation (6) becomes:

19y = 2ATAN? [% VAZ] (7)

2K3

For a general displacement, the four algorithm steps
produce the following: From step 1 two values of 1129
are obtained from equation (3). Corresponding to each
of these there is a unique value of %7910 that will sat-
isfy both equations (1) and (2). From step 2, there is
one value Of%dg obtained for each value of%ﬂzo deter-
mined in step 1. Also, two values of each of L, and
991 are obtained. Step 3 yields two values for ?ds,
one for each of the values of %ds determined in step
2. For cach value of 2ds there correspond two values
for each of 95 and %9;. These are the elbow-up and
elbow—down solutions. Thus, for each leg there are up
to four solutions. The solutions for each leg are uncou-
pled. Hence, for a manipulator with n legs, there are
4" solutions, some of which may be complex conjugate
pairs.

8. EXAMPLES

Fig. 3. The following three numerical examples deal
with 1) pure rotation of the disk about its centre; 2)
pure translation of the disk, no disk rotation; 3) com-
bined translation and rotation. In all three examples,



the home position shown in Fig. 1 is the initial posi-
tion. The fixed link parameters and initial conditions
are as follows, where lengths are in “generic” units and
angles are in degrees:

Fixed Link Parameters
r = 4

B = 102

l()“yB = 0

1‘14 = 1113 = 4
b= 5 = 10
Initial Joint Parameters
dfy, = Cdfy, = 0
079‘140 = 135°

?ﬁfo = 45°

179%0 = 270°

079?40 = 90°

Poy = 45°

079]230 = 135°

Initial Pose Array

YDo 9v2

Do 0°

[ Do ] 5v2

Example 1

Pure rotation of the disk about its centre is the sim-
plest motion for obtaining solutions. There are no in-
termediate joint parameters to calculate. As a result,
a maximum of only four solutions may be expected.

In this example, the disk centre remains in its home
position while it rotates through 15°. The desired pose
array is:

YD = 92

Up 15°

The four solutions are given in Table 1 in the appendix
and illustrated in

5| 572
°yD =|9/2
9y | 15,0000°

\

Figure 3. The solutions for pure rotation from Table 1.

Example 2

In this example, joint parameters are calculated for
the case of pure translation of the disk. Despite the
fact that no real rotation of the disk occurs, the algo-
rithm requires the calculation of a set of intermediate
joint variables. The desired pose array is:

©D 2.0710
wp | = | 11.7280
Up 0°

The first four solutions are shown in Fig. 4. All
sixteen solutions are given in Table 2 in the appendix.

°x, 20710
°y, | = |117280
°9p 0.0000°

SOL'N Al-A4 )

NN
< N SOL'N B2
\ \SOL'N ]B\/i(

“\ SOLNB4 ‘o

SOLUTIONS 1—4

Figure 4. The first four solutions for pure translation from

Table 2.

Example 3

The displacements of examples 1 and 2 are combined
to give a general plane displacement. The desired pose

array is:
zp 2.0710
YD = 11.7280
Ip 15°

Four of the sixteen solutions are illustrated in Fig. 5.
All sixteen solutions are tabulated in Table 3 in the
appendix.

OX»
oyn
Q 9o

20710

= |117280
15.0000° ‘
WK soLN B2

\ NN
AN NN
“ \ SOL'N B4™
' N\
SOLN B3 \\ soL/N BI 5
AR .
W i

S i

\ \

—h

SOLUTIONS 1-4

SOL'N Al-A4

Figure 5. The first four solutions for general plane motion
from Table 3.

9. CONCLUSIONS

In this paper, we have introduced an algorithm for
solving the inverse kinematics problem of a class of



planar parallel manipulators with holonomic higher
pairs with n 2R legs. The seemingly complicated prob-
lem was reduced, at worst, to solution of quadratic
equations. This reduction was achieved by “geomet-
ric thinking”. That is, the kinematic geometry of the
manipulator was analyzed, revealing properties which
were 1n turn used to decompose the general inverse
kinematics problem into simpler stages of pure trans-
lation and rotation.

However, the kinematic analysis merely begins with
the inverse kinematics. The more complicated problem
of the forward kinematics, which invites an excursion
into the area of Grunwald’s kinematic mapping, has
yvet to be addressed. Furthermore, issues of workspace
singularities and assembly modes, isotropy, etc., are
ripe for investigation. There are also ample interest-
ing applications for this class of manipulator to war-
rant further study. For instance, a three legged version
could be adapted as a ‘universal’ four—jaw chuck with
a variable axis.
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APPENDIX
Table 1.

( Sol'n T 1 I 2 I 3 I 4 ]
01914 (deg) 135.5602 135.5602 -13.6694 -13.6694
To2l (deg) 265.1628 | 265.1628 | -273.7183 | -273.7183

2dA 1.0472 1.0472 1.0472 1.0472
OﬁlB (deg) -166.3306 44.4398 -166.3306 44.4398
LoD (deg) 265.1628 | -273.7183 | 265.1628 | -273.7183

2dB 1.0472 1.0472 1.0472 1.0472

Table 2.

( Sol’n 1T il | 2 | 3 | 4 ]
01914 (deg) -165.1389 -165.1389 -165.1389 -165.1389
Lozl (deg) 235.8174 | 235.8174 | 235.8174 | 235.8174

2dA -1.3383 -1.3383 -1.3383 -1.3383
995 (deg) 176.0545 95.5975 176.1665 95.4856
LoD (deg) 306.3702 | -311.9312 | 312.2698 | -305.7674

2dB 0.6799 0.6799 -0.7953 -0.7953

( Sol’n 1T 5 | [ | 7 | 8 ]
094 (deg) -34.8899 -34.8899 -34.8899 -34.8899
11954 (deg) -224.5344 -224.5344 -224.5344 -224.5344

2dA -1.3383 -1.3383 -1.3383 -1.3383
995 (deg) 176.0545 95.5975 176.1665 95.4856
LoD (deg) 306.3702 | -311.9312 | 312.2698 | -305.7674

2dB 0.6799 0.6799 -0.7953 -0.7953

[ Sol'n 1T 9 | 10 [ 11 [ 12 |
994 (deg) [[ -158.0567 | -158.0567 | -158.0567 | -158.0567
Lozl (deg) 238.4847 | 238.4847 | 238.4847 | 238.4847

2dA -3.5019 -3.5019 -3.5019 -3.5019
995 (deg) 176.0545 95.5975 176.1665 95.4856
L9 D (deg) 306.3702 | -311.9312 | 312.2698 | -305.7674

2dB 0.6799 0.6799 -0.7953 -0.7953

[ Sol'n 1T 13 [ 14 [ 15 [ 16 |
094 (deg) -41.9721 -41.9721 -41.9721 -41.9721
Lol (deg) || 2103971 | 2103971 | -210.3971 [ -210.3971

2dA -3.5019 -3.5019 -3.5019 -3.5019
995 (deg) 176.0545 95.5975 176.1665 95.4856
L9 D (deg) 306.3702 | -311.9312 | 312.2698 | -305.7674

2dB 0.6799 0.6799 -0.7953 -0.7953




Table 3.

( Sol'n T 1 I 2 3 4
01914 (deg) -166.3263 -166.3263 -166.3263 -166.3263
To2l (deg) || 222.3227 | 232.5227 | 2325227 | 2325227

2dA -0.3358 -0.3358 -0.3358 -0.3358
Y95 (deg) 177.6881 93.9640 175.7910 95.8611
1192B (deg) 300.1970 -314.2627 308.4310 -310.4928

2dB 1.7271 1.7271 0.2519 0.2519

( Sol'n T 5 I 6 7 8
094 (deg) -33.7025 | -33.7025 -33.7025 | -33.7025
To2l (deg) || -220.7750 | -220.7750 | -220.7750 | -229.7750

2dA -0.3358 -0.3358 -0.3358 -0.3358
Y95 (deg) 176.0545 95.5975 175.7910 95.8611
1192B (deg) 300.1970 -314.2627 308.4310 -310.4928

2dB 1.7271 1.7271 0.2519 0.2519

( Sol’n ] 9 I 10 11 12
0’L9A (deg) -162.3804 -162.3804 -162.3804 -162.3804
To2l (deg) || 2278740 | 227.8740 | 237.8740 | 237.8740

2dA -2.4548 -2.4548 -2.4548 -2.4548
Y95 (deg) 176.0545 95.5975 175.7910 95.8611
1192B (deg) 300.1970 -314.2627 308.4310 -310.4928

2dB 1.7271 1.7271 0.2519 0.2519

( Sol'n 1T 13 | 14 15 16
094 (deg) -37.6483 | -37.6483 -37.6483 | -37.6483
Ty (deg) || -217.9837 | -217.9837 | -217.9837 | -217.9837

2dA -2.4548 -2.4548 -2.4548 -2.4548
098 (deg) 176.0545 95.5975 175.7910 95.8611
1192B (deg) 300.1970 -314.2627 308.4310 -310.4928

2dB 1.7271 1.7271 0.2519 0.2519




