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1 Introduction

Design and structural errors are important performance indicators in the assessment and
optimisation of function-generating linkages arising by means of approximate synthesis.
The design error indicates the error residual incurred by a specific linkage regarding the
verification of the synthesis equations. The structural error, in turn, is the difference
between the prescribed linkage output and the actual generated output for a given input
value [Tinubu and Gupta 1984]. From a design point of view it may be successfully argued
that the structural error is the one that really matters, for it is directly related to the
performance of the linkage.

The main goal of this paper is to demonstrate that, as the data-set cardinality in-
creases, the Euclidean norms of the design and structural errors converge. The important
implication is that the minimisation of the Euclidean norm of the structural error can
be accomplished indirectly via the minimisation of the corresponding norm of the design
error, provided that a suitably large number of input-output (I/O) pairs is prescribed.
Note that the minimisation of the Euclidean norm of the design error leads to a linear
least-square problem whose solution can be obtained directly [Wilde 1982], while the
minimisation of the same norm of the structural error leads to a nonlinear least-squares
problem, and hence, calls for an iterative solution [Tinubu and Gupta 1984].

2  Procedure

The synthesis problem of four-bar function-generators consists of determining all relevant
design parameters such that the mechanism can produce a prescribed set of m input-
output (I/0) pairs, {¢;, #;}T, where 9); and ¢; represent the i" input and output variables,
respectively, and m is the cardinality of the data-set.

Let n be the number of independent design parameters required to characterise the
mechanism. For planar RRRR linkages, n = 3 [Freudenstein 1955], while for spherical
RRRR linkages n = 4 [Hartenberg and Denavit 1964]. For spatial RCCC' function-
generators, the issue is not as straightforward. The output of this type of linkage consists
of both angular and translational displacements, although they are coupled. If we only
consider the angular output, which is necessary if comparisons are to be made with the
other two for generating identical functions, then n = 4 [Liu 1993].
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Approximate synthesis problems involve sets of I/O equations such that m > n. If
m = n, the problem is termed ezact synthesis and may be considered a special case of the
former [Liu and Angles 1992]. The optimisation problem of four-bar function-generators
usually involves the approximate solution of an overdetermined linear system of equations
with the minimum error. The I/O equations can be written in the form

Sk = b, (1)

where S is the m X n synthesis matriz, b is an m-dimensional vector, whereas k is the n-
dimensional vector of design variables, usually called the Freudenstein parameters as they
were first introduced in [Freudenstein 1955] for the synthesis of planar four-bar linkages.
Moreover, the i row of S, sT, and the i"* component of b, b;, are functions of ¢; and ¢;
only. For the planar RRRR mechanism:

sl = [1 cos¢y —cosyy |, i=1,..,m, (2)
by = [cos(vpi—¢i) ], i=1,...m, (3)
k = [k ko k] (4)

For the spherical RRRR mechanism:
sl = [1 —cos¢; cosyy cosdicosty; |, i=1,..,m, (5)
by = [ —sing;sing; |, i=1,..,m, (6)
k = [k ks ks ki ]". (7)

For the spatial RCC'C' mechanism:

s/ = [1 sing; siny; sing;sine; |, i=1,..,m, (8)
b; = |[cosycosg; |, i=1,..,m, 9)
k = [k ky ks ka]". (10)

These synthesis equations are linear in the components of k. This matrix form has
obvious representational advantages, but more importantly, it allows us to determine
values of the I/O dial zeros, a and (3, that will best condition the synthesis matrix, S [Liu
and Angeles 1993]. Here, we regard the I/O pairs as a set of incremental angular changes,
{Av; Ag;}7'. The I/O data set is then

Y =a+ Ay, ¢p=0+A¢; i=1,...,m. (11)

The Nelder-Mead downhill simplex algorithm in multi-dimensions [Liu and Angeles 1993]
is employed to estimate the optimal values for o and 3. It should be mentioned that, while
changing the dial zeros of the I/O angles improves the condition number, , of planar
RRRR, spherical RRRR and spatial RCCC' linkages, this method does not always work
for spatial RSSR linkages [Liu and Angeles 1993].

When m > n there is, in general, no k which will exactly satisfy all the equations.
There are two well established indicators to assess the approximation error, namely the
design and structural errors. We define the design error vector d as

d = Sk—b. (12)

The Freudenstein parameters, k, may be optimised by minimising the Euclidean norm of
d. The scalar objective function is

z = %(dTWd), (13)
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which must be minimised over k. The scalar quantity d” Wd is the weighted Euclidean
norm of d. The matrix W is a diagonal matrix of positive weighting factors, which can be
used to make some of the data points affect the minimisation more, or less, than others,
depending on their relative importance to the design. For the sake of simplicity W will
be set equal to the identity matrix in this article, d¥ Wd being indicated by ||d||».

The quantity ||d||> can be minimised, in a least squares sense, very efficiently by trans-
forming S using Householder reflections [Golub and Van Loan 1989], the Moore-Penrose
generalised inverse thus not being explicitly computed. Design error minimisation is there-
fore a linear problem; a desirable trait, indeed. Unfortunately, as a performance indicator,
the design error is not directly related to the I/O performance of the function-generator.

Alternatively we may approach the optimisation problem by minimising the same norm
of the structural error. Since this error is defined as the difference between the gener-
ated and prescribed outputs for a given input, it is directly related to function-generator
performance. Let the structural error vector s be defined as

01— ;1
: , (14)
Pm — ¢m

where ¢, is the generated value of the output ¢ attained at ¢ = 1);, and ¢; is, as defined
earlier, the prescribed value of the output angle at ¢» = ;. It can be shown that the
structural and design errors are related by

d = d(s) = Sk-—b, (15)

where d is a nonlinear function of s [Tinubu and Gupta 1984]. Hence, it is evident that
minimising ||d|| is not equivalent to minimising the Euclidean norm of the structural
error, ||s||.

To minimise the Euclidean norm of this error, the iterative Gauss-Newton procedure is
employed. The conditions under which the procedure converges in the neighbourhood of
a minimum are discussed in [Dahlquist and Bjorck 1969]. In this case, the scalar objective
function to be minimised over k is

1
¢ = §(STWS). (16)
Here, again, W is set equal to the identity matrix, the weighted Euclidean norm being
indicated by ||s]|2-
We start with an initial guess for the Freudenstein parameters that minimise the Eu-
clidean norm of the design error, and modify the guess until the normality condition,

9¢

= — 17
ak Y ( )
is satisfied to a specified tolerance, €, such that
0
8_l<< < ¢ fore > 0. (18)

We do not actually evaluate the normal equations, since they are typically ill-
conditioned. Rather, we proceed in the following way: the i* /O equation is a function
of v;, ¢; and the Freudenstein parameters, k, and may be written as

fi(i, pisk) = 0. (19)
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The Jacobian of f with respect to the vector of output values, ¢, is the following diagonal
matrix:

of .. (94 Ofm\ _

If we regard Eq. (19) as a function of only ¢; we can write

k) = . (21)

However, we want

ok) = ¢ (22)

Assume we have an approximation to ko, which we call k¥, obtained from the v
iteration. We now require a correction vector, Ak, so that

ok’ +Ak) = o. (23)

It can be shown [Dahlquist and Bjorck 1969], after expanding the left-hand side of Eq. (23)
in series, and ignoring higher order terms, that

$(k') — = D 'SAk, (24)

the left-hand side of Eq. (24) being —s”. Now we find Ak as the least-square approxima-
tion of Eq. (24). It can be proven that Ak =~ 0 implies 9(/0k = 0, which means that we
can satisfy the normality condition without evaluating it explicitly.

We show with one example below that, as the cardinality m of the data points increases,
the design and structural errors converge.

3 Example

We synthesise here a planar RRRR, a spherical RRRR and a spatial RCCC four-bar
mechanism to generate a quadratic function for an input range of 0° < Ay < 60°,
namely,

9Ny

Agi = —

(25)

For each mechanism the I/O dial zeros («, ) are selected to minimise the condition
number k of S for each data-set [Liu and Angeles 1993]. Then both the design and
structural errors are determined for the linkages that minimise the respective Euclidean
norms for data-sets with cardinalities of m = {10,40,70, and 100}. These results are
listed in Tables 1-4. Finally the structural errors, corresponding to m = 40, of the linkages

that minimise the Euclidean norms of the design and structural errors are graphically
displayed in Fig. 1.



Table 1: Results for m = 10.
Planar RRRR Spherical RRRR Spatial RCCC

opt (deg.) 123.8668 133182 ~16.6817

Bopt (deg.) 91.7157 89.5221 -0.4781
Kopt 33.2074 200.5262 200.5262
1d|l 7.273 x 1073 7.60 x 104 7.60 x 10~
18] 5.965 x 10~3 417 x 104 417 x 104

Table 2: Results for m = 40.
Planar RRRR Spherical RRRR Spatial RCCC

opt (deg.) 117.4593 12.7696 ~47.2301

Bopt (deg.) 89.4020 88.8964 -1.1037
Kopt 32.5549 203.0317 203.0317
IE 1.571 x 1072 1.887 x 103 1.887 x 103
8|2 1.502 x 102 1.057 x 1073 1.057 x 1073

Table 3: Results for m = 70.
Planar RRRR Spherical RRRR Spatial RCCC

opt (deg.) 116.4699 1277014 ~47.2987

Bopt (deg.) 89.0488 88.8045 -1.1956
Kopt 32.5242 204.7696 204.7696
I 2.088 x 102 2.536 x 103 2.536 x 10~3
8] 2.040 x 102 1.423 x 1073 1.423 x 1073

Table 4: Results for m = 100.
Planar RRRR Spherical RRRR Spatial RCCC

opt (deg.) 116.0679 12,6740 473261

Bopt (deg.) 88.9057 88.7674 -1.2326
Kopt 32.5170 205.5603 205.5603
1d|l> 2.499 x 1072 3.047 x 10~3 3.047 x 1073
8|2 2.464 x 1072 1.712 x 1073 1.712 x 1073
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Figure 1. Structural error comparison for (i) planar, (i7) spherical RRRR and (iii) spatial RCCC
mechanisms minimising ||s||2 & ||d||2.

4 Discussion and Conclusions

Examining Tables 1-4, it can be seen that ||d||; and ||s||s increase with m for each mech-
anism. The trend for the planar RRRR is towards convergence. It is interesting to note
that the error results are identical for the spherical RRRR and the spatial RCC'C' link-
ages, except that a,py and B, are different. In a sense, this is not surprising because of
the symmetrical nature of the function in the 1) — ¢ plane. Moreover, the synthesis equa-
tions for these two linkages are, with the exception of sign, trigonometric complements
in the form considered in this article. However, compared to the planar RRRR, we see



the errors converge near m = 40, but then diverge again for higher values of m. Fig. 1
shows the close agreement of the respective structural error curves for m = 40. In all
cases treated, a number of prescribed I/O values of at least m = 10 is sufficient for the
minimisation of the Euclidean norm of the design error to lead to the same norm of the
structural error within a reasonable difference.

These results support our hypothesis that for a suitably large data-set cardinality link-
age optimisation using design and structural error based objective functions result in vir-
tually identical function-generating mechanisms. The obvious weakness is that the cardi-
nality of the data-set for which convergence is obtained is not known a priori. Nonetheless,
further pursuit of this result is worthwhile because of its computational simplicity.
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