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Abstract

This thesis presents a system for localizing a sensor equipped mining vehicle in a

large-scale underground environment, where GPS is not available. Such a system

would increase vehicle drivers’ situational awareness and enable underground mining

companies to monitor their vehicles and manage operations remotely, all of which

would increase efficiency and safety. Previous work in this area has been successful

in mapping large-scale environments using RFID tags as unique landmarks.

The localization system presented in this work incorporates the use of RFID tags,

a particle filter and a set of 2D local maps built a priori, referred to as node maps,

that represent the environment. The overlapping structure of node maps allows for

efficient localization from the point of view of the processing power and the memory

required. The use of sporadically-placed passive RFID tags as unique landmarks

allows for the creation of the locally consistent node maps and for efficiently solving

the global localization problem in very large, challenging, unstructured, and uniform

appearance environments.

The localization system was first tested offline using simulated and previously

collected real underground mine data, and online in the 4-kilometre long Carleton

University underground tunnels. Experimental results from various localization tests

as well as qualitative and quantitative analyses are presented. A GPS-like GUI de-

veloped for the mining vehicle operator as well as a website interface for monitoring

mining vehicles locations remotely are also shown.
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Chapter 1

Introduction

GPS is currently employed in open pit mines to improve efficiency, increase safety,

and streamline operations [1]. However, GPS signals cannot be used in underground

environments such as tunnels and mines. Furthermore, using any time-of-flight or

phase difference localization technology is problematic in underground environments

due to multi-path issues, comparatively poor accuracy, and cost. A relatively inexpen-

sive underground positioning system that would allow mining operations to precisely

monitor their vehicles in real time, as well as allow operators working in the mine to

accurately know the position of all mining vehicles, could benefit safety and efficiency.

Research is currently under way to build such a system but problems exist with cost,

implementation, accuracy, and computational requirements. The size, harshness, ir-

regularity and remoteness of the underground environment add to the challenges in

developing such a system. This thesis presents the current status of research into

a map-based approach to building such a real-time global underground positioning

system for underground mining vehicles.
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1.1 Motivation

In recent years, mobile robotics research has made great leaps in developing simulta-

neous localization and mapping (SLAM) techniques. The availability of hardware and

cheap computing power allows the implementation of small scale laboratory robotics

research into real world applications.

Open pit mining has seen increased productivity and safety. Due to its availabil-

ity, accuracy and low cost, GPS enabled mining systems have seen wide adoption for

many open pit mining operations. As a result, open pit mining has seen increased

productivity and safety. This allows companies to minimize downtime of shovels,

maximize hauling equipment use, optimize mine planning and increase safety. How-

ever, the same cannot be said for underground operations.

Underground mining poses many more challenges than open pit mining. Under-

ground tunnels are irregular in size and direction and follow the ore body, as can

be seen in Figure 1.1. The environment is harsh, dark, and most tunnels look very

similar (Figure 1.2).

For these reasons accurate maps of underground mines are difficult and expensive

to create and maintain. This is evident in many mining accidents where rescuers

face an extremely difficult task in finding survivors, communicating with them, and

reaching them. Rescuers must rely on mining personnel as the main source of accurate

information about the mine environment. Time delays and subjective information

can lead to tragedy in this dangerous environment however. Ideally, rescuers should

immediately have accurate maps of the mining environment available and the last

known location of any miners underground so that time is not wasted and efforts are

made with precision.

The latest underground mining technology offers new solutions in terms of
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Figure 1.1: CANMET CAD Map.

in/out/checkpoint indicators, tele-remote operation and vehicles autonomous opera-

tion for a predefined or “learned” path. This thesis is part of an effort to bridge the

disconnect between new techniques in mobile robotics and the underground mining

world.

1.2 Scope

The scope of this thesis is to present a 2D localization system that can be used in

real, large-scale, underground environments and to detail the unique challenges for

this type of application. Most articles in the literature present localization techniques

that are based on small-scale experiments in a laboratory sized, controlled environ-

ment. While many new techniques have been presented, most cannot be used in real

applications due to their limitations. Furthermore the sensors available underground
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Figure 1.2: CANMET vehicle in tunnel.
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exclude those using GPS or cell towers for localization.

1.3 Goals

The localization system presented in this thesis is not designed for exploring unknown

environments or performing on-line SLAM. The underground positioning system pre-

sented here is designed to enable underground mining vehicles (driven by human

operators) to localize themselves in real time, on an existing map, similar to that of

a truck driver using GPS to localize on the surface. For this system, no significant

infrastructure is installed in the tunnels besides sporadically-placed, passive radio

frequency identification (RFID) tags. Several goals were set for the system:

1. The localization system must be able to work in a large-scale underground envi-

ronment of tens of kilometres, or more. Thus, the computational requirements

of the system must not scale up with the size of the environment.

2. It must use high-resolution metric maps in the centimetre range.

3. No human input should be required during localization. Once a vehicle starts

moving in the underground environment it should automatically globally local-

ize itself and track its position with no human intervention.

4. The system should use low-cost sensors and must have low computational re-

quirements so that it can be implemented and deployed on a cheap and widely

available computer platform.

5. The localization should be accurate so a fast update rate for the vehicle position

is required. In cases of unexpected circumstances, “kidnapped robot” situation

or modified environment, the system should be robust so it can recover and

inform the user of low confidence in the estimated location.
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1.4 Overview

In the next chapter, relevant background topics are presented and discussed. A list

of some of the sensors widely used for localization is presented. The availability of

these sensors in an underground environment and their usefulness for this research is

discussed. Next, the theory and literature review of various localization methods is

presented. A summary of the advantages and disadvantages of particle filters for this

localization application is also shown.

Chapter 3 provides details on the implementation of the algorithms used for map-

ping and for the localization system developed. First, the efficient use of RFID tags

for both mapping and localization is described. Next, the type of occupancy grid

map used, the node map, is presented. A method for jumping from node map to

node map as a vehicle traverses the environment is discussed. Next the particle filter

used for localizing the vehicle is presented. Finally a method for creating 3D maps is

presented and their possible use in localization is discussed.

Chapter 4 presents the tests performed to validate the localization system devel-

oped in this thesis. First the sensor equipped vehicles used for tests are described

followed by the various test environments. The off-line tests performed using a simu-

lator and real data are presented. Next, some of the online large-scale tests performed

are discussed.

The most important research results are presented in Chapter 5. Off-line parti-

cle filter localization results are presented first, followed by simulator mapping and

localization error graphs. Views of the 3D maps created are also shown and their

suitability for localization is analyzed. Finally online localization results from the CU

tunnels are shown along with localization accuracy test results.

Chapter 6 presents a summary of the contributions of this thesis and conclusions.

Some interesting topics for future work are also identified.



Chapter 2

Background & Literature Review

This chapter provides a foundation for this thesis work by highlighting important

background information for the approach and algorithms developed later. First, an

overview of some of the sensors most widely employed for robotic mapping and lo-

calization is presented, as well as their usability for this particular application and

environment. A literature review about robot localization is presented. Next the

theory behind Bayesian estimation, a general probabilistic approach for estimating

an unknown probability density function (pdf) recursively over time is explored. The

use of the particle filter and its advantages over other techniques is then discussed.

Finally Section 2.6 discusses the previous mapping work done on this project, which

laid the foundation for localization.

2.1 Localization Sensors

This thesis aims to discover a feasible underground localization system for under-

ground environments. While mapping and localization of indoor buildings has been

widely explored in the academic robotics community, the requirements outlined in

Section 1.3 provide some unique challenges. These and the remote environment

7
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translate into a limited array of sensors that can be employed. Some of the sen-

sors normally used for localization are presented below and their usefulness for this

particular application is discussed.

2.1.1 Inertial sensors

One type of sensor for estimating the relative motion of a vehicle is an inertial mea-

surement unit (IMU) which is comprised of accelerometers and gyroscopes. Accelera-

tion measurements can be integrated to yield displacement while gyroscopes provide

the rate of turn [2]. Both types of sensors exhibit biases, scale factor errors, random

noise and cross-coupling errors to a certain extent. These errors quickly accumulate

and cause a drift in the position estimates. Furthermore, an intermediate grade IMU

costs upward of $50,000, which contradicts the goal of affordability set in Section 1.3.

The most affordable inertial sensors, utilizing MEMS technology, usually offer

very poor performance and have so far been used mostly in cellphones and game

controllers to provide rough user motion estimates. Furthermore, the underground

environment is very challenging for this type of sensor. The relatively slow speed of

the vehicles require very accurate acceleration and turning rate measurements. This

problem is exacerbated by the uneven terrain and bumpiness which creates lots of

vibration noise for the sensors masking the true motion measurements. For these

reasons using an IMU was deemed infeasible. However, a MEMS gyroscope providing

turning rate measurements has been successfully used in a few tests in the Carleton

University tunnels with the online localization system developed in this thesis. This

area of research should be explored to assess the feasibility of using affordable IMU’s

for underground position tracking.
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2.1.2 Odometry

Another method for estimating the motion of a vehicle is the use of odometry. Rotary

encoders can be attached to the wheels of a vehicle to record their rotations, and to a

steering column to measure its angle. Using the particular vehicle’s kinematic model

[3], its dimensions and wheel sizes, the incremental motion of the vehicle can be

estimated over time. Odometry relies on the assumption that wheel revolutions can

be translated into linear displacement relative to the floor.

The estimation method has short term accuracy but it leads to accumulation

of errors. Some of the sources of error are unequal wheel diameters, finite encoder

resolution, uneven terrain and wheel slippage. Underground environments are very

challenging for odometry: the terrain is wet, very rough, has tight turns, steep ramps

and the driving speed varies constantly. An advantage of odometry is that the mea-

surements do not drift if the vehicle is not moving. Odometry was chosen to be used

with the localization system developed in this thesis because it is fairly cheap, reliable

and offers a good initial estimate for the motion of the vehicle.

2.1.3 GPS

GPS uses orbiting satellites that constantly send their orbital location in a time

marked message. A GPS receiver measures the travel time of signals from the satellites

to the receiver. Since the receiver knows the location of the satellites, it can trilaterate

its own position. This information, consisting of latitude, longitude and altitude, can

then be corrected using a filtering technique [4] and then displayed on an a priori map

of the Earth, or on a road map. The system has seen wide adoption for consumer and

industrial applications such as commerce, scientific uses, tracking, and surveying.

In the mining industry GPS has been employed in open pit mines for vehicle fleet

management and data reporting in order to increase mining efficiency [5]. Even so,
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accurate GPS positioning requires at least four satellites to be in direct view of the

receiver which becomes problematic in deeper open pit mines since only part of the sky

is visible. Unfortunately, underground mines can not take advantage of GPS since the

signals coming from satellites are too weak to penetrate the ground to any significant

depth. The localization system presented in this thesis consists of local underground

a priori maps made with no reference to the geographic coordinate system. Therefore

the localization system displays a vehicle location on a local underground map with

respect to a local coordinate frame, not the Earth’s. Referencing the underground

mining vehicle location to a world frame could be a task for future work.

2.1.4 Scanning Laser Rangefinder

Another type of sensor useful in an underground environment is a range measurement

device. This type of sensor can use sound waves (SONAR) or laser (LIDAR) to

measure distances to walls and other features. SONAR are usually used as proximity

sensors due to their low cost but they suffer from relatively poor accuracy and a wide

field of view, making them useful only for larger obstacles.

Scanning laser rangefinders contain a rotating mirror along with a laser and some

advanced light detection circuitry. As the mirror rotates a narrow laser beam is trans-

mitted at specific intervals (angles). Each laser beam travels radially outward and

has a very small distance-to-spot ratio. If the beam hits an obstacle, some of the laser

energy, depending on the object material, will be reflected back to the rangefinder.

The light detection circuitry will then measure the time difference between the trans-

mission and the reception of the laser beam. Since the speed of light is known, the

distance to the obstacle is thus obtained. The material properties of the obstacle

play an important role in the accuracy of the laser rangefinder. An obstacle with a

material that absorbs the laser beam can only be detected if it is fairly close to the

rangefinder, severely degrading its range specifications.
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Laser rangefinders are being widely used in indoor environments for mapping and

localization [6]. The one used in the work presented in this thesis can sweep 270◦

with an angular resolution as small as 0.25◦, measure distances up to 50 metres with

±5 cm accuracy, and scan at frequencies of up to 50 Hz, making it very data rich and

versatile. Underground environments usually have very irregular walls and features

which require the use of a laser rangefinder to extract the richness of the environment

and achieve high accuracy mapping and localization.

2.1.5 Camera

Cameras have seen widespread use in many robotic applications [7] ranging from

mapping, navigation, space exploration, and even as input devices for consumer video

games. They are cheap to produce, provide extremely large amounts of data, and

are very intuitive for use by humans. Replicating the image processing power of the

human brain however has proven difficult with current techniques and hardware. The

main constraint for using cameras in underground environments is the poor lighting

and dusty conditions which dramatically decrease the useful information that can be

gathered using cameras. Furthermore the underground tunnel walls, ceiling and floor

have random bland textures (Figure 4.5) with almost no unique visual features that

can be reliably detected and correctly associated. For these reasons a webcam has

only been used as an auxiliary sensor for visual reference during tests and was not

incorporated in the localization algorithm.

2.1.6 Compass

A magnetic compass is used to detect the direction to Earth’s North magnetic pole,

which does not coincide with the geographic or “true” pole. Furthermore, the Earth’s

magnetic field lines do not pass over its surface in a neat geometric pattern because
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they are influenced by the varying mineral content of the Earth’s crust. Because

of this, there is usually an angular difference, or variation, between true North and

magnetic North from a given geographic location. Magnetic compasses have been used

in underground tunnels for centuries [8]. They have been used both for surveying and

to plan and dig new drifts in specific directions. The main challenge for this type of

sensor comes from the type of ore body that the tunnels pass through. An ore body

with magnetic properties will create a big distortion in the local magnetic field leading

to a large angular deviation from the magnetic North. In this thesis a MEMS compass

is used as a directional reference to the local magnetic field direction, regardless if it

matches the true magnetic North, or if distortions exist. Furthermore, high accuracy

is not required from the compass as it is used simply as a direction of travel indicator

in a drift where a vehicle can be travelling in only two directions approximately

180◦ apart. More importantly however, the work assumes a static direction for the

local magnetic field, which is a valid assumption since the local magnetic field does

not change significantly except over very long periods of time or if material in the

Earth’s crust shifts due to earthquakes etc. Depending on the achievable accuracy

the compass can also be used to detect a loss of localization when the heading of the

vehicle no longer matches the map. Further information on the use of the compass

can be found in Section 3.2.

2.1.7 RFID

Radio Frequency Identification (RFID) is a subset of a group of technologies that

are used to identify objects, which includes bar codes and smart cards. The three

components of an RFID system are: a tag; a reader; and the necessary supporting

software and hardware [9]. RFID uses radio waves to automatically identify individ-

ual or bulk items. The RFID reader broadcasts a carrier radio signal, which when

received by the tag is modulated using its unique serial number and sent back to the
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reader. RFID technology is becoming widely used in supply chain management, ID,

baggage tracking, and patient care management [10]. These various applications have

very different requirements in terms of cost, size, portability, range, durability, and

packaging. These requirements usually translate directly into the properties of the

RFID reader and the tag.

RFID readers can be hand-held terminals or fixed devices that are mounted in

strategic locations such as loading bays. The RFID reader must transmit a signal with

enough power to reach a tag at the desired distance and be returned to the reader so

that it is detectable. Furthermore the directionality of the reader’s antenna will also

affect its range since the signal power can be focused in a narrow beam. Depending

on the application this is a desirable feature as only tags within the narrow beam

would be detected and other tags in the vicinity of the reader would not. Other times

the opposite effect is desired such as when any product tag approaching, or in the

vicinity of the exit door of a store should be detected. All these factors will influence

the cost since the RFID reader may have to be packaged in a smaller size and contain

more sensitive electronic components.

RFID tags must capture the RFID reader radio wave, modulate it with their ID

and send it back with enough power to be detected by the reader. Therefore a large

effective tag antenna area is important for higher range. The directionality of the

tag, its orientation with respect to the reader as well as the mounting location and

material all play a critical role in the tag range and detection probability. Another

way for RFID tags to have a higher detection range is to contain an internal power

source. RFID tags that have no power source are called passive RFID tags while

those with a battery are called active tags. The active RFID tags are able to achieve

much higher detection ranges since they do not rely on the power of the reader carrier

signal.

In this thesis passive RFID tags are used as unique landmarks. It is desirable
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to segment a large underground environment into smaller maps. For example most

underground mines are split up into multiple levels but there are virtually no distin-

guishing features between them making mapping and global localization challenging.

RFID tags provide a low cost way to uniquely identify when a vehicle with an RFID

reader is within the detection range of a specific tag. Furthermore, RFID tags are

starting to be used underground for tracking equipment entering a mine in order to

dynamically adjust ventilation levels [11]. More information on the use of RFID tags

can be found in Section 3.1.

2.2 Localization Literature Review

The problem of localization in underground environments where GPS is not available

is similar to that of indoor localization. Even though the scale, the environment struc-

ture, and achievable sensor accuracy may be different, similar localization approaches

can be used. Robot literature localization techniques are either behaviour-based ap-

proaches, landmarks, or dense sensor matching.

Behaviour-based approaches map sensory inputs to a set of motor actions which

are used to achieve a task. Robots can learn the internal topological structure of an

environment and then play back or repeat a set of taught action sequences. In [12] a

directed and connected graph is used as the map where each node contains a unique

signature, action information, the relative direction and distance with respect to its

neighbouring nodes and physical link direction. The robot’s localization system keeps

track of its node history and the actions and sensor information that will match the

transition to a new node on the graph as the robot traverses the environment. For

this reason this localization technique is highly dependent on sensor/action history

and is not useful for localizing a vehicle geometrically in a large-scale environment

with almost no unique locations.
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Landmark methods rely on the recognition of unique features in the environment,

either physical or artificially created such as GPS satellites. Landmark locations can

be given a priori in an engineered environment or learned by using SLAM techniques.

These methods can suffer from landmark association problems as they may not be

unique or easily identified. Creating artificial landmarks where they don’t exist, such

as in a large underground environment can be expensive, time consuming and not

practical given the scale.

Dense sensor localization approaches [13, 14, 15] use all available sensor informa-

tion to update a robot’s pose. This can be done by matching laser scans against a

geometric map of the environment without the need to extract any landmark fea-

tures. Therefore these methods can be used in environments where unique landmarks

are not easily found, such as underground environments and can localize using any

surface features that are present. Most dense sensor localization approaches fall into

two categories: position tracking or global localization.

Position tracking methods aim to maintain localization of a robot that has a fairly

accurate estimate of its initial position. Since the localization system starts off with

the correct robot position, it must simply keep track of, and compensate for, in-

cremental errors in the robot’s odometry. Laser rangefinder scan data can be used

as individual measurements or they can be processed in a scan matching routine to

obtain a single correction measurement of the robot position with a mean and covari-

ance. Scan matching is the process where a laser range scan is translated and rotated

with respect to an a priori map so that maximum overlap, or likelihood of the data,

is obtained. Given a sufficiently fast sampling rate, the odometry incremental errors

are small enough to be corrected using the Kalman filter, which has been shown [13]

to be well suited for this type of application. Kalman filters are efficient estimators

that represent the location of a robot using a Gaussian posterior distribution. Their
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main drawbacks stem from the requirement of Gaussian-distributed noise, Gaussian-

distributed initial uncertainty and a unimodal distribution for the posterior. In reality

however, if the robot kinematics, dynamics or the sensor model are non-linear then

the Extended Kalman filter must be used instead. It linearizes the non-linear model

about the current state mean and covariance estimates. Since the linearization has

to be performed at each time step it increases the online computational requirements

of the method. Although it has been shown to work well in practise, the EKF is not

proven to converge and is not necessarily the optimal estimator for non-linear mod-

els. Furthermore, the EKF tends to underestimate the true covariance matrix which

can be problematic for an underground localization application where robustness is

important.

If a closed form expression for the non-linear relationship between the sensors

and the state is not available then another approach, the unscented Kalman Filter

must be used instead. A set of test points, created from the mean and covariance

of the state, are used to numerically estimate the predicted sensor measurements

distribution and the Jacobian of the sensor model. For all of these Kalman filter

approaches the initial position must be known with Gaussian uncertainty, they can

not recover from localization failures such as the “kidnapped robot” problem and can

not deal with multi-modal probability densities.

Global localization methods are able to localize a robot when no initial estimate

of its position exists. This problem is more challenging since the robot could be

located anywhere in the environment and multiple similar locations may exist, which

implies that the localization system has to maintain multiple hypothesis as to the true

location. Markov localization maintains a probability density function over the space

of all locations in an environment. Its fundamental assumption is that the world is

static and does not contain moving objects except the robot. Therefore, only the

robot’s location, the state, is needed to predict the next robot location given that



17

current sensor measurements are independent from past ones. Given an environment

with multiple similar locations where the robot might be located, Markov localization

allows for multi-modal probability densities and propagates them through the motion

and sensor models.

Markov localization approaches can be landmark-based with the state space or-

ganized according to the topological structure of the environment or grid-based.

The lack of natural landmarks in an underground environment makes landmarks

approaches not practical since installation costs can be prohibitive.

For grid based Markov localization [16] the entire environment is divided in cells

with a fixed size which limits the achievable precision and resolution of the robot’s

estimated location beforehand. This method also suffers from computational overhead

because if high accuracy localization is desired than the grid size must be small,

increasing the domain over which the probability density function must be computed

and maintained. A large environment exacerbates this problem.

Particle filters (or Sequential Monte Carlo methods) [17] are based on Markov

localization where the probability density function is represented by samples drawn

from it. While this approach can represent multi-modal distributions and thus localize

the robot globally, the memory requirements are much lower than Markov localization.

Particle filters are able to globally localize and to recover from the “kidnapped robot”

problem. A kidnapped robot situation is one where the localization system is highly

certain of its position but then the robot is “teleported” to a different location. A

highly robust localization system should be able to recover from this situation. In an

underground environment a localized vehicle may be parked and then moved while

the localization system is off. When the localization system would be re-started the

last known location would be incorrect. Furthermore it is likely that the vehicle may

be driven out of the mapped area or above ground and the localization system must

recover from this situation.
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For this work, localization is done with respect to an a priori, internal metric map

since the localization system must meet the goals specified in Section 1.3, in partic-

ular the requirements for robustness and high accuracy in a very large unstructured

environment.

Thrun et al. [18, 17] use a mobile robot (called RHINO) to evaluate particle filter

localization in an indoor, office environment. The particle filter is able to globally

localize and keep track of multiple likely locations until the robot has moved enough

to solve the position ambiguity. Particle filter localization is also compared with

grid-based Markov localization. The particular tests showed that 2000 particles were

sufficient to achieve the same accuracy as Markov localization with a grid size of 4

cm which made the latter approach infeasible online for the size of the environment

and the available computational power. It is also shown that using laser rangefinders

results in more accurate localization than when using sonars. Another mobile robot,

Minerva, was used as a remote museum tour guide. The test environment was 40 m

× 40 m with smooth floors. An occupancy grid map was used to localize the robot.

5000 particles were used for the experiments and the robot was driven at speeds of up

to 5.7 km/h. Test runs of up to 75 minutes covering a distance of over 2200 metres

were successfully carried out without loss of localization. The particle filter approach

to localization was shown to be fairly efficient and robust for a varied driving pattern.

Ylmaz et al. [19] use a particle filter to localize a Pioneer P3-DX robot in an

indoor laboratory environment. The robot is equipped with various sensors but for

this application a laser rangefinder, odometry and a compass were used. The test

environment is small, 7.3 m × 8.5 m. The particle filter motion model uses wheel

encoder turns and the compass to estimate the position and orientation of the robot.

The laser rangefinder scans 180◦ in a horizontal plane and each beam is used as

an individual measurement. Since the laser rangefinder is a very accurate sensor,

small misalignments in the particles pose can cause some of the measurements in a
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scan to yield very low likelihood probabilities. Therefore, the total laser rangefinder

sensor probability is normalized using the geometric mean of the laser beam sensor

probabilities in order to reduce the effect of laser beam outliers’ probabilities. This in

turn reduces the chance that slightly misaligned particles are not eliminated during

resampling due to low likelihood.

During the tests the robot is globally localized with no initial estimate of its po-

sition. Several parameters are varied in order to analyze their effect on particle filter

localization. As the number of laser beams that are used for localization is increased,

the duration to run each particle filter step also increases but the number of steps re-

quired to globally localize decreases. Furthermore, increasing the number of particles

increases the localization success ratio due to the probabilistic nature of the approach.

The number of laser beams used is not as important for this effect. The use of the

compass increased the localization success ratio and decreases the particles required

(computational load) since particles were generated with the rough orientation of the

robot. The use of the normalized sensor model increased the localization success

ratio but at the expense of more time steps required to achieve global localization.

Basically, the model used kept alive a more diverse particle population until loca-

tion ambiguity was correctly resolved. Although tested in a restricted environment

the approach demonstrated the effectiveness of particle filters for localization and

how effective sensor use can increase localization accuracy and reduce computational

requirements.

As shown in [20] and [21] particle filters can be very robust, can globally localize

a vehicle and can recover from a “kidnapped” robot situation even though they are

not as fast or accurate as other methods such as Kalman Filters.

2.2.1 Particle Filters Advantages and Disadvantages

Using a particle filters to localize and track a robotic vehicle has several advantages:
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• No a priori or initial knowledge of the position of the vehicle is required;

• Motion models and measurement models can be non-linear, non-Gaussian;

• They can maintain multiple hypotheses until ambiguity is resolved;

• They can recover if the vehicle is “kidnapped” to another location, or if it

localizes to the wrong location.

Some of the disadvantages of using particle filters are:

• They are computationally expensive;

• The optimal number of particles required is hard to determine and can be very

large. It depends on the desired accuracy, the motion model noise, the time

step, the type and accuracy of the sensors used, and the state size;

• The algorithm suffers from the particle depletion problem – for very accurate

sensors, resampling can eliminate good particles and in general decreases par-

ticle diversity leading to over-confidence in position.

2.3 SLAM

Most underground mines manually survey the lengths of some of the most important

drifts in order to produce 2D CAD maps and then manually draw in wall contours.

The maps usually show individual levels projected on a horizontal plane with some

access ramps appearing schematically or not to scale. These maps do not contain

local wall features accurate enough for localization and are mostly used for planning,

safety, and infrastructure installation. For this reason, and to meet the requirements

of accurate localization, new maps of the underground environment have to be made.
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Since no absolute coordinate system or sensor is available underground and the en-

vironment is unknown, the mapping process must rely on a technique called Simul-

taneous Localization and Mapping (SLAM) where a sensor equipped vehicle collects

relative motion data and laser scans and then attempts to accurately re-create the

environment it has traversed [22].

The SLAM approach must continually create a map of the environment and local-

izes the vehicle in that map which can be stated as: p(xt,m|u1:t, z1:t) where at time t,

x is the state of the vehicle, m is the map, u is the motion input and z are the sensor

measurements. Since the motion and sensors contain errors, maps become distorted

as the time and distance travelled increases. For this reason SLAM techniques use

Kalman filters, particle filters and/or scan matching of laser data in order to correct

estimation errors.

For this thesis work, SLAM is only used for mapping the underground environment

as described in [23]. Similar to a car GPS unit, the localization system developed

then uses the maps produced to localize and display the position of the vehicle.

Therefore the maps are the only reference for localization and the system will attempt

to maintain localization in spite of map errors and at the cost of accuracy so that

position tracking does not diverge from the location of the vehicle with respect to the

map.

2.4 Localization with RFID tags

Several papers describe methods for incorporating RFID tags into well established

localization algorithms. Some research aims to localize a moving RFID tag while

others try to localize a robot equipped with an RFID reader. Since RFID tags are

many magnitudes cheaper than the reader, the cost of the first method is much higher.

Furthermore installing many fixed RFID readers requires expensive infrastructure and
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is labour intensive. Tag installation is as simple as sticking them onto existing wall

or ceiling infrastructure.

In Hahnel et al. [24] approximately 100 RFID tags are installed in an indoor

28 m × 28 m environment. A mobile robot equipped with two RFID separately

oriented antennas, a laser rangefinder and odometry sensors is used to create a map

of the environment using FastSLAM [25] and estimate the locations of all the RFID

tags using a particle filter and the probabilistic sensor model for their RFID reader.

The resulting map and RFID positions are then used for localizing the robot vehicle

using only some of its sensors and a particle filter. Incorporating RFID tags into the

localization algorithm is shown to greatly reduce the time and the number of particles

required for global localization from 10,000 to 50. The estimated position error for a

driven path is also reduced. The paper only focuses on a small indoor environment and

using FastSLAM is only feasible where physical landmarks exist such as office spaces.

An underground tunnel environment is large and has few distinguishable features

that can be used as landmarks. The large number of RFID tags used in such a small

environment make the approach infeasible in kilometres of tunnels. However the paper

does show that RFID tags themselves can be used as unique landmarks to globally

localize a vehicle quickly with reduced particle filter computational requirements.

In other robotics literature such as [26, 27] dense arrays of fixed RFID tags and

their RSSI are used to localize an RFID reader. Tags are arranged on the ceiling

at known locations in specific uniform patterns (first rectangular then triangular) in

order to analyze their effectiveness for localization. A 60 cm spacing between tags

is used. The reader location is estimated either by the average of the maximum

and minimum coordinates or by the average coordinates of all tags detected. The

patterns, spacing and large number of RFID tags used in a small area make these

approaches impractical in a large-scale underground environment.

The goals set up in Section 1.3 require that mining vehicles need to be localized
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in very large underground environments with a feasible price. Therefore, installing

RFID readers and the required communication system may be prohibitively expensive.

Therefore in this work, RFID readers are installed on vehicles being localized and

cheap passive RFID tags are only installed sporadically (spacing of 50 to 300 m) with

the only requirement being that the RFID tags remain static. Furthermore unlike

other research the RFID tags are installed without any measurements (i.e., their exact

locations do not need to be measured) and the RFID tag RSSI is not used. Practically,

the RFID tags are considered to be unique static landmarks with a certain detection

radius. For this reason it is desirable to have a relatively small detection radius for

the RFID tags which is why passive RFID tags are used. Their low cost is also an

advantage. There are other types of landmarks that could be used such as special

light reflecting markers but this may be problematic due to poor lighting conditions

and the dusty environment.

2.5 Commercial Underground Localization Tech-

niques

The underground mining industry has been moving toward automating various parts

of their operations such as plant integration, control and power, equipment and ma-

chines. Some existing commercial autonomous LHD systems presented in [28] require

that the vehicle be taught a path to drive. Then the vehicle can continuously repeat

the motion on the taught path. These systems requires setup time and testing for

each route as the vehicle and the vehicle is not aware of its position in the global mine

environment; it simply follows a set of sequential instructions. Thus, these systems

are not cost-effective in dynamic environments. Marshall et al. [29] presents such an

autonomous tramming system for LHD vehicles. As the vehicle is manually “taught”
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a path, a set of overlapping “atlas” type maps are created. The vehicle must always

start in the same location as the path, since it has no global reference for its location.

The vehicle is equipped with various sensors including a laser rangefinder which is

used by a navigation algorithm to estimate lateral, heading and vehicle speed errors

with respect to the maps. A control system then minimizes the vehicle errors so

that the vehicle follows the initial profiled path at the desired speed. This system is

available commercially, but its use is specific to local repetitive hauling since creating

and testing a new path and maps can be time consuming. Thus, this system, like

other autonomous tramming systems, does not permit a vehicle to globally localize

itself in the underground environment like GPS does on the surface.

In [30] a method for underground vehicle automation is presented. The system

is designed to automate a drive pattern in a relatively small area. The vehicle is

programmed to follow the walls of the mine and perform a sequence of predefined

turns such that it reaches the desired destination. The navigation module utilizes

laser range scanners and dead reckoning, together with a nodal map representation

of the environment. However, without a geometric map and no use of real landmarks

the vehicle has no way of actually knowing where it is or correcting its path if lost.

Thus, if an intersection is missed the vehicle will keep traveling using its programmed

turn pattern and may end up in a totally different part of the mine than intended.

An operator would then have to manually drive the vehicle back to the start of the

path in order for the navigation algorithm to be usable again. An operator would

also have no way of knowing where the vehicle is since the vehicle travels similarly to

a subway with nodes (intersections) representing the only relevant location. Reactive

systems also suffer from many limitations including the fact that they do not know

where intersections are until they reach them. This leads to turning problems since a

vehicle must move slowly and “see” past a corner before deciding on a path to follow.
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Other commercially available localization systems use active RFID or Wi-Fi trans-

mitters that are mounted on vehicles to estimate their location. Many mining com-

panies are familiar with these products. RFID readers installed in the mine detect

nearby tags and measure a received signal strength indicator (RSSI). This informa-

tion is then sent to a central computer which uses the information as a checkpoint

marker or in/out detector to show when a vehicle has passed by a reader. In order to

provide actual position tracking more advanced versions of the system use multiple

RFID readers to triangulate the location of each RFID tag. Several limitations exist

for this approach. The RFID readers must be strategically installed at fairly short

distances, an expensive requirement, such that each tag is detected by multiple read-

ers. Furthermore, signals in underground environments bounce off the walls leading

to multiple signal paths, which can combine constructively or destructively, leading

to erroneous location estimates. The maps used for displaying the localization in-

formation are normally CAD-drawn maps with the RFID readers locations simply

estimated on them. Additional discussions about existing technologies can be found

in [31].

2.6 Previous Work

The algorithms and ideas developed in this thesis are based on previous work by

Lavigne and Marshall [23, 31] that was conducted, as was the work in this thesis,

under the NSERC project CRDPJ 382256-09 with partner MDA Space Missions

as part of a feasibility study of the UGPS project. The goal in that work was to

produce globally-consistent metric maps (i.e., survey-like maps) of unstructured and

very large-scale environments. That work built on the method from [32] for enforcing

consistency of the map by recognizing similar scans taken by the range measurement

devices and by performing a global optimization over a “closed-loop” set of pose
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estimates.

Most underground mines use 2D CAD maps for their operations. The main drifts

of the mines are usually surveyed for headings and distances with the walls and im-

portant features manually drawn in as can be seen in Figure 1.1. Such mines disregard

changes in elevation or actual wall features and represent the general layout of the

tunnels. Highly advanced and accurate 3D laser surveying techniques are now avail-

able [33], however, they are expensive and require long periods of time to complete

for kilometre long tunnels. Furthermore the amount of captured data is extremely

large and thus hard to process or use meaningfully for most mining operations. The

problem of mapping underground environments is fundamental for any localization

system. Since no global frame of reference such as GPS is available, a localization

system has to rely on the a priori map of the environment to localize and track a

vehicle robustly. Therefore, the accuracy achievable by the localization system is di-

rectly related by how accurately the a priori map represents the environment. For

high accuracy localization a high resolution accurate maps of the environment has to

be created. This requirement paired with an environment that can be tens of kilo-

metres, leads to extremely large memory requirements for creating and using a map.

Furthermore, an underground mine usually has multiple levels which may overlap

when projected to a 2D horizontal plane. For these reasons using a single map for

localization was deemed infeasible and a limiting factor in achieving the goals for this

research. Multiple smaller maps which show various parts of the underground envi-

ronment and shared information was the most efficient way to achieve the proposed

localization system.

Consider the section of tunnel shown in Figure 2.1. After RFID tags, represented

by the blue circles, have been installed in the tunnel a sensor equipped vehicle can

be driven to collect sensor data. The data can then be segmented using the detected

RFID tags. The data segments can be used to create the edge maps shown in Figure
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2.2 as described in [23]. The green circles indicate the estimated detection range for

each RFID tag. Using the RFID tags and laser scan matching, the alignment and

orientation between all the edge maps can be found and, if needed, the maps could

be arranged to form a global map of the environment (i.e., two maps contain the

same RFID so they must be attached in that area with an orientation given by scan

matching the walls).

2.6.1 Localization Using Edge Maps

Unfortunately, edge maps do not lend themselves easily to localization. Consider

Figure 2.2 and a non-localized vehicle. If the vehicle detects RFID tag B then its

location is within the detection range of that RFID on edge maps BC, BD or BE.

Thus, using edge maps and a particle filter for localization would require maintaining

several edge maps in memory and a particle population on each edge map until the

ambiguity is resolved.

Furthermore because edge maps have very little overlap between them and because

they start and end with an RFID beacon, jumping from one edge map to the next,

BD → DF, would be problematic. Using a laser rangefinder with a high maximum

range means some distance measurements may have to be propagated into the other

edge maps since the particle population is close to the border of an edge map after a

jump. Simply discarding laser rangefinder information that is outside the map after

jumping on a new edge map may lead to loss of localization. The problem of jumping

from one edge map to the next is also exacerbated if RFID beacons are placed in long

tunnels since there are no wall features at the beacon location and mapping errors for

a beacon location between two or more of its connected edges can lead to an increase

in error after the jump which could lead to loss of localization (i.e., the estimated

location would diverge from the truth). Furthermore, if beacons are placed fairly

close together (in order to keep the map errors small) the resulting edge maps will
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Figure 2.1: Example of a section of tunnel (metres).
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Figure 2.2: Edge maps for a section of tunnel.
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not cover a very large distance and a mining vehicle operating at normal speeds will

cover the edge map distance quickly leading to constant jumping of edge maps with

the problems mentioned above.

Ambiguous situations can also occur if attempting to navigate edge maps that

go over an intersection. Assume a vehicle is travelling from B toward the tunnel

intersection on edges BC and BD. The vehicle location must be kept track of on

both edge maps since the final destination of the vehicle through the intersection is

unknown. Once the vehicle exits the intersection, say going to D, the correct edge

map is BD and BC should be discarded. Now consider that the vehicle turns back

at D drives toward the intersection on edge map BD. There is only one other edge

connected to RFID D – BF, so an intersection on edge map BD is not obvious from

the graph structure of the environment and it is not possible to keep track of the

vehicle pose if the vehicle drives toward C after the intersection since it would have

to jump somewhere to edge map BC. This is an ambiguous situation for intersections

and could be theoretically solved by creating edge map DC. The creation of this edge

might be a problem in itself however if a data run was not directly driven between the

pair of RFID tags. Driving each pair of RFID tags can become very time consuming

if the environment has many intersections. For the above reasons edge maps were not

considered suitable for efficient localization. This thesis proposes a modified approach

that attempts to resolve the issues with edge maps described above.



Chapter 3

Theory & Algorithm Development

This chapter details some of the methods and algorithms developed through this

thesis work. Section 3.1 discusses how RFID tags are incorporated into both the

mapping and localization process and some of their advantages. Next, in Section 3.2

an extension of the previous mapping work done on this project is presented: the node

map, a new type of local map. Given the overlapping nature of node maps, localization

is streamlined and a method for finding the location to jump from one node map to

the next is discussed. Next, the problem of efficient global localization with no initial

estimate in a large underground environment is addressed. Section 3.5 presents the

particle filter algorithm used for localization. In Section 3.6 a method for creating a

3D textured map is shown with the end goal of assessing how effective and intuitive

localization estimates can be displayed in 3D for a vehicle driver. Finally, Section

3.7 presents a general overview of MineView, a system for remotely monitoring the

locations of sensor equipped vehicles underground provided a Wi-Fi network exists.

3.1 RFID Tags

One of the important advantages of using a particle filter is the ability to globally

localize the position of a vehicle. As the size of the map increases however, more

31
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particles are required for global localization. Thus, the computational requirements

to localize on a very large map increase dramatically. Furthermore, the bigger a map

is, the higher the probability of having multiple locations with very similar features

for the laser rangefinder. Underground environments can have tens of kilometres of

similarly looking and sized tunnels. This situation would lead to particles converging

to multiple likely locations but it may take a very long time to solve the location

ambiguity correctly, rendering the particle filter impractical. One approach to solving

this problem is to add Radio Frequency Identification (RFID) tags at certain locations

throughout the environment. These tags can be used to separate a very large tunnel

system into smaller unique maps based on the ID of the tag placed in that part of

the map. Almost no other sensor can be used as a low cost, unique landmark in a

dusty, low light underground environment. This additional RFID sensor information

provides the following advantages:

• Mapping the environment can be done in sections, with each section uniquely

determined by the RFID tags it contains. This decreases the computational

and size requirements for a map;

• The detection of an RFID by a vehicle uniquely defines its location within the

detection range of the tag. This reduces the global localization problem to a

much smaller area. Therefore, the particle filter computational requirements

do not need to be scaled up to globally localize in a large environment, since

it only needs to initially localize in an area as big as the detection range of an

RFID tag of a few metres.

A requirement imposed by this method is that the RFID tags are detected along

with other sensor information during data gathering for mapping and that they are

static and are not subsequently moved to another location. Surveying their exact
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location is not required since an approximate location is enough to be able to sample

the particles in the detection area.

Thus, once a tag is detected a particle filter would still be required to find the

true pose of the vehicle since its orientation is unknown. In the worse case scenario,

if a tag was placed at an intersection with smooth walls, the particle filter would

have to keep track of multiple possible vehicle paths (all tunnels that intersect there)

until the ambiguity is resolved. Still, if the RFID information was not available, the

system would have to keep track of poses at possibly hundreds of intersections in a

large mining environment in order to globally localize the vehicle.

The introduction of RFID tags almost eliminates the requirement for true global

localization, one of the advantages of particle filters. This means the particle filter

disadvantages may now outweigh its advantages and a hybrid method for localization

may be practical. The example given previously, where the vehicle pose is located

at an intersection still requires the system to keep track of possible vehicle poses in

multiple different directions, until the ambiguity is resolved. This means the posterior

probability is multi modal and simply replacing the particle filter with a Kalman filter

would bring the assumption of Gaussian distribution for the pose of the vehicle, which

is invalid. Even simplifying the situation and placing the RFID tags in tunnels will

still not solve the ambiguity of the direction of travel of the vehicle. A hybrid approach

may be needed where a particle filter will run until the ambiguity of the vehicle pose

is resolved after which a UKF could be used to track the vehicle location as shown in

[29]. Another approach would be to use multiple particles each running a UKF until

the location ambiguity is eliminated. A UKF is required because the measurement

model for the laser rangefinder is unknown and Jacobians can not be easily calculated

to transform a vehicle pose into laser rangefinder measurements from the map. The

approach taken for this work and described later, is to use a magnetic compass to

obtain the general direction of travel for the vehicle.
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For this work, a convention was developed so that RFID tags are not installed in

intersections, but only in longer tunnels. This facilitates the mapping and localization

techniques used. Data is first collected for mapping by driving a sensor equipped

vehicle (see Section 4.1) through the underground environment. When the vehicle

passes through the detection range of an RFID tag, it is detected sporadically with

some level of probability. The RFID tags are then used as unique markers to segment

the data into pieces that start and end with detected RFID tags as shown in [34].

Mapping the environment can thus be done in sections. At the end of the mapping

process the only information associated with each RFID tag serial number is an area

on the maps in which each tag was detected. The detection range of the RFID tag is

estimated by using odometry to calculate the distance that the vehicle has travelled

from the first instance an RFID serial number appears in the data log to the last

instance. Using the RFID tags and scan matching, all the maps can be arranged to

form the global map of the environment (e.g., two maps contain the same RFID so

they must be attached in that area with an orientation given by scan matching the

walls together) as shown in [23].

3.2 Node Maps

A few methods for mapping large-scale environments exist but they to do not easily

lend themselves to localization. Bosse et al. [35] presents such a method using an

“atlas” framework but the maps produced are not locally consistent (1:1 mapping with

the environment) and they are made up of lines and points which would not provide

the desired centimetre resolution. Another problem is that a moving vehicle (and the

laser rangefinder end points) can reside in many misaligned sub maps at any instance

in time which is computationally expensive and could lead to divergence of the vehicle

location. Furthermore it would be extremely difficult, computationally expensive and
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time consuming to globally localize a vehicle in a large-scale environment since no

globally unique landmarks exist.

Other methods require feature rich environments such as indoor office spaces and

would not work in a mining environment with tens of kilometres of tunnels with

featureless walls. The type of map used in this paper for localization is a 2D occupancy

grid map and is referred to as a node map (see Figure 3.1). Each RFID beacon has

an associated node map. An RFID node map consists of all tunnels that connect it to

every other directly reachable RFID. If a vehicle is initially at an unknown location,

detecting an RFID would place the vehicle on that tag’s associated node map, in

the detection range of the RFID. By using a magnetic compass during mapping and

localization the orientation of the vehicle is also approximately known. A particle

filter can then be initialized and the vehicle location can be tracked in the current

node map.

A node map has the following advantages:

• It is locally consistent;

• Has a high metric resolution (centimetre range);

• Contains every directly reachable RFID;

• Has an overlapping area with each adjacent node map;

• Allows the particle filter to track the position of the vehicle on a single node

map and then switch to the next one in a discrete step (therefore RAM memory

requirements do not scale up with environment size).

Since node maps overlap, one of their disadvantages is that they require double

the hard disk drive storage capacity for a particular environment compared to a single

map. This however was not deemed to be relevant since current technology hard disk

drives have extremely large storage capacities.
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Figure 3.1: A global map (center) and node maps for RFID tags (metres). The red
circles indicate the RFID tag nodes in the graph structure of the environment which
is shown with blue lines. Green circles indicate the estimated detection range of each
RFID tag.
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An RFID node map is built by grouping together all data log segments that

contain every directly reachable RFID, aligning them at the main RFID and “closing

the loop” on the poses as shown in [34].

The overlapping area between any two node maps may not exactly match in size

or orientation (mapping errors) as in Figure 3.2. Since the node maps are created sep-

arately, the pose optimization algorithm may converge to a slightly different solution

for the two node maps. Since individual node maps do not contain large tunnel loops,

they may contain global errors. Approaches for building large-scale maps sacrifice lo-

cal consistency in order to close large loops in the environment (global alignment).

However, position tracking works at the local level and inconsistencies in the envi-

ronment will cause the localization algorithm to diverge. For a node map, global

accuracy is sacrificed for local consistency as the latter is a necessity for fluent, accu-

rate localization. Furthermore, the small size of a node map allows for some elevation

changes in the mine tunnels since each map is created on a 2D plane parallel to the

average tunnel slope. Small distributed errors exist throughout the node maps but

local consistency is maintained.

Compass measurements are recorded along with other data for use in creating

node maps. The compass module used had poor accuracy making it of limited use

for map building but very useful for localization. Thus, after a node map is created

the compass data is combined to give the general direction of the local North in each

respective node map. This magnetic vector does not have to match the true North,

it only has to remain static in the node map area. This is a fair assumption (as

discussed in Section 2.1.6), so when the vehicle first detects an RFID the general

direction of travel of the vehicle can be obtained by adding the compass bearing to

the RFID node map North.
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Figure 3.2: Node maps overlap: the area where the localization algorithm can jump
from one node map to the next.



39

3.3 Jump Locations

Since the global environment is represented by smaller node maps, it is necessary

to quickly track the pose of a vehicle over many node maps as the vehicle traverses

the environment. The discrete step of moving the estimated pose of a vehicle from

one node map to another is referred to as “jumping” node maps. Jumping from

one node map to the next is essentially a change of coordinates. When jumping

node maps, particles must remain at the same physical locations, which are described

slightly differently in the new node map (a rotation & translation must be performed).

Jumping node maps can decrease the accuracy of the estimated vehicle location.

Consider a vehicle moving in a long straight tunnel as in Figure 3.3B. Because

there are no wall features along the tunnel walls noise must be added to the particles

after jumping to the next node map in order to prevent divergence of the particle filter.

When the vehicle jumps to the next node map and the coordinate transformation is

applied, its estimated position may be too far forward or too far back compared with

the real position of the vehicle in the tunnels. Since there are no wall features along

the tunnel walls to reference the position of the vehicle, the localization algorithm can

diverge in a worst case scenario. However, to account for the jump uncertainty, noise

can be added to the particles after a jump and still converge to the correct vehicle

pose once the vehicle reaches a feature rich area.

The simplest approach is to jump between node maps when the vehicle is estimated

to be a certain distance from an RFID. However, this can be problematic since RFID

tags are placed in longer tunnels and at these arbitrary locations there may not be

enough wall features to accurately maintain the localization of the vehicle after a

jump.

Ideally, jumping node maps should not increase the error of the estimated vehicle

location. Practically, this is not possible since node maps themselves have errors and,



40

Figure 3.3: A: Well defined area - a good place to jump node maps; B: Poorly defined
area - hard to figure out exact transformation.

as described above, the overlapping area between any two node maps does not match

exactly. In order to decrease errors, jump locations can be specifically selected to

provide enough wall features to allow the localization algorithm to quickly decrease

the jump error as shown in Figure 3.3A. Vehicles must always jump to another node

map before they reach the end of their current one. Therefore, jump locations have an

associated radius equal to the tunnel width at that location such that when a vehicle

drives through, the jump to the next node map is always performed. The node

maps relative offset and rotation at the jump locations are used as the coordinate

transformation when jumping. The procedure for finding jump locations is described

in Algorithm 1 and is illustrated in Figure 3.4 for an RFID tag in the section of tunnel

shown in Figure 2.1. The method uses the A* grid-based search algorithm [36] to

find a path from the main RFID tag on a node map to each of the auxiliary ones.

Any overlap in the paths is removed to eliminate destination node map ambiguity.

The location along each path with the highest number of wall features is chosen as

the jump location to the respective destination node map.
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Figure 3.4: Finding jump locations on the node map for RFID tag B. The algorithm
uses A* search to find the paths (dotted lines) from B to E (purple), C (red) and D
(blue). The overlapping part of paths BC and BD is discarded since the destination
node map is ambiguous. A jump location from node map B to each of the destination
node maps E, C and D is chosen such that it has the smallest jump error.
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Input: Node maps and RFID information
Output: Jump locations for each node map
# loop through every node map

for main node map ii = 1→ total number node maps (RFID tags) do
nii = number of auxiliary RFID tags on node map ii
# move on map from main RFID to every auxiliary RFID on the

current node map

for aux. RFID jj = 1→ nii do
# use A* search to find the path from the main RFID to the

aux. RFID jj on node map ii

end
# loop through every pair of aux. RFID paths

for aux. RFID jj = 1→ nii − 1 do
for aux RFID hh = 2→ nii do

# move along path to jj
for pose zz = 1→ path lengthjj do

if the Euclidean distance between pose zz on paths to jj and to
hh is bigger than 5 metres then

# save zzjj,hh as pose number where paths to jj and

hh have diverged

end

end

end

end
# find jump points to every auxiliary RFID tag

for aux. RFID jj = 1→ nii do
# remove from path to RFID jj the starting part, 1→ zzjj,
that was found common with other paths

for path lengthjj do
# move along the path in 0.5 m steps

# simulate a laser rangefinder scan on the node map

# count the number of lines (walls) in the laser scan

# set a score for current pose based on the number of

lines and the laser scan variance

end
# sort the candidate jump locations using their scores

# save the best jump location from node map ii to node map

jj

end

end

Algorithm 1: Finding jump locations.
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In order to meet the requirements for large-scale localization on a widely available

computer, a memory management module was developed. It maintains in memory

only the node map on which the vehicle is being localized on and all directly connected

node maps. Thus, for any environment, and regardless of the total number of node

maps, only a few are loaded in memory at any instance in time.

3.4 Global Localization

In general, one of the important advantages of using a particle filter is the ability to

globally localize the position of a vehicle. As the size of the map increases however,

more particles are needed to globally localize. Thus, the computational requirements

to localize on a very large map increase dramatically. Furthermore, the bigger a map

is, the higher the probability of having multiple locations (tunnels) with exactly the

same features for the laser rangefinder. This situation will lead to particles converging

to multiple likely locations but it may take a very long time to solve the location

ambiguity correctly. All of the above may render the particle filter impractical.

The presence of static RFID tags in the environment enables solving the global

localization problem when a tag is detected by the vehicle. The vehicle location

is then known with an error equal to the maximum range of the RFID tag reader

(a few metres). RFID tags greatly simplify the localization algorithm since global

localization no longer scales with the size of the environment.

To simplify global localization even further the direction of travel of the vehicle

can be estimated from the on-board compass. By comparing the on-board compass

data with the node map North direction, the heading of the vehicle is obtained. Given

that RFID tags are placed by convention in tunnels, the compass accuracy must be

better than +/- 90◦ in order to solve the direction of travel of the vehicle.

It should be apparent that solving the global localization problem using RFID tags
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means that many of the advantages of particle filters are no longer needed. Track-

ing the vehicle position can now be done using a more computationally inexpensive

method such as a variant of the Kalman filter, provided a well behaved motion model

is valid. However, unlike an office environment, a mining environment can be very

rough and unpredictable and non-linear noise can be compounded by the speed of

the vehicles as well as map errors; thus a particle filter may still be the most robust

method for position tracking.

3.5 Particle Filter

The state-space approach to modelling dynamic systems using a discrete-time formu-

lation can be used to estimate sequentially the state of a system, provided a series of

noisy observations made on the system are available. The localization of a vehicle in

a 2D environment can be described as finding the state (x,y,θ) of the dynamic sys-

tem. Given that an estimate of the state is required after each received observation, a

recursive filtering approach must be used. The Bayesian approach provides a general

framework for estimating the state of such dynamic systems. It allows the construc-

tion of the posterior probability density function of the state based on all available

information. A method based on recursive Bayesian filtering is a particle filter and

has been shown to work successfully in localizing robotic vehicles [37]. Bayes rule

states that:

P(x|z) =
P(z|x)P(x)

P(z)
, (3.1)

where P(x|z) is the conditional probability of x given z, also called the posterior

probability. P(z|x) is the conditional probability of z, given x. P(x) is the prior

probability of x. It does not take into account any information about z. P(z) is the

prior probability of z and it acts as a normalizing constant.
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The normalizing constant will be defined as η such that

η = P(z)−1 =
1∑

x

P(z|x)P(x)
. (3.2)

Given that multiple observations z1:t can be obtained, recursive Bayesian filtering

can be employed to estimate the state of a system using the conditional pdf

p(x|z1, z2, . . . , zt) =
p(zt|x, z1, z2, . . . , zt−1)p(x|z1, z2, . . . , zt−1)

p(zt|z1, z2, . . . , zt−1)
. (3.3)

Furthermore, for a dynamic system the action on the system u can be incorporated

into the posterior by using the conditional pdf p(xt|ut−1, xt−1). This term specifies

the pdf that executing ut−1 changes the state from xt−1 to xt

p(xt|ut−1) =

∫
p(ut−1|xt, xt−1)p(xt−1)dxt−1. (3.4)

Consider that a Markov process is a time-varying random process which has a

Markov property where its future probability can be determined from its most recent

value. For localization, this assumption would imply a static world, independent noise

and a perfect model with no approximation errors such that

p(zt|x1:t, z1:t, u1:t−1) = p(zt|xt), (3.5)

p(xt|x1:t−1, z1:t, u1:t−1) = p(xt|xt−1, ut−1). (3.6)

So given that the goal is to find the posterior of xt,

Posterior(xt) = p(xt|u1, z1, . . . , ut−1, zt). (3.7)

Bayes theorem can be applied such that

Posterior(xt) = η p(zt|xt, u1, z1, . . . , ut−1)p(xt|u1, z1, . . . , ut−1). (3.8)



46

If the Markov assumption holds then the latest observation zt is only dependent

on the last state of the system so

Posterior(xt) = η p(zt|xt)p(xt|u1, z1, . . . , ut−1). (3.9)

If the law of total probability is used to relate p(xt) with p(xt−1), then

Posterior(xt) = η p(zt|xt)
∫

p(xt|u1, z1, . . . , ut−1, xt−1)p(xt−1|u1, z1, . . . , ut−1)dxt−1.

(3.10)

Again applying the Markov assumption for the xt being conditionally dependent

only on the previous state xt−1 and the subsequent action ut results in

Posterior(xt) = η p(zt|xt)
∫

p(xt|ut−1, xt−1)p(xt−1|u1, z1, . . . , zt−1)dxt−1. (3.11)

It can be recognized that p(xt−1|u1, z1, . . . , zt−1) is the posterior at time t− 1 and

so

Posterior(xt) = η p(zt|xt)
∫

p(xt|ut−1, xt−1)Posterior(xt−1)dxt−1, (3.12)

where η is a normalizing factor, p(zt|xt) is the observation model, p(xt|ut−1, xt−1) is

the action model.

In order to analyze this system, two models are required: one that describes how

the state or vehicle location changes with time - the vehicle model; and, another

model relating observations to the state. If either model is non-linear the posterior

will not necessarily be Gaussian. For this application a particle filter was chosen as

the best approach. The method consists of using particles to represent the posterior

probability. Each individual particle represents one possible vehicle pose. Such a

filter consists of two main stages the prediction and update steps. In the prediction

stage the vehicle model is used to move the state pdf forward from one measurement
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time to the next. Since the motion suffers from noise the state or location of the

vehicle is expanded to more possible locations the vehicle could be at. The update

stage uses the newest measurement to tighten or eliminate unlikely poses the vehicle

could have.

For this implementation the environment is assumed to be flat (2D) and changes

in elevation are not measured or accounted for. Therefore, each particle contains a

possible coordinate location and orientation (x, y, θ) of the vehicle with respect to a

global frame of reference.

The posterior can be represented by a set of N particles, each being a sample of the

state with a corresponding weight {xi, wi}Ni=1. The set of particles define a discrete

probability function which approximates the continuous posterior. The initial set

of particles can be drawn as a uniform distribution over all possible locations with

weights

wi
0 =

1

N

or if the initial state of the system is known from a narrow distribution centered

on that. Given some action on the system ut−1, particles can be sampled from the

proposal distribution p(xt|ut−1, xt−1)Posterior(xt−1).

Considering that the target distribution is η p(zt|xt)p(xt|ut−1, xt−1)Posterior(xt−1),

the particle weights can then be calculated so that they correct the difference between

the proposal and target distributions:

wi
t =

target distribution

proposal distribution

=
η p(zt|xit)p(xit|ut−1, x

i
t−1)Posterior(x

i
t−1)

p(xit|ut−1, xit−1)Posterior(x
i
t−1)

(3.13)

= η p(zt|xit)

≈ p(zt|xit).

The weights can then be normalized such that they sum up to 1, and define a discrete

probability function.
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The procedure for Sequential Importance Sampling (SIS) with resampling test [38]

using the effective sample size is shown in Algorithm 2.

1. To start generate N samples {xi0}Ni=1 from the initial

distribution p(x0|z0) with weights wi
0 = 1

N

2. Update the importance weights wi
t = p(zt|xit)

3. Normalize the weights

wi
t =

wi
t∑N

j=1w
j
t

4. Calculate

Neff =
1∑N

i=1(w
i
t)

2

If Neff >= Nthresh go to step 6

5. Generate a new set of N particles {xi∗t }Ni=1 by resampling with

replacement N times from the current particle set {xjt}Nj=1 such

that P (xi∗t = xjt) = wj. Reset the weights wi
t = 1

N

6. Predict the resampled states using the proposal distribution

p(xit|ut, xit−1) and go to step 2

Algorithm 2: SIS with resampling.

The localization system developed largely follows the basic steps outlined in Al-

gorithm 3.

The implementation of the particle filter largely follows the current literature

with the exception of the introduction of RFID tags for global localization and the

use of occupancy grid maps incorporating RFID tags called “node maps”. Detailed

variations of particle filters for particular applications can be found in many literature

articles including in [39] and in [40].

Several additional assumptions are made for this implementation:
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1. Wait for detection of an RFID (global localization)

2. Load into memory the node map associated with the detected

RFID and all connected node maps

3. Uniformly sample particles in range of the detected RFID with

general heading given by compass

4. Propagate the particles according to the vehicle motion model

5. Weigh the particles according to the laser range sensor model

6. If required, resample the particles based on their weights

7. Estimate the vehicle pose from the particle population

8. If vehicle is at a node map jump location then move the

particles to the destination node map (apply coordinate

transformation and noise) and load into memory all connected

node maps and unload all unconnected node maps

9. Monitor detected RFID tags and particle weights for loss of

localization

10. Jump to step 4

Algorithm 3: Localization Procedure Overview.
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• The vehicle is inside the map. This is an important assumption since the algo-

rithm will localize the vehicle based on the map so the information provided to

a person will be false if the vehicle is not in the mapped environment;

• The world is static so sensor measurements depend only on the position of the

vehicle. This is a big assumption since a mining environment has a lot of activity

and it changes as new tunnels are constructed. However this assumption can

be violated slightly because of the third assumption. Also, more details are

provided in Section 3.5.6;

• Laser rangefinder measurements are independent – the distance measured by

one laser beam in a scan is not used to predict the range of other beams in the

scan. Thus, environment lines and features are not extracted from the raw data

in this implementation.

3.5.1 Motion Model

The motion model has the purpose of moving all the particles according to the actual

vehicle odometry measurements and noise as seen in Figure 3.5. All wheeled vehicles

can suffer from slip which makes the measurements of the motion inaccurate. If the

motion model is extremely accurate then particles will not move to the same location

as the vehicle when wheel slip occurs. This can result in the particle population

losing track of the vehicle position. By introducing noise in the measured speed and

turning rate of the vehicle, it is expected that at least some of the particles from the

population will end up in the same location on the map as the actual vehicle. If the

sensor model of the vehicle is accurate, then those particles will have a higher weight

than others, and will be multiplied during the resampling step. For most experiments

the noise model was assumed to be Gaussian.
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Figure 3.5: Particles propagated by motion model.

The kinematic model used for the test vehicle described in Section 4.1 is
xt

yt

θt


=


xt−1

yt−1

θt−1


+ Tvt


cos θt−1

sin θt−1

1
l

cosα tanψt−1


, (3.14)

where l is the vehicle wheelbase, α is the rake angle of the steering column, v is the

input vehicle speed, ψ is the steering input angle and T is the sampling period.

3.5.2 Sensor Model

The sensor used for the correction step of the particle filter is a horizontal rear-

facing SICK LMS111. It scanned the environment and measured the distances to

the closest obstacles in a horizontal plane at a height of about 1 metre. For this

implementation a 180◦ scan with 1◦ resolution was used. As shown in [16], the sensor

(or likelihood model) was used to weigh each particle pose on the map based on

the sensor measurements from the vehicle. Particles which observed the same sensor

measurements with respect to the map, as those coming from the actual vehicle had

a higher weight, since the vehicle had a higher probability of being at the location of

those particles. The particle weights were calculated by adding the log-likelihood of

each of the individual laser beams.
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Figure 3.6: Laser Rangefinder Sensor Model for an expected distance of 80 steps.

Figure 3.7: Laser Rangefinder Sensor Model.
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For the current implementation, the sensor model was precomputed as described

in [16]. The sensor model describes the probability density function for the laser

rangefinder. As can be seen in Figure 3.6, given an obstacle 80 units away from the

laser there is a high probability with a Gaussian distribution of measuring the correct

distance. There is also a small probability of measuring a smaller distance, due to

an unknown obstacle blocking the laser beam. The probability of detecting a higher

range than the obstacle is very low since laser rangefinders are accurate sensors which

rely on the time-of-flight of the laser so they do not overestimate the distance to an

obstacle. There is however a high probability of detecting maximum range if the

obstacle absorbs the laser beam or if enough of the laser beam energy does not return

to the laser rangefinder to be detected. In this case the sensor would report maximum

range. The sensor model can be calculated for all expected and measured distances

as shown in Figure 3.7.

Figure 3.8: Carleton University Quad-loop Nearest Neighbour Maps for two direc-
tions: gray scale colour of valid cells on the map indicate distance to closest obstacle
in directions of arrows.

One of the problems with particle filters is their computational complexity. In
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order to increase the efficiency of the algorithm to achieve real-time localization,

Nearest Neighbour maps can be used as discussed in [16]. A Nearest Neighbour map

contains the distances to the closest obstacles in all directions for all valid cells on

the map so that they don’t have to be calculated online by the algorithm using a ray

tracing technique (see Figure 3.8). A valid cell of the map is one in which no obstacle

exists with a high probability and therefore the vehicle could reside in it. Since the

map is obtained offline, the Nearest Neighbour map can also be pre-computed offline

before localization. The Nearest Neighbour map used in this implementation contains

the distance to all obstacles in all 360◦ with 1◦ resolution. Each distance can be stored

as 1 byte of memory. This means the maximum distance for the laser rangefinder – 25

m is stored as 250 steps which results in a 10 cm grid size. The memory requirements

for the Nearest Neighbour map can thus be summed up as follows: For 1 byte per

distance to obstacle and obstacles in 360 degrees at 1 degree resolution results in 360

obstacles for each valid cell which means 360 bytes / valid map cell are needed. So for

a 10,000 m2 map with 1,000,000 cells, each with an area of 0.01 m2 (10 cm x 10 cm),

360 Megabytes of memory are required for the Nearest Neighbour map. The Nearest

Neighbour map is a limiting factor in the achievable accuracy from the particle filter

localization. In order to get the highest accuracy from the particle filter the Nearest

Neighbour map should have the same resolution as the map of the environment.

3.5.3 Particle Weights

The particle weights can be calculated by adding up all the probabilities of each of

the individual laser beams for each individual particle pose. The process is broken

up as follows:

1. For all particles find the expected distances for the laser rangefinder by extract-

ing them from the Nearest Neighbour map. Each particle will thus have 181
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expected distances corresponding to −90 ◦ to +90 ◦ orientations;

2. Using the measured distances look up the probability of each expected / mea-

sured distance pair for −90 ◦ to +90 ◦ orientations;

3. Add up the log likelihood that each particle has for each expected/measured

distance pair in order to obtain their weights;

4. Normalize the weights.

The particle weights indicate how likely a particle is to being the vehicle pose. A

higher weight indicates that more of the laser rangefinder measurements from the

vehicle matched closely to the expected distances obtained from the map for that

particle.

3.5.4 Resampling

Resampling is necessary to move particles from unlikely locations to high probability

ones. During the predictive step the particles get moved using the motion input and

the corresponding noise. The noise causes particles to move to all possible locations

that the vehicle may be at after the last input. However the vehicle is still in one

unique location. The resampling step helps account for the noise in the motion model

or otherwise particle could start to diverge from the real position of the vehicle.

A simple algorithm for resampling, called Sequential Importance Resampling [38],

generates uniformly distributed random numbers and then counts how many of them

fall within a cumulative sum of the particle weights. This basically means that high

particle weights will have a wider range within which uniformly distributed numbers

can be in while small particle weights will have a very narrow range, so it is very

unlikely that any of these random numbers will fall in that range. The random

numbers generated become the particles into which weight range they fall. Therefore,
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more particles are created in high probability locations while low weight particles are

deleted as shown in Figure 3.9.

Figure 3.9: Particle filter resampling.

The resampling step can lead to particle depletion however. Very accurate sensors

such as laser rangefinders will measure the correct range with a very small standard

deviation. This means that only particles that are exactly in the same location as the

vehicle will have high weights. Other particles that are close to the vehicle pose will

have low weights because their measurements will not be within the small standard

deviation of the sensor model. This will lead to a situation in which most particles

will have low weights while only a handful of particles will have high weights. The

high particle weights will be vastly outnumbered by low weight particles and the

resampling step, which is probabilistic, will lead to some good particles being deleted

since the good particles are being drowned by a multitude of bad particles. This

problem can be avoided at the cost of accuracy by increasing the standard deviation

of the sensor model and by improving the resampling algorithm.
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Various other resampling algorithms exist and each have their strengths and weak-

nesses. The resampling step can be the source of many problems with particle filters.

Resampling can prevent the particle population from moving as per the motion model

and it can also bring back particles that have moved off the map. Both of these situ-

ations can be tell-tale signs that localization has failed. For example, wheel slip can

be accounted for by adding more noise to the particle population than the vehicle

would normally have. In this way, when slip does occur, some particles exist in the

actual position of the vehicle and the resampling step can move particles to this high

likelihood area. However, situations can occur where the vehicle is moving but parti-

cles are being resampled back in space because of wall features, low accuracy in the

map and high accuracy sensor measurements. This can cause the particle filter to

lose track of the position of the vehicle.

Another problematic situation can be represented by the vehicle driving down a

long straight tunnel which has been expanded and is not completely mapped. Once

the particles reach the end of the tunnel, the resampling step may move particles back

to just before the end of the tunnel because that area has the highest weight particles

even though the motion model keeps moving particles forward into the unmapped

region. Since the map still matches the actual location of the vehicle, the particle

weights may not be low enough to trigger a global localization reset. Of course if

the algorithm is set up to recognize that the vehicle wheels do not slip or skid for

more than a few metres than a global reset can be triggered. Similar problematic

situations can occur in a real underground environment and a robust localization

algorithm should be able to successfully recover from them.

3.5.5 Estimating the Vehicle Position

The vehicle is considered correctly localized if the particle population resides in a

small area on the map, the average weight of the particles is above some arbitrary
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threshold and the highest weight particle is also above a certain threshold. This

represents a situation where any location ambiguities have been resolved and the map

at the current particles location matches the environment where the vehicle is located.

The estimated vehicle location can be obtained by calculating a weighted average

between the highest weight particles pose, the centroid of the particle population,

and the previous time step estimated pose of the vehicle. The algorithm globally

re-localizes the vehicle if for a number of consecutive time steps the average weight

and the highest particle weight are below some thresholds. This is a situation where

the sensor measurements from the vehicle no longer match the map at the particles

location whether due to dynamic obstacles, incorrect map or other situations.

3.5.6 Dynamic Obstacles

Dynamic obstacles create several challenges for localization. Since all laser rangefinder

measurements are used to localize the vehicle, a dynamic obstacle can cause the

estimated position of the vehicle to diverge from the correct one.

A second effect is that while the vehicle is localized, if it detects a dynamic ob-

stacle, it is hard to evaluate if this indeed is a dynamic obstacle or if the algorithm

has lost track of the vehicle pose, and it is simply measuring an obstacle at the true

vehicle location and thus, global localization should be attempted. If unusual data

outliers, such as dynamic obstacles are filtered out, the assumption is made that the

data does indeed represent a dynamic obstacle, while in fact it may represent a true

obstacle that has been mapped and is further away from the current estimated vehicle

location. Thus, the object would have allowed the particle filter to correct the pose

of the vehicle, while filtering it out would increase the error in the estimated position

and may cause the algorithm to diverge from the true location.
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An advantage of using each individual laser rangefinder measurement as indepen-

dent data is that a dynamic obstacle will usually corrupt only some of the measure-

ments but not all. By not filtering the data at all, the algorithm assumes a static

environment. However if dynamic obstacles do appear, the result is lower particle

weights and an increase in error. For example if the vehicle is in a tunnel and a

second vehicle is stopped on the left side of the tunnel, laser rays falling on the

second vehicle will measure a lower distance than the one expected from the map.

All other laser rangefinder measurements would still match the map. The corrupt

laser rangefinder measurement would have a low weight while all other measurements

would have a high weight for the correct vehicle pose. Thus the weight of all particles

would decrease and there would be a small error in the estimated position of the

vehicle.

Dynamic obstacles that change the environment in a large proportion from the

mapped environment would cause the average particle weights to drop below a thresh-

old value and trigger a global localization reset. This behaviour may be appropriate

sometimes since it is assumed that the map matches the environment and a mapped

tunnel that is now blocked off does not. The system should not show an operator a

map of the environment and its position in the middle of the tunnel if that situation

is not true, since the operator may be in a position to command the vehicle to drive

down the tunnel which now is impossible if the tunnel is blocked off. Ideally, the

system should be able to append to the map new information about the environment.

The fundamental assumption for the localization system is that the vehicle is inside

the map. The example given above, a mapped long tunnel that is now blocked off, can

be considered as a situation in which the vehicle is not inside the map since the map

itself does not show those environment features. In the case that the map is indeed

up-to-date, the system is correct in considering itself lost and globally localizing the

vehicle if the detected wall features do not match the map since the particles may be
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in the wrong location or the vehicle may have been “kidnapped”.

“Kidnapped Robot” Problem

The detection of an RFID that is located on the map at a distance from the estimated

vehicle position larger than the detection range of the RFID is a sign of loss of

localization (i.e., it is not possible to detect an RFID if the vehicle is not in its

detection range). In this case the “kidnapped” robot problem is both detected and

solved at the same time since the vehicle is now known to be located somewhere in

the range of the detected RFID tag. This follows from the assumption that RFID

tags remain static after mapping. The particle weights are also constantly monitored

for loss of localization due to divergence as done in the particle filter literature and

re-localization is done once an RFID is detected.

3.6 3D Map

An underground tunnel system is obviously 3-dimensional. As part of the work for

this thesis a 3D map of an underground tunnel was created in order to evaluate the

feasibility of a full 3D localization system. Sensor data runs were collected from the

CANMET Experimental Mine in Val-d’Or QC, described in Section 4.2. Two laser

rangefinders were used, one scanning in a horizontal plane and one in a vertical plane

perpendicular to the length of the vehicle similar to the approach in [41]. Odometry

data was also collected.

A 3D textured map of the mine level was created using Blender [42]. Blender is

a 3D graphics application that can be used for modelling, texturing, rendering and

creating animations. The first step in creating the 3D map was to choose a suitable

format in order to import the data into Blender. The RAW format can be used to

describe 3D surfaces using triangles as shown in Figure 3.10. Each row in a RAW



61

file contains the Euclidean x, y, z coordinates of each vertex of a surface triangle

(x1, y1, z1, x2, y2, z2, x3, y3, z3). In order to create the RAW data file containing the

3D tunnel surfaces a few steps were required.

floor surface triangles (if applicable)

laser scans

laser scan 3D end points

wall surface triangles

Figure 3.10: 3D Map Surface Triangles.

The CANMET Experimental Mine level was assumed to be flat and a 2D map was

created using the method described in [23]. The map created was then used to localize

the vehicle from another data run. The poses of the vehicle and the corresponding

vertical laser rangefinder data was saved. The procedure for creating the RAW data

files corresponding to the mine wall/ceiling/unknown surfaces is outlined in Algorithm

4.

After the RAW data files were created they were imported into Blender (Figure

3.13). Textures were created for the wall surfaces (Figure 3.11) and the floors (Figure

3.12) using actual pictures taken at the CANMET Experimental Mine. Using Blender

the walls, ceiling, floor and unknown areas were textured. A virtual camera was
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Input: Vehicle pose set and corresponding vertical laser rangefinder scans z
Output: 3D surface triangles for wall/ceiling/unknown in RAW format
for pose i = 1→ set size do

for laser measurement j = 1→ scan size do
# calculate the vertical angle for j

# calculate the xi,j, yi,j, zi,j coordinates of the laser end

point

if i 6= 1 then
if j 6= 1 then

di,j =

∥∥∥∥∥∥∥∥
xi,j − xi−1,j

yi,j − yi−1,j

zi,j − zi−1,j

∥∥∥∥∥∥∥∥, di,j−1 =

∥∥∥∥∥∥∥∥
xi,j−1 − xi−1,j−1

yi,j−1 − yi−1,j−1

zi,j−1 − zi−1,j−1

∥∥∥∥∥∥∥∥
if di,j < dthreshold & di,j−1 < dthreshold & zi,j < zthreshold then

# the surface is most likely solid and contiguous

# create two wall/ceiling triangles between j and

j − 1 for i and i− 1 by saving their vertex

coordinates in RAW format

(xi,j−1, yi,j−1, zi,j−1, xi−1,j−1, yi−1,j−1, zi−1,j−1, xi,j, yi,j, zi,j)
and

(xi−1,j−1, yi−1,j−1, zi−1,j−1, xi−1,j, yi−1,j, zi−1,j, xi,j, yi,j, zi,j)

else
# the laser rangefinder may be measuring an opening

in the walls

# create two unknown surface triangles which can

later be textured differently than actual walls

end

end
if j = scan size then

# build the floor surface if applicable

# create two triangles in RAW format between the first

and last points in the current and previous scan

end

end

end

end
# save the wall/ceiling/floor/unknown surface triangles in RAW

format

Algorithm 4: RAW format 3D map surfaces.
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created to fly-through the map using the actual vehicle poses. This allowed the

creation of a fly-through video in the 3D map following the same path the actual

vehicle drove when the data was collected in the mine. The results can be found in

Section 5.1.2.

Figure 3.11: CANMET Tunnel Walls Textures.

Figure 3.12: CANMET Tunnel Floor Textures.
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Figure 3.13: Blender Screenshots.
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3.7 MineView

The localization system developed in this thesis allows each sensor equipped under-

ground mining vehicle to localize itself underground. This information can be very

useful for the driver of the vehicle, however it is important for the localization in-

formation to be shared between all vehicles and with above-ground and even off-site

personnel. Thus, if a Wi-Fi network is available in the mine then all sensor equipped

vehicles should relay their position to each other and to an Internet server. A general

overview of this system named MineView (www.mineview.ca) can be seen in Figure

3.14. Off-site personnel and managers can then connect to the server website and

observe the position of all mining vehicles along with any other statistics and rele-

vant productivity information. Furthermore the server stores the history of vehicle

locations in case of an emergency where rescue workers require such information.

The web server was designed using AJAX [43] to handle the two-way vehicle data

transfers and to seamlessly update the vehicle location on the website. The vehicle

sends its ID, location, speed, operator ID and a forward facing web camera capture

every second. As the vehicle periodically sends the data, the web server generates a

GUI-like display containing pertinent information about the vehicle and its location

in the tunnels.
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Figure 3.14: Overview diagram of the MineView system.



Chapter 4

Apparatus and Environments

This chapter presents the sensor suite and vehicles used for gathering data and the

tests performed to validate the localization system developed. The results from these

tests can be found in Chapter 5. Section 4.2 describes the underground tunnel sys-

tems used and their unique features and challenges. In Section 4.3.2 a simulator

environment used for generating sensor data with known noise is presented. It was

used to quantify both the localization and the mapping errors and their interaction,

results which can be found in Section 5.1.1. Some of the offline tests performed on the

particle filter are described in Section 4.3.1. Next, Section 4.4.1 presents the overall

procedure for deploying the localization system in a real underground environment.

Finally, Section 4.4.2 describes the online localization system tests performed in the

Carleton University underground tunnels and the results can be found in Section 5.2.

4.1 Hardware

A Taylor-Dunn model SS-534 industrial vehicle was equipped with two US Digital

A2 optical encoders recording the steering angle and wheel rotations, which are used

to compute odometry measurements. A rear-facing SICK LMS 111 laser rangefinder

67
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was used to obtain range measurements over a 180◦ field of view, and an Alien ALR-

9650 EPC Class-1, Generation-2 RFID reader was used to sense nearby RFID tags

mounted on ceiling light covers. The passive RFID tags used were Alien ALN-9654

EPC Class-1, Generation-2. A digital compass module, the HMC6352, was used to

detect the local magnetic field vector relative to the vehicle pose. A custom real

time data acquisition system designed previously in [23] was used to collect data at a

sampling rate of 20 Hz from the various sensors. The vehicle is shown in Figure 4.1.

A Thinkpad laptop featuring an Intel Centrino2 (2.26 GHz) processor was used to run

the on-line particle filter algorithm with an average of 1000 particles at approximately

10 Hz.

Figure 4.1: Taylor-Dunn SS-534 vehicle with sensors in the CU tunnel network.

In order to gather sensor data from a real underground mine, a rugged utility
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trailer (shown in Figure 4.2) was equipped with a similar sensor suite as the vehicle.

Additionally, a laser rangefinder was used to scan in a vertical plane perpendicular

to the axis of the trailer, odometry was obtained from two wheel encoders and a rear

facing camera was used to record movies for visual reference. The trailer was used at

the underground CANMET Experimental Mine in Val d’Or, QC. It was attached to

a MineMule vehicle and towed through the mine to gather data. The data was then

used to test the particle filter and also to create a 3D map of the environment, results

which are shown in Section 5.1.2.

Figure 4.2: Utility trailer with sensors attached to MineMule at CANMET Experi-
mental Mine.

4.2 Test Environments

The Carleton University campus is connected by a network of underground tunnels,

illustrated in Figure 4.4, with an average width of about 4 m and a total length

of approximately 4 km. This offers a good testing environment for an underground
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localization system. Although not exactly like an underground mine, it has many

characteristics that make it even more challenging. The tunnels’ smooth, straight and

relatively featureless walls only allow the laser rangefinder to correct the transverse

direction of the vehicle not its location along the tunnels. However, an advantage of

this environment is its smooth paved driving surface since it reduces wheel slip. The

tunnel system presents multiple intersections as well as two interconnected loops. The

quad loop is about 220 m and the larger loop is about 800 m in length (see Figure 4.3).

The quad loop is part of the larger loop and the size of these two loops can be a major

challenge for any of the mapping and localization approaches discussed in Chapter 2.

About 40 RFID tags were installed in the tunnels by simply sticking them onto the

ceiling light covers. The approximate distance between consecutive RFID tags in the

tunnels ranged between 50 to 250 metres. The resulting length of tunnels covered by

a single node map varied between 150 to 330 metres. The resolution of the node maps

occupancy grid used was 10 cm. It is important to note that the tunnels are not on

a 2D plane as the elevation changes in different locations, with some tunnels having

a 15 ◦, slope as can be seen in Figure 4.4. This constraint would also cause problems

for 2D approaches attempting to localize in this tunnel environment. The CU tunnels

were used as the main test environment both for offline and online localization.

Another test environment used was the CANMET Experimental Mine in Val-d’Or,

QC (Figure 4.5). This gold mine was abandoned in 1991 due to poor yield and was

then converted to a research facility by Natural Resources Canada [44]. Unlike the CU

tunnels, the CANMET tunnel walls are rough, providing more features to position the

vehicle using the laser rangefinder but the driving surface is uneven, rough and wet,

significantly increasing wheel slip and odometry errors. The CANMET Experimental

Mine has several different levels with a total of 2400 m of drifts.
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Figure 4.3: Carleton University global map with green circles marking RFID tags
(metres).
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Figure 4.4: Photos of the CU underground tunnels.

Figure 4.5: CANMET Experimental Mine tunnel photos.
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Figure 4.6: RFID tags installed on tunnel light covers.

4.3 Offline Testing

4.3.1 Particle Filter Testing

The localization system presented in this thesis was developed and tested in stages.

Initially the particle filter was written in MATLAB and used a single simulated map

in order to test it and improve its functionality. Subsequently, real sensor data was

collected using the electric vehicle described in Section 4.1 in the quad loop area of

the CU tunnels. The particle filter was tested using real data and was improved to

increase robustness against inconsistencies resulting from mapping errors. During a

research trip to the CANMET Experimental Mine, more sensor data was collected un-

derground using the trailer described in Section 4.1. The data runs were successfully

used for off-line localization as shown in Figure 4.7 on a 350 metre long map.

Since the Carleton tunnels (Figure 4.4) have a paved flat concrete floor and

smooth walls, the odometry has high accuracy but there are few features for the

laser rangefinder. In contrast, the mine environment (Figure 4.5) was dark, very wet

and bumpy. The walls were feature rich which increased the localization accuracy

with respect to the map since the pose of the vehicle could be corrected not just for

the distance to the walls, but for orientation and position along the walls. However,

it has been observed during tests in the mine environment that wheel slip occurred
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frequently especially when turning.

For both real life situations, no ground truth data was available which makes

estimation of errors difficult. Tuning of the various parameters was performed in

order to explore the basic functionality and issues with the particle filter.

Figure 4.7: Screen shot from offline particle filter localization using data from CAN-
MET Experimental Mine. Rear-view on board camera synchronized with particle
filter estimated location.

4.3.2 Simulator

A simulator implemented in MATLAB/Simulink (“MobotSim”), originally written by

Joshua Marshall, Jurriaan d’Engelbronner, and Jamie Lavigne was used for evaluat-

ing the algorithms presented in this thesis. MobotSim features a unicycle vehicle with

a number of simulated sensors such as odometry, a laser scanner and an RFID reader.
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The vehicle is controlled using a keyboard and moves in a linemap-based environment

created by the user. Each of the sensors from MobotSim can have any desired amount

of noise which makes it useful for evaluating and comparing algorithms errors. In any

real underground environment “ground truth” is extremely difficult to obtain due

to the size, irregularity, elevation changes and lack of absolute positioning. There-

fore MobotSim can provide insight into localization errors and decouple them from

mapping errors.

The MobotSim environment used for testing is a scaled linemap representation of

the tunnel loop on Level 70 in the CANMET Experimental Mine which was shown

in Figure 1.1. The linemap created is shown in Figure 4.8 along with the locations of

RFID tags and their respective detection range.

After the linemap of the environment was created, MobotSim was used to collect

several data runs. Each run consisted of driving the vehicle a complete loop. The

length of a complete path around the tunnel loop was 950 metres. The data runs

contain sensor readings for approximately 25000 time steps at 0.04 s each. The vehicle

was driven at an average speed of 1 m/s, mainly to stay within the linemap walls

so as to not corrupt the data. Several tests and errors were measured using the

collected data. First a data run with no odometry noise was used to create maps

of the environment. The map errors, resulting from the mapping process, were then

calculated for reference. Various levels of zero-mean Gaussian noise were added to a

different MobotSim data run which was then used with the particle filter to localize the

vehicle on the created maps. Gaussian noise is widely used in the robotics literature

tests, as it is a valid model for most applications. The high covariance levels used for

testing in this work cover a broad range of possible errors including a certain level of

wheel slip. Localization errors for each noise level were computed and compared. The

pose errors with respect to the node map the vehicle was on were directly calculated

from the particle filter localization output. The pose of the vehicle and some error
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Figure 4.8: MobotSim linemap. Blue circles indicate the true detection range of the
RFID tags.



77

metrics with respect to an arbitrary global frame of reference were also calculated

by using the relative orientation of the current node map with respect to the global

stitched map of the environment. These tests were performed to evaluate localization

errors with very accurate maps and how localization errors are affected by odometry

noise. The next step was to add noise to the initial data run and re-create the

maps of the environment. The map errors were then compared with the initial one.

Subsequently the previously used noisy data runs were again tested with the particle

filter to localize the vehicle on the new noisy map and errors from these were compared

and analyzed. Finally a very noisy data run was used to test the robustness of the

localization system. The results from these tests can be found in Section 5.1.1.

Using MobotSim for algorithm validation is useful since the various sources of

noise for the overall system can be varied independently and their effects on mapping

and on localization can be analyzed numerically.

4.4 Online Testing

4.4.1 Deployment

The deployment of the localization system is summarized as follows:

1. Passive RFID tags are attached to the tunnel walls or infrastructure every 50 to

250 metres depending on the environment. The convention established requires

that the RFID tags are installed in longer tunnels and not in intersections. This

convention has several advantages such as the high likelihood that an RFID is

detected when a vehicle drives through the tunnel and that the vehicle can be

travelling in only 2 directions when an RFID is detected. The location of the

RFID tags is not measured;

2. A sensor equipped vehicle is driven throughout the underground environment
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and collects sensor data;

3. The data is then processed offline and maps of the tunnels are created;

4. The maps are loaded on all sensor equipped vehicles and are used for localiza-

tion;

5. The vehicles can then be driven through the tunnels and their location is shown,

in real time, to the vehicle’s operator (like GPS on surface).

Further to the above, if a Wi-Fi network is available underground, vehicles can

relay their position to be shown in real time to every other vehicle as well as on the

surface. The activity of all sensor-equipped vehicles in the mine can be monitored

remotely using the MineView interface from any web-enabled computer or device.

4.4.2 Localization System Testing

The particle filter was first tested online using a single map by driving the sensor

equipped vehicle described in Section 4.1 through the Carleton tunnels quad-loop

area. After successful tests, node maps were created for the entire CU tunnel network

and tests were done by driving various routes and patterns. Frequent stops, reverse

driving and circling were performed in order to test the robustness of the localization

system. Global localization was tested in various parts of the tunnels. Tests were also

performed while people walked along or past the vehicle. No ground truth data was

available so a section of the tunnel was chosen to manually measure the localization

and mapping errors.

The MineView web interface described in Section 3.7 was also tested online in CU

tunnels. For these tests 4 Wi-Fi access points connected to the Internet were installed

in a 700 metres section of the CU tunnels. The vehicle was then able to connect to

the Internet and roam through the Wi-Fi network while being driven, continuously
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relaying its position to the web server. The results from these tests can be found in

Section 5.2.



Chapter 5

Results & Analysis

This chapter presents results from the tests outlined in Chapter 4. Experiments were

used to evaluate the accuracy and robustness of the localization system developed in

this thesis using both simulated and real data from an underground tunnel system.

Section 5.1.1 presents results obtained from using the MobotSim simulator. First

a noise free map of an underground environment was made and used for localization.

Two different levels of noise were added to the localization data run odometry and

the effects were analyzed. Next a map was made with a noisy odometry data run

and localization was repeated with the new maps. The effect of odometry noise on

mapping and localization were compared and analyzed using various error metrics.

Section 5.1.2 presents the 3D map created and how it can be used for visualizing

position estimates. The feasibility of using full 3D localization is also briefly dis-

cussed. Finally, in Section 5.2 some online localization results are presented along

with accuracy measurements and screen-shots from the MineView interface.

80
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5.1 Offline Testing

5.1.1 Simulator

The MobotSim simulator was used to evaluate the localization system developed in

this thesis as described in Chapter 4. It is a useful tool since the various sources of

noise for mapping and for localization can be varied independently and the results

analyzed numerically. For the current tests, multiple data runs with known noise are

used to create maps, which are then used for localization in order to calculate relevant

error metrics.

First, a data run with noise-free odometry was used to create the node maps for

the environment which can be seen in Figure 5.2. The approximate driven tunnel

distance covered by each node map is shown in Table 5.1. A stitched global map

as described in Section 2.6 is shown for reference in Figure 5.1. As described in

Chapter 3, node maps are locally consistent while the stitched global map is globally

consistent, i.e., forces tunnel loop closure (but can lead to “kinks” in the map at

RFID locations – see [23]).

Table 5.1: MobotSim node maps tunnel lengths.

Node map A B C D E F G H I

Tunnel length (m) 369 147 165 197 203 224 232 267 253

Some error metrics were defined to analyze the data. Let (xk, yk, θk) denote the

ground truth pose of the vehicle and (x̂k, ŷk, θ̂k) its estimated value at time step k.
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Figure 5.1: MobotSim test environment stitched global map (metres). Green circles
indicate the estimated detection range of the RFID tags.
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Figure 5.2: MobotSim test environment node maps. Each RFID has an associated
node map containing the tunnels to every directly reachable RFID tag. Green circles
indicate the estimated detection range of the RFID tags.
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e1∆,k :=

∥∥∥∥∥∥∥∥∥

x̂k
ŷk

−
xk
yk


∥∥∥∥∥∥∥∥∥ ,

e1θ,k := θ̂k − θk,

where (x̂0, ŷ0, θ̂0) = (x0, y0, θ0) = (0, 0, 0). Therefore e1∆,k can be used to compute

the Euclidean distance between the estimated and true vehicle location at each time

step when the initial poses are aligned in a specific coordinate frame. e1θ,k shows the

heading error at each time step.

A second error metric was defined such that

e2∆,k :=

∥∥∥∥∥∥∥∥∥

x̂k
ŷk

−
x̂k−1

ŷk−1


∥∥∥∥∥∥∥∥∥−

∥∥∥∥∥∥∥∥∥

xk
yk

−
xk−1

yk−1


∥∥∥∥∥∥∥∥∥ ,

e2θ,k := (θ̂k − θ̂k−1)− (θk − θk−1),

where e2 represents the distance and heading errors between consecutive poses. This

error metric allows for the estimated and true vehicle pose sets to be defined in

different coordinate systems. The mean squared error of e2∆,k and e2θ,k was used for

comparing the accuracy of one set of vehicle poses from a specific data run to the

accuracy of the poses from another. The mean squared errors were defined such that

e3 :=
1

n

n∑
k=1

e22
∆,k,

e3θ :=
1

n

n∑
k=1

e22
θ,k,

where n is the number of poses in the set. The lower the mean squared errors e3 and

e3θ for a given pose set, the closer the poses are to their true values.
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First, in order to calculate e1, the true pose set was aligned at the initial pose

with the pose set that represents the global stitched map. The distance and heading

errors between each pair of poses is shown in Figure 5.3. Next the pose set for each

individual node maps was aligned and compared with the true pose set and the errors

are shown in Figure 5.4.
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Figure 5.3: MobotSim stitched global map pose errors e1.
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Figure 5.4: MobotSim node maps pose errors e1.



87

   0  100  200  300  400  500  600  700  800  900 1000
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Sub−sampled pose #

P
o

s
e

 e
rr

o
r 

(m
)

   0  100  200  300  400  500  600  700  800  900 1000
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Sub−sampled pose #

P
o

s
e

 e
rr

o
r 

(r
a

d
)

   0  100  200  300  400  500  600  700  800  900 1000
0

0.005

0.01

0.015

0.02

0.025

Sub−sampled pose #

P
o
s
e
 e

rr
o
r 

(m
2
)

   0  100  200  300  400  500  600  700  800  900 1000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Sub−sampled pose #

P
o
s
e
 e

rr
o
r 

(r
a
d

2
)

Figure 5.5: MobotSim mapping pose error e2 and cumulative e22.
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The map creation algorithm introduced some errors. For example, the estimated

center of the RFID detection range was slightly off since the vehicle was not driven

exactly through its center and the RFID tags were detected sporadically. Further-

more, the algorithm was not modified to not perform scan matching when aligning

the maps together so these steps introduced small errors in the pose angles as can

be seen in Figure 5.3. These slight angle errors contributed to increasing the pose

distance error similar to dead-reckoning.

Furthermore in Figure 5.4 it can be seen that the error for noise map A is higher.

This is because, unlike the other node maps, it was made using the start and end

of the driven path AB and IA instead of a continuous path. The mismatch in the

estimated center of the RFID center and piecing the two parts together increased the

error.

Simulated zero-mean, white Gaussian noise with covariance

Q1 =

(0.2 m/s)2 0

0 (2 ◦/s)2

 ,
was added to the odometry of a different data run than the one used for creating the

map. This data run was then used with the particle filter to localize the vehicle. The

mean location of the particle population tracking the vehicle position on node maps

was saved at each time step. It is important to note that localization happens on a

single node map at a time and the stitched global map is provided as a reference of the

overall environment. The location of the vehicle on the global map was calculated

from the location on the vehicle’s current node map. Figure 5.6 shows the error

between the aligned localization global map pose and the true pose set. Figure 5.7

shows the error between the each of the aligned node map pose sets. Note that for

each node map the poses are aligned using the first pose on the particular node map.

The current vehicle node map is marked at the top of the graph and the discrete jump
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from one node map to the next is marked with a dotted vertical red line. Furthermore

as can be seen jumping node maps happens seamlessly with no loss of localization

and there is no increase in the errors due to jumping. The particle population jumps

from the same physical location on one node map to the same physical location on

the next node map and therefore there is no error increase.

Figure 5.6: MobotSim localization global error e1 with Q1 noise.

Figure 5.7: MobotSim localization node maps error e1 with Q1 noise.

Figure 5.8 shows the distance and heading errors for each consecutive pose pair

as well as the cumulative squared error. The local peak-to-peak error values on these

graphs are a direct consequence of the noise of the localization data run and how
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well defined the walls in the environment are (i.e., the odometry measurements may

indicate a large forward movement but the laser rangefinder can correct the distance

and angle if the walls have enough features or corners to position the vehicle at the

correct travelled distance).
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Figure 5.8: MobotSim localization error e2 and cumulative e22 with Q1 noise.

Now consider that a vehicle is being localized in an underground mine. If a tunnel

collapses and the last vehicle location is known, it is important to also know how

accurate that position is. To evaluate this error consider that for a given map it’s

easier for personnel to reference a location with respect to a tunnel feature such as

a wall corner. First, a reference point is chosen on the MobotSim line map between

RFID tags I and A. The location of that reference corner is easily and accurately

found on the stitched global map. Let
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e4k :=

∥∥∥∥∥∥∥∥∥

x̂k
ŷk

−
x̂ref
ŷref


∥∥∥∥∥∥∥∥∥−

∥∥∥∥∥∥∥∥∥

xk
yk

−
xref
yref


∥∥∥∥∥∥∥∥∥ ,

e5k :=
e4k∥∥∥∥∥∥∥∥∥

xk
yk

−
xref
yref


∥∥∥∥∥∥∥∥∥

,

where (xref , yref ) are the true coordinates of the chosen reference locations from the

linemap, and (x̂ref , x̂ref ) are the coordinates of the same reference locations obtained

from the occupancy grid maps created.

Figure 5.9 shows e4, the distance error between the estimated location of the

vehicle and the chosen reference point. The relative error, e5 is also shown to put the

errors into proper scale for the environment size. The relative error spike around time

step 23000 is due to the position of the vehicle being close to the chosen reference

point.
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Figure 5.9: MobotSim localization global reference error e4 and e5 with Q1 noise.

Next, for comparison a reference point is chosen on each node map. It can be

observed that when the vehicle is on the last node map the distance to the reference
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point error as measured on that node map (Figure 5.10) is smaller than if the distance

is measured on the global map (Figure 5.9). A node map is locally consistent thus

more accurate locally, while the global map may not be locally consistent and thus

the error is higher to the same reference point.
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Figure 5.10: MobotSim localization node map reference error e4 and e5 with Q1 noise.
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Next more noise was added to the localization data set so that its odometry

covariance was

Q2 =

(1 m/s)2 0

0 (10 ◦/s)2

 .
Localization was repeated with the noisier data run and the errors were recom-

puted as shown below. Thus, it should be noted that the only change performed was

the increase in the odometry noise for the localization data run while the maps re-

mained the same. In Figures 5.11 and 5.12 it can be observed that there is an increase

in the variance of the errors compared to Figures 5.6 and 5.7. The vehicle poses still

follow the same overall path - the map; however the increase in the localization noise

causes the particles to spread out more and can accurately converge to the true pose

only in locations where there are enough wall features for the laser rangefinder. As can

be seen in the subsequent error plots the increase in localization error is not directly

proportional to the increase in the odometry noise but is instead more dependent on

the accurate laser rangefinder and the feature richness of the walls.
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Figure 5.11: MobotSim localization global error e1 with Q2 noise.
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Figure 5.12: MobotSim localization node maps error e1 with Q2 noise.
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Figure 5.13: MobotSim localization error e2 and cumulative e22 with Q2 noise.
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Figure 5.14: MobotSim localization global reference error e4 and e5 with Q2 noise.
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Figure 5.15: MobotSim localization node map reference error e4 and e5 with Q2 noise.
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For the next step the maps were recreated after noise with covariance Q1 was

added to the initial data run. The aim was to analyze the effect of map error on

localization.
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Figure 5.16: MobotSim stitched global map with noise Q1 pose errors e1.

As can be seen in 5.16 the error is much higher than in Figure 5.3. However the

error decreased as the vehicle was driven back to the starting location since the tunnel

loop was properly closed by the mapping algorithm.

For the new maps e3 increased from 2.22 × 10−5 m2 to 7.7 × 10−3 m2 while e3θ

increased from 1.94× 10−5 rad2 to 11.04× 10−5 rad2.
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Figure 5.17: MobotSim node maps with noise Q1 pose errors e1.
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Figure 5.18: MobotSim mapping with noise Q1 pose error e2 and cumulative e22.
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Localization was then repeated using the new noisy maps.
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Figure 5.19: MobotSim localization global error e1 with Q1 noise.
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Figure 5.20: MobotSim localization node maps error e1 with Q1 noise.

It can be seen that both Figures 5.27 and 5.22 follow the global map error trend

shown in Figure 5.16 with local localization noise superimposed on it. Therefore it

can be concluded that the accuracy of the pose with respect to a reference point is

highly dependent on the accuracy of the map with the localization data run noise

playing a smaller role in the global accuracy of the estimated position.
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Figure 5.21: MobotSim localization error e2 and cumulative e22 with Q1 noise.
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Figure 5.22: MobotSim localization global reference error e4 and e5 with Q1 noise.
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Figure 5.23: MobotSim localization node map reference error e4 and e5 with Q1 noise.
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Figure 5.24: MobotSim localization global error e1 with Q2 noise.
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Figure 5.25: MobotSim localization node maps error e1 with Q2 noise.
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Figure 5.26: MobotSim localization error e2 and cumulative e22 with Q2 noise.
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Figure 5.27: MobotSim localization global reference error e4 and e5 with Q2 noise.
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Figure 5.28: MobotSim localization node map reference error e4 and e5 with Q2 noise.
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In order to test the robustness of the localization system the noise was further

increased with a covariance

Q3 =

(3 m/s)2 0

0 (15 ◦/s)2

 .
As can be seen in the error plots below the system successfully maintained local-

ization.
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Figure 5.29: MobotSim localization error e2 with Q3 noise.
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Figure 5.30: MobotSim localization global reference error e4 and e5 with Q3 noise.
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Figure 5.31: MobotSim localization node map reference error e4 and e5 with Q3 noise.

Table 5.2: Mean squared error for comparison of localization noise.

Map odometry noise none Q1

Localization odometry noise Q1 Q2 Q3 Q1 Q2 Q3

e3 [10−3 m2] 2.5 3.2 12.3 2.8 3.4 12.5

e3θ [10−5 rad2] 1.916 2.040 2.297 2.172 2.207 2.539
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As was shown, the localization system was successfully tested with the MobotSim

simulator. From the error graphs it is important to note that the map error is

critical for global accurate localization. Since no outside absolute references exist, the

localization system is fully dependent on the map. Therefore the localization system

must allow for the existence of map errors and not assume that the covariance of the

sensors available – the covariance of the motion of the vehicle in the real environment

– is the same as the covariance of the motion of the vehicle on the map. For example

a map of a tunnel may be 10% longer than the real one, therefore the localization

system must allow a 10% increase in the motion error to compensate for the map

error. Otherwise the vehicle will diverge from the true position of the vehicle on the

map. An important factor that directly affects the local accuracy of the localization

is the feature richness of the environment. As more corners exist the vehicle can be

better aligned with the walls while a long straight tunnel makes it difficult for the

system to track the vehicle position along the tunnel.

It is important to note that as the size of the environment increases the global

map error will also increase while the node maps error will not since each of their

sizes remains the same. Therefore this node map localization approach is robust since

it allows localization to take place at the local level and is decoupled from some map

errors such as local inconsistencies generated by forcing global consistency (ensuring

tunnel loops close) and by representing a 3D environment with a 2D map.

5.1.2 3D Map

Some screen shots from the 3D map produced as outlined in Chapter 3.6 can be

seen in Figure 5.32. A data run collected in the CANMET Experimental Mine was

used for estimating the vehicle pose at each time step using the localization system.

A backwards facing camera recorded the view from the vehicle when the data run
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was initially collected in the mine. The 3D map was used to produce a 3D “fly-

through” using the same pose locations produced by the localization system. Then,

the 3D map fly-through movie, the onboard camera and the localization system were

all synchronized to produce a split screen video as can be seen in Figure 5.33. The

video was used to visually asses the accuracy of the 3D map and the advantages and

disadvantages of using 2D vs 3D localization.

Since all underground tunnel systems are 3D, intuitively, a localization system for

this environment should have the same number of dimensions. 3D localization has

several disadvantages however since computational requirements increase dramati-

cally. Furthermore, conveying the 3D position of a vehicle to the driver is challenging

because the walls and ceiling add visual clutter and provide very little extra spacial

information. The vehicle driver does not necessarily need a 3D view of his surround-

ings since he can observe those himself so an overview of the general area is more

useful. Thus, this “zoom out” view of the tunnels actually loses most of the 3D fea-

tures anyway. Furthermore it should be noted that vehicles will always drive at the

same height above the tunnel floor – the tire radius, so localizing in 3 dimensions

is not necessary. In a rotated local coordinate frame with the floor of the tunnels

representing the XY plane and the height above that, the Z axis, the vehicle will

never move in the Z direction. Thus, since node maps are locally consistent they

represent a 2D map of the environment around the vehicle on a plane oriented with

the floor of the tunnels. Localization can be carried out in the real 3D environment

with 2D maps because of the node map jumps. The jump to a new node map will

also represent a height change of the XY plane in the Z direction. The information

provided to the driver during localization is thus on an intuitive 2D node map.
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Figure 5.32: CANMET Experimental Mine textured 3D map views.



109

Figure 5.33: CANMET offline localization synchronized with camera and 3D map
view.
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5.2 Online Testing

5.2.1 Carleton University Tunnels

The localization algorithm was first tested on a single map of the quad loop area of the

Carleton University tunnels. The aim was to validate the particle filter localization

online, the global localization using RFID tags and test a kidnapped robot situation.

The vehicle was driven around the tunnel with frequent stops and turns.

It is important to note several characteristics of the localization system tests:

• The localization system has been successfully tested in kilometre-long runs

through the CU tunnels. The vehicle has been driven tens of hours at speeds of

up to 28 km/h while maintaining localization. Almost all literature articles on

localization [18, 17, 19, 45] use a laboratory test environment with slow moving

robots (5 km/h at most);

• The tunnels are not on a flat 2D plane, they have various slopes, bumps and

elevation changes, however, the use of node map which are locally consistent

allows localization to be maintained regardless;

• The maps play a critical role for localization, since no ground truth exists and no

outside sensor such as GPS is available, the localization happens with respect to

the map only. The accuracy of the map is a limiting factor for the localization

system. Since the user is presented with a vehicle position with respect to

the map the localization system must maintain convergence in spite of the

inaccuracies and inconsistencies of the map;

• The vehicle was also driven outside the mapped area and then back in order to

monitor how the system reported a loss of localization and how it recovered;

• The system was able to maintain localization even though people would walk
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by the vehicle and corrupt the laser rangefinder measurements. People can

be considered dynamic obstacles for the localization algorithm as described in

Section 3.5.6.

The localization system GUI was designed in Python using the Tkinter libraries

and can be seen in Figure 5.34. It runs online along side the localization system. The

GUI updates the estimated vehicle pose on the current node map and the vehicle

location on the global map as well as various parameters at a rate of 10 Hz. When

RFID tags were placed in the tunnels, a name based on the general area in which

the tag was located was assigned to them. The GUI displays the RFID tag name at

the top and for a mine environment this can contain the level number and any other

information useful for a human operator that may not be familiar with the mine.

The estimated vehicle pose is shown using a vehicle icon in the centre of the

node map. The vehicle location is also shown on the global map on the right side

of the screen along with the area covered by the node map view. The current laser

rangefinder measurements from the vehicle are projected from the estimated vehicle

pose and show a good localization estimate if they overlap with the map walls (for

testing purposes). The circles represent the detection area of RFID tags and the thick

circle indicates the current node map in which the vehicle is being localized. As can

be seen in Figure 5.34, the vehicle jumps from one node map to the next as it is

being driven at 11 km/h. The first picture shows the node map corresponding with

the top RFID tag while the second picture shows the vehicle is on the bottom RFID

node map. The physical position of the vehicle with respect to the walls has barely

changed but the vehicle is shown on the next connected node map.
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Figure 5.34: Screen shot from GUI before and after vehicle jumps node maps while
travelling through the CU tunnels.
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5.2.2 CU Tunnels Localization Accuracy

The localization system tracks and displays the vehicle as it moves through a series

of local maps. For the online tests no global frame of reference was used, as is the

case for GPS, so the maps themselves contain relative errors with respect to each

other and to the environment. Thus for any two arbitrary points in the environment

the global mapping error between those points increases the further apart they are.

Figure 5.35 shows two global maps created by stitching a series of local maps together.

Small errors in each local map and their alignment can add up to significant global

errors. Localization happens at the local level however – with respect to the walls

and features around the vehicle, thus any global localization error is primarily due

to mapping error. As was shown in 5.1.1 the localization error is composed of two

parts: pose estimate error and mapping error (since no perfect map exists - with zero

map error). The pose estimate error indicates the accuracy of the localization with

respect to local features around the vehicle while the mapping error represents the

error of the mapped area with respect to some arbitrary global reference point.

Experiments have been carried out to estimate the mapping and localization errors

in the Carleton tunnels for the current setup. Since GPS is not available, distances

between walls and corners in a section of the tunnels were measured and those mea-

surements were compared with the associated node maps (see Figure 5.36). An actual

3D surveyed map of the tunnels could be created and compared with the 2D node

maps used for localization but the errors would only be representative for this par-

ticular setup and environment. Out of the batch of 30 manual measurements carried

out, the biggest mapping error found was +1.57 metre for a 67.5 metre long tunnel

with straight featureless walls (+2.3%). The next step was to estimate the localiza-

tion error. The vehicle was driven through the tunnels and at specific locations the

vehicle was stopped and its estimated location with respect to the map, as reported
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Figure 5.35: Comparison of global maps with errors.

by the localization system, was compared with the physical distance as measured with

respect to the tunnel corners and walls. The biggest localization error found was -

1.0±2.14 m in the tunnel with the biggest mapping error. This makes sense since the

localization must not only compensate for sensor noise but also for mapping error in

order to maintain localization through incorrectly mapped parts of the tunnels.

Clearly, many factors influence the localization error and any objective error mea-

surement test will only be representative for the particular combination of environ-

ment, map, sensors used, speed and path driven, wall features, algorithm parameters,

floor roughness, etc.

5.2.3 MineView

The web interface, was successfully tested such that, where available, the vehicle

connected using Wi-Fi to the web server and sent its position and status update

every second. This data was displayed by the server as shown in Figure 5.37 for any
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web enabled device, anywhere in the world. This interface could be used for route

planning and for off-site management personnel to observe live activities in the mine.

The latest location of all system equipped mining vehicles would be available on the

web server in case of an emergency in the mine.
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Figure 5.36: Measured section of tunnel (thin red line) overlapped on local map.
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Figure 5.37: Screen shots from the www.mineview.ca web interface with and without
vehicle camera.



Chapter 6

Conclusion

This thesis presents a 2D localization system for underground environments using a

priori node maps, that meets the goals outlined in Section 1.3. The efficient use of

RFID-based node maps allows for truly large-scale underground mapping and local-

ization, with an accuracy of a few decimetres using an average computer. A particle

filter was developed and tested for localizing the position of a vehicle in an under-

ground environment. Although brute force, the method can be very powerful since

it can sample the entire state space which can increase the reliability and robustness

of the results. This can eliminate uncertainties with regards to a vehicle position in

an unstructured and unpredictable environment. RFID tags are a requirement for

building node maps in large environments so they can be left in place after installa-

tion and used for global localization to estimate the position of the vehicle initially.

The algorithm successfully localized and tracked the vehicle position in two differ-

ent environments both offline and online. The Carleton University tunnels have a

total length of approximately 4 km with a smooth cement floor and with smooth

tunnel walls, while the CANMET Experimental Mine had feature rich walls and a

very wet, muddy and bumpy road surface. Simulator tests, error analysis as well as

experimental results from online localization over kilometre-long runs in the Carleton

underground tunnel network validated the approach developed in this thesis.

118
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The localization system could be an enabling technology for many applications in

mining that aim to increase the safety and efficiency of underground operations.

6.1 Summary of Contributions

In this thesis a localization system for very large-scale underground environments

has been developed and validated with experimental results. The method uses RFID

tags that enable intuitive “atlas” type maps, fast global localization, accurate position

tracking and requires low computational resources. In summary, this thesis has made

the following contributions to this area of research:

1. The development and implementation of an “atlas” type of map using RFID

tags, called a node map, that lends itself easily to localization in large-scale

underground environments. Node maps are locally consistent and have an over-

lapping area between them, allowing vehicle tracking to be performed on only

one node map at any instance in time. The required localization computing

power and memory does not scale with environment size since the node maps

sizes remain the same but their number increases.

2. The development and implementation of an algorithm for automatically finding

jump locations between node maps. The method finds unambiguous jump lo-

cations that have many wall features in order to minimize the jump uncertainty

and error. The a priori jump locations allow the jump between overlapping

node maps to be performed efficiently during localization in one discrete step.

3. The development, implementation, and experimental validation of a real-time

localization system with a GUI using RFID tags for real large-scale underground

environments. Inexpensive RFID tags installed sporadically in tunnels allow for

efficient localization since the detection of an RFID solves the global localization



120

and the “kidnapped robot” problems. The use of a particle filter provides

localization robustness for the various types of underground conditions.

4. The development and implementation of a general framework for an online

communication and display system, called MineView was introduced. It allows

underground vehicle position information to be shared, live, among all vehicles,

in order to improve safety and efficiency, and with relevant personnel anywhere

in the world using a website interface.

6.2 Future Work

The presented work is considered proof of concept for an enabling technology in

mining. This thesis shows how the shortcomings of current localization methods for

underground mine vehicles might be overcome through the application of a map-based

approach that uses odometry, range sensors, and RFID. Provided a communication

network exists in the mine, vehicles can continuously send their position and status

to web-enabled servers for head-office updates and management. Furthermore, the

system can be expanded so that workers inside the mine are also equipped with

personal RFID tags which can be detected by vehicles. In case of a tunnel collapse,

which would interrupt underground communications, rescue crews would have access

to the last known position of all vehicles and nearby people in the mine thereby

allowing them to conduct salvage operations at the correct locations saving valuable

time and effort. A system for mapping and localizing vehicles in 3D may still be

explored. Vehicle automation, route planning and underground mine management

are other areas of research that should be pursued.
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