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Abstract. In this paper kinematic mapping is used to solve the forward
kinematic problem of a planar parallel 3-legged platform with holonomic
higher pairs. The end effector is a circular disk which rolls without slip along
the straight lines of the non—grounded rigid links of each of three 2R legs.
The R-pair joining the grounded and non-grounded link in each leg is called a
knee joint. The straight lines and circular disk are modelled as three racks on
a common pinion. One notes that motions of a planar rigid body wherein a
point moves on a circle maps to a hyperboloid in a 3—dimensional projective
kinematic image space. However, the geometry of this manipulator does not
easily reveal such points. Let the joint inputs be the change in arclength
on each rack. For every input set, the knee joints determine the vertices of
a triangle which we call the virtual platform. Clearly, these vertices move
on circles. To express the motion of the knee joints in the pinion reference
coordinate system in terms of the input parameters, fix the pinion coordinate
system and observe that the relative motion of a rack with respect to the
pinion is a Frenet-Serret motion with the initial contact point moving on an
involute of the pinion. The link lengths and the initial assembly configuration
are all known, hence a complete description of the motion of the knee joint is
obtained. This one parameter set of positions for each of the three knee joints
can then be used as inputs for the kinematic mapping, which reduces the
problem to determining the intersections of three hyperboloids. A numerical
example is given.

1. Introduction

It has recently been shown that kinematic mapping has important applica-
tions in planar robot kinematics [6, 3]. The goal of this paper is to present
a practical solution procedure for the forward kinematics (FK) problem of a
planar Stewart—Gough (SG) type platform with holonomic higher pairs. This
procedure uses kinematic mapping and the fact that displacements with one
point bound to a circle map to hyperboloidal surfaces in the image space.
Furthermore, this mapping is independent of the geometry of the platform.
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A kinematic mapping procedure to solve
the FK of a higher pair jointed SG type o

platform was used in [3], but it assumed ¢
a priori knowledge of the platform orien-
tation. This requirement can render the
solution procedure somewhat impracti- 6
cal. Algebraic approaches were success-
fully used in [8, 2] to obtain the FK so-
lutions of lower pair jointed planar three
legged platforms. But, these procedures
require that the platform geometry be
constant, i.e., the platform attachment
points remain at a fixed distance relative
to each other. This is not the case for ma-
nipulators with higher pairs of the type
counsidered here. The planar manipulator,
shown in Fig. 1, consists of three closed
kinematic chains. The disk, modelled as a
pinion gear, rolls without slip on each of
the three racks tangent to it. The rolling Fig. 1 Planar platform.

constraints are holonomic due to the pure rolling and because the motion
is planar, hence the constraint equations can be expressed in terms of dis-
placement, i.e., in integral form. Each of the three legs connect a rack to a
base point via two revolute (R) pairs. The leg links are rigid and a rack is
rigidly attached to the disk end of each second link. The R—pairs connecting
two links in a leg shall be referred to as knee joints A, B and C, and are con-
strained to move on circles centred on the three base points Ag, By, Co, which
are fixed to a rigid base. Joint, link parameters, vectors and transformations
are identified by left and right sub and superscripts. The generic parameter

k!pij

is identified as follows: the right sub—script ¢, i € {1,2, 3} identifies the joint
number. For each manipulator leg, the joint number at the connection be-
tween the first link and the base is 1. Between the first and second links is
2. The higher pair between link 2 and the disk is 3. The right super—script,
J, j € {A, B,C} denotes a particular manipulator leg. The left super—script,
k, k € {¥,0,1,2,E} refers to the reference frame in which the variable is
represented. The left super-script is omitted for frame invariant parameters.
For instance, the scalar quantity [} is the length of link i in leg j.

The reference frame E has its origin on the disk centre and moves with
the disk. Frame X has its origin at the base of leg A and is fixed. In the home,
or zero position shown in Fig. 1, the basis directions of X' and E are parallel.
By changing the location of the contact point between the rack and disk, the
disk end—effector can be brought to any position with any desired orientation
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within the physical limits of its workspace. Thus, the manipulator has three
degrees of freedom.

2. A Kinematic Mapping of Planar Displacements

A general displacement in the plane requires three independent coordinates
to fully characterise it. It is convenient to think of the relative planar motion
between two rigid bodies as the motion of a Cartesian reference coordinate
system F attached to one of the bodies, with respect to the Cartesian coor-
dinate system X attached to the other, [1]. Without loss of generality, X' may
be considered as fixed while E is free to move. Then the position of a point
in E relative to X can be given by the homogeneous linear transformation

(5] e e e ] 1
2] T ) v

where (z/z,y/z) are the Cartesian coordinates of a point in E, (X/Z,Y/Z)
are those of the same point in X. (a,b) are the Cartesian coordinates of the
origin of E measured in X, and ¢ is the rotation angle measured from the
X-axis to the z—axis, the positive sense being counter—clockwise.

All general planar displacements may be represented by a single rotation
through a finite angle about a fixed axis normal to the plane. The piercing
point of this axis is the pole of the displacement. If frames E and X are
initially coincident then the pole is the unique point whose coordinates, in
both E and X, remain unaltered by a given displacement of E. The mapping
used here takes a displacement pole point, given by the homogeneous point
coordinates (X, : Y, : Zp), to a point (X7 : X2 : X3 : X4) in a 3-dimensional
homogeneous projective image space, X'. It is expressed as [1, 6, 7]:

(X1:X0:X3:Xu) = (Xp:Y,:Z,:72Zy), (2)
where
(X1:Xo:X3:Xy) # (0:0:0:0)
T = cot(¢/2)
0< ¢ <27

The image of the pole coordinates of the displacement under the kinematic
mapping is called the image point. Distinct displacements have unique image
points. The image point is given by

(X1:X2:X3:X4) = [(asin(¢/2) —bcos(¢/2):
(acos(¢/2) + bsin (¢/2) :
2sin (¢/2) : 2cos (¢/2)] (3)
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By virtue of the relationships expressed in equation (3), the transforma-
tion matrix from equation (1) may be expressed in terms of the homogeneous
coordinates of the image space, X’. This means that we now have a linear
transformation to express a displacement of E with respect to X in terms of
the image point:

X (XZ —Xg) —2X3X4 2(X1X3 +X2X4) xr
v = 2X5Xy  (XF—X3) 2(XaXs - X1 XYy) y | (4)
Z 0 0 (X7 + X3) z

Since equation (4) is a linear transformation, for each unique displacement
described by (a, b, ) there is a corresponding point in the image space. So,
the inverse mapping can be obtained from equation (3). For a given point of
the image space, the displacement parameters are:

tan (¢/2) = X3/X4
a = 2(X1X3+ XoXy4)/(X3+ X]) (5)
b = 2(XoX3 — X1X4)/(X5 + X3).

Clearly, any image point with X3 = X4 = 0 does not represent a displace-
ment of E. From equation (5), this condition renders ¢ indeterminate and
places a and b on the line at infinity.

The ungrounded R-pair in a 2R mechanism is constrained to move on a
circle with a fixed centre. The image points that correspond to all possible
displacements of the ungrounded link with respect to a fixed reference frame
constitute a quadric surface. It can be derived as follows: the equation of the
circle with radius r centred on the homogeneous coordinates (X, : Y. : Z) is
of the form

(X = X2+ (Y =Y.2)2 —r?Z2 =0. (6)
Expanded, this becomes
X2 +Y?-2XX.Z-2YY. Z+ X2Z*+Y2Z? —r*Z* = 0. (7
Setting
Cl = _Xca
CZ = _Y67
Gy = (Ci+05—r")=(XZ+Y7 —r?),
yields

X2+ Y? 4201 XZ+20YZ +C3Z* =0. (8)

Substituting the expressions for X,Y, Z from equation (4) into equation (8)
produces the quadric surface equation
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H: 0=22(X{+XJ)+ (1/9)][(2® + y*) — 2C122 — 2Cayz + C32°) X3 +
(1/4)[(z* + y*) + 2C 22 + 2Coyz + C32°]|X] + (Crz — 2)2 X, X3 +
(Coz —y)zXoXs — (y+ C22)2 X1 X4 + (Crz + )2 X2 X4 +
(Cax — Cry)zX3X4. (9)

3. An Application to the FK Problem

The FK problem is conventionally ex- :
pressed as a transformation of the position
and orientation of the end effector from
a joint space representation to a Carte-
sian space representation. That is, given a VP\
set of n joint variables, one per degree of
freedom, determine the position and ori-
entation of the end effector with respect
to a non—moving reference coordinate sys-
tem. To employ the same mapping proce-
dure used in [6, 3], platform points which |
move on circles are required. The only such
points are on the knee joints, A, B, and C
(see Fig. 1). In this case the disk is the 5
platform. In order to use the knee joints as

platform points consider a virtual platform Fig. 2. A VP.

(VP), formed by the triangle whose vertices are the three knee joints ex-
pressed in the disk frame E (see Fig. 2). For a given assembly configura-
tion, these wvirtual platform points (VPP) are fixed relative to each other,
but change from pose to pose. Hence, the VP geometry changes continu-
ously during platform motion, but for any given displacement the VP can be
considered a rigid body.

It is important to note that the pure rolling nature of the higher pairs
make the manipulator in Fig. 1 markedly different from lower pair jointed SG
platforms because the pure rolling condition renders FK solutions completely
dependent on the initial assembly configuration (IAC). Moreover, the FK
analysis cannot be reduced to the lower pair SG case because there exists no
such equivalent mechanism which can exactly reproduce a rack—and—pinion
motion (see Hunt, p.106 [4]). Hence, the methods in [2, 8] cannot be used.

3.1 Involute Inputs

We select as our three variable joint inputs the change in arclength along the
rack, or disk, due to the change of the initial contact point. They are given by
the three numbers Ad} = rAt/. The At/ are the angles between the initial
and final rack positions and r is the disk radius. Since the racks are always
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in tangential contact with the disk, the change in these angles represent the
change in angle of disk tangents. Because of the orthogonal bases, At = An,
the change in tangent angle is the same as the change in normal angle.

Initially, consider only leg A in Fig. 3. Observe that the knee joint A, which
has a fixed position in the reference frame, R, attached to the rack, moves
on a circle. But, it also has a relative motion in the moving disk frame, E.
What is required is a description of that motion in terms of the joint inputs.
This turns out to be straightforward: fix the the disk and observe that the
relative motion of the rack with respect to E is pure rolling. The rolling is
a Frenet—Serret motion ([1], p. 301) with the original contact point moving
on an involute of the disk. This gives a complete description of the motion of
the knee joints with respect to £. We can now track the motion of this point
in both E and X respectively. This one parameter set of knee joint positions
can be used as an input for the kinematic mapping because they determine
the VPP. Due to their positional dependence on the involute, we define these
knee joint positions as involute inputs.

However, three involute inputs are required. The motion of the knee joints
of the remaining two legs must be the same type as that of leg A relative to E,
but the starting points of the involutes are different. This is achieved by left
multiplying the transformation matrix with the inverse of the rotation which
has to take place to attain the leg’s new point of contact, assuming that all
positions can be transformed back to the IAC shown in Fig. 1. For every set

Fig. 3. Reference systems in leg A after a rotation At.
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of three joint input parameters one obtains a set of three VPP expressed in
E. Now the kinematic mapping from [6, 3] becomes applicable.

To obtain the solutions for a given set of inputs, begin by removing the
disk connections with legs B and C. Observe that the higher pairs are locked
in the corresponding VP configuration by virtue of the specified input pa-
rameters. That is, there can be no relative motion between the disk and the
rack because that would change the relative positions of the knee joints. The
knee joint, ¥ A, is constrained to move on a circle with centre Ay and radius
I{. Furthermore, the VP can rotate about £A. All poses of this virtual rigid
body correspond to the image points on the constraint hyperboloid, H, given
by equation (9).

When the other two points B and C are analysed in turn, three hyper-
boloidal surfaces are generated, Ha, Hg, and H¢c, which correspond to the
complete range of possible displacements around the points still connected.
The points of intersection of H4, Hg, and H¢c represent the positions of
the VP where its three knee joints are on their respective circles. Therefore,
these points of intersection constitute the solution(s) to the FK problem.
However, it is shown in [1] that all such hyperboloids contain the isotropic
points J1(1 :4:0:0) and Jo(1 : —i : 0 : 0) of the kinematic image space,
which correspond to no real displacement. These two points are, therefore,
always in the solution set and must be discarded. Thus, there are a maxi-
mum of six real solutions to the FK problem for manipulators of this type in
general, which confirms result established in [5].

Fig. 3 shows the reference coordinate systems used to transform the po-
sition of the knee joint from the moving rack reference frame, R, to the
relatively fixed pinion frame, E. The origin of R moves along the involute.
R’ gives the new position of R after a rotation A¢. E' is an intermediate rel-
atively fixed system. It is rotated from E through ¢/ = (57/4), (77 /4), (7 /2)
for j € {A,B,C}.

Examining Fig. 3, it can be seen that for each leg the required transfor-
mations to take the position of the knee joint of leg j in frame R to frame
E are

ET]R/ - ET]E'/ = T]R’
{ 9l —s@i -| { —sAt  —cAt r(cAt + AtsAt) -|

_ I_ng cgj §J I_ c?t —soAt r(sAt —lAtcAt) J,

where ¢ = cos, and s = sin. '

The geometrical significance of £’ T, is seen when the individual columns
are examined. The first column is the direction of the disk tangent in E' (the
direction of the z—axis of frame R’). The second column is the direction in E'
(towards the centre) of the normal at the new contact point. The third column
is the position of the origin of frame R’ on the involute, expressed again in
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E'. The remaining transformation, ¥ T{E,, depends on the angle between the
z—axis of frame E and the rack normal in the home position.

Without loss in generality, all positions of each knee joint may use the
involutes of the disk generated by the motions of the origins of the R’ to
express knee joint loci in E. For the manipulator shown in Fig. 1, all knee
joints have the same coordinates in their respective R/ frames:

]
Ry = —1 .
L1
Once the arclength parameters (joint inputs), At/, are given, the coordinates

of the knee joints (involute inputs) in frame E, ¥, are easily determined by
left multiplying the ¥ j with the appropriate #T%,,

By = Bl Ry (10)

4. Example

Table 1 gives the coordinates of the base points Ao, By, Co in the fixed
frame Y with origin at Ap, the arclength parameters, and the correspond-
ing knee joint positions in E (VPP), given by equation (10). The link
lengths, in generic units, are: » = 4, I = 4, I3 = 10, and the IAC
are Fn = (225°,315°,90°), d}, = (0,0,0), ¥, = (135°,45° 180°), and
11950 = (270°,90°,90°), where j € {A, B,C}. Note, in Fig. 1 the link ref-
erence frames are not shown in order to avoid clutter. These frames were
assigned using the Denavit—Hartenberg convention.

Table 1. Base points in Y| joint inputs, and VPP.

j Py Ey At E, Ey

A 0 0 —17.5° -11.85401931 -7.543168766
B 10v2 0 —15°  7.906899696 -11.60075686
C 5/2+4 9v/2+14  75° -1.308247378  13.94857141

Setting z = 1 in equation (9), which can always be done as no practical
VP will have a vertex on the line at infinity (z : y : 0), and then substituting
the VPP from Table 1 into equation (9) gives expressions for the three con-
straint hyperboloids in the image space. X, is the homogenising coordinate
in the image space, hence Xy = 0 represents the plane at infinity, but also
corresponds to VP rotations of ¢ = 180°. Therefore, X4 = 0 is a practical
concern, unlike the case of z = 0. However, this condition gives only the
solutions J; and Jy. After having checked this, we can normalise the image
space homogeneous coordinates by setting Xy = 1. Solving the resulting set
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of three equations, H4 = 0,Hp = 0, Hc = 0, for X7, Xo, X3 gives two real
and two pairs of complex conjugate solutions. The two real solutions are:

S X = —4.724652386, X = 4.561069802, X3 = —0.05146192114,
St X1 = —5.754360118, X» = 4.906081896, X5 = 0.03244152899.

Note that the solution set always
contains an even number of real so- X3t 01
lutions because complex solutions
arise in conjugate pairs. Fig. 4 is a
view of the resulting hyperboloids
where one of the intersections is
visible. The position and orienta-
tion of the disk corresponding to
each real solution in terms of the
displacement parameters (a,b, )
can be found by substituting the
solutions for X;, X5, X3, along Fig. 4. The constraint hyperboloids .

N
I B
i /////////////// iy

with X4 = 1 into the set of equations (5). The resulting pair of real displace-
ment parameters are given in Table 2.

Table 2. Displacement parameters.

a b ¢ (deg.)
SoI'n1 9.583039940 8.956143130 -5.891904208
Sol'n 2 9.428879858 11.81460751  3.716222033

Expressed relative to the disk frame, E, the inputs in Table 1, whether
given as At/, or Adj, reveal the geometry of the VP shown in Fig. 2. The
origin of F is on the disk centre. Once the orientation and position of the VP,
and hence E, are known it is a simple matter of plane trigonometry to deter-
mine the relative link angles for the assembly configuration that correspond
to the solution. Fig. 5 illustrates the two real solutions, where the vertices of
the VP are on their respective circles.

5. Conclusions

A solution for the FK problem of platforms of the type in Fig. 1 using kine-
matic mapping has been presented. The involute inputs to the mapping are
the knee joint positions expressed as one parameter motions of initial rack
contact points along involutes of the disk. In the example, only two real solu-
tions were found. However, there can be as many as three pairs. This solution
is fundamental to any further investigation of this type of platform.
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Solution 1 B Solution 2

Fig. 5. The two real solutions.
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