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An algebraic input–output equation for planar RRRP
and PRRP linkages1

Mirja Rotzoll, M. John D. Hayes, and Manfred L. Husty

Abstract: In this paper, the algebraic input–output (IO) equations for planar RRRP and PRRP linkages are derived
by mapping the linkage displacement constraints into Study’s soma coordinates and then using tangent half-angle
substitutions to transform the trigonometric into algebraic expressions. Both equations are found to be equivalent
to the one that has already been derived for RRRR linkages, giving exciting new insight into kinematic analysis
and synthesis of planar four-bar linkages. The algebraic properties of the IO curve equations yield information
regarding the topology of the linkage, such as the sliding position limits of the prismatic joints and (or) the angle
limits of the rotational joints. Additionally, the utility of the equations is successfully demonstrated with two
approximate synthesis examples.
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Résumé : Dans cet article, les équations algébriques d’entrée–sortie (IO) pour les liaisons planaires RRRP et PRRP
sont dérivées en cartographiant les contraintes de déplacement de la liaison dans les coordonnées soma de
Study, puis en utilisant des substitutions tangent-demi angle pour transformer la métrique trigono en expressions
algébriques. Les deux équations se sont avérées équivalentes à celle qui a déjà été dérivée pour les liaisons RRRR,
donnant un nouvel aperçu passionnant de l’analyse cinématique et de la synthèse des liaisons planaires à quatre
barres. Les propriétés algébriques des équations de la courbe IO fournissent des informations sur la topologie de
la liaison, telles que les limites de position de glissement des joints prismatiques et (ou) les limites d’angle des
joints de rotation. En outre, l’utilité des équations est démontrée avec succès par deux exemples de synthèse
approximative. [Traduit par la Rédaction]

Mots-clés : générateur de fonctions, liens à quatre barres, coordonnées soma de Study.

1. Introduction
Freudenstein (1954) developed an elegant trigonomet-

ric equation for planar four-bar linkages connected by
four rotational (R) joints. The equation, nowadays known
as the Freudenstein equation, is widely used in
function-generator analysis and synthesis theory. It
gives designers a tool to identify the link lengths of
mechanisms that optimally transform, typically in a
least-squares sense, a specific input angle into a desired
output angle governed by a specified functional relation,
f(ψ)= ϕ. Let d be the distance between the centres of the

R joints connected to the relatively nonmoving base;
a the driver or input link length, which is moving
with an angle ψ; b the follower or output link length,
which is moving with an angle ϕ; and c the coupler
length of a planar RRRR linkage, see Fig. 1. Then, the
displacement of the mechanism in terms of the link
lengths a, b, c, d, the input angle ψ, and the output
angle ϕ is governed by the following input–output (IO)
equation:

k1 + k2 cosðϕiÞ − k3 cosðψ iÞ = cosðψ i − ϕiÞð1Þ
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Equation 1 is linear in the ki Freudenstein parameters,
which are defined in terms of the link length ratios as

k1 =

�
a2 + b2 + d2 − c2

�
2ab

k2 =
d
a

k3 =
d
b

In Hayes et al. (2018), they provide an alternative
derivation of a general algebraic IO equation for the
same type of mechanism:

Au2v2 + Bu2 + Cv2 − 8abuv + D = 0ð2Þ

where

A = ða − b − c + dÞða − b + c + dÞ = A1A2

B = ða + b − c + dÞða + b + c + dÞ = B1B2
C = ða + b − c − dÞða + b + c − dÞ = C1C2
D = ða − b + c − dÞða − b − c − dÞ = D1D2

u = tan
ψ

2

v = tan
ϕ

2

Equation 2 is an algebraic quartic equation in terms of
input and output joint angle parameters u and v. It was
obtained by mapping the linkage constraint equations
of the input and output links, i.e., circular motion for
the distal R joints, into Study’s soma coordinates (Study
1903; Bottema and Roth 1990), converting the trigono-
metric expressions into algebraic ones by applying the
tangent of the half-angle, or Weierstraß substitutions
(Bradley and Smith 1995), and finally eliminating the
Study coordinates to obtain the quartic IO curve (Hayes
et al. 2018; Husty and Pfurner 2018). The soma coordi-
nates are used to represent distinct spatial rigid body
displacements in three-dimensional Euclidean space as
distinct points in a higher dimensional projective space.
Eight projective soma coordinates result from mapping
a displacement to the seven-dimensional projective
kinematic mapping image space. A displacement can be
represented in Euclidean space as a change in position
and orientation of a moving coordinate system
expressed with respect to a nonmoving one. The first

four soma coordinates are typically established as the
four Euler rotation parameters (Bottema and Roth 1990;
Husty et al. 1997) to quantify the new orientation, while
the remaining four represent the translation component
of the displacement and are obtained as distinct linear
combinations of the Cartesian coordinates of the new
location of the origin of the moving coordinate system
and the Euler parameters. For planar displacements,
two of the Euler parameters and two of the translation
parameters are identically zero.

We believe that this new method for determining the
IO equation can be further expanded to four-bar mecha-
nisms of any topology for planar, spherical, and spatial
mechanisms. Ultimately, this would provide designers
with a versatile tool for optimal synthesis of function-
generating mechanisms. While others have examined
the possibilities of a unified approach to four-bar mecha-
nism analysis and synthesis, see Bai and Angeles (2008)
for example, proposed methods failed to identify a
single algebraic and constraint-based IO equation that
is truly generalised to four-bars containing two, one, or
no prismatic (P) joints. Planar four-bar mechanisms
containing more than two P joints result in linear IO
relations and can only generate translations. Hence, they
are not considered herein.

In this paper, we will derive the algebraic IO equations
for RRRP and PRRP linkages using the same technique
developed in Hayes et al. (2018). The main goal is to dem-
onstrate that the method of deriving the algebraic forms
of the IO equations using Study’s soma and elimination
theory (Salmon 1885; Cox et al. 1997) lead to precisely
the same equation, namely eq. 2, with only the roles of
constant and variable changing for certain design
parameters. We will then interpret some important
characteristics of the resulting algebraic IO curves in
the coordinate plane of the input and output variables
employing the theory of planar algebraic curves
(Harnack 1876; Salmon 1879a, 1879b; Hilton 1920;
Primrose 1955; Husty et al. 1997). Finally, we will illus-
trate these characteristics with two function-generator
approximate synthesis examples using the algebraic
form of the associated IO equation.

2. Algebraic IO equation for RRRP function
generators

The planar RRRP linkage, also called a crank-slider, is a
widely used mechanism found in a variety of applica-
tions, such as piston-cylinder engines or reciprocating
pumps (Wunderlich 1970; Uicker et al. 2017). This linkage
transforms a rotational input motion into a reciprocat-
ing translational output motion. A schematic of the
linkage type is shown in Fig. 2. In the first step, as in
the derivation of eq. 2, the displacement constraints of
the driver and follower have to be defined (Hayes et al.
2018; Husty and Pfurner 2018). For that purpose, let Σ1

be a fixed Cartesian coordinate system whose origin is
at the centre of the ground-fixed driver R joint, E the

Fig. 1. Planar 4R function generator.
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intersection point of the driver and coupler link centre
lines, and F the intersection point of the coupler and
the follower link centre lines. While point E is moving
on a circle with a radius of length a around the origin O
of Σ1, F is moving on a line that intersects the baseline
at point G making a fixed angle ϕ at a distance d from
the origin of Σ1. Hence, the positions of E and F can be
described as points in Σ1 by the following array element
constraint equations:

XE − a cosψ = 0

YE − a sinψ = 0
ð3Þ

XF − d − b cosϕ = 0

YF − b sinϕ = 0
ð4Þ

Note that these constraint equations are identical to
those formulated for the 4R linkage in Hayes et al.
(2018), but where the roles of b and ϕ are reversed: b here
is a variable distance and ϕ is a fixed angle. This allows us
to proceed in determining the IO equation in the same
manner. Let Σ2 be a coordinate frame, which moves with
the coupler, whose origin is centred at E with x-axis
pointing towards F. Then the homogeneous transforma-
tion matrix, expressed in soma coordinates (x0 : x3 : y1 :
y2), between the two coordinate frames is given by
Hayes et al. (2018)

T =
1

x20 + x23

2
4 x20 + x23 0 0
2ð−x0y1 + x3y2Þ x20 − x23 −2x0x3
−2ðx0y2 + x3y1Þ 2x0x3 x20 − x23

3
5ð5Þ

For example, a point (x, y) in Σ2 can be expressed as a
point (X,Y) in Σ1 using the coordinate transformation

2
4 1
X
Y

3
5 = T

2
4 1
x
y

3
5ð6Þ

Now, in the coordinate frame Σ2, the two end points of
the coupler E and F have coordinates (x,y) = (0,0) and
(c,0), respectively. These are transformed using eq. 6 to
their representations in Σ1, and the results are equated
to the coordinates for points E and F in eqs. 3 and 4,
which, when simplified, reveal the following four array
element position constraint equations in terms of the
link lengths, input and output angles ψ and ϕ, as well
as the four soma coordinates x0, x3, y1, and y2:

− a cosψðx20 + x23Þ + 2ð−x0y1 + x3y2Þ =0
− a sinψðx20 + x23Þ − 2ðx0y1 + x3y2Þ =0

−ðb cosφ + dÞðx20 + x23Þ + cðx20 − x23Þ + 2ð−x0y1 + x3y2Þ=0
− b sinφðx20 + x23Þ + 2cðx0x3Þ − 2ðx0y1 + x3y2Þ =0

9>>>=
>>>;

ð7Þ

The tangent of the half angle substitutions

u = tan
ψ

2
v = tan

ϕ

2
ð8Þ

cosψ =
1 − u2

1 + u2
sinψ =

2u

1 + u2
ð9Þ

cosϕ =
1 − v2

1 + v2
sinϕ =

2v

1 + v2
ð10Þ

are used to transform the trigonometric constraint-
based relations in eq. 7 to algebraic equations. After
eliminating the image space coordinates xi and yi using
resultants and elimination theory, then collecting the
results for the variables u and b, the following algebraic
IO equation emerges:

k∶ = Au2b2 + Bb2 + Cu2b − 8abuv + Db + Eu2 + F = 0ð11Þ
where

A = v2 + 1

B = v2 + 1

C = −2ðv − 1Þðv + 1Þða + dÞ
D = 2ðv − 1Þðv + 1Þða − dÞ
E = ðv2 + 1Þða + c + dÞða − c + dÞ
F = ðv2 + 1Þða + c − dÞða − c − dÞ

By rearranging eq. 11, it can easily be shown that it is
identical to eq. 2 when the terms multiplying u and v
are collected and factored instead of u and b. The differ-
ence from a designers’ perspective is only that the varia-
bles of the 4R linkage are the IO angle parameters u and
v, while those for the RRRP linkage are the input angle
parameter u and output slider distance b.

Fig. 2. Planar RRRP function generator.
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2.1. Interpretation of the RRRP IO equation
Analysing eq. 11 using the theory of planar algebraic

curves (Primrose 1955; Husty et al. 1997) one can see that
it has the following characteristics, which are indepen-
dent of the constant design parameter lengths a, c, d,
and constant angle parameter v.

1. Equation 11 is of degree n= 4 in variables u and b.
2. It contains two double points, DP= 2, each located at

the intersections with the line at infinity of the u- and
b-axis in the u–b variable design parameter plane.

3. It has genus p = 1; hence, it is an elliptic curve and
the maximum number of assembly modes of the
linkage becomes m= p+ 1= 2 (Harnack 1876; Husty
and Pfurner 2018).

These three characteristics are now proved to be
true for all nondegenerate planar RRRP linkages.
The first item is obvious by inspection. The proof of the
second item requires that eq. 11 be homogenised.
If we use the arbitrary homogenising coordinate w we
obtain

kh∶= Au2b2 + Bb2w2 + Cu2bw − 8avubw2 + Dbw3 + Eu2w2 + Fw4 = 0ð12Þ

which now contains seven terms all homogeneously of degree n= 4 in terms of u, b, and w. The three partial derivatives of
kh with respect to the three variable coordinates u, b, and w are all homogeneously of degree n= 3:

∂kh
∂u

= 2Aub2 + 2Cubw − 8avbw2 + 2Euw2= 0

∂kh
∂b

= 2Au2b + 2Bbw2 + Cu2w − 8avuw2 + Dw3 = 0

∂kh
∂w

= 2Bb2w + Cu2b − 16avubw + 3Dbw2 + 2Eu2w + 4Fw3 = 0

9>>>>=
>>>>;

ð13Þ

Equations 12 and 13 have two common solutions that are independent of the link lengths a, c, and d, as well as angle
parameter v, which are embedded in the coefficients A, B, C, D, E, and F:

S1∶ = fu = 1, b = 0,w = 0g S2∶ = fu = 0, b = 1,w = 0gð14Þ

These two points, called double points, common to all algebraic IO curves for every planar RRRP four-bar mechanism are
the points on the line at infinity w = 0 of the u- and b-axes, respectively. Each of these double points can have real or
complex tangents depending on the values of the three constant link lengths a, c, and d, which in turn determines the
nature of the mobility of the linkage. As these two double points are uniquely defined relative to the regular points on
the curve, they are also known as singular points (Hilton 1920; Primrose 1955).

The discriminant of eq. 12, evaluated at a double point, reveals whether that double point has a pair of real or complex
conjugate tangents (Hilton 1920; Husty et al. 1997) in turn yielding information about the topology of the mechanism
(Hilton 1920; Husty and Pfurner 2018). If the tangents are complex conjugates, the double point is an acnode: a hermit point
that satisfies the equation of the curve but is isolated from all other points on the curve. If this is the case then the slider
travel, represented by b, is restricted. The discriminant and the meaning of its value are (Hilton 1920; Husty et al. 1997)

Δ =
�

∂2kh
∂u ∂w

�2

−
∂2kh
∂u2

∂2kh
∂w2

8<
:

>0 ⇒ two real distinct tangentsðcrunodeÞ
=0 ⇒ tworeal coincident tangentsðcuspÞ
<0 ⇒ two complex conjugate tangentsðacnodeÞ

For the homogeneous IO equation of an RRRP linkage,
eq. 12, the discriminant of the point at infinity (u : b :
w)= (0: 1: 0) on the b-axis is

Δ = −4ðv2 + 1Þ2ð15Þ

meaning that the double point associated with the out-
put slider is always an acnode independently of the link
lengths and orientation of the slider. It should not sur-
prise that the discriminant of eq. 12 is always negative,
as the slider must always have finite translation limits.

To determine whether the rotational input link is a
crank or a rocker, it is sufficient to determine if the

numerical value of the coefficient E in eq. 11 is <0 when
the coordinates in Σ1 are transformed by the rotation
about OΣ1

required to make v = 1, i.e., ϕ = π/2. As the
two factors (v2+ 1) and (a+ c + d) in E must always be>0,
it is a simple matter to show that the condition for input
link a to be a crank reduces to

a − c + d < 0ð16Þ

The proof for the third item comes from the definition
of genus, which in this case is the difference between the
maximum number of double points for a curve of degree
n = 4 and the actual number of double points it
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possesses. The maximum number of double points,
DPmax, for an arbitrary algebraic curve of degree n is
given by Hunt (1978)

DPmax =
1
2
ðn − 1Þðn − 2Þ

The maximum number of double points for a curve of
degree n = 4 is 3. We see that because the algebraic IO
curve has only 2 double points, it is deficient by 1; hence,
its genus is p= 1. Because of this, it cannot be parameter-
ised, and it is defined to be an elliptic curve (Primrose
1955). This definition does not mean that the curve has
the form of an ellipse, rather that the curve can be
expressed, with a suitable change of variables, as an
elliptic curve. In the plane, every elliptic curve with real
coefficients can be put in the standard form

x22 = x31 + Ax1 + B

for some real constants A and B. We now consider some
illustrative RRRP examples.

2.1.1. Example 1. Design parameter selection: a= 2.8; c= 1.7;
d= 1; v= 1.5

With the chosen design parameters, the input link a is
a rocker because eq. 16 is >0 for some –π ≤ ψ ≤ π. Two
different assembly modes I and II can be identified
examining Fig. 3. Each assembly mode has two locations
where the mechanism is positioned at an input singular
configuration where the tangents of the IO equation are
vertical, separating each assembly mode into two work-
ing modes. If the link is assembled according to the upper
right part of the curve (assembly mode I), ΔuItot and ΔbItot
correspond to the maximum swing angle and maximum
sliding position, respectively. Considering each working
mode separately, Δb11 and Δb12 correspond to the maxi-
mum sliding position in assembly mode I. Similarly, if
the link is assembled according to the lower left part of

the curve (assembly mode II), ΔuIItot and ΔbIItot
correspond to the maximum swing angle and maximum
sliding position. The maximum sliding positions for each
working mode are Δb21 and Δb22.

2.1.2. Example 2. Design parameter selection: a= 2.8; c= 1.7;
d= 1; v= 0

Taking the same design parameters, but changing the
orientation of the slider to v= 0 reveals a representation
of the IO equation as shown in Fig. 4. Again, examining
eq. 16 shows that the expression is not <0 for every
–π ≤ ψ ≤ π, and hence, the input link is a rocker. The
linkage is once again split into two assembly modes,
I and II. Due to the chosen parametrisation according to
eq. 8 and as ψ = π is included in assembly mode I, the
graph contains the point at u = ±∞, explaining the
asymptotes of the IO equation. The maximum swing
angle, as well as the maximum sliding position, can be
evaluated analogous to the previous example.

2.1.3. Example 3. Design parameter selection: a= 2; c= 2.5;
d= 1; v= 0.2

These design parameters yield the IO equation illus-
trated in Fig. 5. In contrast to the previous examples,
eq. 16 is <0 meaning that the input link a can fully
rotate. This linkage also possesses two assembly modes,
I and II, resulting in identical maximum sliding position,
ΔbItot =ΔbIItot. In this example, points where the mecha-
nism is located at an input singular configuration do
not exist. The output linkage movement is unambigu-
ously defined via the linkage assembly.

2.1.4. Example 4. A very special RRRP linkage arises when a= c
and v= 0

With these conditions, the factors of eq. 11 simplify to

ðb + dÞðbu2 + 2cu2 + du2 + b − 2c + dÞ = 0ð17Þ

Fig. 3. RRRP where a= 2.8, c= 1.7, d= 1, and v= 1.5. [Colour online.]
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As a result, this special IO equation is decomposed into
two operation modes. Moreover, two additional double
points can be observed. These double points, the bifurca-
tion points, BP1 and BP2, are always located at BP1 (+1, –d)
and BP2 (–1, –d).

This IO equation has four different working modes, the
input link a is able to rotate completely, and the mecha-
nism has the ability to fold. From eq. 17, the global
maximum is found at bmax = 2c – d and the global mini-
mum is the asymptote at bmax = –2c – d, which leads to
the following four maximum sliding positions of Δbimax

:

Δb1max
= 4a = 4c Δb2max

= 2c Δb3max
= 2c

Δb4max
= 0

ð18Þ

An example of the IO equation (where a= c= 1.7 and d= 1)
is illustrated in Fig. 6.

2.2. RRRP approximate synthesis

To show that eq. 11 can be used to generate arbitrary
functions of the form f (ψ) = b, an example approximat-
ing the curve

b = cosðψÞð19Þ

is considered. For this example, 50 sample points were
evenly distributed within the interval –3≤ u≤ 3.

The Newton–Gauss algorithm was used to itera-
tively minimise the structural error, the error
residual found between the prescribed curve and the
curve generated by the linkage (Tinubu and Gupta
1984). The optimised function approximation with
an RRRP linkage is obtained with the identified
design parameters a = 0.9426, c = 1.1587, d = 1, and
v = 1.5 × 10−5.

Fig. 4. RRRP where a= 2.8, c= 1.7, d= 1, and v= 0. [Colour online.]

Fig. 5. RRRP where a= 2, c= 2.5, d= 1, and v= 0.2. [Colour online.]

1.2
Example for Approximate Synthesis - PRRP
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Figure 7 illustrates the structural error of the identi-
fied linkage. This example underscores the applicability
of the general algebraic IO equation for RRRP in addition
to RRRR linkages.

3. Algebraic equation for PRRP function generators
As it was demonstrated that the general algebraic IO

equation is useful for RRRP mechanism synthesis, it is
reasonable to expect that the equation is equally valid
for PRRP mechanisms. We will not consider mechanisms
with greater than two P joints as such linkages can only
generate translations. The PRRP mechanism consists of
one prismatic, two rotational, and another prismatic
joint. In addition to a translational output motion b, the
input motion a of the function generator is also a trans-
lation governed by a functional relation expressed by
f(a)= b. The most common configuration is the elliptical
trammel whose P-joint directions are perpendicular to

each other, but for a general PRRP mechanism the
P-joint axes may have any nonzero angle between them,
as illustrated in Fig. 8.

As the two P joints are both moving on a line, the ini-
tial constraint equations for the PRRP can again be set
up according to eqs. 3 and 4. Note that in this particular
case, the variables of the IO equation become a and b,
while u, v, c, and d represent the design parameters.
According to the same derivation for the RRRP and the
RRRR function generators, but instead treating both a
and b as variables, the IO equation of the function
generator becomes

Aa2 + Bb2 + Cab + Da + Eb + F = 0ð20Þ

where the coefficients are factors of constants u, c, d,
and v:

A = ðv2 + 1Þðu2 + 1Þ
B = ðv2 + 1Þðu2 + 1Þ
C = −2ðuv − u + v + 1Þðuv + u − v + 1Þ
D = 2dðv2 + 1Þðu − 1Þðu + 1Þ
E = −2dðv − 1Þðv + 1Þðu2 + 1Þ
F = −ðv2 + 1Þðu2 + 1Þðc − dÞðc + dÞ

Again, by collecting the variables in a different way it
can easily be shown that eq. 20 is identical to eqs. 2
and 11.

3.1. Interpretation of the PRRP IO equation

Equation 20 has the following characteristics:

1. It is of degree n= 2.
2. It is a quadratic equation in two variables; thus, the

IO equation is a conic section.
3. Its IO curve possesses genus p= 0; hence, the maxi-

mum number of assembly modes of the linkage is
m= p+ 1= 1 (Harnack 1876; Husty and Pfurner 2018).

Fig. 6. RRRP where a= c= 1.7, d= 1, and v= 0. [Colour online.]

Fig. 7. RRRP where a = 0.9426, c = 1.1587, d = 1, and
v= 1.5 × 10−5. [Colour online.]

1.5
Example for Approximate Synthesis - RRRP

1
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From the discriminant, Δq, of the quadratic form
associated with the conic section implied by eq. 20

Δq =
���� A C=2
C=2 B

����ð21Þ

we can, according to Table 1, determine whether the
conic is an ellipse, parabola, or hyperbola (Glaeser et al.
2016). For eq. 20 the discriminant reduces to

���� ðv2 + 1Þðu2 + 1Þ −ðuv − u + v + 1Þðuv + u − v + 1Þ
−ðuv − u + v + 1Þðuv + u − v + 1Þ ðv2 + 1Þðu2 + 1Þ

���� = 4ðuv + 1Þ2ðu − vÞ2ð22Þ

Because eq. 22 is independent of link lengths then
Δq ≥ 0 for all PRRP linkages and the conic represented
by eq. 20 can never be an hyperbola. The graph of the
IO equation is always an ellipse with but one exception:
if u= –1/v or u = v, the conic becomes a special parabola,
i.e., two parallel lines. A distinguished ellipse, the circle,
arises when A= B and C= 0, which are the cases for

u = ±1 v = 0 u = 0 v = ±1ð23Þ

i.e., when the axes are perpendicular to each other.
These findings align with the literature (Sangwin 2009)
proving that this type of mechanism generates an
ellipse, confirming the validity of the derived PRRP IO
equation.

3.1.1. Example 5. Design parameter selection: v= 1.7; u= 0.8;
c= 2; d= 1

Figure 9 illustrates the maximum sliding positions atot
and btot. Considering a to be the input slider, two
singular points separate the curve into two working
modes. Hence, the output slider can have two different
maximum sliding positions Δb1 and Δb2.

3.2. PRRP approximation synthesis
To show that eq. 20 can also be used to generate a gen-

eral function f(a)= b, we now consider an example where
the desired function is

b = cosðaÞð24Þ

For this example, 50 sample points are selected to be
evenly distributed within the interval 0 ≤ a ≤ 2. Again,
the Newton–Gauss algorithm is used to minimise the

structural error. As a result, the best approximation with
a PRRP linkage is obtained with the identified constants
c = 2.0313, d = 1, u = −1.1868, and v= 0.1353, or c = 2.0313,
u = 1.1868, and v = −0.1353. The designer may choose
between these two different assembly modes. The struc-
tural error is illustrated in Fig. 10. The desired curve is
illustrated in red, and the blue curve represents the
approximation obtained by the PRRP linkage. For this
example, the approximation obtained by the PRRP
function generator is notably close to the prescribed
curve. Hence, this example confirms the applicability of
eq. 20 for approximate synthesis problems.

4. Conclusions
In this paper, two algebraic IO equations for RRRP and

PRRP linkages were derived. It was shown that these
equations are identical to the algebraic equation for
RRRR linkages derived in Hayes et al. (2018). We believe
this to be a remarkable result having never been
reported in the vast body of archival literature collected
since antiquity! Analysing the equations revealed that
the RRRP linkage can have a maximum of two assembly
modes, which can be divided into two working modes.
A folding mechanism occurs if a = c and v = 0. The PRRP
linkage has only one assembly mode. It was demon-
strated that its IO curve is either an ellipse or, if u= –1/v
or u= v, two parallel lines. Furthermore, both equations
were verified by a synthesis example that approximated
the respective design parameters. Being able to expand
the algebraic IO equation to two additional linkages,
RRRP and PRRP, helps designers to choose the optimal
linkage with the optimal design parameters with
reduced time and effort. The generalisation of this paper

Fig. 8. A PRRP linkage.

y
c

x F

a 
Y

E

G b

X

d

O

Table 1. Impact of the discriminant
value on the shape of function the
PRRP can generate.

Discriminant of a
nondegenerated conic Shape

Δq> 0 Ellipse
Δq= 0 Parabola
Δq< 0 Hyperbola
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is an important step towards the main goal of synthesis-
ing the optimal linkage of planar, spherical, or spatial
function generators.
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