
SOLVING THE FORWARD KINEMATICSOF A PLANAR 3-LEGGED PLATFORMWITH HOLONOMIC HIGHER PAIRSM.J.D. Hayes1, M.L. Husty2, and P.J. Zsombor-Murray11 McGill University, Dep't. of Mech. Eng. & Centre for Intelligent Machines,817 r. Sherbrooke O., Montr�eal, Qu�ebec, Canada.2 Montan University Leoben, Inst. of Applied Geometry,Fr. Josefstr.18, A-8700 Leoben, Austria.johnh@cim.mcgill.ca, husty@unileoben.ac.at, paul@cim.mcgill.caAbstract. In this paper kinematic mapping is used to solve the forwardkinematic problem of a planar parallel 3-legged platform with holonomichigher pairs. The end e�ector is a circular disk which rolls without slip alongthe straight lines of the non{grounded rigid links of each of three 2R legs.The R-pair joining the grounded and non-grounded link in each leg is called aknee joint. The straight lines and circular disk are modelled as three racks ona common pinion. One notes that motions of a planar rigid body wherein apoint moves on a circle maps to a hyperboloid in a 3{dimensional projectivekinematic image space. However, the geometry of this manipulator does noteasily reveal such points. Let the joint inputs be the change in arclengthon each rack. For every input set, the knee joints determine the vertices ofa triangle which we call the virtual platform. Clearly, these vertices moveon circles. To express the motion of the knee joints in the pinion referencecoordinate system in terms of the input parameters, �x the pinion coordinatesystem and observe that the relative motion of a rack with respect to thepinion is a Frenet-Serret motion with the initial contact point moving on aninvolute of the pinion. The link lengths and the initial assembly con�gurationare all known, hence a complete description of the motion of the knee joint isobtained. This one parameter set of positions for each of the three knee jointscan then be used as inputs for the kinematic mapping, which reduces theproblem to determining the intersections of three hyperboloids. A numericalexample is given.1. IntroductionIt has recently been shown that kinematic mapping has important applica-tions in planar robot kinematics [6, 3]. The goal of this paper is to presenta practical solution procedure for the forward kinematics (FK) problem of aplanar Stewart{Gough (SG) type platform with holonomic higher pairs. Thisprocedure uses kinematic mapping and the fact that displacements with onepoint bound to a circle map to hyperboloidal surfaces in the image space.Furthermore, this mapping is independent of the geometry of the platform.



2 M.J.D. Hayes, M.L. Husty, and P.J. Zsombor-MurrayA kinematic mapping procedure to solvethe FK of a higher pair jointed SG typeplatform was used in [3], but it assumeda priori knowledge of the platform orien-tation. This requirement can render thesolution procedure somewhat impracti-cal. Algebraic approaches were success-fully used in [8, 2] to obtain the FK so-lutions of lower pair jointed planar threelegged platforms. But, these proceduresrequire that the platform geometry beconstant, i.e., the platform attachmentpoints remain at a �xed distance relativeto each other. This is not the case for ma-nipulators with higher pairs of the typeconsidered here. The planar manipulator,shown in Fig. 1, consists of three closedkinematic chains. The disk, modelled as apinion gear, rolls without slip on each ofthe three racks tangent to it. The rolling Fig. 1 Planar platform.constraints are holonomic due to the pure rolling and because the motionis planar, hence the constraint equations can be expressed in terms of dis-placement, i.e., in integral form. Each of the three legs connect a rack to abase point via two revolute (R) pairs. The leg links are rigid and a rack isrigidly attached to the disk end of each second link. The R{pairs connectingtwo links in a leg shall be referred to as knee joints A;B and C, and are con-strained to move on circles centred on the three base points A0; B0; C0, whichare �xed to a rigid base. Joint, link parameters, vectors and transformationsare identi�ed by left and right sub and superscripts. The generic parameterk	 jiis identi�ed as follows: the right sub{script i, i 2 f1; 2; 3g identi�es the jointnumber. For each manipulator leg, the joint number at the connection be-tween the �rst link and the base is 1. Between the �rst and second links is2. The higher pair between link 2 and the disk is 3. The right super{script,j, j 2 fA;B;Cg denotes a particular manipulator leg. The left super{script,k, k 2 f�; 0; 1; 2; Eg refers to the reference frame in which the variable isrepresented. The left super{script is omitted for frame invariant parameters.For instance, the scalar quantity lji is the length of link i in leg j.The reference frame E has its origin on the disk centre and moves withthe disk. Frame � has its origin at the base of leg A and is �xed. In the home,or zero position shown in Fig. 1, the basis directions of � and E are parallel.By changing the location of the contact point between the rack and disk, thedisk end{e�ector can be brought to any position with any desired orientation



FK OF HOLONOMIC HIGHER PAIR JOINTED PLATFORMS 3within the physical limits of its workspace. Thus, the manipulator has threedegrees of freedom.2. A Kinematic Mapping of Planar DisplacementsA general displacement in the plane requires three independent coordinatesto fully characterise it. It is convenient to think of the relative planar motionbetween two rigid bodies as the motion of a Cartesian reference coordinatesystem E attached to one of the bodies, with respect to the Cartesian coor-dinate system � attached to the other, [1]. Without loss of generality, � maybe considered as �xed while E is free to move. Then the position of a pointin E relative to � can be given by the homogeneous linear transformation24 XYZ 35 = 24 cos� � sin� asin� cos� b0 0 1 3524 xyz 35 ; (1)where (x=z; y=z) are the Cartesian coordinates of a point in E, (X=Z; Y=Z)are those of the same point in �. (a; b) are the Cartesian coordinates of theorigin of E measured in �, and � is the rotation angle measured from theX{axis to the x{axis, the positive sense being counter{clockwise.All general planar displacements may be represented by a single rotationthrough a �nite angle about a �xed axis normal to the plane. The piercingpoint of this axis is the pole of the displacement. If frames E and � areinitially coincident then the pole is the unique point whose coordinates, inboth E and �, remain unaltered by a given displacement of E. The mappingused here takes a displacement pole point, given by the homogeneous pointcoordinates (Xp : Yp : Zp), to a point (X1 : X2 : X3 : X4) in a 3{dimensionalhomogeneous projective image space, �0. It is expressed as [1, 6, 7]:(X1 : X2 : X3 : X4) = (Xp : Yp : Zp : �Zp); (2)where (X1 : X2 : X3 : X4) 6= (0 : 0 : 0 : 0)� = cot (�=2)0 � � < 2�:The image of the pole coordinates of the displacement under the kinematicmapping is called the image point. Distinct displacements have unique imagepoints. The image point is given by(X1 : X2 : X3 : X4) = [(a sin (�=2)� b cos (�=2) :(a cos (�=2) + b sin (�=2) :2 sin (�=2) : 2 cos (�=2)] (3)



4 M.J.D. Hayes, M.L. Husty, and P.J. Zsombor-MurrayBy virtue of the relationships expressed in equation (3), the transforma-tion matrix from equation (1) may be expressed in terms of the homogeneouscoordinates of the image space, �0. This means that we now have a lineartransformation to express a displacement of E with respect to � in terms ofthe image point:24 XYZ 35 = 24 (X24 �X23 ) �2X3X4 2(X1X3 +X2X4)2X3X4 (X24 �X23 ) 2(X2X3 �X1X4)0 0 (X24 +X23 ) 3524 xyz 35 (4)Since equation (4) is a linear transformation, for each unique displacementdescribed by (a; b; �) there is a corresponding point in the image space. So,the inverse mapping can be obtained from equation (3). For a given point ofthe image space, the displacement parameters are:tan (�=2) = X3=X4a = 2(X1X3 +X2X4)=(X23 +X24 ) (5)b = 2(X2X3 �X1X4)=(X23 +X24 ):Clearly, any image point with X3 = X4 = 0 does not represent a displace-ment of E. From equation (5), this condition renders � indeterminate andplaces a and b on the line at in�nity.The ungrounded R{pair in a 2R mechanism is constrained to move on acircle with a �xed centre. The image points that correspond to all possibledisplacements of the ungrounded link with respect to a �xed reference frameconstitute a quadric surface. It can be derived as follows: the equation of thecircle with radius r centred on the homogeneous coordinates (Xc : Yc : Z) isof the form (X �XcZ)2 + (Y � YcZ)2 � r2Z2 = 0: (6)Expanded, this becomesX2 + Y 2 � 2XXcZ � 2Y YcZ +X2cZ2 + Y 2c Z2 � r2Z2 = 0: (7)Setting C1 = �Xc;C2 = �Yc;C3 = (C21 + C22 � r2) = (X2c + Y 2c � r2);yields X2 + Y 2 + 2C1XZ + 2C2Y Z + C3Z2 = 0: (8)Substituting the expressions for X;Y; Z from equation (4) into equation (8)produces the quadric surface equation



FK OF HOLONOMIC HIGHER PAIR JOINTED PLATFORMS 5H : 0 = z2(X21 +X22 ) + (1=4)[(x2 + y2)� 2C1xz � 2C2yz + C3z2]X23 +(1=4)[(x2 + y2) + 2C1xz + 2C2yz + C3z2]X24 + (C1z � x)zX1X3 +(C2z � y)zX2X3 � (y + C2z)zX1X4 + (C1z + x)zX2X4 +(C2x� C1y)zX3X4: (9)3. An Application to the FK ProblemThe FK problem is conventionally ex-pressed as a transformation of the positionand orientation of the end e�ector froma joint space representation to a Carte-sian space representation. That is, given aset of n joint variables, one per degree offreedom, determine the position and ori-entation of the end e�ector with respectto a non{moving reference coordinate sys-tem. To employ the same mapping proce-dure used in [6, 3], platform points whichmove on circles are required. The only suchpoints are on the knee joints, A, B, and C(see Fig. 1). In this case the disk is theplatform. In order to use the knee joints asplatform points consider a virtual platform Fig. 2. A VP.(VP), formed by the triangle whose vertices are the three knee joints ex-pressed in the disk frame E (see Fig. 2). For a given assembly con�gura-tion, these virtual platform points (VPP) are �xed relative to each other,but change from pose to pose. Hence, the VP geometry changes continu-ously during platform motion, but for any given displacement the VP can beconsidered a rigid body.It is important to note that the pure rolling nature of the higher pairsmake the manipulator in Fig. 1 markedly di�erent from lower pair jointed SGplatforms because the pure rolling condition renders FK solutions completelydependent on the initial assembly con�guration (IAC). Moreover, the FKanalysis cannot be reduced to the lower pair SG case because there exists nosuch equivalent mechanism which can exactly reproduce a rack{and{pinionmotion (see Hunt, p.106 [4]). Hence, the methods in [2, 8] cannot be used.3.1 Involute InputsWe select as our three variable joint inputs the change in arclength along therack, or disk, due to the change of the initial contact point. They are given bythe three numbers �dj3 = r�tj . The �tj are the angles between the initialand �nal rack positions and r is the disk radius. Since the racks are always



6 M.J.D. Hayes, M.L. Husty, and P.J. Zsombor-Murrayin tangential contact with the disk, the change in these angles represent thechange in angle of disk tangents. Because of the orthogonal bases, �t = �n,the change in tangent angle is the same as the change in normal angle.Initially, consider only legA in Fig. 3. Observe that the knee joint A, whichhas a �xed position in the reference frame, R, attached to the rack, moveson a circle. But, it also has a relative motion in the moving disk frame, E.What is required is a description of that motion in terms of the joint inputs.This turns out to be straightforward: �x the the disk and observe that therelative motion of the rack with respect to E is pure rolling. The rolling isa Frenet{Serret motion ([1], p. 301) with the original contact point movingon an involute of the disk. This gives a complete description of the motion ofthe knee joints with respect to E. We can now track the motion of this pointin both E and � respectively. This one parameter set of knee joint positionscan be used as an input for the kinematic mapping because they determinethe VPP. Due to their positional dependence on the involute, we de�ne theseknee joint positions as involute inputs.However, three involute inputs are required. The motion of the knee jointsof the remaining two legs must be the same type as that of leg A relative to E,but the starting points of the involutes are di�erent. This is achieved by leftmultiplying the transformation matrix with the inverse of the rotation whichhas to take place to attain the leg's new point of contact, assuming that allpositions can be transformed back to the IAC shown in Fig. 1. For every set

Fig. 3. Reference systems in leg A after a rotation �t.



FK OF HOLONOMIC HIGHER PAIR JOINTED PLATFORMS 7of three joint input parameters one obtains a set of three VPP expressed inE. Now the kinematic mapping from [6, 3] becomes applicable.To obtain the solutions for a given set of inputs, begin by removing thedisk connections with legs B and C. Observe that the higher pairs are lockedin the corresponding VP con�guration by virtue of the speci�ed input pa-rameters. That is, there can be no relative motion between the disk and therack because that would change the relative positions of the knee joints. Theknee joint, EA, is constrained to move on a circle with centre A0 and radiuslA1 . Furthermore, the VP can rotate about EA. All poses of this virtual rigidbody correspond to the image points on the constraint hyperboloid, H , givenby equation (9).When the other two points B and C are analysed in turn, three hyper-boloidal surfaces are generated, HA; HB , and HC , which correspond to thecomplete range of possible displacements around the points still connected.The points of intersection of HA; HB , and HC represent the positions ofthe VP where its three knee joints are on their respective circles. Therefore,these points of intersection constitute the solution(s) to the FK problem.However, it is shown in [1] that all such hyperboloids contain the isotropicpoints J1(1 : i : 0 : 0) and J2(1 : �i : 0 : 0) of the kinematic image space,which correspond to no real displacement. These two points are, therefore,always in the solution set and must be discarded. Thus, there are a maxi-mum of six real solutions to the FK problem for manipulators of this type ingeneral, which con�rms result established in [5].Fig. 3 shows the reference coordinate systems used to transform the po-sition of the knee joint from the moving rack reference frame, R, to therelatively �xed pinion frame, E. The origin of R moves along the involute.R0 gives the new position of R after a rotation �t. E0 is an intermediate rel-atively �xed system. It is rotated from E through �j = (5�=4); (7�=4); (�=2)for j 2 fA;B;Cg.Examining Fig. 3, it can be seen that for each leg the required transfor-mations to take the position of the knee joint of leg j in frame R0j to frameE areETjR0 = ETjE0E0TjR0= 24 c�j �s�j 0s�j c�j 00 0 1 3524 �s�t �c�t r(c�t +�ts�t)c�t �s�t r(s�t ��tc�t)0 0 1 35 ;where c = cos, and s = sin.The geometrical signi�cance of E0TjR0 is seen when the individual columnsare examined. The �rst column is the direction of the disk tangent in E0 (thedirection of the x{axis of frame R0). The second column is the direction in E0(towards the centre) of the normal at the new contact point. The third columnis the position of the origin of frame R0 on the involute, expressed again in



8 M.J.D. Hayes, M.L. Husty, and P.J. Zsombor-MurrayE0. The remaining transformation, ETjE0 , depends on the angle between thex{axis of frame E and the rack normal in the home position.Without loss in generality, all positions of each knee joint may use theinvolutes of the disk generated by the motions of the origins of the Rj toexpress knee joint loci in E. For the manipulator shown in Fig. 1, all kneejoints have the same coordinates in their respective Rj frames:Rj = 24 0�lj21 35 :Once the arclength parameters (joint inputs), �tj , are given, the coordinatesof the knee joints (involute inputs) in frame E, Ej, are easily determined byleft multiplying the R0j with the appropriate ETjR0 ,Ej = ETjR0R0j: (10)4. ExampleTable 1 gives the coordinates of the base points A0; B0; C0 in the �xedframe � with origin at A0, the arclength parameters, and the correspond-ing knee joint positions in E (VPP), given by equation (10). The linklengths, in generic units, are: r = 4, lj1 = 4, lj2 = 10, and the IACare Enj0 = (225�; 315�; 90�), dj30 = (0; 0; 0), 0#j10 = (135�; 45�; 180�), and1#j20 = (270�; 90�; 90�), where j 2 fA;B;Cg. Note, in Fig. 1 the link ref-erence frames are not shown in order to avoid clutter. These frames wereassigned using the Denavit{Hartenberg convention.Table 1. Base points in �, joint inputs, and VPP.j �x �y �tj Ex EyA 0 0 �17:5� -11.85401931 -7.548168766B 10p2 0 �15� 7.906899696 -11.60075686C 5p2 + 4 9p2 + 14 7:5� -1.308247378 13.94857141Setting z = 1 in equation (9), which can always be done as no practicalVP will have a vertex on the line at in�nity (x : y : 0), and then substitutingthe VPP from Table 1 into equation (9) gives expressions for the three con-straint hyperboloids in the image space. X4 is the homogenising coordinatein the image space, hence X4 = 0 represents the plane at in�nity, but alsocorresponds to VP rotations of � = 180�. Therefore, X4 = 0 is a practicalconcern, unlike the case of z = 0. However, this condition gives only thesolutions J1 and J2. After having checked this, we can normalise the imagespace homogeneous coordinates by setting X4 = 1. Solving the resulting set



FK OF HOLONOMIC HIGHER PAIR JOINTED PLATFORMS 9of three equations, HA = 0; HB = 0; HC = 0, for X1; X2; X3 gives two realand two pairs of complex conjugate solutions. The two real solutions are:S1 : X1 = �4:724652386; X2 = 4:561069802; X3 = �0:05146192114;S2 : X1 = �5:754360118; X2 = 4:906081896; X3 = 0:03244152899:Note that the solution set alwayscontains an even number of real so-lutions because complex solutionsarise in conjugate pairs. Fig. 4 is aview of the resulting hyperboloidswhere one of the intersections isvisible. The position and orienta-tion of the disk corresponding toeach real solution in terms of thedisplacement parameters (a; b; �)can be found by substituting thesolutions for X1; X2; X3, along
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Fig. 4. The constraint hyperboloids .with X4 = 1 into the set of equations (5). The resulting pair of real displace-ment parameters are given in Table 2.Table 2. Displacement parameters.a b � (deg.)Sol'n 1 9.583039940 8.956143130 -5.891904208Sol'n 2 9.428879858 11.81460751 3.716222033Expressed relative to the disk frame, E, the inputs in Table 1, whethergiven as �tj , or �dj3, reveal the geometry of the VP shown in Fig. 2. Theorigin of E is on the disk centre. Once the orientation and position of the VP,and hence E, are known it is a simple matter of plane trigonometry to deter-mine the relative link angles for the assembly con�guration that correspondto the solution. Fig. 5 illustrates the two real solutions, where the vertices ofthe VP are on their respective circles.5. ConclusionsA solution for the FK problem of platforms of the type in Fig. 1 using kine-matic mapping has been presented. The involute inputs to the mapping arethe knee joint positions expressed as one parameter motions of initial rackcontact points along involutes of the disk. In the example, only two real solu-tions were found. However, there can be as many as three pairs. This solutionis fundamental to any further investigation of this type of platform.
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