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Abstract

The algebraic screw pair, or A-pair, represents a novel class of kinematic pair that al-

gebraically couples relative curvilinear translation with rotation about a single reference

translation curve. The A-pair is a generalization of the well known helical screw pair, or

H-pair, that linearly couples rotation with translation along the axis of rotation where the

pitch of the screw is the linear constant of proportionality. The particular kind of A-pair

examined in this thesis generates a sinusoidal coupling of relative rotation and linear trans-

lation along the axis of rotation between two adjacent links in a kinematic chain. The

novelty of the A-pair requires that a full kinematic and dynamic analysis be performed

prior to the implementation of the A-pair into useful kinematic chains (A-chains) and the

determination of the advantages and disadvantages of A-pairs when compared to other kine-

matic constraints, in particular revolute pairs (R-pairs). This dissertation establishes the

full kinematic and dynamic analysis of A-pairs and A-chains.

The existing position level kinematic analysis of A-chains is revised for application to

general A-chains. This includes revising the application of the Denavit-Hartenburg param-

eter convention to general A-chains, adapting the direct kinematics to this new definition,

and determining the constraint varieties of 2A-chains using kinematic mapping techniques

for use in the inverse kinematics algorithm. The joint limits that result from the colli-

sions between the legs of the A-pair are found and a novel algorithm for approximating

the reachable workspace of serial manipulators is used to obtain the workspaces of 2A- and

4A-chains. The velocity level kinematics are addressed by obtaining the Jacobian matrices

for nA-chains by adapting standard methods to account for the coupled A-pair motion.

The dynamic analysis provides dynamic equations of motion for A-chains. The single
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A-pair is used to show that the inertial effects of the A-pair legs can often be considered

negligible however, the potential energy effects of the legs have a larger effect on the dynamic

model.

Though much of the material presented is applicable to general nA-chains, focus is given

to 4A-chains. Such reduced-mobility chains are used because the coupled translation and

rotation of the A-pair makes it impossible to have a wrist-partitioned 6A-chain, making it

difficult to compare directly to existing 6R-chains. A numeric example based on the pro-

totype 4A-chain is used to illustrate the application of the kinematic and dynamic analysis

techniques developed in the dissertation.
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the math and theory behind the kinematics and Dominic Walter has been amazingly helpful

in the area of constraint varieties.

The secretaries in the MAAE office have been very helpful over the years. Nancy,

Christie, Irene, and Marlene (who will be missed, go Habs go!). Also providing invaluable

support in the areas of sounding boards and procrastination are my fellow gad students,

including Sean, Ali, Heather, Calvin, Wes, Derek, Peter, Alanna, and many others.

Thanks to my parents, Gwen and Andy McDougall, and Don and Karen Robinson for

their support over my many years in school. And also to my in-laws, Brian Simon and Amy

Simon, who have welcomed me into their family, and are certain to be among the only ones

who call me “Doctor” when I am done. I appreciate everything my entire family has done

for me, but I must certainly acknowledge my brother Tom Robinson who has helped me

v



through a lot of Maple problems, even as he is working on his own PhD.

Last, but most importantly I want to thank my wonderful wife Jessie and our beautiful

baby girl Olivia. Jessie has been so patient as I strive to become Dr. Dad, and Olivia has

been the best distraction in the whole world.

vi



Table of Contents

Abstract ii

Acknowledgments v

Table of Contents vii

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Organization of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Statement of Originality and Contributions . . . . . . . . . . . . . . . . . . 4

2 Background Theory and Literature Review 6

2.1 Representation of Displacements . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Homogeneous Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Displacements in Euclidean Space, E3 . . . . . . . . . . . . . . . . . 8

2.1.3 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Quaternions and Representation of Rotations in E3 . . . . . . . . . 10

2.1.5 Dual Quaternions and Representing Displacements in E3 . . . . . . 12

2.1.6 Kinematic Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.7 Study Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.8 Effect of Transformations in E3 on Points in P 7 . . . . . . . . . . . . 18

vii



2.2 Manipulator Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Classes of Manipulators . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Denavit-Hartenburg Parameters . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Direct Kinematics of Serial Manipulators . . . . . . . . . . . . . . . 27

2.2.4 Inverse Kinematics of Serial Manipulators . . . . . . . . . . . . . . . 28

2.2.5 Manipulator Workspace Analysis . . . . . . . . . . . . . . . . . . . . 30

2.3 Constraint Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 A New Method for Obtaining Constraint Varieties of Serial Chains . 36

2.4 The Inverse Kinematics of General 6R-Chains Using Kinematic Mapping . . 39

2.5 The Algebraic Screw Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.1 Overview of Griffis-Duffy Platforms . . . . . . . . . . . . . . . . . . 42

2.5.2 Self-motions of GDPs . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.3 The Griffis-Duffy Platform as a Kinematic Pair . . . . . . . . . . . . 48

2.5.4 Preliminary Assignment of DH-Parameters to A-Chains . . . . . . . 50

2.5.5 The Direct Kinematics of A-Chains . . . . . . . . . . . . . . . . . . 50

2.5.6 The Inverse Kinematics of A-chains . . . . . . . . . . . . . . . . . . 53

2.6 Obtaining the Jacobian Matrix of a Serial Manipulator . . . . . . . . . . . . 60

2.7 Dynamics of Serial Manipulators . . . . . . . . . . . . . . . . . . . . . . . . 63

2.7.1 Lagrange Formulation of the Dynamic Equations of Motion . . . . . 63

2.7.2 Newton-Euler Formulation of the Dynamic Equations of Motion . . 68
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Chapter 1

Introduction

The algebraic screw pair, or A-pair, represents a novel class of kinematic pair that al-

gebraically couples relative curvilinear translation with rotation about a single reference

translation curve between two adjacent links in a kinematic chain. The A-pair is a gen-

eralization of the well known helical screw pair, or H-pair, that linearly couples rotation

with translation along the axis of rotation where the pitch of the screw is the linear con-

stant of proportionality. The particular A-pair investigated in this thesis, introduced in [1]

and shown in Figure 1.1, generates a sinusoidal coupling of relative rotation and linear

translation along the axis of rotation. It is based on a specific configuration of parallel

manipulator called the Griffis-Duffy platform (GDP). The GDP is a special configuration

of the six legged, six degree-of-freedom (DOF) Gough-Stewart platform (GSP) that, in

most configurations, is subject to self-motions regardless of the lengths of the actuated

legs. Self motions are instances where a manipulator possesses at least one DOF that is

not controllable by the actuators of the manipulator. It turns out that most configurations

of the GDP are subject to self-motions throughout their entire workspace, meaning that

the moving platform can move relative to the fixed base without actuator input. In the

case of the specific configuration of the GDP used to construct the A-pair the self-motion

couples rotation about an axis with translation along that axis. The relationship between

the rotation and translation is sinusoidal.

In [1] it is proposed that the A-pair be used in serial kinematic chains as a substitute

for traditional revolute pairs, or R-pairs. This dissertation presents the kinematics and

1



2

Figure 1.1: The A-pair, based on a specific configuration of the GDP.

dynamics of A-chains (chains constructed using A-pairs as joints), laying the foundation for

the future study of A-pairs and A-chains. While the investigation into the advantages and

disadvantages of A-pairs relative to R-pairs is still an open topic the work presented here

is required for further investigations of A-pairs and A-chains.

The objective of this dissertation is to establish the methods and techniques for per-

forming the kinematic and dynamic analysis of A-pairs and A-chains. Most of the methods

presented are applicable to general A-chains with n joints, nA-chains, however emphasis

has been placed on A-chains with four joints, 4A-chains, corresponding to a prototype

4A-chain that has been designed and constructed, though not actuated. Although it is pos-

sible to design a 6A-chain, it is not possible for it to be wrist-partitioned. This is because

wrist-partitioned chains require the last three axes to intersect in a point. The coupling

of translation and rotation means that even if the last three axes intersect in one specific

configuration, as one of the joints is actuated at least one of the axes will no longer inter-

sect the others making it difficult to make useful comparisons to existing 6R-chains used in

industry. Hence, work has focused on the reduced mobility 4A-chain. Moreover, there is

also interest in reduced-mobility four DOF manipulators since that is all that is required in



3

many industrial applications, such as pick-and-place operations [2, 3].

1.1 Organization of this Dissertation

The first portion of this dissertation, Chapter 2, presents an overview of the background

material required to understand the original work presented in Chapter 3. Contained within

Chapter 2 are reviews of the relevant literature associated with the various topics.

The background material begins in Section 2.1 with an examination of how displace-

ments are represented, first with conventional representations in Euclidean space then mov-

ing towards the less standard concepts involved in the kinematic mapping of displacements

to higher order spaces. A discussion of the basics of serial manipulators is presented in Sec-

tion 2.2, focusing on the direct and inverse kinematics of serial manipulators and methods

for representing the reachable workspace of kinematic chains. The concept of constraint

varieties, a method for representing the displacements achievable by a manipulator, is in

Section 2.3 and a recently developed method for obtaining the constraint variety of short

serial chains is discussed in Section 2.3.1. The constraint variety concept is integral to

the material in Section 2.4 where an algorithm for the inverse kinematics of serial 6R-

manipulators is presented. The algebraic screw pair is described in Section 2.5 along with

a summary of existing research into the kinematics of A-pairs and A-chains. The focus on

serial manipulator kinematics concludes in Section 2.6 with the velocity level kinematics

and a description of how to obtain the Jacobian matrix for serial chains. Section 2.7 de-

scribes two methods for formulating the dynamic equations of motion of serial manipulators,

the Lagrange formulation and the Newton-Euler formulation. The remainder of the back-

ground chapter shifts from a discussion of kinematic chains to other tools that are required

to support the material presented in Chapter 3. Section 2.8 discusses the use of Plücker

coordinates to describe lines in space, Section 2.9 discusses cylinder collision detection, and

trigonometric identities and notation are discussed in Section 2.11.

The novel material of this dissertation is presented in Chapter 3. Section 3.1 describes

revisions to generalize the existing work on the direct and inverse kinematics of A-chains.
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The rotation limits of A-pairs are examined in Section 3.2 and the proposed actuation

method is described in Section 3.3. Before continuing with the Study of A-chains, Section 3.4

presents a novel algorithm for quickly approximating the reachable workspace of serial

manipulators, this algorithm is then applied to A-chains in Section 3.5. The method for

deriving the Jacobian matrix of A-chains is covered in Section 3.6 and the dynamics of

A-pairs and A-chains is discussed in Section 3.7, first using the analysis of a single A-pair

to determine the impact of the A-pair legs on the dynamics and then applying the results

to obtain the dynamic equations of motion of a 4A-chain. The original material concludes

in Section 3.8 with a kinematic and dynamic analysis of the prototype 4A-chain.

1.2 Statement of Originality and Contributions

To the best of the knowledge of the author the following contributions presented in this

dissertation stem from original ideas and results.

1. The generalisation of the A-chain Denavit-Hartenburg parameters, the determination

of the geometric constant ρ for A-pairs, and the associated revisions to direct dynamics

equations of nA-chains.

2. The revision of the derivation of the set of equations that describe the constraint

varieties of 2A-chains.

3. The application of the revised 2A-chain constraint varieties to the inverse kinematics

algorithm for 4A-chains.

4. The determination of the range of motion available to A-pairs.

5. A novel algorithm for approximating the reachable workspace of serial manipulators

that greatly reduces the computation time compared to existing algorithms.

6. The derivation of the Jacobian matrices of A-chains for use in the velocity level kine-

matics and static force analysis.
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7. The dynamic analysis of single A-pairs using both the Lagrange and Newton-Euler

formulations of the dynamic equations of motion and the determination of the impact

of the mass effects of the legs of the A-pair on the dynamics.

8. The derivation of the dynamic equations of motion of nA-chains, with focus on

4A-chains.

9. A numeric analysis of the kinematics and dynamics of a prototype 4A-chain.

The major original contributions of this dissertation lie in the full kinematic and dynamic

analysis of the A-pair and A-chains. The A-pair is a novel kinematic pair and thus it is

important that the general kinematics and dynamics be fully understood before further

work can be conducted. Existing work on A-pairs provides some insight into the kinematics

of A-chains, however that work is based on assumptions that proved to be false in general.

The original work presented in this dissertation will be the basis for future study into the

design, simulation, and control of A-chains, as well as the comparison of A-chains with

similar R-chains.

In addition to the study of A-pairs and A-chains a new algorithm for the approximation

of the reachable workspace of serial kinematic chains is presented. This is a novel method

for producing a representation of the reachable workspace that can be plotted in three

dimensions. The new algorithm is significantly faster when compared to the run-time of

existing algorithms.



Chapter 2

Background Theory and Literature Review

Prior to a discussion of the original material presented in this dissertation, it is important

to review the background concepts and theory. This chapter begins with a discussion of the

representation of displacements in space; an introduction to manipulators that defines the

nomenclature and introduces the concepts behind the analysis of manipulator kinematics

and dynamics; an introduction to A-pairs; an overview of other necessary concepts including

Plücker coordinates and cylinder collision checking; and finally an overview of required

trigonometric identities.

2.1 Representation of Displacements

This section introduces the tools and concepts required to characterise displacements, in-

cluding the representation of points in three-dimensional space with homogeneous coordi-

nates, the matrix representation of transformations and displacements in Euclidean space,

and the representation of rotations and displacements using quaternions and dual quater-

nions, respectively. Using these representations, the concept of the kinematic mapping of

displacements is introduced.

2.1.1 Homogeneous Coordinates

Homogeneous coordinates are used in projective geometry to represent points in the projec-

tive space, similar to how Cartesian coordinates are used to represent points in Euclidean

6
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space [4–6]. Homogeneous coordinates are additionally useful for representing rigid body

displacements in Euclidean space as linear coordinate transformation matrices (see Sec-

tion 2.1.2).

A Cartesian coordinate system with origin O and orthogonal axes x, y, z is established

in Euclidean space, E3. A point S in this space, and the ray passing through O and S

are described by the Cartesian coordinates (x, y, z). If another distinct point Q is selected

on this ray, away from the origin, it can be represented by (µx, µy, µz), as illustrated in

Figure 2.1. With this representation if µ→∞, then Q becomes the seemingly meaningless

Figure 2.1: Cartesian coordinates in E3.

triple (∞,∞,∞). If homogenous coordinates are introduced, some meaning can be brought

to the point at infinity. A homogenizing coordinate is introduced such that

x =
x1

x0
, y =

x2

x0
, z =

x3

x0
, (2.1)

where x0 6= 0. The homogenous coordinates of S are now written as the ratios (x0 : x1 :

x2 : x3). Note that the European convention has been used here, that is the homogenizing

coordinate x0 is the first element of the coordinate group, as opposed to the North American

notation that uses (x1 : x2 : x3 : x4), where x4 is the homogenizing coordinate. The
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European convention is used throughout this dissertation because of the following: assigning

x0 as the homogenizing coordinate means that points in any n dimensional projective space

will have the homogenizing coordinate in the first position. An example of use of the

European convention can be found in [7], and an example of the North American convention

is given in [8].

In this representation if x0 = 1, then the original Cartesian coordinates of S are recov-

ered. If two proportional sets of homogenous coordinates are given, i.e. (x0 : x1 : x2 : x3)

and (λx0 : λx1 : λx2 : λx3), where λ 6= 0, they represent the same point in space. The

case where x0 → 0 is analogous to µ → ∞ in Cartesian coordinates, the difference now

is that (0 : x1 : x2 : x3) describes the point at infinity on the line OS, removing some of

the ambiguity of the Cartesian representation of a point at infinity, (∞,∞,∞). Cartesian

coordinates are used to describe E3 space, which is unbounded, so the point (∞,∞,∞)

has no physical meaning. When E3 space is bounded by the plane at infinity a projective

space is created which is infinite but still bounded. When the homogenizing term is zero,

i.e. x0 = 0, the direction on which the point lies is identified (by x1, x2 and x3), and all

lines parallel to this direction intersect at the point (0 : x1 : x2 : x3), the point at infinity

for this class of lines.

2.1.2 Displacements in Euclidean Space, E3

When looking at relative displacements in E3 one must consider two bodies with coordinate

reference frames affixed to them. Craig [9] defines a reference frame as a set of four vectors

providing position and orientation information. One vector describes the position of the

origin of the reference frame relative to some coordinate system and the other three vectors

are mutually orthogonal unit vectors along the principle X, Y and Z axes of the frame.

The frame is a description of one coordinate system relative to another. This being said,

consider reference frame Σ affixed to one of the bodies, which is called the base and will

remain relatively fixed for the purposes of this discussion. Reference frame Σ′ is affixed to

the second body which moves relative to Σ.

Using Cartesian coordinates, a point p′, given by a 3 × 1 position vector in Σ′ can be
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transformed to a point p, represented by a 3× 1 position vector in Σ:

p = Ap′ + d, (2.2)

where d represents the 3× 1 position vector of the origin of Σ′ with respect to Σ, and A is

a 3× 3 orthogonal rotation matrix describing the orientation of Σ′ relative to Σ. There are

many ways to represent the orientation of a frame and the method used in this dissertation

will be discussed in the following sections.

Utilizing homogenous coordinates it is possible to use one single matrix to produce the

same results as Equation 2.2, thereby making it a linear transformation [10]. If p and p′

are now represented by homogenous coordinates, the equation becomes

p = Tp′. (2.3)

The coordinate transformation matrix, T, takes the form

T =



1 0 0 0

d1 a11 a12 a13

d2 a21 a22 a31

d3 a31 a32 a33


, (2.4)

where di, i = 1, . . . , 3 are the elements of position vector d and ajk, j, k = 1, . . . , 3 are the

elements of the rotation matrix A. This homogeneous transformation matrix represents the

group of all displacements in E3, called SE(3).

One possible parametrization of the rotations is given using Euler angles [11]. This

method uses three rotations about the moving coordinate axes to define the rotation [12,13].

Another parametrization of rotations in E3 utilizes quaternions, which provide a compu-

tational singularity-free representation of these rotations. In order to understand this an

overview of quaternions and how they are used to represent rotations in E3 is required and

is provided in Section 2.1.4, but first the concept of groups should be introduced.



10

2.1.3 Groups

A group, G(G, ∗), is a set G of elements that are all related by a binary operator ∗ [14]. The

operator can be viewed as a way to combine the elements contained in G. If the elements in

G and the binary operator ∗ possess the following properties, they form a group, G(G, ∗).

• if a, b ∈ G, then a ∗ b ∈ G;

• if a, b, c ∈ G, then a ∗ (b ∗ c) = (a ∗ b) ∗ c;

• the identity I of G under ∗, exists such that a ∗ I = I ∗ a = a for a ∈ G; and

• for all a ∈ G, the inverse of a under ∗, a−1 ∈ G, exists such that a∗a−1 = a−1 ∗a = I.

2.1.4 Quaternions and Representation of Rotations in E3

Introduced by W.R. Hamilton in 1847 [15], quaternions were originally intended to describe

the relative position of two vectors in three-dimensional space. They are essentially the

three-dimensional equivalent to complex numbers in the plane [16].

A quaternion is represented by an ordered quadruple of real numbers, such as

P = (p0, p1, p2, p3), where pi, i ∈ 0 . . . , 3, are all contained in R, the set of all real num-

bers. The set of all such quadruples is called H. The p0 element of P is called the scalar

component and the remaining three elements form the vector component, p = (p1, p2, p3).

A quaternion is called vectorial if the scalar component is equal to zero.

To illustrate the definitions of quaternion operations, let P = (p0, p1, p2, p3) and

Q = (q0, q1, q2, q3) be two quaternions. Addition and subtraction are component wise,

while multiplication is defined by

P ∗Q = (p0q0 − p1q1 − p2q2 − p3q3, p0q1 + p1q0 + p2q3 − p3q2,

p0q2 − p1q3 + p2q0 + p3q1, p0q3 + p1q2 − p2q1 + p3q0) .
(2.5)

An alternative representation of a quaternion is

P = p01 + p1i + p2j + p3k = p0 + p,
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where 1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), and k = (0, 0, 0, 1) are the basis

quaternions. It is important to note that i, j, and k are defined in quaternion algebra where

the fundamental special products are i2 = j2 = k2 = ijk = −1, ij = k = −ji, jk = i = −kj,

and ki = j = −ik. Defining the conjugate of a quaternion, which is analogous to the

conjugate of a complex number, as

P̃ = p01− p1i− p2j− p3k

leads to the norm being defined as

‖P‖ =
√
P ∗ P̃ =

√
p2

0 + p2
1 + p2

2 + p2
3,

and the inverse defined as

P−1 =
P̃

‖P‖2
.

When ‖P‖ = 1, the quaternion is said to be normalized and P−1 = P̃ .

With an understanding of the basic quaternion operations it is possible to understand

how they are used to describe rotations. Euler used what amounts to normalized quaternions

to define the rotation of vector q in E3 about an axis with direction given by p as

AdP (q) = P ∗ q ∗ P̃ = P ∗ q ∗ P−1, (2.6)

where AdP (q) is defined as the quaternion rotation operator, P is a normalized quaternion

and q is a vectorial quaternion. P may be represented by P = cos( θ2) + p sin( θ2) and

describes a rotation of q about p by angle θ.

The orthogonal rotation matrix representing the group of rotations in E3, SO(3), can

now be obtained by rotating the basis vectors i, j and k about the axis described by the

normalized quaternion X = x01+x1i+x2j+x3k. First looking at the rotation of each axis
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the following is obtained:

X ∗ i ∗ X̃ = (x01 + x1i + x2j + x3k)i(x01− x1i− x2j− x3k)

= (x0i− x11− x2k + x3j)(x01− x1i− x2j− x3k)

= (x2
0 + x2

1 − x2
2 − x2

3)i + 2(x1x2 + x0x3)j + 2(x1x3 − x0x2)k,

X ∗ j ∗ X̃ = 2(x1x2 − x0x3)i + (x2
0 − x2

1 + x2
2 − x2

3)j + 2(x2x3 + x0x1)k,

X ∗ k ∗ X̃ = 2(x1x3 + x0x2)i + 2(x2x3 − x0x1)j + (x2
0 − x2

1 − x2
2 + x2

3)k.

(2.7)

The coefficients of the resulting quaternions in Equation (2.7) can now be assembled into a

matrix that represents SO(3). This matrix is

AdX =


x2

0 + x2
1 − x2

2 − x2
3 2(x1x2 − x0x3) 2(x1x3 + x0x2)

2(x1x2 + x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3

 , (2.8)

where the parameters xi, i ∈ {0, . . . , 3} are known as Euler-Rodrigues parameters [12,17–19].

A method for obtaining the Euler-Rodrigues parameters is shown in Section 2.1.6, but first

a parametrization of SE(3) is required. The concept of dual quaternions can be used to do

this.

2.1.5 Dual Quaternions and Representing Displacements in E3

As shown by Pfurner [7] and Bottema and Roth [12] SE(3), the set of all displacements in

E3, can be represented in a way that is free from parametrization singularities by using dual

quaternions, also known as biquaternions, or octonions [12]. In this section the necessary

characteristics of dual quaternions are defined and then used to show the parametrization

of general displacements in E3.

The dual quaternion is created by substituting dual numbers for the coefficients of a

quaternion. A dual number is written as ai = xi + εyi, where ε2 = 0. At this time it is

useful to look at the algebra of dual numbers as described by Bottema and Roth [12]. The

dual numbers posses the following characteristics, for a1 and a2 both dual numbers:
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• 0ε = ε0 = 0;

• aε = εa;

• a1 + a2 = (x1 + εy1) + (x2 + εy2) = x1 + x2 + ε(y1 + y2);

• a1a2 = (x1 + εy1)(x2 + εy2) = x1x2 + ε(x1y2 + x2y1); and

• if x1 + εy1 = x2 + εy2, then x1 = x2 and y1 = y2.

Division of dual numbers is not always possible because the product of two dual numbers

may be zero even if neither dual number is equal to zero. This is because of the fact that ε

was defined such that ε2 = 0, therefore (εy1)(εy2) = 0 for any y1 and y2.

Substituting a dual number into a quaternion as previously defined gives

P = (x0 + εy0)1 + (x1 + εy1)i + (x2 + εy2)j(x3 + εy3)k

= a+ p,

where a = x0 + εy0 and p = p1 + εp2 with p1 = (x1, x2, x3) and p2 = (y1, y2, y3). All

elements of a dual quaternion are dual numbers.

The product of dual quaternions P = a+ p and Q = b+ q is

P ∗Q = ab− pq + ap + bq + p× q,

where p × q is the cross product of vectors p and q. Dual quaternions can be conjugated

in two different ways,

P̃ = x0 + εy0 − p1 − εp2

and

Pε = x0 − εy0 + p1 − εp2.

The norm of the dual quaternion is defined as

‖P‖ =
√
P ∗ P̃
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where the product under the root is

P ∗ P̃ = a2 + pp

= x2
0 + 2εx0y0 + p1p1 + 2εp1p2

= x2
0 + p1p1 + 2ε(x0y0 + p1p2)

= x2
0 + x2

1 + x2
2 + x2

3 + ε(x0y0 + x1y1 + x2y2 + x3y3).

As with quaternions, the condition for a dual quaternion to be called normalized is ‖P‖ = 1,

which means x2
0 + x2

1 + x2
2 + x2

3 = 1 and x0y0 + x1y1 + x2y2 + x3y3 = 0.

When X and Y are defined such that X = (x0, x1, x2, x3), Y = (y0, y1, y2, y3) ∈ H, then

it can be said that P = X + εY . If V is defined as the set of all dual quaternions of the

form 1 + εr with r a vector of R3, then the mapping from V to H is

Ade P (r) = PεrP̃

= (X − εY )(1 + εr)(X̃ + εỸ )

= 1 + ε(XrX̃ +XỸ − Y X̃).

(2.9)

Pfurner [7] shows that Ade is a mapping of the set of normalized dual quaternions, Ud, into

the group SE(3). Ud is a group with the inverse element being the conjugate quaternion.

The XrX̃ term is the quaternion description of a rotation about the origin and the XỸ −Y X̃

term represents the translational part of a displacement in E3. Expanding the translational

component yields

XỸ − Y X̃= 2(−x0y1 + x1y0 − x2y3 + x3y2)i + 2(−x0y2 + x1y3 + x2y0 − x3y1)j

+2(−x0y3 − x1y2 + x2y1 + x3y0)k.
(2.10)
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Utilizing homogenous coordinates and Equation (2.8), the matrix representation of dis-

placements in SE(3) is

A =



1 0 0 0

l x2
0 + x2

1 − x2
2 − x2

3 2(x1x2 − x0x3) 2(x1x3 + x0x2)

m 2(x1x2 + x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)

n 2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3


,

where

l = 2(−x0y1 + x1y0 − x2y3 + x3y2),

m = 2(−x0y2 + x1y3 + x2y0 − x3y1),

n = 2(−x0y3 − x1y2 + x2y1 + x3y0).

To obtain the matrix representation of the displacements of SE(3), the normalizing

condition may be removed and left as x2
0 + x2

1 + x2
2 + x2

3 6= 0 and A becomes

A=
1

∆



x2
0 + x2

1 + x2
2 + x2

3 0 0 0

l x2
0 + x2

1 − x2
2 − x2

3 2(x1x2 − x0x3) 2(x1x3 + x0x2)

m 2(x1x2 + x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)

n 2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3


, (2.11)

where ∆ = x2
0 + x2

1 + x2
2 + x2

3. The xi, yi, i ∈ {0, . . . , 3} are called the Study parameters,

or soma coordinates [20]. Using the algebra of dual quaternions means that the mapping

Ade is 2 to 1. This leads to the fact that there are two dual quaternions, P and −P ,

describing every displacement in E3. As noted by Brunnthaler [14], the terms XỸ − Y X̃

and XrX̃ are vector quaternions which are equal to their negative quaternions. The issue

of the 2 to 1 mapping is resolved by looking at the eight terms of the dual quaternions as

the homogenous coordinates of a point in seven-dimensional projective space, P 7, called the

kinematic image space.
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2.1.6 Kinematic Mapping

The representation of E3 displacements as points in P 7 utilizes the Study parameters

(x0, x1, x2, x3, y0, y1, y2, y3), a normalized dual quaternion which must satisfy the condition

x0y0 + x1y1 + x2y2 + x3y3 = 0. (2.12)

This includes the trivial case x0 = x1 = x2 = x3 = 0, called the exceptional generator, which

does not represent a displacement in E3 because all of the Euler parameters representing the

rotation about the origin would be zero, a situation having no physical meaning. Equation

(2.12) with the exceptional generator removed is called the Study quadric [12], represented

by S2
6 , and can be viewed as a hyperboloid in P 7. Any displacement in E3 maps to a single

unique point on S2
6 . The mapping of displacements from SE(3) to S2

6 is called kinematic

mapping [12]. The displacements in E3 are represented one to one in P 7.

Kinematic mapping is used in this dissertation to represent the displacements obtainable

by a mechanism as a set of related points in the kinematic image space. This is the concept

of constraint varieties which is presented in detail in Section 2.3, but for this section it is

important to understand that there is a need to map the group of displacements in E3,

represented by the matrix T in Equation (2.3), to the points lying on S2
6 . A method for

obtaining the Study parameters for a displacement represented by T is therefore required.

2.1.7 Study Parameters

Two methods of obtaining the Study parameters are presented here. The first is the

most commonly used method employing skew symmetric matrices and the second is the

method developed by Study [20]. Study’s method is used in this dissertation as its use

is very straightforward and overcomes a major shortcoming of the skew symmetric matri-

ces method. The skew symmetric matrix method is shown for completeness and its use

produces equivalent results to Study’s method.

The theorem of Cayley [21] states that any orthogonal matrix A may be decomposed

such that
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A = (I− S)−1(I + S)

where I is the 3× 3 identity matrix and S is a skew symmetric matrix of the form

S =


0 −b3 b2

b3 0 −b1

−b2 b1 0

 .

For an orthogonal matrix A with eigenvalues not equal to −1, S can be computed with

S = (A−I)(A+I)−1. The entries of S describe the rotation in E3 of angle φ about the axis

represented by the vector (b1, b2, b3), where tan(φ2 ) =
√
b21 + b22 + b23. When the bi, i = 1, 2, 3

terms are made homogenous such that bi = xi
x0

they become the Euler-Rodrigues parameters.

From Craig [9] it is shown that the Euler-Rodrigues parameters are given by:

x0 = cos φ2 ,

x1 = b1 sin φ
2 ,

x2 = b2 sin φ
2 ,

x3 = b3 sin φ
2 .

(2.13)

The property x2
0 + x2

1 + x2
2 + x2

3 6= 0 must always hold.

In the event that the rotation angle φ approaches any multiple of π this method no longer

holds because an eigenvalue of A is −1 and tan(φ2 ) goes to infinity. In such situations, an

alternative method is required to obtain the Euler-Rodrigues parameters, such as using

limits when φ approaches a singularity.

The Study method for obtaining the Euler-Rodrigues parameters is very straightforward.
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The ratios

x0 : x1 : x2 : x3 = 1 + a11 + a22 + a33 : a32 − a23 : a13 − a31 : a21 − a12

= a32 − a23 : 1 + a11 − a22 − a33 : a12 + a21 : a31 + a13

= a13 − a31 : a12 + a21 : 1− a11 + a22 − a33 : a23 + a32

= a21 − a12 : a31 + a13 : a23 + a32 : 1− a11 − a22 + a33.

(2.14)

are found by the 3× 3 lower-right sub-matrix of T in Equation (2.3) and 3× 3 lower-right

sub-matrix in Equation (2.11). The derivation of these ratios is shown by Pfurner in [7]. In

general the four ratios of Equation (2.14) will yield the same results, but in special cases,

such as when φ is a multiple of π, one or more, but not all of the ratios may be 0 : 0 : 0 : 0.

In such a case one of the solutions with non-zero terms is selected, thus the Euler-Rodrigues

parameters can always be found directly from T.

The remaining Study parameters, y0, y1, y2, y3, can now be found from the set of equa-

tions that includes the l,m, n terms of A in Equation (2.11) set equal to the corresponding

terms of T in Equation (2.3) and the Study quadric of Equation (2.12). Solving this set for

the remaining Study parameters gives

y0 = 1
2(d1x1 + d2x2 + d3x3),

y1 = 1
2(−d1x0 + d3x2 − d2x3),

y2 = 1
2(−d2x0 − d3x1 + d1x3),

y3 = 1
2(−d3x0 + d2x1 − d1x2),

(2.15)

where d1, d2 and d3 are defined in Equation (2.3).

2.1.8 Effect of Transformations in E3 on Points in P 7

In this dissertation it is necessary to understand the effect of a coordinate transformation

in E3 on the Study parameters in P 7. That is, if the Study parameters of a displacement
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are known for a specific coordinate system and that system changes, what is the effect on

the Study parameters? The two important transformations are those in the base reference

frame, which results in a change of the fixed coordinate system of a manipulator, and

those in the moving reference frame, which results in a change of the end effector, or EE,

coordinate system. Both types of transformation has a different influence on the Study

parameters in P 7 and must be examined separately.

In both cases the following two matrices are used. The first, A, describes ΣEE relative

to Σ0 and is built by substituting the Study parameters a = (a0, a1, a2, a3, a4, a5, a6, a7)T for

(x0, x1, x2, x3, y0, y1, y2, y3)T in Equation (2.11). Similarly, the coordinate transformation

is described by matrix T which is built by substituting t = (t0, t1, t2, t3, t4, t5, t6, t7)T for

(x0, x1, x2, x3, y0, y1, y2, y3)T . The matrix A can be thought of as describing the EE pose

of a manipulator with respect to Σ0, and a contains the Study parameters of A. The ma-

trix T represents some form of change in the kinematic architecture of a kinematic chain,

such as moving the entire manipulator relative to the fixed coordinate system or changing

the architecture of the links and altering the parameters that define the manipulator (Sec-

tion (2.2.2)), i.e. actuating the joints of the manipulator. Moving the whole manipulator

to a new position represents a transformation in the base frame, while actuating the joints

of the manipulator results in a transformation in the moving frame. The elements of t are

the Study parameters of T.

Transformation in the Base Frame

A transformation in the base frame is described by the matrix product TA. After the

matrix multiplication the Study parameters are found using Study’s method as presented
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in Section 2.1.6. The resulting Study parameters are

tb = ∆



a0t0 − a1t1 − a2t2 − a3t3

a0t1 + a1t0 + a3t2 − a2t3

a0t2 + a2t0 + a1t3 − a3t1

a0t3 + a3t0 + a2t1 − a1t2

a0t4 − a1t5 − a2t6 − a3t7 + a4t0 − a5t1 − a6t2 − a7t3

a0t5 + a1t4 − a2t7 + a3t6 + a4t1 + a5t0 − a6t3 + a7t2

a0t6 + a1t7 + a2t4 − a3t5 + a4t2 + a5t3 + a6t0 − a7t1

a0t7 − a1t6 + a2t5 + a3t4 + a4t3 − a5t2 + a6t1 + a7t0



, (2.16)

where

∆ =
a0t0 − a1t1 − a2t2 − a3t3

(a2
0 + a2

1 + a2
2 + a2

3)(t20 + t21 + t22 + t23)
.

The ∆ term may be ignored because homogeneous coordinates are being used. The subscript

b indicates that the transformation is in the base frame.

Equation (2.16) can be written as Tba, where

Tb =



t0 −t1 −t2 −t3 0 0 0 0

t1 t0 −t3 −t2 0 0 0 0

t2 t3 t0 −t1 0 0 0 0

t3 −t2 t1 t0 0 0 0 0

t4 −t5 −t6 −t7 t0 −t1 −t2 −t3

t5 t4 −t7 t6 t1 t0 −t3 t2

t6 t7 t4 −t5 t2 t3 t0 −t1

t7 −t6 t5 t4 t3 −t2 t1 t0



. (2.17)

With this representation, the effect of a transformation in the base frame on the Study

parameters in P 7 can be found using the Study parameters of the transformation matrix.
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Transformations in the Moving Frame

The same procedure as for the transformation in the base frame is used in the case of a

transformation in the moving frame, however the transformation is now described by the

matrix product AT. A similar matrix to Tb is developed called Tm, where the subscript m

indicates that the transformation takes place in the moving frame, such that the transformed

Study parameters are given by Tma, where

Tm =



t0 −t1 −t2 −t3 0 0 0 0

t1 t0 t3 −t2 0 0 0 0

t2 −t3 t0 t1 0 0 0 0

t3 t2 −t1 t0 0 0 0 0

t4 −t5 −t6 −t7 t0 −t1 −t2 −t3

t5 t4 t7 −t6 t1 t0 t3 −t2

t6 −t7 t4 t5 t2 −t3 t0 t1

t7 t6 −t5 t4 t3 t2 −t1 t0



. (2.18)

In [7], Pfurner shows and proves many useful properties of the Tb and Tm matrices.

The most important results include the fact that under a transformation in E3 the quadric

S2
6 and the exceptional generator remain unchanged and the inverse of Tb or Tm can be

found by substituting (t0,−t1,−t2,−t3, t4,−t5,−t6,−t7) for (t0, t1, t2, t3, t4, t5, t6, t7) which

results in no change for t0 and t4.

To describe the matrix Tb or Tm for a displacement described by a 4 × 4 matrix, for

example Mi, the form Tb(Mi) is used, meaning the Tb matrix is populated by the Study

parameters associated with the matrix Mi.

2.2 Manipulator Basics

This section introduces some of the basic topics in the study of robotic manipulators that

are germane to this dissertation. Addressed are some of the various classes of manipulators,

a standard method for describing kinematic chains (Denavit-Hartenburg Parameters), the
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direct and inverse kinematics of serial manipulators, and the workspaces of serial manipu-

lators.

2.2.1 Classes of Manipulators

There are three main classes of manipulators: serial, parallel, and hybrid. While much

of this dissertation focuses on serial manipulators it is useful to understand some of the

characteristics of the different arrangements.

A serial manipulator can be described as an open chain where each link is connected to

exactly two others, with the exception of the EE which is connected to only one other link.

It is common for the links to be connected using revolute joints (R-pairs) or prismatic joints

(P-pairs), though other joint types also exist [9,22]. A serial manipulator consisting of links

connected by n R-pairs is referred to as an nR-manipulator. Similar naming conventions can

be used for the other joint types, or a combination of different types. The most well known

serial manipulators are industrial robot arms such as that shown in Figure 2.2. Because

Figure 2.2: Example of a serial manipulator from KUKA Robotics [23].

serial manipulators have only one connection to the base or ground, in general they can reach

a large number of positions and orientations when compared to their parallel counterpart,

depending on the joint and link geometry. This single connection to the base can also be
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a disadvantage because the manipulator essentially becomes a cantilever beam, meaning

stiffness is lower than if there were more connections with the base. As will be discussed

later in this dissertation, obtaining the direct kinematic equations for serial manipulators

has a well known and simple solution, but the inverse kinematics problem is not as trivial.

A parallel manipulator is characterized by having two or more serial manipulators work-

ing simultaneously on the EE. The serial chains work together to influence the motion of the

EE. There exist many configurations of parallel manipulator, however a common example

is the Gough-Stewart Platform, GSP. In this configuration six legs connect the fixed base

to the moving EE platform, and the position and orientation of the moving platform is

controlled by independently actuating the joints in each of the legs. Parallel manipulators

are covered in detail by Merlet [24]. The multiple legs connecting the moving EE plat-

form to the fixed base means that the parallel manipulator is inherently more stiff than a

serial chain since the EE is no longer at the end of a cantilevered arm as is discussed by

Carbone and Ceccarelli [25]. The additional legs also have a negative aspect, they lead to

self-collisions where the legs interfere with each other and the rest of the manipulator struc-

ture meaning there is a restricted reachable workspace and often no dextrous workspace at

all. Figure 2.3 shows a flight simulator from CAE. The motion platform for the simulator

is a Gough-Stewart platform. The inverse kinematics of a parallel manipulator provides a

Figure 2.3: Example of a parallel manipulator from CAE [26].
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simple unique solution for the leg lengths for every desired EE pose. On the other hand, the

direct kinematics for a general GSP were an unsolved problem until a solution was provided

by Husty [27].

Hybrid manipulators are typically characterised by combining parallel and serial ma-

nipulators or concatenating parallel manipulators such that the moving platform of one

parallel manipulator becomes the fixed base of the next, creating a serial chain of parallel

manipulators. The intent of hybrid manipulators is to take advantage of the high stiffness of

parallel manipulators and the typically larger workspace of serial manipulators. Examples

of hybrid manipulators are given in [25, 28–31] Figure 2.4 shows a sketch of a redundant

hybrid manipulator from the Shenyang Institute for Automation [30]. Each new configura-

Figure 2.4: Sketch of a redundant hybrid manipulator from the Shenyang Institute for
Automation [30].

tion of hybrid manipulator has a different kinematics and control scheme. The kinematics

must be re-evaluated for each new architecture.

2.2.2 Denavit-Hartenburg Parameters

Denavit-Hartenburg parameters [32], or DH-parameters, are commonly used when work-

ing with serial manipulators to provide an unambiguous mathematical description of the

kinematic chain. Many distinct forms have evolved since their introduction in 1954, but

the particular form used in this dissertation is from [22]. The procedure described here is

intended for labeling an nR-chain but for a more detailed description of DH-parameters
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the interested reader is referred to Denavit and Hartenberg [32], Craig [9], Shigley and

Uicker [33], or most introductory textbooks on robotics.

The procedure for assigning the DH-parameters begins by numbering each link in the

serial kinematic chain, with the base being Link 0, Link 1 being the next link, and so on

up to Link n. Next, each joint axis in the chain and the common normal between each axis

are established. The axes are numbered sequentially from 1 to n, starting with the joint

between the base (Link 0) and Link 1. Each link is assigned one reference frame and the

assignment of this reference frame depends on the two axes at the ends of the link. For

the purposes of this description, each Link i, i = 1, . . . , n, describes a rigid link that lies on

the common normal between Axis i and Axis i + 1 irrespective of the actual shape of the

physical link in the manipulator. The special cases of intersecting or parallel axes will be

addressed as needed.

Assignment of Link Reference Frames

Frame i is denoted Σi. The origin of Σi is established where Link i intersects Axis i. The

Zi-axis of Σi points along Axis i, the direction is arbitrary but, with experience, is selected

to ease future calculations. The Xi-axis points along the common normal towards the

origin of Σi+1. If the axes i and i+ 1 intersect, the axis Xi is parallel to the normal of the

intersecting axes, again the direction is selected to ease future calculations. The Yi-axis is

assigned to complete the right-handed coordinate system. For parallel axes the location of

the frame origin along the joint axis is arbitrary, however it is often selected to make as

many parameters as possible be equal to zero. These procedures work well for intermediate

links, however the base and EE frames, Σ0 and Σn respectively, are often selected to ease

calculations by providing for as many DH-parameters to be zero as possible.

Assignment of DH-Parameters

Once the link frames have been established the DH-parameters can be determined. The

four DH-parameters are defined as follows:
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Link length ai, the directed distance from Axis i− 1 to i along Xi;

Link twist αi, the directed angle from Axis i− 1 to i about Xi;

Joint offset di, the directed distance from the origin of Σi−1 to the intersection of Axis i−1

and Xi along Zi−1; and

Joint angle θi, the directed angle from Xi−1 to Xi about Zi−1.

Figure 2.5 shows a typical link with reference frames and the DH-parameters identified.

Figure 2.5: Link with reference frames and DH-parameters.

In a chain with n revolute joints, an nR-chain, the values θi, i = 1 . . . n are variable

as the links rotate about the joint, and thus called the joint variables, while the remaining

three parameters are fixed and are called the link and joint parameters. For a prismatic

pair, a P-pair, the di parameter becomes the joint variable.

The DH-parameters are not unique since the assignment of the reference frames possesses

some ambiguity and thus a given kinematic chain may have any number of different sets of
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DH-parameters, however the DH-parameters are unambiguous and if provided with a set

of DH-parameters one could reconstruct the kinematic geometry of the manipulator.

2.2.3 Direct Kinematics of Serial Manipulators

The process of obtaining the direct kinematics of a serial kinematic chain refers to the

determination the set of equations that provides the EE pose (position and orientation of

the EE reference frame) for a given complete set of joint variables. For this dissertation,

as is often the case in literature, the direct kinematic equations are presented in matrix

form and the resulting 4× 4 homogeneous matrix is the transformation matrix, 0TEE , the

coordinates of points from the base reference frame Σ0 to the EE reference frame ΣEE

(which may or may not be coincident with Σn) and the elements of 0TEE are functions of

the joint variables, i.e. θi, i = 1 . . . n for an nR-chain. Algorithms for obtaining the matrix

representations of the direct kinematic equations are well known and are covered in most

introductory robotics text books. The method used in this dissertation is based on that

used by Pfurner [7] and Husty, et al. [34, 35].

The transformation matrix 0Tn is obtained by

0Tn = M1G1 . . .MiGi . . .MnGn, (2.19)

where

Gi =



1 0 0 0

ai 1 0 0

0 0 cos(αi) − sin(αi)

di 0 sin(αi) cos(αi)


, (2.20)

and

Mi =



1 0 0 0

0 cos(θi) − sin(θi) 0

0 sin(θi) cos(θi) 0

0 0 0 1


. (2.21)



28

The Gi matrices contain the DH-parameters of each link that remain constant as the

joints are actuated (the link and joint parameters) and the Mi matrices contain the

DH-parameters that vary with the joint actuation (the joint variables). Additional trans-

formations may be required if ΣEE is not coincident with Σn and/or Σ0 is not coincident

with the global reference frame.

2.2.4 Inverse Kinematics of Serial Manipulators

The converse to the direct kinematics problem is the inverse kinematics problem, which

involves finding the set(s) of joint variables that place the EE of a manipulator in a desired

pose. The existence of a solution to this problem is dependent on the desired pose lying

within the workspace of the manipulator (Section 2.2.5). Depending on the configuration of

the manipulator, it is possible that more than one set of joint variables achieves the desired

EE pose. The complete solution to the inverse kinematic problem provides all possible sets

of joint variables that place the EE of a manipulator in a desired pose. Historically there

are many methods for solving this problem utilizing different techniques including both

numerical and algebraic methods. Many of the methods focus on a specific type of serial

manipulator, such as R-chains with intersecting joint axes.

Of particular interest are 6R-manipulators because of their relative simplicity while

maintaining, in general (but not always), 6DOF and a large reachable workspace. Such

manipulators are commonly used for industrial applications and have therefore been the fo-

cus of study for many researchers. Some examples of applying inverse kinematics methods

to industrial 6R-manipulators include Chen and Parker [36] who use a numerical approach

to the inverse kinematics to aid in the calibration of a PUMA 560 industrial 6R robotic

manipulator; Lloyd and Hayward [37] use symbolic algebra to set up solutions for spe-

cial configurations of 6R industrial robots; Manseur and Doty [38] present algorithms to

improve the efficiency of the solution to the inverse kinematics problem for industrial ap-

plications of 6R-manipulators; Pashkevich [39] implements an algorithm for the inverse

kinematics of industrial manipulators with offset wrists; and Chapelle and Bidaud [40]

use analytical methods on kinematic models of PUMA 560 and GMF Arc Mate industrial
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6R-manipulators.

Overview of Some Methods of Solving the Inverse Kinematics Problem

The inverse kinematics problem is well known and because of the usefulness of

6R-manipulators in industry there has been extensive research in this area. It is not feasible

to explore all of the methods and publications that exist, but it is important to look at some

major milestones and well known techniques. Using the results of the direct kinematics as

presented in Section 2.2.3, evaluating Equation (2.19) yields 12 equations in six unknown

joint variables. Many of the methods aim to reduce the number of equations or determine

the exact number of solutions. This section gives an overview of major milestones in solving

the inverse kinematics problem. A detailed history may be found in [7].

In 1968 Pieper [41] explored 6DOF manipulators, focusing on those with three con-

secutive intersecting axes. His methods apply to many manipulators with R- and P-pairs

and is often applied to many existing industrial robots which, because of the intersecting

axes limitation, leads to many being wrist-partitioned. The method for applying Pieper’s

method to 6R-manipulators is provided in [9].

Roth et al. [42] in 1973 showed that there were at most 32 solutions to the problem.

Duffy and Crane [43] in 1980 provided a method for obtaining a polynomial of degree 32,

though some of the roots did not provide solutions to the inverse kinematics problem. In

1985 Tsai and Morgen [44] used homotopy continuation methods to solve the problem and

obtained 16 solutions for a variety of manipulators, leading to the hypothesis that this was

the maximum number of real solutions. The following year Primrose [45] proved the 16

solution hypothesis to be correct using projective geometry. Papers by Lee and Liang in

1987 [46] and 1988 [47] extended the work by Duffy to obtain a polynomial of degree 16 in

the tangent of the half-angle of one of the joint variables.

In 1990 a paper by Raghavan and Roth [48] introduced an algorithm for a complete

solution to the inverse kinematics problem for 6R-manipulators. Elimination methods are

used on a set of nonlinear equations to obtain a polynomial of degree 16 which can be

solved and then each solution back-substituted to obtain the 16 sets of joint angles. This
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algorithm is the basis for the work of many other researchers. One example is Manocha and

Canny [49] in 1992 where the efficiency of the Raghavan-Roth algorithm is improved using

symbolic preprocessing and Eigenvalues. Another Eigenvalue technique was developed in

1993 by Kohli and Osvatic [50] who use the Eigenvalues of a 16× 16 matrix that represent

the equations that are linear in one variable; a similar algorithm was introduced in the same

year by Ghazvini [51] in which he used the fact that the equations of Raghavan and Roth

are linear in the tangent of the half angle of the third joint variable to set up a generalized

Eigenproblem.

The algorithms based on the method of Raghavan and Roth are the most well known

though many other authors have provided their input on the inverse kinematics problem. In

2006 a new algorithm for the inverse kinematics of 6R-manipulators that utilizes the kine-

matic mapping of displacements and the constraint varieties of serial chains was presented

by Pfurner in [7, 34, 35, 52, 53]. This new algorithm is the basis for the method of solving

the inverse kinematics problem used in this dissertation. The kinematic mapping technique

for the inverse kinematics of general 6R-chains is discussed in Section 2.4.

2.2.5 Manipulator Workspace Analysis

In its simplest form, the workspace of a manipulator is the volume of space that can be

reached by a reference point on the EE of a manipulator [9]. The definition of a workspace

can be further refined and most references focus on two definitions in particular, the reach-

able and dextrous workspaces. The reachable workspace is the volume of space in which the

EE can be positioned in at least one orientation and the dextrous workspace is the volume

of space in which the EE can be positioned in all orientations, if such a space exists for a

particular manipulator.

Theoretically the reachable workspace is obtained by identifying the position of the

origin of the EE reference frame for every combination of the n joint variables, though doing

so directly is impractical and comparing the resulting workspaces of different manipulators

is difficult.

The dextrous workspace, if it exists for a particular manipulator, is a subspace of the
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reachable workspace. At each point in the dextrous workspace the manipulator can be

arbitrarily oriented (i.e. in three-dimensional Euclidean space the EE can be oriented at

any combination of roll, pitch and yaw angles). An example of a device with a dexterous

workspace that is as large as its reachable workspace is the Atlas motion platform [54].

A manipulator with less than six DOF cannot obtain general poses in three-dimensional

Euclidean space [9]. Manipulators may posses a dextrous workspace based on the types

of kinematic pairs used and their configuration, however due to realistic limitations to the

motion such as joint limits (most revolute joints cannot rotate a full 360◦) or self-collisions

(components of the manipulator collide with one another) the dextrous workspace is much

smaller than suggested theoretically.

While the reachable and dextrous workspaces are the most common in literature Castelli,

Ottaviano and Ceccarelli [55] have compiled a list of additional workspaces that may be

considered. The list is based on types of workspaces defined by Lee and Yang [56] and

Merlet [24]. In addition to the reachable and dexterous workspaces they list:

total orientation workspace the EE positions that can be reached by a manipulator

with a specified range of orientations;

orientation workspace the orientations that can be achieved when the manipulator EE

is in a particular position; and

constant orientation workspace the EE positions that can be reached with one specified

orientation.

These additional workspace classifications are not addressed further in this dissertation,

but are presented because they may be used for future work. The solvability of the inverse

kinematics problem is dependent on the desired EE position lying in the reachable workspace

of the manipulator and the desired orientation being in the orientation workspace at that

point.

The type of workspace most relevant to this dissertation is the reachable workspace.

The reachable workspace is defined by Choset [57] as the set of points in the ambient space
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around the manipulator that can be reached by a specific point or EE of a kinematic chain.

In literature the analysis of the reachable workspace of a manipulator is approached using

either numeric or algebraic techniques with the former being much more abundant and

the later being either focused on very specific manipulators (usually short R-chains) or

addressed in a general manner very similar to techniques used to find the direct kinematics

of a manipulator. The numeric analysis appears to begin with Roth in 1975 [58] where

he examines the relationship between the kinematic geometry of a manipulator and its

performance. Kumar and Waldron in 1980 [59] and 1981 [60] present a numeric algorithm

for tracing the boundary surfaces of a mechanism’s workspace.

In 1983 Yang and Lee published two companion articles [56, 61] that discuss methods

for obtaining and evaluating the workspace of a manipulator. The first paper, [61], suggests

a method for analytically determining the workspace of a manipulator which, as presented

in the paper, is essentially the same as obtaining the direct kinematic equations. The paper

then continues by discussing how to find holes and voids in the reachable workspace of

R-chains by starting at the joint closest to the EE, looking at the workspace and then mov-

ing to the next joint and examining how the cross-section of the first workspace interacts

with the joint axis to determine if any holes or voids are created. The process is then re-

peated by examining progressively larger workspace cross-sections with each successive joint

until the base is reached. This technique can be used for R-chains but is not general enough

to be easily applied to other kinematic pairs, such as those explored in this dissertation.

The companion paper, [56], presents an algorithm for finding the workspace boundaries,

uses the cross-section of the workspace to determine the volume of the workspace and pro-

poses performance indices for manipulators. The algorithm for the boundary determination

steps through all achievable joint angle combinations to find a convenient cross-section of

the workspace and utilizes the axial symmetry when rotating an R-pair to determine the

reachable workspace boundaries and its volume. The proposed performance indices, the

volume index (VI), relates the volume of the manipulator workspace to the total length

of the manipulator. Similar geometric techniques are employed in [62–65] to determine

the dextrous workspace of parallel manipulators, utilizing the axial symmetry of R-pairs to
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transform the workspace of shorter chains.

In 1983 Tsai and Soni [66] recognized that as the number of joints in an R-chain increases

it becomes increasingly impractical to describe the boundaries of the workspace by explicit

equations. The authors instead describe how to find the contour of the workspace on an

arbitrary plane and suggest using multiple planes to gain an understanding of the workspace

as a whole. In 1986 Kumar and Patel [67] addressed issues with graphically representing

and manipulating the workspace of a manipulator on a computer display. The technique

involves representing the workspace as a series of points or pixels. A similar technique

is employed by Castelli, Ottaviano and Ceccarelli in 2008 [55] that divides the ambient

space around a manipulator into pixels and steps through the available joint angles (similar

to [56], but not limited to a cross-section) to determine which pixels can be reached by

the manipulator. The algorithm of Castelli et al. is summarized in Section 2.2.5 as similar

concepts are used in the original workspace algorithm presented in this dissertation.

Other investigators, such as Ceccarelli in 1989 [68] and 1996 [69], have taken an algebraic

approach to the determination of the reachable workspace of a manipulator, however these

papers focus on R-chains. These techniques utilize the axial symmetry of the workspaces

of R-chains to facilitate the derivation of an analytic description of the workspace. These

techniques cannot be easily adapted to chains constructed using other kinematic pairs as

the same axial symmetry does not necessarily exist in such manipulators.

Castelli’s Algorithm for Obtaining the Reachable Workspace

Castelli et al. [55] have presented an algorithm for obtaining the reachable workspace of a

manipulator. The algorithm involves discretizing the ambient space around a manipulator

into three-dimensional elements called pixels and incrementing each joint angle in sequence

by a small amount to determine which pixels are reached by the EE. The following outlines

the algorithm step-by-step.

1. Determine the extreme values in each of the X, Y , and Z axes that can be reached

by the EE of the manipulator.
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2. Select the desired resolution in each axis (the dimensions of each pixel), ∆X, ∆Y ,

and ∆Z.

3. Define two three-dimensional arrays, Pijk and Dijk, that each represent the discretized

ambient space, that is each of the elements in the arrays represents one pixel of the

ambient space. The Pijk array is a binary array whose elements are set equal to one if

the EE of the manipulator can be placed within that pixel and zero if it cannot. The

Dijk array counts the number of times a particular pixel is reached by the EE as each

joint of the manipulator is incremented. The elements of both arrays are initially set

to zero.

4. Starting with a predetermined set of joint variables, sequentially step each joint vari-

able by a small amount and complete the following steps for every possible combination

of joint variables. The step size must be determined for each manipulator based on its

design parameters and the ambient space pixel size (based on the required accuracy

and time/computing power constraints).

4.1 Determine, using the direct kinematics, the position of the EE in the ambient

space.

4.2 Determine which pixel the EE is in (i.e. determine the values of i, j, k in the

subscript of Pijk and Dijk).

4.3 Set the element of Pijk corresponding to the reached pixel equal to one, if it is

not already equal to one, to indicate that the pixel corresponding to that matrix

element has been reached.

4.4 Increment the element of Dijk corresponding to the reached pixel by one to count

the number of times that pixel is reached.

The discretization of the ambient space and the determination of reached pixels are

important to the original workspace work presented in this dissertation.
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2.3 Constraint Varieties

Constraint varieties are used in this dissertation to describe the displacements, represented

by points in P 7, that a mechanism bound by mechanical constraints can achieve. The EE

of a mechanism is constrained to move within its reachable workspace and in the kinematic

image space the displacement from the base frame to any unique EE pose is represented by

a point. If, as shown in Section 2.1.6, every point on S2
6 excluding the exceptional generator

maps to a displacement, then the set of displacements of a constrained mechanism is a

subset of all points on S2
6 . Then, as noted by Hayes et al. [8], because a continuous motion

is a continuous set of displacements, a constrained motion will map to a continuous set

of points on S2
6 in P 7. Depending on the nature of the mechanical constraints the set of

points in P 7 obtainable by a mechanism may be represented by a line, surface or higher

dimensional algebraic variety.

A definition of varieties is useful at this time, but first the nomenclature for polynomials

must be defined. The set of all polynomials in n variables is denoted by k[x1, . . . , xn],

such that k is any field (for example real numbers, R, natural numbers, N, or complex

numbers, C) and a polynomial is a finite sum of terms having the form axβ11 · · ·x
βn
n with

βi ∈ N, i = 1, . . . , n and a ∈ k. For a finite set of polynomials {f1, f2, . . . , fs} ∈ k[x1, . . . , xn],

the set of all solutions to the system f1 = 0, f2 = 0, . . . , fs = 0 is called the variety defined by

{f1, f2, . . . , fs}, and is represented by V (f1, f2, . . . , fs). This leads to the term constraint

variety. In this dissertation constraint varieties will be given as the intersection of a set

of polynomials and the intersections occur at the point or set of points in P 7 where all

polynomials in the set are identical to zero. That is, the variety defined by the set of

polynomials that result from the mechanical constraints.

The number of polynomials in the set depends on the number of constraints. In P 7

any point is represented by seven homogeneous parameters as shown in Sections 2.1.4 and

2.1.6 meaning that seven parameters must be defined to define a displacement. If a single

constraint is provided, defined by a joint variable, a variable joint angle for an example, with

the remaining joint parameters defined constants, then the constraint variety is defined by
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six polynomials (S2
6 and five others.) In some cases, such is in Hayes et al. [8], Brunnthaler

[14] or Pfurner [7] the constraint varieties may be defined by the intersection of some

geometric entity with S2
6 but for the purposes of this thesis the constraint variety is given

as the intersection of a set of polynomials.

A constraint variety may be visualized as a surface in the kinematic mapping image

space. The points of the surface represent all possible displacements of the end effector

reference frame given the constraints imposed by the kinematic chain. For example, for a

planar 2R chain the constraint variety is a hyperboloid of one sheet in a three-dimensional

subspace of the kinematic mapping image space, as illustrated in Figure 2.6 [8].

Figure 2.6: Projection of the constraint of an arbitrary planar 2R-chain to a three-
dimensional subspace of the kinematic mapping image space [8].

2.3.1 A New Method for Obtaining Constraint Varieties of Serial Chains

Obtaining the constraint variety of serial kinematic chains is a critical element of Pfurner’s

inverse kinematics algorithm for 6R-chains (Section 2.4). The adaptation of Pfurner’s al-

gorithm to A-chains [1,70] requires the determination of the constraint variety of A-chains,

and more specifically 2A-chains. The derivation of the canonical 2A-chain constraint vari-

ety in the work presented in [1] proved to be very challenging using elimination methods
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and with the updates to the DH-parameters of A-chains to be presented in this disserta-

tion it is required that the constraint varieties be re-evaluated. Since the publication of

the original A-chain inverse kinematics algorithm [1] a new approach to obtaining a useful

representation of the constraint variety has been developed by Walter and Husty [71]. This

section describes the new method, called the implicitization algorithm, which is applied to

2A-chains in Section 3.1.4. Applications of the implicitization algorithm for obtaining the

constraint varieties of various manipulators are presented in [72–75].

The Algorithm for the Implicitization of Kinematic Constraint Equations

The purpose of the implicitization algorithm is to take the parametric representation of the

constraint variety in the Study space (the Study parameters are represented by functions

of the n joint variables) and convert them to implicit polynomials in terms of the Study

parameters.

The algorithm, taken from [71], requires the parametric representation of the constraint

variety in the kinematic image space. This is obtained by finding the matrix form of the

direct kinematic equations using Equation (2.19) and obtaining the Study parameters via

Equations (2.14) and (2.15). The result is the eight Study parameters being represented by

parametric equations of the form

x0 = f0(t1, . . . , tn)

x1 = f1(t1, . . . , tn)

...

y3 = f7(t1, . . . , tn),

(2.22)

where the ti terms are the joint variables. The Study parameters are homogeneous and

therefore any non-zero factors common to all of the equations can be eliminated to simplify

the equations as much as possible.

It is noted in Section 2.3 that for most serial manipulators the number of implicit

equations, m, required to define the variety V ∈ P 7 which contains the Study parameters of
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all displacements achievable by the manipulator is m = 6− n and one of those equations is

always the Study quadric, S2
6 , given by Equation (2.12). The intent of this algorithm is to

find the remaining m− 1 independent implicit equations whose intersection with S2
6 defines

the constraint variety. These equations are homogeneous polynomials in terms of the Study

parameters x0, x1, x2, x3, y0, y1, y2, y3. Each equation is equal to zero for all values of the

joint parameters ti.

To find these polynomials Walter and Husty propose using an initial guess, or ansatz,

of a homogeneous polynomial of degree n in terms of the Study parameters, starting with

a linear polynomial (n = 1) and increasing the degree as necessary until m− 1 independent

equations are obtained. A general linear polynomial takes the form

f = C1x0 + C2x1 + C3x2 + C4x3 + C5y0 + C6y1 + C7y2 + C8y3 = 0, (2.23)

where the coefficients Ci are currently unknown. For the linear polynomial ansatz there are

eight unknown coefficients while for polynomials of higher degree n there are n+ 7 choose

n, i.e.
(
n+7
n

)
, unknown coefficients. Substitution of the parametric representation of the

constraint variety, Equation (2.22), into Equation (2.23) yields a polynomial f(t1, . . . , tn)

in terms of the joint variables, ti, with the coefficients Ci. Collecting and extracting the

coefficients of the powerproducts of the ti terms yields a set of linear equations in terms of

the unknown Ci which must all equal zero to satisfy f(t1, . . . , tn) = 0. Depending on the

design of the chain there may be more equations than unknowns, suggesting that there is

no solution, however some of the equations may be dependant. All independent solutions

to the system are part of the variety V whose intersection defines the constraint variety.

If no solution other than the trivial solution (the null vector) can be found for the system

then the degree of the ansatz polynomial is increased to n = 2 and the determination of the

coefficients is repeated for the 36 coefficients of the general quadratic polynomial. It should

be noted that the Study quadric should be one of the solutions obtained at this stage. If

the procedure thus far has failed to produced m independent equations (including S2
6) the

degree of the ansatz polynomial is increased and the procedure for obtaining the coefficients
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is repeated until all of the equations are found. As each new polynomial is obtained it is

important to verify that it is independent of the previously obtained polynomials, including

S2
6 . To do this Walter and Husty suggest reducing each new polynomial with respect to a

Gröbner basis [76–78] generated from all previously obtained polynomials.

The intersection of the m polynomials obtained by the algorithm is the implicit repre-

sentation of the constraint variety for the given kinematic chain. It is noted by Walter and

Husty that this algorithm, in some cases, may produce a constraint variety that is larger

than that obtained by the actual kinematic chain, though the true constraint variety is

always contained within the resulting implicit representation.

2.4 The Inverse Kinematics of General 6R-Chains Using

Kinematic Mapping

The method of solving the inverse kinematics problem for 6R-manipulators using kinematic

mapping was first introduced by Husty, Pfurner and Schröcker [34] and was further general-

ized by Pfurner [7]. This section provides an overview of these techniques focusing on those

that are relevant to the work presented in this dissertation. The adaptation and application

of this inverse kinematics algorithm for A-chains is introduced in Section 2.5.6 and further

developed in Chapter 3.

Consider a prescribed EE target pose, Σtarget, for a known 6R-manipulator. It is desired

to obtain all sets of joint parameters required to make the EE frame, ΣEE , coincident with

Σtarget. This is illustrated for a general 6R-manipulator in Figure 2.7. The manipulator

is theoretically “split” into two 3R-chains which will be called the left and right chains.

The split is made where the third link meets the fourth joint. The left chain maintains the

original base frame Σ0, called Σ0L when referring to the left chain, and the new EE frame

of the left chain, ΣL, is affixed at the break in the original chain. The left chain contains

Joints 1, 2 and 3 from the original 6R-chain. The new “base” of the right chain, Σ0R, is

coincident with ΣEE in the target pose and the EE of the right chain, ΣR is coincident

with ΣL before the chain is broken. That is, when ΣL and ΣR are coincident, the original
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Figure 2.7: Illustration of inverse kinematics problem for a general 6R-manipulator.

Figure 2.8: Illustration of left and right 3R-chains with reference frames.

6R-chain is obtained. The right chain contains Joints 4, 5 and 6 from the original 6R-chain.

From Σ0R to ΣR the order of the joints is Joint 6, 5, then 4. Figure 2.8 illustrates the split

into the two 3R-chains and placement of reference frames for the left and right chains.

The direct kinematic equations for the left and right chains are found using Equation

(2.19). The constraint variety is then determined for each chain, providing the set of all

points in P 7 that represent the manifold of all possible displacements from the base frame

to the EE frame achievable by the 3R-manipulator. If the target EE pose is within the

workspace of the 6R-manipulator then the constraint varieties of the left and right chains

will intersect in at least one real point in P 7. The set of all intersection points provides all
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the real sets of joint angles that keep ΣL and ΣR, as well as ΣEE and Σtarget coincident

and the 6R-chain unbroken.

Theoretically this technique should apply to all six-jointed manipulators, but requires

the determination of the constraint varieties for each of the left and right chains, which

varies for different combinations of joint types. In [7] Pfurner provided the derivation of

the constraint varieties for 3R-chains and uses them to describe an algorithm to obtain the

inverse kinematic solution to general 6R-manipulators.

Pfurner shows that the constraint variety of the 3R-chain is a well known geometric

entity called a Segre manifold, which consists of four hyperplanes in the kinematic image

space. This observation allows for simplification of the inverse kinematics algorithm for 6R-

manipulators, but has no application to this dissertation and will not be discussed further,

except to say that the intersection of the Segre manifolds for the left and right chains with S2
6

results in 16 intersection points. Some of these intersection points may be real, representing

physically-obtainable solutions to the inverse kinematics problem (ignoring joint limits and

self-collisions); and some may be complex conjugate, which have no physical meaning but

still mathematically result in ΣL and ΣR being coincident. But, there are at most 16 real

intersection points, which correspond to the fact that there are at most 16 solutions to the

inverse kinematics problem (see Section 2.2.4). More information about Segre manifolds and

the intersection of these special constraint varieties to solve the inverse kinematics problem

for general 6R-chains is to be found in [7].

2.5 The Algebraic Screw Pair

The concept of the Algebraic Screw pair, or A-pair, was introduced in [1] to take advantage

of the undesirable, yet well-defined self-motions of a special six-legged parallel manipulator

called the Griffis-Duffy Platform (GDP). This section describes GDPs in general, empha-

sizing the characteristics and the special configuration that is relevant to this dissertation.

The self-motion phenomenon associated with the relevant configuration is then discussed,
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leading to how the GDP is used as a kinematic pair in a serial kinematic chain. The kine-

matic chain constructed using the special configuration of GDP is called an A-pair and

kinematic chains constructed using serially-connected A-pairs are called A-chains. This

section concludes with an introduction to the kinematics of A-chains based on the work

presented in [1].

2.5.1 Overview of Griffis-Duffy Platforms

The GDP is a special configuration of the six-legged Gough-Stewart platform patented by

Griffis and Duffy in 1993 [79]. The GDP is characterized by a planar fixed base and planar

moving platform each connected by six legs with six specially placed spherical joint anchor

points on each of the moving and relatively fixed platforms. The anchor points lie on the

perimeter of a triangle on each platform. Six of the anchor points are located one on each

of the vertices of the two triangles and the remaining six anchor points are located one on

each edge of the triangles such that each leg has one anchor point on the fixed base and

one anchor point on the moving platform.

The patent by Griffis and Duffy proposes controlling the pose of the platform by actively

changing the length of each leg using linear actuators. As is shown in the next section,

controlling the leg lengths may not provide for full control of the EE pose for all GDPs

because many sets of anchor point locations lead to the phenomenon of self-motion, which

means there can be motion between the fixed and moving platforms that is not controllable

even when the leg lengths are held fixed. It is these constant leg length self-motions which

are exploited by A-pairs.

There are many different GDP architecture configurations that satisfy the definition of a

GDP. One additional common condition, though not necessary, is that each edge connection

be on the midpoints of the line segments between vertices of the triangle. With this condition

there are still many possible configurations, but two important groups are vertex-to-vertex

and midline-to-vertex. In the vertex-to-vertex configuration, shown in Figure 2.9, a leg with

a vertex anchor point on the base has a vertex anchor point on the platform, with the order

of the leg end points around the perimeters of the triangles being the same on both the fixed
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Figure 2.9: Example of the vertex-to-vertex configuration of GDP.

base and moving platform. The midline anchor points are between the same legs on both

the fixed base and moving platform. The midline-to-vertex configuration, shown in Figure

2.10, connects a vertex anchor point on the fixed base with a midline anchor point on the

moving platform and vice versa, maintaining the same order of legs around the perimeter

Figure 2.10: Example of the midline-to-vertex configuration of GDP.
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of the fixed base and moving platform.

It is the midline-to-vertex configuration that is used to create the A-pair, with the added

conditions that the fixed base and moving platform anchor points form congruent equilateral

triangles. This configuration is used because the self-motions of the platform are simple and

the moving platform remains parallel to the fixed base throughout the self-motions when

the legs are of equal length.

2.5.2 Self-motions of GDPs

In [80], Husty and Karger examine self-motions of GDPs. The term self-motion refers to

the ability of the EE of a mechanism to move without actuator input. In the GDP this

means that the moving platform can move relative to the fixed base without changing

the leg lengths. Husty and Karger’s procedure for obtaining the self-motions of a GDP

is summarized here. Discussions on the self-motions of all Gough-Stewart platforms are

provided in [81,82].

Husty shows in [27] that a set of seven quadratic equations governs the direct kinematics

for all Gough-Stewart platforms. One of the equations is S2
6 , Equation (2.12), and the

remaining six are of the form

hi = Ri(x
2
0 + x2

1 + x2
2 + x2

3) + 4(y2
0 + y2

1 + y2
2 + y2

3)− 2x2
0(Aa+Bb+ Cc)+

2x2
1(−Aa+Bb+ Cc) + 2x2

2(Aa−Bb− Cc) + 2x2
3(Aa+Bb+ Cc)+

2x2
3(Aa+ bb− Cc) + 4(x0x1(Bc− Cb) + x0x2(Ca−Ac) + x0x3(Ab−Ba)−

x1x2(Ab+Ba)− x1x3(Ac+ Ca)− x2x3(Bc+ Cb) + (x0y1 − y0x1)(A− a)+

(x0y2 − y0x2)(B − b) + (x0y3 − y0x3)(C − c) + (x1y2 − y1x2)(C − c)−

(x1y3 − y1x3)(B − b) + (x2y3 − y2x3)(A− a)) = 0,

(2.24)

with i = 1, . . . , 6. The terms (a, b, c) are the coordinates of the anchor point for leg i

moving with the moving platform of the manipulator in a reference frame fixed to the

moving platform, (A,B,C) are the coordinates of the corresponding anchor point for leg i

on the fixed base of the manipulator in a reference frame affixed to the fixed base, and
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Ri = A2 + B2 + C2 + a2 + b2 + c2 + r2
i , with ri, i = 1, . . . , 6 being the joint parameter

or length of leg i. The variables xj and yj , j ∈ {0, . . . 3} are the Study parameters. It is

convenient to assign the base and platform reference frames such that the equations are as

simple as possible, which can be done without loss in generality.

For general Gough-Stewart type manipulators the solution to the set of seven quadratic

equations is a set of discrete points on S2
6 . There are however platform configurations

including, as Husty and Karger show, many GDP configurations where the solution variety

is a curve or surface on S2
6 , meaning that the platform can move independent of the joint

parameters, which are assigned fixed values for a particular pose.

In [80] Husty and Karger use the midline-to-vertex configuration with the coordinates

given in Table 2.1. The coordinate systems are shown in Figure 2.11, wherein the variables

Table 2.1: Coordinates of anchor points for special midline-to-vertex configuration.

A B C a b c

P1 −p 0 0 p1
q
2

q
√

3
2 0

P2 0 0 0 p2 0 q
√

3 0

P3 p 0 0 p3 − q
2

q
√

3
2 0

P4
p
2

p
√

3
2 0 p4 −q 0 0

P5 0 p
√

3 0 p5 0 0 0

P6 −p
2

p
√

3
2 0 p6 q 0 0

p and q are defined. With these coordinates, the six constraint equations hi, i = 1, . . . , 6

can be constructed by substituting the values from Table 2.1 into Equation (2.24) for each

leg. The seventh constraint equation is the Study quadric S2
6 . A set of five difference

equations, Ui, i = 1, . . . , 5, that are linear in the terms y0, y1, y2 and y3 is constructed where

U1 = h1 − h3, U2 = h2 − h5, U3 = h4 − h6, U4 = h1 − h2 and U5 = h1 − h4. The motion

of interest is where all leg anchor points on the platform move on a spherical path. This is

called Borel-Bricard motion and is discussed by Bottema and Roth [12]. Such motions lead

to the situation where x1 = x2 = 0. Three of the difference equations are used to construct

a system that can be solved for four of the yi terms. The remaining Study parameters

can, without loss in generality, be set such that x0 = cos(θ) and x3 = sin(θ) to yield the
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Figure 2.11: Midline-to-vertex GDP with coordinate systems and variables defined.

transformation matrix

Q =



1 0 0 0

2
3ρ
√

3 sin(θ) cos(θ) cos(2θ) − sin(2θ) 0

2
3ρ
√

3 sin2(θ) sin(2θ) cos(2θ) 0

ρ cos(θ) 0 0 1


, (2.25)

where ρ is a function of the leg length r, and θ is the rotation of the moving platform

frame relative to the fixed base frame about an axis perpendicular to both triangles. The

transformation from the platform coordinate system with position vectors x to the base

coordinate system with position vectors x0 is given by

x0 = Qx. (2.26)
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Of interest in this dissertation is the change in distance between the base and platform.

From Q it can be shown by a linear translation that a point at the geometric centre of the

platform triangle moves on a line perpendicular to the plane of the platform, where the

motion is characterized by

Q =



1 0 0 0

0 cos(2θ) − sin(2θ) 0

0 sin(2θ) cos(2θ) 0

ρ cos(θ) 0 0 1


. (2.27)

When θ = 0 the distance between the base and platform is ρ.

An alternative zero position, that differs from the one presented by Husty and Karger,

is the theoretical position where the fixed base and moving platform are coincident. In this

position the rotation angle between the fixed base and moving platform is zero (θ = 0).

This position is not obtainable in reality as it requires that the rigid fixed base and moving

platform of the GDP pass through one another, but it is conceptually useful for analysis.

The variable θ refers to the rotation angle about the shared Z-axis of the frame affixed to

the moving platform relative to the frame affixed after the new zero position is established.

After shifting the zero position of the platform and repositioning the moving platform

coordinate system such that it is coincident with the fixed base coordinate system in the

new zero position, which can be done without loss in generality, the motion of the point at

the geometric centre of the platform triangle is now given by

Q =



1 0 0 0

0 cos(θ) − sin(θ) 0

0 sin(θ) cos(θ) 0

ρ sin
(
θ
2

)
0 0 1


(2.28)

and the distance, d, between the fixed base and moving platform is sinusoidal, given by the
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equation

d = ρ sin

(
θ

2

)
, (2.29)

where ρ is a function of the GDP geometry and its value is obtained in Section 3.1.

It is this well-defined one DOF self-motion that is utilized to construct the A-pair.

Equation (2.29) describes the coupled translation and rotation that is utilized by the A-pair

and requires an adaptation of serial manipulator kinematic and dynamic analysis.

2.5.3 The Griffis-Duffy Platform as a Kinematic Pair

The A-pair is based on the midline-to-vertex configuration of the GDP with congruent,

equilateral base and platform triangles and all six legs being the same fixed length such

that the path of any point on the platform undergoing a self-motion is the same as that

described in Section 2.5.2. The fixed-length legs of the GDPs are passive such that the

only relative motion between each fixed base and moving platform is due to the self-motion

phenomenon. To simplify the computations the added constraint that the leg lengths, l, are

equal to the height, h, of the congruent fixed base and moving platform triangles is used.

Figure 2.12 shows the dimensions of the fixed base and moving platform triangles. The

constraint l = h is applied so that the entire range of self motions can be obtained without

disassembling and reassembling the joint (if self-collisions of the legs, fixed base and moving

Figure 2.12: Illustration of the fixed base and moving platform triangle height, h, and side
length, a.
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platform are ignored). In the early analysis of A-pairs (such as [1, 83]) self-collisions were

ignored, that is it was assumed that the individual solid bodies that make up the fixed base,

moving platform and legs of the A-pair can pass through each other and occupy the same

points in space at the same instant.

For the described configuration it is shown in Section 2.5.2 that self-motions result in a

coupling of rotation and translation of the platform. The displacement of the platform along

the joint axis mutually perpendicular to the fixed base and moving platform, d, is related to

the rotation angle about the joint axis, θ, by the Equation (2.29). When replacing an R-pair

in a chain with the special configuration of GDP the rotation axis of the joint is unchanged.

The base of the GDP connects to one link, Link i − 1, and the platform connects to the

other link, Link i, such that if Link i − 1 is fixed Link i will rotate and translate relative

to Link i− 1. The base link, or ground link, is called Link 0 (corresponding to i = 0). The

joint axis is the line mutually perpendicular to the fixed base and moving platform and that

passes through the geometric centres of the fixed base and moving platform triangles.

The coupling of rotation and translation leads to a kinematic pair which is referred to as

an A-pair [1]. In a traditional screw pair (or helical pair, H-pair) the relationship between

the rotation and translation is linear, while in the case of the A-pair this relationship is

an algebraic equation (after utilizing the tangent of the half-angle substitution to eliminate

trigonometric functions). Replacing the R-pair joints of the 6R-manipulator with A-pair

joints makes it a 6A-manipulator. There exist many possible A-pair configurations but for

the purposes of this dissertation the term A-pair refers to the special configuration of GDP

described previously.

When an R-pair in a serial chain is actuated the pose of the EE frame is displaced

relative to the base frame by a rotation about the actuated joint’s axis. For an A-pair

the motion is different, the joint axis and magnitude of the rotation is unchanged, but

there is now a translation parallel to the joint axis that is a sinusoidal function of the joint

angle. The addition of coupled rotation and translation necessitates an examination of the

kinematic and dynamic properties of serial chains constructed using A-pairs.
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2.5.4 Preliminary Assignment of DH-Parameters to A-Chains

The coupling of translation and rotation in the A-pair requires some modifications to

the descriptions of the DH-parameters introduced in Section 2.2.2. The assignment of

DH-parameters to A-chains is initially addressed in [1] however, though not incorrect, the

DH-parameters assigned in that work have proven to be insufficient to unambiguously de-

scribe the kinematic chain. This section shows how the A-chain DH-parameters are ad-

dressed in [1] and Section 3.1 provides the revisions to the assignment of DH-parameters

that address the ambiguities and are original to this dissertation.

The assignment of reference frames and basic DH-parameters for nA-chains are similar

to those for nR-chains presented in Section 2.2.2. The method begins with the same initial

steps: each joint axis is determined and reference frames are affixed to each link based on

the interactions of the adjacent joint axes.

The definitions of most of the DH-parameters remains unchanged from Section 2.2.2,

such as the link length, ai, link twist, αi and joint angle, θi. In the A-chain the joint offset,

di, is now variable, but coupled to θi. The di term is separated into two parts, one fixed

and one variable. The variable component is known and is equal to ρ sin
(
θi
2

)
. The fixed

component depends on the architecture of the manipulator and has the same definition as

in Section 2.2.2 when Joint i is in the zero position. Figure 2.13 shows the application of

the DH-parameters to a link connecting two A-pair joints.

This description, taken from [1], proves to be incomplete because of the coupling of

translation and rotation. To provide for a completely unambiguous description it is neces-

sary to clearly identify a certain position of the coupled translation and rotation, i.e. the

home position. This additional parameter for A-pairs is part of the new work introduced

in Section 3.1.

2.5.5 The Direct Kinematics of A-Chains

The method for obtaining the direct kinematic equations for nA-chains is very similar to the

method presented in Section 2.2.3 for serial chains (the material presented in Section 2.2.3
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Figure 2.13: The DH-parameters applied to a link in an A-chain.

is intended for R-chains and/or P-chains). The direct kinematics of A-chains is introduced

in [1] using the non-general A-chain DH-parameters of Section 2.5.4 and the assumption

that the geometric constant in Equation (2.29) is equal to unity, ρ = 1. This assumption

is shown to not be general in Section 3.1.2, regardless, the basic theory presented in [1] is

correct and is revisited in this section to highlight the new work presented in Section 3.1.

The matrix form of the nA-chain direct kinematic equations is found by Equation (2.19)

with updated Mi and Gi matrices, i = 1 . . . n. The Gi matrix remains unchanged, though

the definition of the di term is altered according to the discussion in Section 2.5.4. The

matrix Mi is altered to account for the translation that is coupled with the joint rotation
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and becomes

Mi =



1 0 0 0

0 cos(θi) − sin(θi) 0

0 sin(θi) cos(θi) 0

ρ sin( θi2 ) 0 0 1


. (2.30)

The (4, 1) element of Mi (ρ sin( θi2 )) accounts for the translation of the reference frame along

a line parallel to Axis i as Joint i rotates.

In [1] the matrix Mi is rewritten as

MIKi =



1 0 0 0

0 cos(2φi) − sin(2φi) 0

0 sin(2φi) cos(2φi) 0

ρ sin(φi) 0 0 1


, (2.31)

where φi = θ
2 is used to remove fractions. This is done to simplify the inverse kinematics

algorithm but is less intuitive. In this dissertation the Mi matrix of Equation (2.30) is

used for most of the analysis, while the MIKi matrix of Equation (2.31) is used only for the

inverse kinematics algorithm.

The Gi and Mi matrices have been assembled such that the Gi matrices contain the

link and joint parameters that remain constant at all times and the Mi matrices contain

the joint variables that change as the joint is actuated. It quickly becomes impractical to

show the substitution of the new Mi and Gi matrices into Equation (2.19) as n increases

for a completely general manipulator, but an examination of the structure of the matrices

reveals the effect of introducing the coupled rotation and translation. Recalling that in the

general transformation matrix T of Equation (2.4) the first column represents the position

vector of the origin of the frame Σ′ relative to Σ and the lower right 3 × 3 sub matrix

represents the orientation of Σ′ relative to Σ, the effect of the new joint can be seen. The

sin(θi/2) term, representing the translation part of the coupled joint motion, appears only

in the first column of Mi and the first row of both Mi and Gi is always
[

1 0 0 0

]
.
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It can therefore be seen that any term in the first column will, after matrix multiplication,

remain only in the first column of the product matrix. This means that if the R-pairs of an

nR-manipulator are replaced with A-pairs and the home positions of all joints are identical

the orientation of the EE reference frame for any set of joint variables would be unchanged

while only the position in space would be different.

In a chain with mixed joint types, such as a combination of R-, P- and A-pairs, the

appropriate Mi and Gi matrices are used for the different joints in the chain and substituted

into Equation (2.19).

2.5.6 The Inverse Kinematics of A-chains

The inverse kinematics of A-chains was the main focus in [1]. That work examined the

inverse kinematics problem as it relates to general 4A- and 6A-chains utilizing a modified

method similar to that found in [7]. The method for solving the inverse kinematics problem

for 4A-chains is complete (while it turns out that the constraint varieties obtained were

not completely general, the foundation of the theory is sound) and has been generalised

in [84]. The inverse kinematics problem for 6A-chains, as presented in [1], is presented in

theory, but in practice numeric examples are incomplete because the number of terms in

the polynomials representing the constraint varieties was prohibitively large such that it

proved to be difficult to determine the intersections of the polynomials.

This section summarises the basic theory behind the inverse kinematics algorithm of

4A-chains as presented in [1]. Within the description of the algorithm reference is made

to the constraint varieties of 2A-chains and the sets of five polynomials, whose intersection

represents the constraint variety of a 2A-chain. At this time it is assumed that the polyno-

mials used to represent the constraint varieties are known, even though their derivation has

yet to be shown. The constraint varieties obtained in [1] were based on assumptions that

have proven to be invalid and therefore are not provided here. The update to the constraint

varieties of A-chains is presented in Section 3.1.4 and the inverse kinematics of 4A-chains

is revisited in Section 3.8.
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The Inverse Kinematics Algorithm for 4A-Chains

For a known 4A-manipulator the inverse kinematics problem involves obtaining all sets of

four joint variables that put the EE in a target pose, Σtarget, described by matrix EET ,

relative to the base frame. Real solutions exist only if the target pose is within the workspace

of the manipulator. The inverse kinematics algorithm for 4A-chains is based on the 6R-chain

inverse kinematics algorithm [7] that is summarised in Section 2.4.

The 4A-chain is theoretically broken at the end of the second link where it connects to

the third joint. When the 4A-chain is unbroken ΣL and ΣR are coincident with reference

frame Σ2. This means ΣL and ΣR are affixed to the ‘fixed’ base of the GDP making up the

third A-pair in the chain, when the ‘fixed’ base of Joint i is considered to be the part of

the joint fixed to Link i− 1. Figure 2.14 shows where the theoretical break is made in the

4A-chain to produce the base and EE 2A-chains.

The base 2A-chain contains Joint 1, Link 1, Joint 2, and Link 2 of the original 4A-chain.

Figure 2.14: 4A-manipulator showing the theoretical break between the base and EE 2A-
chains. In the figure the base 2A-chain is labelled as the Left Chain and the EE 2A-chain
is labelled as the Right Chain, based on their respective positions in the figure.
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The base reference frame of the base 2A-chain, Σ0L, remains the same as the base reference

frame of the original 4A-chain, represented by frame Σ0. The EE 2A-chain contains Joint

3, Link 3, Joint 4, and Link 4 of the original 4A-chain. The base reference frame of the EE

2A-chain, Σ0R is established as the 4A-manipulator EE in the target pose. Frame Σ0R is

known and fixed relative to Σ0. The order of the joints in the EE 2A-chain is Joint 4 then

Joint 3 of the original chain.

With the two 2A-chains defined it is now possible to obtain the constraint varieties of

the base and EE 2A-chains by utilizing the constraint varieties of the 2A-chains (again,

assume that the five polynomial equations, in terms of the eight Study parameters, whose

intersection represents the constraint variety of the 2A-chains are known). The assumption

that the base of the original 4R-chain was selected such that as many DH-parameters as

possible are zero has been made, meaning that the base reference frame of the manipulator

is coincident with the universal reference frame. If this is not the case additional transfor-

mations in the base reference frame are required. The procedure for this change is similar

to that of the EE 2A-chain, and is not shown here to simplify the equations.

The constraint variety for the canonical 2A-chain includes only Joint 1, Link 1, and

Joint 2, but ΣL is located at the end of Link 2 in the left chain, meaning the effect of the

second link must be added to the constraint variety. The addition of Link 2 and ΣL is

illustrated in Figure 2.15. Link 2 is represented by substitution of the link parameters into

Equation (2.20) which, after tangent of the half-angle substitution (Section 2.11.1) is

G2 =



1 0 0 0

a2 1 0 0

0 0
1− al22
1 + al22

− 2al22
1 + al22

d2 0
2al22

1 + al22

1− al22
1 + al22


.

After obtaining the Study parameters of matrix G2 using Equations (2.14) and (2.15)

and substituting them into Tm of Equation (2.18) the transformed equations of the now
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Figure 2.15: 2A-pair showing the addition of the second link to the base 2A-chain with ΣL.

non-canonical constraint variety are found by substituting the new Study parameters, repre-

sented by vector x′, for the existing Study parameters of the constraint variety polynomials,

x, where x′ is found by

x′ = Tm(G2)x. (2.32)

The intersection of the resulting set of equations, which includes the invariant S2
6 , is the

constraint variety for the base 2A-chain.

The procedure for obtaining the equations that represent the constraint variety of the

EE 2A-chain starts by substituting −a3 and −al3 for a1 and al1 respectively into the set of

equations in the canonical constraint variety equations. The negative DH-parameters are

introduced to account for the difference between the definition of the DH-parameters in the

canonical 2A-chain and the 4A-chain.

Unlike the base 2A-chain, it is not possible to assume the base coincides with the base

used in the canonical chain and this must be accounted for. To do this, the position of
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Figure 2.16: 2A-pair illustrating the addition of the fourth link to the canonical 2A-chain
in order to obtain the EE 2A-chain with ΣR and the target frame ΣEE relative to the base
frame Σ0.

the target EE pose relative to the original base reference frame is accounted for using the

target pose matrix EET and the fact that the base of the EE 2A-chain is not at the base of

the first A-pair, but at the end of the the last link, defined by the matrix G4. Figure 2.16

shows the addition of the fourth link to the canonical 2A-chain and the position of the EE

2A-chain in space relative to the base frame. To get from the original base to the base of

the canonical form of the EE 2A-chain the matrix A is used such that

A = EETG−1
4 . (2.33)
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The inverse of G4 is used because the link is approached in the opposite direction to how it

is defined for the direct kinematics. The Study parameters of the matrix A are obtained and

substituted into the matrix Tb of Equation (2.17). Notice that this time the transformation

occurs in the base frame. The transformed equations of the constraint variety are obtained

by substituting the Study parameters x′ for x in the polynomials of the canonical 2A-chain

constraint variety, where x′ is now found by

x′ = Tb(A)x. (2.34)

The EE 2A-chain is not yet fully accounted for because the offset of the third link must

be included. In Section 2.2.2 d3 is described as the directed distance along axis Z3 and the

shift of reference frame is in the opposite direction to which d3 was defined, therefore a

translation of −d3 is required. This translation is given by the transformation matrix

G′3 =



1 0 0 0

0 1 0 0

0 0 1 0

−d3 0 0 1


. (2.35)

This translation is accounted for by again substituting x′ for x in the set of equations of

the previous step where x′ is given by Equation (2.32) with G′3 substituted for G2. The

resulting set of equations is the representation of the constraint variety of the EE 2A-chain.

This set again contains the unmodified S2
6 and four additional equations. The intersection

of the five polynomials (one of which is always the Study quadric) is the constraint variety

for the EE 2A-chain.

The constraint variety of each of the base and EE 2A-chains is described by the in-

tersection of five equations. In both cases one of those equations is the Study quadric,

S2
6 . Therefore it can be seen that the intersection of the base and EE 2A-chain constraint

varieties is the intersection of a set of eight equations with S2
6 . The unknowns in the

set of nine equations are the eight homogenous Study parameters, of which one unknown
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can be used to normalize the others leading to x0 = 1, since the exceptional generator

x0 = x1 = x2 = x3 = 0 is excluded (see Section 2.1.6). This yields an over determined set of

nine equations in eight unknowns. In general there are no solutions to an over determined

system, but due to the method of obtaining this set of equations there is at least one real

solution for a target pose that is within the 4A-manipulator workspace.

The procedure for finding the solution(s) to the intersection problem requires examining

the structure of the equations and eliminating variables in the most logical way, starting

with linear terms and working towards a univariate polynomial using seven of the nine

equations. The zeros of this polynomial are obtained and back-substituted to obtain a

set of variables that can be tested in the remaining two equations. Those sets of Study

parameters that satisfy all equations describe instances where ΣL and ΣR are coincident

and the 4A-manipulator is a continuous kinematic chain with the EE in the target pose.

The set(s) of Study parameters obtained from the intersection of the base and EE

2A-chain constraint varieties describe the pose of the coincident reference frames ΣL and

ΣR relative to Σ0. In order to obtain the four joint angles of the 4A-manipulator the inverse

kinematic problem for the two 2A-chains must be solved. For the base 2A-chain this can

be done as follows. Obtaining the Study parameters of ΣL in general, by finding the Study

parameters of the transformation matrix

EEL = M1G1M2G2, (2.36)

provides eight functions in terms of the two joint variables u1 and u2, and can be normalized

by dividing each equation by one of the others. It is useful to divide by the equation corre-

sponding to the Study parameter that was used for normalization during the intersection of

the constraint manifolds. The equations are now set equal to the set of Study parameters

obtained in the previous step for the base 2A-chain, resulting in a set of seven equations in

two unknowns. Once again, in general there is no solution to this over determined system,

but due to the nature of the problem at least one real solution exists if a real solution was

obtained when intersecting the constraint varieties. Solving two of the equations provides
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many solutions which are tested in the remaining five equations. The set(s) of joint vari-

ables that satisfy all seven equations are the solution. It is believed that like 2R-chains [34]

there is in general only one solution.

The EE 2A-chain provides the joint variables u3 and u4. The method of the base

2A-chain can be applied after some initial pre-processing. Using the matrix of Equa-

tion (2.11) the 4 × 4 transformation matrix TEER
describing ΣR relative to Σ0 can be

constructed using the Study parameters found in the solution to the intersection problem.

ΣEE relative to ΣR is given by

EET−relative = T−1
EER

EET , (2.37)

where EET−relative is the matrix describing the pose of ΣEE relative to ΣR. The transfor-

mation from ΣR to ΣEE given by

TR = M3G3M4G4 (2.38)

is a function of u3 and u4. Obtaining the Study parameters of EET−relative and the TR and

normalizing produces a set of seven equations and two unknowns that can be solved in a

similar manner to base 2A-chain yielding the joint variables u3 and u4.

With the joint variables ui, i ∈ {1, . . . , 4} obtained for every intersection point between

the base and EE 2A-chain constraint varieties, the solution to the inverse kinematic problem

has been found.

2.6 Obtaining the Jacobian Matrix of a Serial Manipulator

The Jacobian Matrix, or simply the Jacobian, of a serial manipulator is a matrix that

maps joint rates (rate at which each joint is actuated, often called the joint velocity) to

the linear and angular velocities of the manipulator’s EE. The method for obtaining the

Jacobian matrix used in this dissertation is based on Siciliano et al. [22] and Sciavicco

and Siciliano [85]. The Jacobian matrix is covered in most introductory robotics texts
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including [9, 57,86].

When working in three-dimensional Euclidean space, the Jacobian is a 6 × n matrix,

where n is the number of joints in the chain, that relates the joint rates with the linear and

angular velocity of the EE by

υe =

 ṗe

ωe

 = J(q)q̇, (2.39)

where ṗe is the 3× 1 EE linear velocity vector, ωe is the 3× 1 EE angular velocity vector,

the Jacobian, J, is a function of the joint variables which are represented by the n×1 vector

q, and q̇ is the n × 1 vector of joint rates. The ṗe and ωe components of the EE motion

can be examined separately using

ṗe = JP (q)q̇, (2.40)

and

ωe = JO(q)q̇, (2.41)

where JP and JO are the 3× n matrices that relate the contributions of the joint rates to

the EE linear velocity and angular velocity, respectively.

The Jacobian is obtained by examining the contribution of each individual joint to the

linear and angular velocities of the EE. The total linear velocity of the EE is written as

ṗe =
n∑
i=1

∂pe
∂qi

q̇i =
n∑
i=1

Pi
q̇i, (2.42)

where Pi
is the 3 × 1 vector mapping the rate of actuation of Joint i to its contribution

to the linear velocity of the EE when all other joints are held fixed. The linear velocity

contribution can come from two aspects of the joint motion: rotation and translation. For

a prismatic joint the translation component of the motion of Joint i is along the joint axis

zi−1 and actuated at a rate ḋi. The influence on the EE motion is then ṗe = ḋizi−1 = Pi
q̇i

and therefore

Pi
= zi−1. (2.43)
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For a revolute joint the joint is actuated at a rate θ̇i about the axis zi−1. The position of

the EE with respect to the joint is given by pe − pi−1, where pe is the position vector of

the EE (a function of the n joint variables) and pi−1 is the position vector of the origin of

Σi−1. The linear velocity of the EE is ṗe = θ̇izi−1 × (pe − pi−1) = Pi
q̇i and therefore

Pi
= zi−1 × (pe − pi−1). (2.44)

For a kinematic pair that couples translation and rotation, such as the A-pair, the linear

velocity of the EE is a combination of the results for a prismatic and a revolute joint and

depends on how the joint variable is defined and the relationship between the translation

and rotation.

The total angular velocity of the EE is written as

ωe = ωn =
n∑
i=1

ωi−1,i =
n∑
i=1

Oi
q̇i, (2.45)

where ωi−1,i is the angular velocity of Link i with respect to Link i − 1. For a prismatic

joint there is no angular velocity of Link i with respect to Link i− 1 so ωe = Oi
q̇i = 0 and

therefore

Oi
= 0. (2.46)

For a revolute joint the angular velocity of the EE is ωe = Oi
q̇i = θ̇izi−1 and therefore

Oi
= zi−1. (2.47)

The full Jacobian that maps the joint rates to the EE velocities by Equation (2.39) is

assembled using the vectors Pi
and Oi

as

J =


P1

Pn

· · ·

O1
On

 . (2.48)
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The Jacobian as assembled in Equation (3.54) is with respect to the base reference

frame. Siciliano, et al. [22] show that finding the Jacobian with respect to another frame, u,

requires knowing only the relative rotation matrix Ru from the base to frame u and using

Ju =

 Ru 0

0 Ru

J. (2.49)

2.7 Dynamics of Serial Manipulators

Obtaining the dynamic equations of motion of a serial manipulator is required for the

simulation of the manipulator, the development of control algorithms, and the sizing of

actuation devices. Once the dynamic equations have been obtained one can explore the

direct dynamics problem, determining how the manipulator EE will move when given joint

torques are applied, which is useful for simulation of existing or conceptual dynamic systems.

The inverse dynamics problem involves determining what joint torques are required to move

the EE in a desired trajectory, useful for motor sizing and controller design.

There are two standard methods for obtaining the dynamic equations of motion: energy

methods such as the Lagrange formulation and force balance methods such as the Newton-

Euler formulation. Because the two approaches use independent physical relationships to

derive the equations of motion, they can be used as concurrent methods: one can be used

to verify the other. Section 2.7.1 describes how the Lagrange formulation is used to obtain

the dynamic equations and Section 2.7.2 describes the Newton-Euler formulation. The

Lagrange formulation as presented here is based on [22] and [85].

2.7.1 Lagrange Formulation of the Dynamic Equations of Motion

The Lagrange formulation of the dynamic equations utilizes generalized coordinates, qi,

i = 1, . . . , n, to describe the pose of an n DOF manipulator independent of the reference

frames. The Lagrangian of the system is defined as

L = T − U , (2.50)
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where T is the total kinetic energy of the system and U is the total potential energy of the

system. The Lagrangian equations can be written in a compact form as

d

dt

(
∂L
∂q̇

)T
−
(
∂L
∂q

)T
= ξ, (2.51)

where q is a vector of the joint variables and ξ is a vector of the non conservative generalized

forces such as the joint actuator torques, joint friction torques and joint torques induced by

forces and moments applied to the EE.

In order to use the Lagrangian equations one must first determine the total kinetic and

potential energy of the system. A full derivation of the energy terms is available in [22]

and [85].

Kinetic Energy

The total kinetic energy in the serial chain is given by

T =

n∑
i=1

(Tli + Tmi), (2.52)

where Tli is the kinetic energy of Link i and Tmi is the kinetic energy of the motor driving

Joint i.

The kinetic energy of Link i is given by

Tli =
1

2
mliṗ

T
li
ṗli +

1

2
ωTi RiI

i
li
RT
i ωi, (2.53)

where mli is the mass of Link i, ṗli is the linear velocity of the link’s centre of mass (pli is

the position of the centre of mass), ωi is the angular velocity of the link, Ri is the rotation

matrix from the reference frame for Link i to the base frame, and Iili is the link’s moment of

inertia tensor with respect to the Link i reference frame. The linear and angular velocities

can be written as

ṗli = J
(li)
P q̇, (2.54)
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ωi = J
(li)
O q̇, (2.55)

where the components of the Jacobian matrix, J
(li)
P and J

(li)
O , are assembled by accounting

for only the joint motion between the link of interest and the base, i.e.

J
(li)
P =

[


(li)
P1

· · · (li)Pi
0 · · · 0

]
, (2.56)

J
(li)
O =

[


(li)
O1

· · · (li)Oi
0 · · · 0

]
. (2.57)

The columns of the Jacobian matrices depend on if the joint is prismatic:


(li)
Pj

= zj−1, 
(li)
Oj

= 0, (2.58)

or revolute:


(li)
Pj

= zj−1 × (pli − pj−1), 
(li)
Oj

= zj−1. (2.59)

The kinetic energy of Link i is now written as

Tli =
1

2
mli q̇

TJ
(li)T
P J

(li)
P q̇ +

1

2
q̇TJ

(li)T
O RiI

i
linki

RT
i J

(li)
O q̇, (2.60)

The contribution of the motor on Joint i is determined separately. The fixed part of the

motor is included with the link on which it is mounted, but the rotor kinetic energy must

be accounted for separate to that of the joint. The contribution of the gears to the kinetic

energy are included with the motors. The kinetic energy of Rotor i is

Tmi =
1

2
mmiṗ

T
mi

ṗmi +
1

2
ωTmi

Imiωmi , (2.61)

where mmi is the mass of the rotor, ṗmi is the linear velocity of the rotor’s centre of mass

(pmi is the position of the centre of mass), ωmi is the angular velocity of the rotor, and

Imi is the rotor’s moment of inertia tensor about its centre of mass. To put the equation in
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terms of the joint variables the linear and angular velocities can be written as

ṗmi = J
(mi)
P q̇, (2.62)

ωmi = J
(mi)
O q̇. (2.63)

The Jacobian matrices are constructed as

J
(mi)
P =

[


(mi)
P1

· · · (mi)
Pi−1

0 · · · 0

]
, (2.64)

J
(mi)
O =

[


(mi)
O1

· · · (mi)
Oi−1


(mi)
Oi

0 · · · 0

]
. (2.65)

The columns of J
(mi)
P are computed for a prismatic joint as 

(mi)
Pj

= zj−1 and for a revolute

joint as 
(mi)
Pj

= zj−1 × (pmi − pj−1). The columns of J
(mi)
O are computed as 

(mi)
Oj

= 
(li)
Oj

for j = 1, . . . , i − 1 and 
(mi)
Oj

= krizmi for j = i, where kri is the gear reduction ratio and

zmi is the unit vector along the rotor axis. The motor contribution to the kinetic energy is

written as

Tmi =
1

2
mmi q̇

TJ
(mi)T
P J

(mi)
P q̇ +

1

2
q̇TJ

(mi)T
O RmiI

mi
mi

RT
mi

J
(mi)
O q̇. (2.66)

The total kinetic energy of the manipulator is written as

T =
1

2
q̇TB(q)q̇, (2.67)

where

B(q) =
∑n

i=1

(
mliJ

(li)T
P J

(li)
P + J

(li)T
O RiI

i
li
RT
i J

(li)
O

+mmiJ
(mi)T
P J

(mi)
P + J

(mi)T
O RmiI

mi
mi

RT
mi

J
(mi)
O

) (2.68)

is the n× n inertial matrix.
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Potential Energy

The total potential energy of the system is written as

U = −
n∑
i=1

(
mlig

T
0 pli +mmig

T
0 pmi

)
, (2.69)

where g0 is the gravity acceleration vector in the base frame (g0 =
[

0 0 −g
]T

) and g

is the acceleration due to gravity. If flexibility of the links in the chain is being considered,

the potential energy due to elastic deformation must also be considered. Link flexibility

and any other potential energy effects are not considered in this dissertation.

Equations of Motion

Using the results obtained for the kinetic and potential energy the Lagrangian equations

can be written as

B(q)q̈ + n(q, q̇) = ξ, (2.70)

where

n(q, q̇) = Ḃ(q)q̇− 1

2

(
∂

∂q
(q̇TB(q)q̇)

)T
+

(
∂U(q)

∂q

)T
.

The joint space dynamic model can be written as

B(q)q̈ + C(q, q̇)q̇ + Fvq̇ + Fssgn(q̇) + g(q) = τ − JT (q)he, (2.71)

where he is the vector of forces and moments exerted by the EE on its surrounding environ-

ment (JT (q)he gives the portion of the actuator torques used to exert that force), Fs is the

n × n diagonal matrix representing the static friction coefficients (Fssgn(q̇) is a simplified

model of the static friction forces and depends on the direction of the joint velocities), Fv

is the n × n diagonal matrix representing the viscous friction coefficients, g(q) is the final
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term of the equation for n(q, q̇) where

gi(θ) =
∂U
∂θi

= −
n∑
j=1

(
mljg

T
0 

(lj)
Pi

(θ)
)
, (2.72)

and the elements of the n× n matrix C(q, q̇) are found by

cij =
n∑
k=1

cijkq̇k, (2.73)

where

cijk =
1

2

(
∂bij
∂qk

+
∂bik
∂qj

+
∂bjk
∂qi

)
, (2.74)

where cijk are the Christoffel symbols of the first type [22] and C(q, q̇) contains the Coriolis

and centrifugal terms [22].

2.7.2 Newton-Euler Formulation of the Dynamic Equations of Motion

The Newton-Euler formulation involves the analysis of the forces acting on each link in the

kinematic chain. The dynamic equations are obtained by balancing the forces on each link.

The theory presented here is based on that in [9, 22].

The following lists several variable definitions important to the Newton-Euler formula-

tion. Each Link i has a centre of mass Ci and the following parameters:

• mi, the mass of Link i plus any motor and transmission affixed to Link i;

• Ii, the inertial tensor of Link i;

• ri−1,Ci , the vector from origin of Frame i− 1 to Ci;

• ri,Ci , the vector from origin of Frame i to Ci;

• ri−1,i, the vector from origin of Frame i− 1 to the origin of Frame i; and

• Imi , the moment of inertia of the rotor in the motor driving Link i.

For each link the following velocities and accelerations are defined:
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• ṗCi , the linear velocity of Ci;

• ṗi, the linear velocity of the origin of Frame i;

• ωi, the angular velocity of Link i;

• p̈Ci , the linear acceleration of Ci;

• p̈i, the linear acceleration of the origin of Frame i;

• ω̇i, the angular acceleration of Link i;

• g0, the gravity vector;

• ωmi , the angular velocity of the rotor in the motor driving Link i; and

• ω̇mi , the angular acceleration of the rotor in the motor driving Link i.

The forces and moments acting between each link are:

• f i, the force exerted by Link i− 1 on Link i;

• −f i+1, the force exerted by Link i+ 1 on Link i;

• µi, the moment exerted by Link i−1 on Link i with respect to the origin of Frame i−1;

and

• −µi+1, the moment exerted by Link i + 1 on Link i with respect to the origin of

Frame i.

At this point all vectors are given with respect to the base frame.

The basis of the Newton-Euler formulation is a balance of forces and moments on each

link in the chain and thus the Newton equation for the translation of the centre of mass

(F = ma) is

f i − f i+1 +mig0 = miṗCi , (2.75)

and the Euler equation for rotation about the centre of mass (M = Iω̇) is

µi + f i × ri−1,Ci − µi+1 − f i+1 × ri,Ci =
d

dt

(
Iiωi + kr,i+1q̇i+1Imi+1zmi+1

)
, (2.76)
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where kr,i is the gear ratio of the transmission driving Link i and zmi is the unit vector

along the rotor axis. The first term in the righthand side of Equation (2.76) can be written

as

d

dt
(Iiωi) = Iiω̇i + ωi × (Iiωi) , (2.77)

and the second term as

d

dt

(
kr,i+1q̇i+1Imi+1zmi+1

)
= kr,i+1q̈i+1Imi+1zmi+1 + kr,i+1q̇i+1Imi+1ωi × zmi+1 . (2.78)

The Newton-Euler formulation is a recursive algorithm that works by first performing

a forward recursion to propagate the velocities and accelerations from the base towards

the EE and a backwards recursion that propagates the forces and moments from the EE

towards the base. Once the velocities, accelerations, forces and moments are known for each

link in the chain the Newton and Euler equations are used to obtain the dynamic equations

of motion. It is more efficient to work with all vectors in the current frame on Link i and

therefore the following equations are adjusted accordingly.

With known initial conditions ω0
0, p̈0

0 − g0 and ω̇0
0 defined the following velocities and

accelerations can be determined starting with Link 1 and working towards Link n.

ωii =

 Ri−1T
i ωi−1

i−1

Ri−1T
i (ωi−1

i−1 + θ̇iz0)

for a prismatic joint

for a revolute joint,
(2.79)

ω̇ii =

 Ri−1T
i ω̇i−1

i−1

Ri−1T
i (ω̇i−1

i−1 + θ̈iz0 + θ̇iω
i−1
i−1 × z0)

for a prismatic joint

for a revolute joint,
(2.80)

p̈ii =



Ri−1T
i

(
p̈i−1
i−1 + d̈iz0

)
+ 2ḋωii ×Ri−1T

i z0

+ω̇i−1
i−1 × rii−1,i + ωii ×

(
ωii × rii−1,i

)
Ri−1T
i p̈i−1

i−1 + ω̇ii × rii−1,i

+ωii ×
(
ωii × rii−1,i

)
for a prismatic joint

for a revolute joint,
(2.81)

p̈iCi
= p̈ii + ω̇ii × rii,Ci

+
(
ωii × rii,Ci

)
, (2.82)
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and

ω̇i−1
mi

= ω̇i−1
i−1 + kriq̈iz

i−1
mi

+ kriq̇iω
i−1
i−1 × zi−1

mi
. (2.83)

When the above velocity and acceleration terms are obtained for all of the links the forward

recursion is complete.

The backward recursion begins with any external forces, fn+1
n+1, or moments µn+1

n+1 applied

at the end effector and obtains the following equations starting with Link n and working

towards Link 1:

f ii = R1
i+1f

i+1
i+1 +mip̈

i
Ci
, (2.84)

and

µii = −f ii×
(
rii−1,i+rii,Ci

)
+R1

i+1µ
i+1
i+1 + R1

i+1f
i+1
i+1×rii,Ci

+Iiiω̇
i
i+ω

i
i×
(
Iiiω

i
i

)
+kr,i+1q̈i+1Imi+1z

i
mi+1

+kr,i+1q̇i+1Imi+1ω
i
i×zimi+1

.
(2.85)

From this forward and backward recursion algorithm the generalized forces at each joint

can be computed and thus the torque at each joint can be determined by

τi=

f
iT
i Ri−1T

i z0 + kriImiω̇
i−1T
mi

zi−1
mi

+ Fviḋi + Fsisgn(ḋi)

µiTi Ri−1T
i z0 + kriImiω̇

i−1T
mi

zi−1
mi

+ Fviθ̇i + Fsisgn(θ̇i)

for a prismatic joint

for a revolute joint,
(2.86)

where Fvi and Fsi are the coefficients of viscous and Coulomb friction, respectively.

The results of Equation (2.86) provide a solution to the inverse dynamics problem di-

rectly (the torques required for a desired motion at any given time) and by rearranging the

equations can provide the solution to the direct dynamics problem (finding the joint accel-

erations for an applied torque). The Newton-Euler formulation is an alternative method

to the Lagrange formulation for obtaining the equations of motion of a mechanical system.

Both methods produce the same results and the choice of method depends on the applica-

tion. The Newton-Euler formulation is much more efficient (up to 100 times for a six jointed

serial chain [9]), however the Lagrange formulation is considered by some to be easier to

comprehend, compact and better suited to the inclusion of more complex effects such as
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link deformation [22].

2.8 Plücker Line Coordinates

Plücker line coordinates are used to unambiguously describe a line in E3, and are used in

this dissertation to describe the centrelines of the legs of the A-pair. Lines in space can be

represented by the linear connection between two points in space, or by the intersection of

two planes. The coordinates used in this dissertation are obtained by connecting two points

and are called Plücker line coordinates (or simply Plücker coordinates). The coordinates

obtained by intersecting two planes are called Axial Coordinates. There is only a represen-

tational difference between the two different sets of coordinates describing the same line and

only Plücker coordinates are discussed here. The derivation and use of Plücker coordinates

are provided in [10,87–90].

Two distinct, non-coincident points represented by homogeneous coordinates,

X=(x0:x1:x2:x3) and Y=(y0:y1:y2:y3), lie on a line in E3. Assembling the coordinates

of X and Y into a 2× 4 matrix and taking the Grassmannian sub-determinants [89] yields

the homogeneous Plücker coordinates, pik, of the line:

pik =

∣∣∣∣∣∣ xi xk

yi yk

∣∣∣∣∣∣ i, k ∈ {0, . . . , 3}, i 6= k. (2.87)

Because pik = −pki only six of the possible twelve Grassmanians are independent. The

following six are commonly used and are assembled into the Plücker array :

(p01 : p02 : p03 : p23 : p31 : p12). (2.88)

The coordinates are homogeneous and thus it is necessary that

(p01 : p02 : p03 : p23 : p31 : p12) 6= (0 : 0 : 0 : 0 : 0 : 0).
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Additionally it is shown in [10, 90] that the Plücker coordinates must also satisfy the con-

dition

Ω(p) : p01p23 + p02p31 + p03p12 = 0. (2.89)

Ω(p) is called the Plücker condition or Plücker identity. In a homogeneous five-dimensional

projective space Ω(p) represents a four-dimensional quadric hyper-surface called the Plücker

quadric, P2
4 . Distinct points on P2

4 represent distinct lines on E3.

2.8.1 Intersection of Lines

Two lines are each represented by two distinct, non coincident points. The first line, p,

by points X = (x0 : x1 : x2 : x3) and Y = (y0 : y1 : y2 : y3) and the second line, q, by

S = (s0 : s1 : s2 : s3) and T = (t0 : t1 : t2 : t3). Lines p and q intersect or are parallel

(intersect at a point at infinity) iff X,Y, S, T are coplanar. This case occurs if, and only if

D :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

x0 x1 x2 x3

y0 y1 y2 y3

s0 s1 s2 s3

t0 t1 t2 t3

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

The determinant, D, can be obtained by the Laplacian Expansion Theorem [6] to produce

the equation

Ω(p, q) := D := p01q23 + p02q31 + p03q12 + p23q01 + p31q02 + p12q03 = 0. (2.90)

2.8.2 Normalized Plücker Coordinates

Every line can be represented uniquely using normalized Plücker coordinates. The normal-

ized form describes a line by a pair of vectors p = (p,p) with p2 = 1 and pp = 0. The

Plücker coordinates are normalized using

p =
1√

p2
01 + p2

02 + p2
03

(p01 : p02 : p03), (2.91)
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and

p =
1√

p2
01 + p2

02 + p2
03

(p23 : p31 : p12). (2.92)

Physically p can be viewed as the unit direction vector giving the direction of the line

and p is the normal vector of the plane spanned by p and the origin of the reference frame.

p is often referred to as the moment of the line about the origin and can be written as

p = r× p, where r is the vector normal to the line from the origin to a point on the line.

2.8.3 Distance Between Lines

In this dissertation it is of interest that the perpendicular (shortest) distance between two

spatial lines be obtained using Plücker coordinates. This knowledge can be applied to

detecting leg collisions in individual A-pairs.

In [90] Pernkopf shows that

Ω(p, q) = −M(p, q) = −d sinϕ, (2.93)

where M(p, q) is the moment of the two lines, d is the perpendicular distance between p

and q and ϕ is the angle between p and q. The absolute value of Ω(p, q) becomes

|Ω(p, q)| = |d|| sinϕ|,

which can be rearranged to

|d| = |Ω(p, q)|
| sinϕ|

. (2.94)

Using the normalized Plücker coordinates it can be stated that

p× q = |p||q|n̂ sinϕ, (2.95)

where n̂ is a unit vector perpendicular to both p and q. The normalization means that
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|p| = |q| = |n̂| = 1 and therefore

|p× q| = | sinϕ|. (2.96)

Substitution of Equation (2.96) into the denominator of Equation (2.94) reveals that when

using Plücker coordinates the magnitude of the perpendicular distance between the two

lines p and q, dpq, is found by

dpq =
|Ω(p, q)|
|p× q|

. (2.97)

The denominator of Equation (2.97) will be zero if the lines p and q are parallel. This is

because the lines theoretically intersect at a point at infinity and therefore the numerator

is also zero meaning that the lines intersect and the distance between them is equal to zero.

Alternative methods are required to obtain the distance between parallel lines, however

there is no such need for the work presented in this dissertation.

Zsombor-Murray [91] provides additional insight on connecting skew lines using Plücker

coordinates.

2.9 Collision of Cylinders

Ketchel and Larochelle [92–94] have developed an algorithm for determining the interference

of cylindrical rigid bodies in space. The algorithm is outlined here with emphasis placed

on the aspects relevant to the work presented in this dissertation. The interested reader

is referred to the publications by Ketchel and Larochelle for more thorough coverage. The

original purpose of the algorithm is to approximate the links of a serial manipulator as

cylinders and determine if self collisions might occur.

The algorithm for determining where two cylinders collide is broken into two main parts:

infinite cylinder testing and finite cylinder testing. The infinite cylinder testing assumes

cylinders of a given radius are infinite in length and is used to quickly rule out collisions.

If infinite cylinder testing yields no collision then testing is complete and no collision is

possible, however if the initial test suggests a collision might be possible then finite cylinder
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testing is required to determine if in fact the cylinders interfere with each other.

2.9.1 Infinite Cylinder Testing

The method used by Ketchel and Larochelle for obtaining the distance between skew lines

varies from the method used in this report, however it is the value that is important, not

the method.

For two distinct non-parallel lines in space the perpendicular distance between the lines is

provided by Equation (2.97). If these lines, called S1 and S2 are viewed as the centrelines of

two infinite cylinders of radius r1 and r2 respectively it can be concluded that if d(S1, S2) >

r1 + r2 then no collision is possible because any finite cylinders that are derived from these

two infinite cylinders will never interfere and the testing is complete.

If d(S1, S2) ≤ r1 +r2 then somewhere along the length of the infinite cylinders a collision

has occurred. In such cases finite cylinder testing is required to determine if the interference

occurs within the length of the finite cylinder segments of interest.

2.9.2 Finite Cylinder Testing

In reality the cylinders being tested will be finite cylinder segments whose axes lie on the

infinite lines S1 and S2. If infinite cylinder testing suggests that a collision may have

occurred then the finite cylinder testing is required. This test requires determining where

the common normal of S1 and S2 intersects the infinite lines and where these intersections

are relative to the finite cylinder segments.

If the cylinders are parallel and the perpendicular distance between S1 and S2 is less

than the sum of the radii, then the cylinders interfere if any plane to which both axes are

normal ever intersects both cylinders. If no such plane exists then no interference occurs.

If the axes are skew lines then the closest points on each line must be found before

continuing. Consider two finite cylinders with axes represented by lines S1 and S2 called

Cylinders 1 and 2 respectively. Each cylinder is represented by a starting point where the

axis intersects the cylinder end and a vector along the axis towards the other end of the

cylinder segment. For Cylinder 1 the start point is labeled c with position vector c and
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the vector along the axis towards the other end of the cylinder is s. Similarly the point e

and position vector d describe the start point of Cylinder 2 and direction vector w gives

the direction of the cylinder. The magnitudes |s| and|w| are equal to the lengths of their

respective cylinders. Points f and g are established where S1 and S2 intersect the the other

ends of there respective finite cylinders. This configuration is illustrated in Figure 2.17.

Figure 2.17: Representation of cylinders used for collision detection.

The common normal lies on Line N which intersects S1 and S2 in the two points pn

and qn respectively. The position vectors describing these points are pn and qn and can be

described by the parametric equations

pn = c + t1s,

qn = d + t2w,
(2.98)

where

t1 =
((d− c)×w) · n

n · n
,

t2 =
((d− c)× s) · n

n · n
,

n = s×w.

The values of t1 and t2 can be used to determine the nature of the intersection of the
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common normal with the cylinder axes. For Cylinder 1 there are three possible scenarios:

• t1 ≤ 0: pn is located at the start of the finite cylinder segment or further outside of

the cylinder (not between c and f , and closer to c),

• 0 < t1 < 1: pn is located within the finite cylinder segment (between c and f), and

• t1 ≥ 0: pn is located at the end of the finite cylinder segment or further outside of the

cylinder (not between c and f , and closer to f).

The results are the same for Cylinder 2 if t2 replaces t1 and qn replaces pn.

With the positions of pn and qn known relative to their respective finite cylinder segments

there are three possible situations that each require a different test to determine if the

cylinders interfere. The three types of testing are:

• On-On testing: both pn and qn lie on their respective axis within the limits of their

finite cylinder segment,

• On-Off testing: one of pn or qn lies within its cylinder segment while the other does

not, or

• Off-Off testing both pn and qn lie outside of the respective cylinder segments.

In their papers Ketchel and Larochelle thoroughly describe each type of testing. In this

dissertation only the On-On testing is required and therefore it is the only type of finite

cylinder testing discussed in this section. The interested reader is referred to [92–94] for

further details on the other types of finite cylinder testing.

Having already covered infinite cylinder testing the On-On test is in fact already com-

pleted. The infinite test has already provided the distance between the two points pn and

qn and because these points are located within their respective cylinder segments cylinder

interference will occur if dS1S2 ≤ r1 + r2, the same criteria as was used in infinite cylinder

testing.
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2.10 Simple Feedback Control Scheme

A simple control scheme to make a manipulator follow a given joint trajectory is provided

by Craig [9]. The dynamic equations of motion of a manipulator (with n joints) have the

form

τ = B(θ̇)θ̈ + C(θ, θ̇)θ̇ + G(θ). (2.99)

The system model is nonlinear but can be linearized using the partitioned control scheme [9]

to give the n× 1 vector of joint torques as

τ = ατ ′ + β, (2.100)

where α = B(θ̇) contains the inertial terms and β = C(θ, θ̇)+G(θ). The error between the

desired and actual joint position at any given time is E = θd−θ and the error between the

desired and actual joint velocities is Ė = θ̇d− θ̇. The control law for trajectory-following is

τ ′ = θ̈d + KvĖ + KpE, (2.101)

where Kv and Kp are diagonal matrices containing the control gains and the system is now

characterized by the error equation

Ë + KvĖ + KpE = 0. (2.102)

The control gains can be manipulated to obtained desired characteristics such as minimized

oscillations or settling time. Figure 2.18 shows the block diagram for the simple trajectory-

following controller. This generic controller can be applied to a manipulator with any

number of joints, including A-chains.
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Figure 2.18: Block diagram of the generic trajectory-following controller.

2.11 Trigonometric Identities and Notation

This section presents the essential trigonometric identities and notation conventions that

are used in this dissertation.

2.11.1 Tangent of the Half-angle Substitution

Analysis of mechanical systems that possess design or motion parameters described by

angles involves equations containing trigonometric functions. Computer algebra systems

are generally more efficient with algebraic equations than ones containing trigonometric

functions, therefore a method of converting the trigonometric functions to algebraic terms

is desired. The process of tangent of the half-angle substitution is commonly used to

accomplish this.

Tangent of the half-angle substitution is based on the trigonometric identities

sin(φ) =
2 tan(φ2 )

1 + tan2(φ2 )
,

and

cos(φ) =
1− tan2(φ2 )

1 + tan2(φ2 )
,
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where φ 6= (2k + 1)π and k ∈ {0, 1, . . .}. Substitution of a new variable

u = tan(
φ

2
) (2.103)

into the identities provides the following identities

sin(φ) =
2u

1 + u2
, (2.104)

and

cos(φ) =
1− u2

1 + u2
. (2.105)

As noted by Pfurner [7] these identities define a mapping of the points of a unit circle

parameterized by φ to the set of real numbers. The inverse mapping is given by

φ = 2 arctan(u). (2.106)

From these mappings it can be seen that when u = 0 then φ = 0, when u = 1 then φ = π
2

and as u goes to infinity φ approaches π.

The tangent of the half-angle substitution technique is utilized throughout this disserta-

tion to convert trigonometric functions to rational algebraic functions, a form more suitable

for analysis with algebraic software.

2.11.2 Simplified Trigonometric Notation

When possible, trigonometric functions will be written in standard forms, however when

space does not permit the use of standard notation the following simplified trigonometric

notation is used

sin (θvi) = si,

cos (θvi) = ci,

sin
(
θvi
2

)
= s θi2 ,

sin
(
θvi
2

)
= c θi2 ,

(2.107)
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as are the following trigonometric identities

cos (θv1 + θv1) = c1+2 = c1c2 − s1s2,

sin (θv1 + θv1) = s1+2 = c1s2 + s1c2,

cos (θv1 − θv1) = c1−2 = c1c2 + s1s2,

sin (θv1 − θv1) = s1−2 = s1c2 − c1s2.

(2.108)



Chapter 3

Analysis of A-Pairs

This chapter presents the original work of this dissertation that details the contributions

outlined in Section 1.2. The work presented characterises the kinematics and dynamics

of serial kinematic chains constructed using A-pairs and significantly advances the work

presented in [1], where A-pairs were introduced.

The position level kinematics of A-chains are revised to account for a more general defi-

nition of the A-chain DH-parameters. This includes an examination of the direct kinematics

with revised parameters, and the determination of the constraint variety using the new al-

gorithm of Section 2.3.1 to be used in the inverse kinematics algorithm for 4A-chains. The

limits of the A-pair motion are addressed which leads into the introduction of the prototype

4A-chain and a discussion of the actuation method employed on that manipulator. The

reachable workspace of A-chains are obtained using a novel algorithm for approximating

the reachable workspace of serial chains. Obtaining the Jacobian matrices of A-chains leads

into the velocity level kinematics as well as the dynamic analysis. The chapter concludes

with a numeric example based on the prototype 4A-chain.

3.1 Revising the A-Chain Position Level Kinematics

The direct kinematics of nA-chains and the inverse kinematics of 4A- and 6A-chains, as

presented in [1], were based on assumptions that do not represent truly general A-pairs and

A-chains. This section revisits the position level kinematics of A-chains (Section 2.5).

83
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3.1.1 A-Chain DH-Parameters Revision

When working with kinematic pairs that have a limited range of motion or, as is also the

case with A-pairs, where there is a coupling of two or more DH-parameters it is necessary

to identify the direction of the home position (or some other reference position) of the joint

with respect to the preceding link in the kinematic chain. The A-pair has both a limited

range of motion due to self-collisions between the legs (see Section 3.2) and couples the joint

angle with the joint offset, so it is important to know which way the A-pair is attached to

the preceding link.

In [61] Yang and Lee introduce a new joint parameter called the location angle, βi, to

identify the centre of the range of motion for a limited revolute joint. It is not necessary

to introduce an entirely new joint parameter, but by breaking the joint angle, θi, into two

components, one fixed and one variable (similar to the joint offset of the A-pair which has

a fixed component and a variable component that is coupled to the rotation angle) the

direction of the home position with respect to the preceding link can be identified. The

fixed component of the joint angle, θfi , is the angle between adjacent links measured about

the axis of Joint i when the A-pair is in the home position as defined in Section 2.5.2 and the

variable component of the joint angle, θvi , is measured relative to the home position. That

is, if θvi = 0 the joint would be in the home position (recall that this is a theoretical position

that is mechanically inaccessible due to self-collisions). The full joint angle as defined in

Section 2.2.2 is

θi = θfi + θvi . (3.1)

With this new definition the separation of the fixed base and moving platform of the

A-pair is a function of θvi and independent of θfi . The equation for the separation, denoted

d in Equation (2.29), becomes:

d = ρ sin

(
θvi
2

)
. (3.2)

This partitioning of the fixed and variable components of θi, along with the

DH-parameters of Section 2.5.4 provide for an unambiguous geometric representation of
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A-chains.

3.1.2 Determining the Geometric Constant

In [1] it was assumed that the value of the geometric constant, ρ, in Equations (2.29) and

(3.2) could be set equal to unity without loss in generality. It turns out that this assumption

is not valid in general and the value of ρ must be determined by the geometry of the A-pair.

In Section 2.5.3 when describing the specific configuration of the Griffis-Duffy platform

that is used to construct the A-pair it is stated that the leg lengths are equal to the height

of the congruent equilateral anchor point triangles that represent the fixed base and moving

platform of the A-pair. This means that the leg lengths, l, are a function of the size of the

A-pair which is given as the length of one of the sides of the triangle, a, and that relationship

is

l =
a
√

3

2
. (3.3)

The geometric constant ρ represents the maximum distance between the fixed base and

moving platform of the A-pair. The value of ρ is determined by examining the geometry

of the A-pair when sin(θ/2) = 1, i.e. when θ = 180◦. In this position, a profile of which

is shown in Figure 3.1, Equation (3.2) becomes d(180◦) = ρ sin(180◦/2) = ρ. Knowing the

anchor point positions (provided in Section 3.2.1) and the length of the legs in terms of the

dimensions of the A-pair, Equation (3.3), the value ρ is

ρ = d(180◦) =
a
√

6

3
. (3.4)

Equation (3.4) negates the need to assume a value for the geometric constant. It is

required that the correct value of ρ be introduced to all equations and algorithms presented

in [1] where it was assumed that ρ = 1.
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Figure 3.1: Profile view of Leg 1 when θ = 180◦, illustrating the measurement d.

3.1.3 A-Chain Direct Kinematics Revision

The method for obtaining the matrix form of the direct kinematic equations of nA-chains

is presented in Section 2.5.5, however some slight modifications to the Mi matrices are

required based on the new results presented in Sections 3.1.1 and 3.1.2.

The geometric constant, ρ, is determined in Section 3.1.2 in terms of the length of the

sides of the anchor point triangles, a, by Equation (3.4) and can also be written in terms

of the leg length, l, using a combination of Equations (3.4) and (3.3). In this section only

ρ is used to maintain simplicity in the equations.

The matrix form of the direct kinematic equations for an nA-chain is found by Equa-

tion (2.19) where the Gi matrices are found by Equation (2.20) and the Mi matrices are
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now written based on the work presented in Section 3.1.1 as

Mi =



1 0 0 0

0 cos(θfi + θvi) − sin(θfi + θvi) 0

0 sin(θfi + θvi) cos(θfi + θvi) 0

ρ sin(
θvi
2 ) 0 0 1


. (3.5)

The value of θfi is fixed by definition and in many cases trigonometric identities can

be used to simplify the resulting matrices, for example if θfi = 0◦ the Mi matrix returns

to that of Equation (2.30) or if θfi = 90◦ then, using angle sum trigonometric identities,

cos(θfi + θvi) = − sin(θvi) and sin(θfi + θvi) = cos(θvi).

3.1.4 Constraint Varieties of A-Chains

Obtaining the constraint varieties of 2A-chains is a critical component of the 4A-chain in-

verse kinematics algorithm. In [1] the constraint varieties of the 2A-chains were found using

resultant elimination, however this was prior to the revision of the A-chain DH-parameters.

In this section the implicitization algorithm by Walter and Husty (see Section 2.3.1) is

used to obtain the constraint varieties of the 2A-chains required for the inverse kinematics

algorithm.

It turns out that defining the joint twist (αi) parameters and the fixed component of

the joint angles (θfi) greatly simplifies the problem of obtaining the constraint varieties

that are otherwise impractical to express in general terms. In Section 3.8 a specific numeric

example analyzes the kinematics and dynamics of a prototype 4A-chain. In this section the

αi and θfi values of that chain are used to illustrate the method for obtaining the constraint

varieties of the two 2A-chains required for the inverse kinematics analysis. The joint twist

values used in this section are

α1 = 90◦,

α2 = 180◦,

α3 = −90◦,

α4 = 0◦,

(3.6)
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and the fixed components of the joint angles are

θf1 = 0◦,

θf2 = −90◦,

θf3 = 90◦,

θf4 = 0◦.

(3.7)

The two 2A-chains required for the inverse kinematics analysis are the base (left)

2A-chain that contains Joints and Links 1 and 2, and the EE (right) 2A-chain that contains

Joints and Links 3 and 4. The method for obtaining the two chains is similar though there

are some differences in the required preprocessing.

Constraint Variety of the Base 2A-Chain

Obtaining the constraint variety using the implicitization algorithm requires the matrix

form of the direct kinematic equations. Substitution of the θfi values of Equation (3.7) into

Equation (3.5) yields

M1 =



1 0 0 0

0 cos(θv1) − sin(θv1) 0

0 sin(θv1) cos(θv1) 0

ρ sin
(
θv1
2

)
0 0 1


,

M2 =



1 0 0 0

0 sin(θv2) cos(θv2) 0

0 − cos(θv2) sin(θv2) 0

ρ sin
(
θv2
2

)
0 0 1


.

(3.8)
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Fractions are removed by substituting θvi = 2φi and the use of trigonometric identities

results in

M1 =



1 0 0 0

0 cos2(φ1)− sin2(φ1) −2 sin(φ1) cos(φ1) 0

0 2 sin(φ1) cos(φ1) cos2(φ1)− sin2(φ1) 0

ρ sin(φ1) 0 0 1


,

M2 =



1 0 0 0

0 2 sin(φ2) cos(φ2) cos2(φ2)− sin2(φ2) 0

0 − cos2(φ2)− sin2(φ2) 2 sin(φ2) cos(φ2) 0

ρ sin(φ2) 0 0 1


.

(3.9)

Tangent of the half-angle substitution (Section 2.11.1) yields

M1 =



1 0 0 0

0 1−6u12+u14

(1+u12)2
4
u1(−1+u12)

(1+u12)2
0

0 −4
u1(−1+u12)

(1+u12)2
1−6u12+u14

(1+u12)2
0

2 ρ u1
1+u12

0 0 1


,

M2 =



1 0 0 0

0 −4
u2(−1+u22)

(1+u22)2
1−6u22+u24

(1+u22)2
0

0 −1−6u22+u24

(1+u22)2
−4

u2(−1+u22)
(1+u22)2

0

2 ρ u2
1+u22

0 0 1


,

(3.10)

where ui = tan
(
φi
2

)
. The Gi matrices are assembled by substituting the αi values of

Equation (3.6) into Equation (2.20).

The matrix form of the direct kinematics equations is given by Equation (2.19) with

n = 2. The resulting transformation matrix 0T2 describes the position of the EE of the

base 2A-chain (Σ2) with respect to the base frame as a function of the joint variables
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u1 and u2. The Study parameters of 0T2 are found using Equations (2.14) and (2.15)

resulting in parametric equations for the eight Study parameters in terms of u1 and u2.

The implicitization algorithm of Section 2.3.1 is then used to obtain the implicit equations

that represent the constraint variety of the 2A-chain.

The linear ansatz produces only the trivial solution, thus the constraint variety does not

include any linear equations. Increasing to the second order ansatz yields four nontrivial

solutions. Recall that in P 7 the number of polynomials required to define the constraint

variety is seven minus the number of constraints (there are two constraints, u1 and u2,

in this case). Therefore five polynomials are required to define the constraint variety of

the 2A-chain, thus one more independent polynomial is required in addition to the four

quadratic polynomials. Using a cubic ansatz 40 solutions are found, though most solutions

prove to be not independent of the first four quadratic polynomials. Walter and Husty [71]

state that any of the remaining cubic polynomials may be used without any losses, though

the intersection of the five resulting polynomials may contain extra information.

The five polynomials that intersect to form the constraint variety of the base 2A-chain

are:

1 : x0y0 + x1y1 + x2y2 + x3y3 = 0,

2 : x0
2 − x1

2 − x2
2 + x3

2 = 0,

3 : x1
2a1 + x2

2a1 − x0x1a2 + 2x0y0 − x2x3a2 + 2x3y3 = 0,

4 : −x2y1d1 − x0y3d2 − 1
4 x0x1ρ

2 − 1
4 x1x3ρ

2 + x1y2d1 + x1y2d2 − x0x2d1a2

+x1x3d1a2 − x2y3a2 + x3y2a2 − x3y0d1 + x0y1a2 − x1y0a2 + x3y0d2

+1
4 x0x2ρ

2 − x2y1d2 + 1
4 x2x3ρ

2 + x0y3d1 + y3
2 + y1

2 + y2
2 + y0

2 − 1
2 x2

2ρ2

−1
2 x2

2a1
2 − 1

2 x1
2ρ2 − 1

2 x1
2a1

2 + 1
2 x2

2d2
2 + 1

2 x1
2d1

2 + 1
2 x2

2d1
2

+1
2 x1

2d2
2 + 1

2 x1
2a2

2 + 1
2 x2

2a2
2 = 0,

5 : 2x0x3y0 − x2x3
2a2 − 2x0

2y3 + x2
2x3a1 + 2x2

2y3 − x0x1x3a2 + 2x1
2y3

+x1
2x3a1 = 0.

(3.11)

The set of polynomials includes the Study quadric and the constraint variety of the base
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2A-chain is the intersection of the other four polynomials with S2
6 .

Constraint Variety of the EE 2A-Chain

The implicit form of the EE 2A-chain constraint variety is obtained using the same algorithm

as the previous section with some modifications to how the direct kinematics equations

are obtained. The Mi and Gi matrices are obtained by substituting the Joint 3 and 4

parameters of Equations (3.7) and (3.6) into Equations (3.5) and (2.20), respectively. The

Mi matrices are

M3 =



1 0 0 0

0 − sin(θv3) − cos(θv3) 0

0 cos(θv3) − sin(θv3) 0

ρ sin
(
θv3
2

)
0 0 1


,

M4 =



1 0 0 0

0 cos(θv4) − sin(θv4) 0

0 sin(θv4) cos(θv4) 0

ρ sin
(
θv4
2

)
0 0 1


,

(3.12)

and after substitution of θvi = 2φi and tangent of the half-angle substitution the Mi matrices

become

M3 =



1 0 0 0

0 4
u3(−1+u32)

(1+u32)2
−1−6u32+u34

(1+u32)2
0

0 1−6u32+u34

(1+u32)2
4
u3(−1+u32)

(1+u32)2
0

2 ρ u3
1+u32

0 0 1


,

M4 =



1 0 0 0

0 1−6u42+u44

(1+u42)2
4
u4(−1+u42)

(1+u42)2
0

0 −4
u4(−1+u42)

(1+u42)2
1−6u42+u44

(1+u42)2
0

2 ρ u4
1+u42

0 0 1


.

(3.13)



92

The transformation matrix describing Σ4 (also ΣEE) with respect to Σ2, 2T4, is obtained

by

2T4 = M3G3M4G4. (3.14)

Recalling the inverse kinematics algorithm of Sections 2.4 and 2.5.6 the EE of the 4A-chain

is placed in the target pose and Σ4 = ΣEE = Σtarget. When obtaining the constraint variety

of the EE 2A-chain the base reference frame becomes Σ0R = Σtarget and the EE reference

frame is Σ2 = ΣR. Thus the transformation matrix describing ΣR or Σ2 with respect to

Σ0R or Σ4, 4T2, is required. The required matrix is obtained by

4T2 = 2T−1
4 . (3.15)

Using 4T2 the polynomials representing the constraint variety of the EE 2A-chain are

derived using the same methods that were used for the base 2A-chain. The implicitization

algorithm resulted in four quadratic polynomials (including S2
6) and one cubic polynomial.

The five polynomials that intersect to provide the constraint variety of the EE 2A-chain

are:

1 : x0y0 + x1y1 + x2y2 + x3y3 = 0,

2 : x0
2 − x1

2 − x2
2 + x3

2 = 0,

3 : −a3x1
2 − x2

2a3 + a4x2x3 + 2x1y1 + 2x2y2 − a4x0x1 = 0,

4 : −x0x1ρ
2 − x1x3ρ

2 + 4 a4d3x0x2 + 4 a4d3x1x3 − 4 a4x0y1 − 2 a3
2x1

2 − 2 a3
2x2

2

+2 a4
2x2

2 + 2 a4
2x1

2 + 2 d3
2x1

2 + 2 d4
2x2

2 + 2 d4
2x1

2 + 2 d3
2x2

2 − 4 d3x0y3

−4 d3x2y1 + 4 d3x1y2 − 4 d4x1y2 + 4 d4x2y1 + 4 d3x3y0 + 4 a4x3y2 − 4 d4x0y3

−4 a4x2y3 + 4 a4x1y0 + 4 d4x3y0 + x0x2ρ
2 − x2x3ρ

2 + 4 y3
2 + 4 y1

2 + 4 y2
2

+4 y0
2 − 2x2

2ρ2 − 2x1
2ρ2 = 0,

5 : 2x2
2y3 − x2x3

2a4 + x0x1x3a4 + 2x0x3y0 + x2
2x3a3 + x1

2x3a3 + 2x1
2y3

−2x0
2y3 = 0.

(3.16)

These polynomials represent the constraint variety of the 2A-chain with respect to Σ4.
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The constraint variety of the 2A-chain with respect to Σ0 when Σ4 = Σtarget is found by

transforming the polynomials of Equation 3.16 in the base frame using the method described

in Section 2.1.8. The implementation of this transformation is shown in the numeric example

of Section 3.8.

The algorithm for solving the inverse kinematics of the 4A-chain is unchanged from that

present in Section 2.5.6 aside from the use of the new 2A-chain constraint varieties. The

implementation of the inverse kinematics algorithm with the new constraint varieties is left

to Section 3.8 as part of the full kinematic and dynamic analysis of the prototype 4A-chain.

3.2 A-Pair Joint Limits

The self-motions of the A-pair are discussed in Sections 2.5 and Section 3.1.3 without

consideration of self-collisions between the structural elements within the A-pair. When

considering a single A-pair the moving platform and the six individual legs move relative to

one another and relative to the fixed base. Since the self-motions of the A-pair possess only

one DOF the relative positions of the fixed base, moving platform and the six individual

legs are a function of the joint angle, θi. Determining at what values of θi self-collisions

occur allows for a determination of the joint limits for the A-pairs in an A-chain. This

section focuses on the self-collisions of a single A-pair and does not consider the limitations

by collisions of the structural elements of the links of longer A-chains.

The remainder of this section assumes that the fixed base and moving platform are

designed such that they will not collide over the regular range of motion of the single A-pair

and the spherical joints that anchor the legs to the fixed base and moving platform are

designed to provide for free motion of the legs over the range of motion of the A-pair. The

results of this section can be used to ensure such requirements are met, but in order to

proceed it must be assumed that these conditions are satisfied.

The limits to the self-motions are dictated by the interactions of the A-pair legs. Each

leg can be represented as a line connecting the leg’s anchor point on the fixed base to the

leg’s anchor point on the moving platform. This section describes how the lines representing
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the legs are obtained and examines the interaction of the lines as the A-pair moves through

its self-motions.

3.2.1 Leg Anchor Point Trajectory

In Section 2.5.2 and Section 3.1 the self-motions of the A-pair are described by Equa-

tions (2.29) and (3.2), respectively, which provide the distance between the fixed base and

moving platform anchor point planes as a function of θ. In order to track the leg anchor

points it is necessary to describe the position of each anchor point on the moving platform

in a fixed reference frame as a function of θ (because only a single A-pair is being examined

θ is used instead of θvi because the orientation of the A-pair is irrelevant).

The fixed base and moving platform each have six leg anchor points oriented in a triangle.

The Legs connecting the anchor points are labelled from 1 to 6 and the anchor point for

Leg i on the fixed base is called Bi and on the moving platform Pi. Figure 3.2 shows the

Figure 3.2: Positions of the leg anchor points on fixed base and moving platform of the
A-pair at θ = 180◦.

position of the leg anchor points with the A-pair in the θ = 180◦ position. The reference

frame attached to the fixed base with the origin at the geometric centre of the fixed base
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triangle contains the X-, Y -, and Z-axes and the reference frame attached to the moving

platform with the origin at the geometric centre of the moving platform triangle contains

the x-, y-, and z-axes. The Z- and z-axes are co-linear, both pass through the geometric

centres of both triangles and point in the same direction. As the moving platform rotates

about the z-axis the path of every point on the moving platform projects onto a circle on

the X,Y -plane of the fixed base reference frame. If points are represented in the fixed base

reference frame by (X,Y, Z) and points in the moving platform reference frame by (x, y, z)

then the projection of a point on the moving platform onto the X,Y -plane of the fixed base

reference frame is given by

 X

Y

 =

 cos (θ) − sin (θ)

sin (θ) cos (θ)

 x

y

 , (3.17)

and the paths of a point on the moving platform during the self-motions of the A-pair are

parameterized as

X = x cos (θ)− y sin (θ) ,

Y = x sin (θ) + y cos (θ) ,

Z = ρ sin
(
θ
2

)
.

(3.18)

The (X,Y ) coordinates of the fixed base anchor points are:

B1 : (0,
a
√

3

3
), B2 : (

a

4
,
a
√

3

12
),

B3 : (
a

2
,−a
√

3

6
), B4 : (0,−a

√
3

6
),

B5 : (−a
2
,−a
√

3

6
), B6 : (−a

4
,−a
√

3

12
),

(3.19)

where a is the length of one edge of the congruent fixed base or moving platform triangles

(see Figure 2.12). The (x, y) coordinates of the moving platform anchor points are:

P1 : (0,−a
√

3

6
), P2 : (−a

2
,−a
√

3

6
),

P3 : (−a
4
,
a
√

3

12
), P4 : (0,

a
√

3

6
),

P5 : (
a

4
,
a
√

3

12
), P6 : (

a

2
,−a
√

3

6
).

(3.20)
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For the examination of A-pair self-collisions the value of the variable a is invariant and

can be set to unity without loss in generality. All A-pairs that satisfy the requirement of

the leg lengths equal the height of the anchor point triangles will have the same physical

joint limits due to self-collisions if the radius of the legs is ignored, regardless of the value

of a. The value of ρ depends on the A-pair size and from Equation (3.4) for the case a = 1,

ρ = 0.816. From Equation (3.3) the length of the legs that satisfy the constraints of the

A-pair is l(legs) = 0.866.

Knowing the coordinates of the leg anchor points on the moving platform in the moving

platform reference frame, their coordinates in the fixed base reference frame as a function of

θ are obtained by Equation (3.18), providing the paths of the leg anchor points throughout

the self-motions. The positions of the fixed base anchor points do not change relative to

the fixed base reference frame. With the leg anchor points on the fixed base and moving

platform defined in the same frame the lines representing the legs can be determined as

functions of θ. The distance between the lines is a measure of where the legs will interfere

with one another.

3.2.2 Leg Interference During Self-Motions

The examination of leg interference uses Plücker coordinates (discussed in Section 2.8) to

represent the centreline of each leg and cylinder collision detection (Section 2.9) is used to

determine at what values of θ the legs interfere with one another.

Determination and Analysis of Leg Centrelines

The determination of the leg centrelines uses the coordinates of the anchor points on both

the fixed base and moving platform which were obtained in Section 3.2.1. The anchor

points on the fixed base do not change in the fixed base reference frame while the position

of the moving platform anchor points move in the fixed base reference frame according to

Equation (3.18) as θ varies. Using the homogeneous coordinates of the two anchor points

for each leg, the Plücker coordinates that represent the centerline of each leg are obtained

by Equation (2.87). As θ varies, so do the Plücker coordinates of each centreline.
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As an example, the Plücker coordinates of the centerline of Leg 1 are computed using the

base anchor point B1 from Equation (3.19) and the platform anchor point P1 from Equation

(3.20) which are transformed to the base reference frame by Equation (3.18). The anchor

point B1 in the base reference frame is represented by the homogeneous point coordinates

(1, 0, a
√

3
3 , 0) and P1 in the base reference frame by (1, a

√
3

6 sin θ,−a
√

3
6 cos θ, ρ sin θ

2). Using

Equation (2.88) the Plücker coordinates of the line connecting the two points are represented

by the array

p1 =

(
a
√

3

6
sin θ : −a

√
3

6
(2 + cosθ) : ρ sin

θ

2
:
aρ
√

3

3
sin

θ

2
: 0 : −a

2

6
sin θ

)
. (3.21)

From the observation of physical and computer A-pair models it is revealed that, aside

from the theoretical – and physically unobtainable – home position where all of the legs

lie on the same plane simultaneously, the leg interference will only occur between adjacent

legs. That is, if the legs are numbered according to Figure 3.2, Leg 1 will interfere only with

Leg 2 or Leg 6. To determine where this interference occurs using Plücker coordinates it

is required to determine when two legs are coplanar. To do this one must compute Ω(p, q)

using Equation (2.90), where p is the Leg 1 centreline and q either the Leg 2 centerline or

the Leg 6 centreline (Ω(1, 2) and Ω(1, 6), respectively). The other combinations of adjacent

legs yield identical results because of symmetry around the A-pair.

Figure 3.3 is a plot of Ω(1, 2) and Ω(1, 6) as θ is varied from 0◦ to 720◦, one complete cycle

of the A-pair. When Ω(p, q) is equal to zero the anchor points of the two corresponding

legs are coplanar, meaning that the legs either intersect or are parallel. Clearly, if the

intersection is finite the leg centrelines cross one another. If the intersection occurs in the

plane at infinity the leg centrelines are parallel. It is only necessary to look at half of the

cycle (0◦ to 360◦) because the intersections repeat in the second half of the cycle.

From Figure 3.3 it is seen that Ω(1, 2) = 0 at θ = 0◦, θ = 120◦, θ = 300◦, and θ = 360◦.

At θ = 0◦ and θ = 360◦ the A-pair is in the home position and all legs are coplanar, this

position is mechanically unaccessible because it requires that the fixed base and moving

platform be coincident. A computer model of the A-pair has been used to check the other
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Figure 3.3: Plot of Ω(p, q) vs. θ for Legs 1&2 and Legs 1&6.

two instances of coplanar anchor points. At θ = 120◦ Leg 1 and Leg 2 are parallel and

therefore do not interfere with each other, however at θ = 300◦ Leg 1 and Leg 2 intersect

in one finite point. Similarly, Ω(1, 6) = 0 at four instances over the half cycle. At θ = 0◦

and θ = 360◦ the A-pair is in the home position, at θ = 60◦ Leg 1 and Leg 6 intersect in

one finite point and at θ = 240◦ Leg 1 and Leg 6 are parallel.

With information regarding the interference of adjacent legs it is now possible to deter-

mine the limits to the self-motions of an A-pair. Starting from the home position (θ = 0◦),

where all of the legs are coplanar, there is no leg interference until θ = 60◦ where Leg 1

and Leg 6 intersect, then there is free motion until Leg 1 and Leg 2 intersect at θ = 300◦,

and there is no more interference until θ = 360◦. The same intervals exist from θ = 360◦ to

θ = 720◦. The region of interest to a practical A-pair is over the range 60◦ < θ < 300◦. This
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is the range that includes the fully extended A-pair (θ = 180◦) and provides for the largest

range of motion without leg interference. There are 240◦ of motion available (180◦± 120◦).

Over this range of motion the legs, fixed base, and moving platform do not interfere with

one another.

This preliminary analysis is based on the centrelines of the legs, providing an ideal

range of motion. In reality the legs are cylindrical, reducing the range of the self-motions.

Knowing the absolute limits of the motion provides a starting point for the analysis of

cylindrical legs.

Self-Motion Limits Due to Collisions of Cylindrical Legs

When considering the legs of the A-pair as cylinders with the leg centerlines as the axis the

range of rotation available to the joint is reduced because the cylinder edges collide before

the centrelines intersect. To determine the joint limits due to leg interference Plücker

coordinates (Section 2.8) and cylinder collision testing (Section 2.9) are used.

The method for obtaining Plücker coordinates of the leg centerlines is presented in the

previous section and the distance between lines is provided by Equation (2.97). As θ varies

from 0◦ to 720◦ the distance between the centrelines of Leg 1 and Leg 2, d12, as well as the

distance between the centrelines of Leg 1 and Leg 6, d16, are plotted versus θ in Figure 3.4.

This plot corresponds with the results of the previous section in that the distance between

lines is zero at the same values of θ where it was determined that the leg centrelines are

coplanar, and hence intersect. The discontinuities in the plots (for example at θ = 120◦ and

θ = 240◦) are situations where the legs are parallel and the four anchor points are coplanar.

When two lines are parallel the denominator of Equation (2.97) vanishes.

The legs are represented as finite cylinders around the leg centerlines and the procedures

of finite cylinder collision testing (Section 2.9) are used to determine the interaction between

the adjacent legs. To determine the type of finite cylinder required the values of t1 and t2

(Section 2.9.2) for each pair of adjacent legs are obtained over the entire range of self-

motions. Figure 3.5 shows the value of t1 and t2 versus θ for the cylinders representing Legs

1 & 2 and Legs 1 & 6. The plot shows that over the entire cycle of the A-pair self-motions
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Figure 3.4: Plot of d vs. θ for Legs 1&2 and Legs 1&6.

both t1 and t2 remain within the range 0 < ti < 1, i = 1, 2 meaning that the intersection

of the common normal with the centreline of the legs is always within the finite cylinder

segment. Therefore the on-on form of finite cylinder testing is used, meaning the results

presented in Figure 3.4 still apply.

For cylindrical legs with radius r the legs will interfere when the distance between the

leg centrelines is 2r or less. From Figure 3.4 the range of θ available for legs of various r can

be obtained by finding 2r along the distance axis and finding the corresponding values of

θ where the leg interference occurs. For a typical A-pair where the absolute limits (r = 0)

are 60◦ < θ < 300◦, one must determine the lower rotation limit using the curve showing

the distance between the centrelines of Leg 1 and Leg 6 and the upper rotation limit using

the curve showing the distance between the centrelines of Leg 1 and Leg 2. Figure 3.6
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Figure 3.5: Plot of ti, i = 1, 2 vs. θ for Legs 1 & 2 and Legs 1 & 6.

shows the range of θ available for legs of various radius (r), assuming that all legs have

the same radius. The range is centred about θ = 180◦, e.g. a θ range of 200◦ means that

80◦ < θ < 280◦.

3.3 Prototype 4A-Chain and Actuation

A prototype 4A-chain has been constructed to demonstrate the motion of A-pairs and A-

chains. The joint orientations and link dimensions of the prototype 4A-chain are based on

the relative locations of the first four joints and link dimensions of the Thermo CRS A465

robotic manipulator [95]. The prototype 4A-chain is shown in Figure 3.7 and the Thermo

CRS A465 manipulator is shown in shown in Figure 3.8. In Appendix A an assembly

drawing of the full prototype 4A-chain is shown in Figure A.1 and a more detailed assembly
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drawing of the A-pair that make up the joints of the prototype is shown in Figure A.2.

Figure A.3 shows the bill of materials. At the time of writing the motors and transmissions

for the prototype manipulator have not been selected, though the actuation system has

been designed conceptually.

The actuation system for the prototype 4A-chain consists of a central spline affixed to

the moving platform that is constrained by three spur gears affixed to the base, all possessing

identical pitch diameters. One of the spur gears on the fixed base is actively driven by a

motor and transmission. The rotation of the driven spur gear rotates the central spline

which rotates the moving platform. This arrangement allows the spline to translate along

its axis of rotation as it is driven. The remaining two spur gears on the fixed base are

passive and are present only to support the spur gear. This configuration is shown in
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Figure 3.7: The prototype 4A-chain.

Figure 3.8: The Thermo CRS A465 robotic manipulator.

Figure 3.9. One major benefit of this actuation configuration is that the rotation of the

moving platform is controlled directly and the entire A-pair range of motion is covered

without any singularities. The motor and transmission for each joint are carried on the

fixed base of each respective joint.
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Figure 3.9: The actuation system for the prototype 4A-chain. Motors and transmissions
are not shown.

3.4 A New Algorithm for Approximating the Reachable

Workspace of a Serial Chain

In Section 2.2.5 an algorithm for obtaining the reachable workspace of serial and parallel

manipulators by Castelli, et al. [55] was presented. In Castelli’s algorithm many of the

joints are swept multiple times and as the number of joints in the chain is increased, the

time to determine the full workspace becomes prohibitively long. This is especially true

if small joint step sizes are used. This section proposes a new algorithm for obtaining

an approximate graphical representation of the reachable workspace of a serial kinematic

chain that greatly reduces the computation time when compared to Castelli’s algorithm.

The implementation of the new algorithm using MATLAB is described, and the results

are compared with Castelli’s algorithm with regards to computation time and the resulting

representations of the reachable workspace.
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3.4.1 Obtaining the Reachable Workspace

The new algorithm for obtaining the reachable workspace uses parts of the algorithm of

Castelli, et al. [55] for representing the reachable workspace of a manipulator as well as

elements of the analytical method of Yang and Lee [56]. Like Castelli’s algorithm the am-

bient space around the manipulator is discretized into three-dimensional rectangular prism

elements called pixels. Each pixel is given a binary value: one if it can be reached by the

manipulator’s EE and zero if it cannot. Yang and Lee’s work with revolute jointed manipu-

lators works by first actuating only the joint closest to the EE and obtaining the workspace

(a circle or circle segment for revolute joints). The second joint from the EE is then actuated

and the entire workspace is rotated about the joint axis (the swept circle segment becomes

a part of the surface of a torus). This process is repeated for each consecutive joint until

the base is reached.

The new algorithm combines elements of the two methods to create a new three-

dimensional binary array that represents the serial manipulator’s reachable workspace and

can be displayed using a three-dimensional scatter plot on a computer display. The follow-

ing outlines the algorithm, whereas the detailed logic and mathematics behind each step

are discussed in Section 3.4.2.

1. Determine the extreme values in each of the X-, Y -, and Z-axes that can be reached

by the EE of the manipulator.

2. Select the desired resolution for each axis (the dimensions of each pixel), ∆X, ∆Y ,

and ∆Z.

3. Define two three-dimensional arrays, Pijk and Dijk, that each represent the discretized

ambient space, where each of the elements in the array represents one pixel of the

ambient space. The Pijk array is a binary array whose elements are set equal to one if

the EE of the manipulator can be placed within that pixel and zero if it cannot. The

Dijk array counts the number of times a particular pixel is reached by the EE as each

joint of the manipulator is incremented (Dijk is not necessary for the algorithm but is
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used to provide additional information, it may be omitted to save time and memory

if desired). The elements of both matrices are initially set to zero.

4. Define the joint and link parameters and define the maximum and minimum values

of each joint variable.

5. Assemble the matrices for obtaining the direct kinematic equations (based on the

equations found in Section 2.2.3).

5.1 Assemble the Gm, m = 1 . . . n, matrices. These remain constant at all times.

5.2 Assemble the Mm, m = 1 . . . n, matrices for the minimum value of each joint

variable. Though the Mm matrices do not remain constant as the joints are actu-

ated the matrix with the minimum joint variable is used several times throughout

the algorithm.

6. Obtain the initial position of the EE with all joint variables at their minimum value.

6.1 Determine, using the direct kinematics, the position of the EE in the ambient

space (i.e. evaluate T = M1G1 . . .MnGn).

6.2 Determine which pixel the EE is in (i.e. determine the element values of i, j, k

in the Pijk and Dijk arrays).

6.3 Set the elements of Pijk and Dijk corresponding to the reached pixel equal to one

to indicate that the pixel corresponding to that array element has been reached.

7. Begin the process of transforming the workspaces one joint at a time, starting with

the joint closest to the EE and working towards the base. The following steps are

completed for each joint.

7.1 Find the non-zero pixels in Pijk and determine the (x, y, z) position of a specified

point1 within those pixels with respect to the global coordinate system.

7.2 Determine the (x, y, z) position of the specified point within each non-zero pixel

with respect to the joint being actuated.

1See Section 3.4.3 for a discussion of which point to use to represent the pixel.



107

7.3 Step through the range of motion for the joint from the minimum to the maxi-

mum joint variable values with the predetermined step size. At each step deter-

mine how the specified point within the non-zero pixels are transformed by the

actuation of the joint (from the joint minimum to the current step). Determine

which pixel the transformed point now lies in and update the Pijk and Dijk

arrays accordingly.

When all joints have been stepped through the non-zero elements of the final Pijk array

represent an approximation of the reachable workspace of the manipulator. The elements

of Dijk contain a count of the number of times a pixel is reached by the EE. This can be

used to optimize the step and size and pixel resolution and also to give a measure of the

dexterity of the manipulator at a given point.

3.4.2 MATLAB Implementation

In order to compare the results of the new algorithm with Castelli’s algorithm, it must be

coded. This section describes how the new algorithm is implemented using MATLAB while

providing some additional insight into how the steps of the algorithm (from Section 3.4.1)

are put into practice. The decision to use MATLAB to implement the algorithm is based

on the high level functions available for handling matrices and multidimensional arrays,

particularly when determining which elements of a binary three-dimensional array are non-

zero.

The geometry of the manipulator is defined using DH-parameters as per Section 2.2.2.

The Gm matrices, m = 1, . . . , n, are constructed using the DH-parameters and remain

constant throughout the entire procedure. Also defined are the variables for the ambient

space surrounding the manipulator such as the maximum and minimum values in the X,

Y and Z directions (Xmax, Xmin, etc.); and the resolution of the pixels in each direction:

∆X, ∆Y and ∆Z. The step size (the amount that the joint variable values are incremented

between each iteration) is also selected and is based on the size of the pixels and the

geometry of the manipulator. At this time trial and error is used to determine the best
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value of the step size, however a better method for determining the pixel and step sizes may

exist, perhaps based on the pixel dimensions and link lengths.

The array representations of the workspace, Pijk and Dijk, are constructed based on the

designated size and resolution of the ambient workspace. The elements of the two arrays

are all set to zero to indicate that the corresponding pixels have not yet been reached by

the EE of the manipulator.

With the manipulator geometry defined and the ambient space discretized it is now

possible to start with the main algorithm. The first step is to find the initial position of the

manipulator. To do this the Mm matrices are found for each Joint variable m = 1, . . . , n at

its minimum value. The transformation matrix from the base coordinate system to the EE

coordinate system, T, for this initial position is found by the direct kinematics algorithm

of Section 2.2.3 as

T = M1G1 . . .MmGm . . .MnGn, (3.22)

where n is the number of joints in the chain. The (X,Y, Z) position of the origin of the

EE coordinate system is obtained from the first column of T (the second, third and fourth

elements of that vector respectively) and adjusted such that the position (0, 0, 0) is in the

centre of the ambient space. The pixel coordinates corresponding to the EE position are

obtained by

i = floor
(
X−∆X

∆X

)
, j = floor

(
Y−∆Y

∆Y

)
, k = floor

(
Z−∆Z

∆Z

)
, (3.23)

where the floor() operator returns the nearest integer that is less than or equal to the value

inside the brackets (rounded towards negative infinity). These pixel coordinates correspond

to an element in the discretized ambient space arrays Pijk and Dijk and the arrays are

updated accordingly (Pijk(i, j, k) is set equal to one to indicate that the pixel has been

reached at least once and Dijk(i, j, k) is incremented by one to count the number of times

the pixel has been reached).

Each joint is then swept through once, starting with the joint closest to the EE (usually
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Joint n) and then moving towards the base (Joint 1). The following describes the procedure

for each joint sweep specifically designed for use with R-pairs and A-pairs, however it could

be modified for any joint type.

Before the joint is stepped the previous workspace is determined with respect to the

joint being actuated. In MATLAB the non-zero pixels from the 3D array Pijk are found

using the command find. The expression [r,c]=find(P) provides two vectors that identify

the i, j and k index of each non-zero pixel. Each element of r represents the i index of

the pixel in the array, the j index of each pixel is the remainder after dividing the elements

of c by the maximum value of j in the Pijk array (i.e. rem(c,Psize(2)), where Psize

= size(P)), and the k index of the pixel is the nearest integer above (rounded towards

positive infinity) the resultant of c divided by the maximum value of j in the Pijk array

(i.e. ceil(c/Psize(2))). Each pixel must now be represented by a point. The selection of

which point within the pixel to use depends on how the resulting workspace representation

is being used. Section 3.4.3 discusses this issue further, but for the description of the

MATLAB code the centre point of the pixel is used. The centre point of each non-zero

pixel (represented by (i, j, k) values) are converted to (x, y, z) coordinates (with respect to

the global coordinates system with the origin at the centre of the three-dimensional ambient

space array) by

x = i∆X − Xmax −Xmin

2
− ∆X

2
,

y = j∆Y − Ymax − Ymin
2

− ∆Y

2
,

z = k∆Z − Zmax − Zmin
2

− ∆Z

2
,

(3.24)

and each centre point is represented by homogeneous coordinates by x =
[

1 x y z

]T
.

The transformation from the base frame to the frame at the end of Joint m is

T = M1G1 . . .Mm. (3.25)

Each centre point is then found with respect to the frame affixed to Joint m by xrel = T−1x,

where xrel is the position vector of centre point of the pixel with respect to the joint being
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actuated.

With the centre point of each non-zero pixel defined with respect to the joint being

actuated the joint can be incremented by the step size from the minimum towards the

maximum value. At each step the previous workspace (from the actuation of Joint m+ 1,

or the initial position if m = n), defined by the centre point of each activated pixel, is

transformed and added to the new workspace. Only the workspace of the previous joints

are transformed, not the workspace of the previous steps of the current active joint.

Each centre point, xrel, is transformed by

x′rel = Mm,relxrel, (3.26)

where x′rel is the transformed centre point with respect to the joint being actuated and

Mm,rel =



1 0 0 0

0 cos (θstep − θmin) − sin (θstep − θmin) 0

0 sin (θstep − θmin) cos (θstep − θmin) 0

ρ sin

(
θstep

2

)
− ρ sin

(
θmin

2

)
0 0 1


.

The variable θstep is the value of the joint angle for the current step in the joint sweep and

θmin is the minimum joint angle for the joint being swept. The matrix Mm,rel describes the

transformation from the minimum joint variable to the joint variable at the current step

in the joint sweep. Note that Mm,rel is set up for A-pair joints, for R-pairs the geometric

constant, ρ, is set to zero. For serial chains constructed using different types of kinematic

pairs Mm,rel must be modified accordingly to account for each joint type.

The new point, x′rel, is defined relative to the active joint and its position relative to

the base frame is x′ = Tx′rel. The x, y, and z components of the new point and Equation

(3.23) are used to determine the pixel coordinates (i, j, k) and the arrays Pijk and Dijk are

updated accordingly.

When the process of obtaining and transforming the previous workspace has been com-

pleted for each joint from Joint n to Joint 1, the final Pijk array is the binary representation
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of the reachable workspace.

3.4.3 Method Comparison and Discussion

This section compares the two algorithms both conceptually and based on the time required

to execute for manipulators of varying lengths, the actual workspaces that the different

algorithms produce and discusses the characteristics of the results from the new algorithm.

Comparing the Methods Conceptually

To determine if a pixel is reached by the EE, Castelli steps through all possible combinations

of joint values obtainable by a manipulator one at a time. A simple example illustrates the

sweep through all possible joint combinations. Imagine a three-jointed serial manipulator

with Joint 1 being the joint closest to the base and Joint 3 closest to to the EE. Each

joint is to be swept through its range of motion by looking at ten discrete values of the

joint variable (ten joint variable steps is used as an example, in a real application a finer

step-size may be desired). Joints 1 and 2 are held fixed in their first position and Joint 3 is

swept through all ten variable values, the position of the EE is determined using the direct

kinematic equations for the manipulator and the binary values of the pixels reached by the

EE are set to one. Joint 2 is then stepped to its second joint variable value and Joint 3

sweeps through its range again. This is repeated until Joint 2 completely sweeps through all

ten variable values, then Joint 1 is stepped to its next value and the sweeps of Joints 2 and

3 start again. By this method Joint 1 is stepped 10 times, Joint 2 is stepped 10× 10 = 100

times and Joint 3 is stepped 100 × 10 = 1000 times. That means that direct kinematic

equations of the entire three-jointed chain are computed 1000 times.

The new algorithm involves stepping through each joint once, starting with the joint

closest to the EE. This means that Joint 3’s value is changed 10 times, Joint 2’s value is

changed 10 times and Joint 1’s value is changed 10 times, for a total of 10 + 10 + 10 = 30

manipulator configurations. The complexity of the calculations at each step is greater for

the new method as compared to simply evaluating the direct kinematics as with Castelli’s

method, however the large reduction in the number of times the calculations need to be
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processed can result in large time savings depending on factors such as joint step size and

the resolution of the discretized ambient space.

Algorithm Run Time Comparison

Both Castelli’s and the new algorithms for obtaining the reachable workspaces of serial

chains were programmed using MATLAB. The tic and toc functions were used to deter-

mine the time required to run the algorithms (excluding the plotting time and the time

required to save the variables to disc, but including the definition of variables). The times

vary slightly from run to run but usually remain within the same order of magnitude. All

runs were completed on a computer with 2.00 GB of RAM and an Intel Core2 T5300 CPU

with two 1.73 GHZ cores. The time results are provided in Table 3.1. From the table it

Table 3.1: Run time comparison of the old and new algorithms for obtaining the reachable
workspace of a serial manipulator.

Chain Castelli’s Algorithm New Algorithm

1R 0.02 sec. 0.3 sec.

2R 2.3 sec. 0.7 sec.

3R 1.45× 103 sec. ≈ 24 min. 2.3 sec.

can be seen that for 1R-chains the new algorithm is outperformed by Castelli’s algorithm,

however as more joints are added the new algorithm executes much faster than its prede-

cessor. At just three joints the new algorithm outperforms Castelli’s algorithm by taking

just 2.3 seconds compared to over 24 minutes. The reachable workspace of a four-jointed

chain can be obtained in about 12.8 seconds with the new algorithm and would be many

orders of magnitude longer using Castelli’s algorithm. For all of the test cases run for this

comparison the joint step size was 0.5◦, the joints were swept 240◦ (to correspond to the

maximum range of an A-pair), the pixel dimensions (∆X, ∆Y and ∆Z) were all 0.5 units

and the dimensions of the ambient space varied depending on the manipulator dimensions,

but were constant between the different algorithms.
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The algorithms also differ in how they react to changes in the step size or the dis-

cretization of the ambient space. Castelli’s algorithm is greatly affected by the joint step

size because if the step size is doubled (say from 0.5◦ to 1◦) each sweep will take half as

long, so the time savings are dependant on the number of joints. With the new algorithm

the doubling of the step size essentially means halving the time (there is an almost linear

relationship). As for changing the resolution (pixel size), Castelli’s algorithm is unaffected

with regards to run time because the same number of computations are required, however

the new algorithm is greatly affected because it changes the number of calculations that

are required at each step. A test where the dimensions of the cubic pixel were reduced

from 0.5 to 0.1 units for the 3R-chain took 42.4 seconds or if the dimension was increased

to 1 unit it took 1.2 seconds to approximate the workspace (compared to 2.3 seconds for a

pixel dimension of 0.5 units).

Algorithm Output Comparison

The output of the two algorithms is not identical and the following compares the reachable

workspace estimates from the two algorithms and discusses the reasons for the discrepancy

and potential methods for reducing or accounting for it. It is important to recognize that

both algorithms only produce an approximation of the workspace because of the discretiza-

tion of the ambient space. The EE may pass through only a small piece of the corner of a

pixel yet the entire pixel is activated.

The reachable workspace of the 3R-chain with the DH-parameters defined in Table 3.2.

is shown in Figure 3.10 where the reachable workspaces obtained by both algorithms are

compared. It is difficult to gather much information from the plot other than recognizing

Table 3.2: DH-parameters of a 3R-chain.

i ai di αi

1 5 8 180◦

2 2 8 90◦

3 2 8 0◦
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Figure 3.10: Comparison plot of the reachable workspaces of a 3R-chain obtained with the
new algorithm and Castelli’s algorithm.

that the shapes are very similar and that the patches of pixels that do not coincide are only

a single pixel away from overlapping. The new algorithm reaches 14897 pixels, Castelli’s

algorithm reaches 16157 pixels and they share 13977 (86%) of those pixels.

Pixel Size

The dimensions of the pixels used to discretize the ambient space around the manipulator

has a large effect on both the computation time and accuracy of the new algorithm. When

the pixel size is decreased, more pixels are reached during the sweeping of a joint. This

means that during each subsequent joint sweep more computations are required because

more non-zero pixels exist. The selection of the pixel size comes down to a balance between

time, computing power and desired accuracy.

With regards to accuracy, because we are representing the entire pixel as a point at

the centre of that pixel, the larger the pixel the less the final result will represent the true
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workspace of the manipulator. This is because the EE may only clip a small part of a

certain pixel yet in later joint sweeps that pixel is represented by a point at its centre. For

a pixel with all dimensions of 0.5 units that could be as much as 0.433 units, the distance

from one corner of the pixel to its centre. This means the resulting representation of the

workspace may be larger than the actual workspace. The opposite may be true if the EE

passes through a large part of the pixel and by representing the pixel by a point at the centre

the resulting workspace may be smaller than the actual workspace. The overall impact of

the selected pixel size depends on the size of the manipulator relative to the pixel size.

Pixel Representation as a Point

The topic of accuracy vs. pixel size raises another question with regards to how the pixel

is represented as a point. Perhaps it is not best to represent the pixel as its centre point

but as maybe the corner or point closest to the global origin or maybe furthest away. This

may depend on the objective of the analysis.

From a design point of view, if it is desirable for the manipulator to be guaranteed to

reach a certain volume of space it may be advisable to use the coordinates of the corner

of the pixel nearest to the origin, that way the resulting workspace would be smaller than

that of the actual manipulator and coverage of the desired workspace would be ensured.

Alternatively if the manipulator is to be used in a confined space and it needs to be certain

that the reachable workspace fit in that confined space it may be desirable to use a point

at the corner of the pixel furthest from the origin such that the resulting representation of

the workspace is larger than that actually obtainable by the manipulator.

3.5 The Reachable Workspace of A-Chains

The coupled translation and rotation of A-pairs means that as each joint in an nA-chain is

actuated the manipulator EE will translate parallel to the axis of rotation of the joint as

a function of the rotation angle. The translation component of the coupled motion is not

present in chains constructed using R-pairs and thus it is necessary to examine the effect
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of the coupled motion on the workspace of the A-chain and compare it to that of similar

R-chains.

There are infinitely many configurations of manipulators that can be constructed with

different numbers of joints and different sets of DH-parameters making it difficult to simply

compare R-chains with A-chains. To gain an initial understanding of how the reachable

workspaces of R-chains and A-chains compare this section begins with an examination

of short chains comprising one and two joints before examining specific configurations of

similar 4R- and 4A-chains.

For this section all joints will be limited to the range 60◦ ≤ θi ≤ 300◦ in order to

correspond to the absolute maximum range of an A-pair. Self-collisions between the links

of the manipulator are ignored. In order to show the characteristics of the A-chain workspace

a very large A-pair relative to the size of the links has been used (the length of one of the

sides of the triangles, a, has been set to 10). In reality the joint would likely be much

smaller than the links and the shape of the workspace would not be as exaggerated. This

is important to remember since at first glance the R- and A-chain workspaces bear little

resemblance to one another.

3.5.1 The Reachable Workspaces of Single-Joints

Examining the workspace of chains with only one joint appears trivial but it is important

to understand how each joint in the chain works in order to fully understand and predict

how a chain of multiple joints might move in space.

Figure 3.11 compares the reachable workspaces of a 1R-chain and a 1A-chain. The

1R-chain has the DH-parameters (the units are irrelevant): a1 = 10, α1 = 0◦, and d1 = 6,

and the DH-parameters of the 1A-chain are: a1 = 10, α1 = 0◦, d1 = 0 and the fixed

component of the joint angle is θf1 = 0◦. The difference in the joint offset (d1) between the

two manipulators is set so the workspaces of the manipulators will overlap.

The workspace of the 1R-chain is a planar semi-circle while the workspace of the

1A-chain is a semi-circle when projected onto the X-Y plane, but the Z value varies accord-

ing to Z = ρ sin (θv/2). Near the beginning and end of the range of rotation the 1A-chain



117

-10
-5

0
5

10 -10

-5

0

5

10
-10

-8

-6

-4

-2

0

2

4

6

8

10

 

Y

The Reachable Workspaces of Two Kinematic Chains

X

 

Z

1R
1A

Figure 3.11: Plots of the reachable workspaces of a 1R-chain and a 1A-chain.

workspace is below the 1R-chain while near the middle of the range of rotation it is above.

In Figure 3.11 it appears that the workspaces share three points in common around each

intersection (they share six pixels), but this is a result of the discretization of the ambient

space and in fact the reachable workspaces intersect in two points, one at each crossing.

The orientation of the EE of both manipulators is the same for identical joint angles but

aside from the two intersection points the EE position is different.

3.5.2 The Reachable Workspaces of 2-Joint Chains

Comparing two-jointed chains becomes increasingly difficult because there are many more

configuration possibilities. Three cases are examined: two parallel joint axes (the workspace

of the 2R-chain is planar); two skew perpendicular axes; and two intersecting perpendicular

axes.
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Parallel Axes

When a 2R-chain has parallel joint axes (and links with non-zero lengths) the reachable

workspace lies on a plane. The shape of the planar workspace depends on the link lengths

and available range of motion of each joint, however the reachable workspace will typically

be an annulus segment whose thickness depends on the length of the second link and the

range of rotation of the second joint.

The DH-parameters of the 2R- and 2A-chains that are compared are listed in Table 3.3.

Joint offsets (di) of six units were used for the 2R-chain in order to remain consistent with

Table 3.3: DH-Parameters of the two chains with two parallel axes.

Chain/Link i ai αi di θfi θ Range

2R-Chain

1 10 180◦ 6 N/A 60◦ ≤ θ1 ≤ 300◦

2 5 0◦ 6 N/A −120◦ ≤ θ2 ≤ 120◦

2A-Chain

1 10 180◦ 0 0◦ 60◦ ≤ θ1 ≤ 300◦

2 5 0◦ 0 180◦ 60◦ ≤ θ2 ≤ 300◦

the 1R-chain from the previous section. The link twist of 180◦ was used so that the plane of

the 2R-chain reachable workspace is on the X-Y plane at Z = 0. The reachable workspace

of the 2R-chain with parallel axes is illustrated in Figure 3.12 (a).

The workspace of the 2R-chain is to be compared to a dimensionally similar 2A-chain.

Because of the coupled translation and rotation the reachable workspace of the 2A-chain is

not planar, but a more complex shape, see Figure 3.12 (b). To gain better understanding

of the shape features, several cross-sections of the workspace are examined in Figure 3.13.

The cross-sections show that the 2A-chain workspace does not contain any large planar

segments like the 2R-chain, suggesting that the reachable workspaces of the two types of

chains have little in common.

Using the pixel representation of the ambient space around the manipulator it is possi-

ble to determine which pixels are reached by both types of manipulators, this gives some

insight into the intersection of the two workspaces. It must be noted that because of the
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Figure 3.12: Plots of the reachable workspace of (a) a 2R-chain with parallel axes and (b)
a 2A-chain with parallel axes.
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Figure 3.13: Cross sections of the reachable workspace of a 2A-chain with parallel axes
along a) the Z-axis, b) the Y -axis and c) the X-axis.

discretization of the ambient space the same pixel may be activated, but in reality the

same exact point in space has not been reached. Figure 3.14 shows the intersection of the

workspaces. The intersection appears to be segments of a plane, but in reality it is likely

curves on the plane. This is similar to the point intersection in Figure 3.11 appearing as

three pixels because of the coarse discretization of the ambient space.

Non-Intersecting Perpendicular Axes

When the axes of the 2R-chain are perpendicular, but not intersecting, the reachable

workspace differs from that of the two parallel axes configuration in that its reachable

workspace is no longer planar. The DH-parameters of the two 2R- and 2A-chains with

non-intersecting perpendicular axes are listed in Table 3.4. For the 2R-chain joint offsets of



121

-15
-10

-5
0

5
10

15
-15

-10

-5

0

5

10

15

-15

-10

-5

0

5

10

15

Y

X

The Intersection of the Reachable Workspaces of Two Kinematic Chains

Z

Figure 3.14: Plot of the intersection of the 2R-chain and 2A-chain reachable workspaces for
2-jointed chains with parallel axes.

Table 3.4: DH-Parameters of the two chains with two non-intersecting perpendicular axes.

Chain/Link i ai αi di θfi θ Range

2R-Chain

1 10 90◦ 8 N/A 60◦ ≤ θ1 ≤ 300◦

2 5 0◦ 8 N/A −120◦ ≤ θ2 ≤ 120◦

2A-Chain

1 10 90◦ 0 0◦ 60◦ ≤ θ1 ≤ 300◦

2 5 0◦ 0 180◦ 60◦ ≤ θ2 ≤ 300◦

di = 8 were used to put the two workspaces in the same region of the ambient space. The

pixel resolution for the discretization of the ambient space is 0.5 units.

The reachable workspace of the 2R-chain is the toroidal section with a plane of symmetry

parallel to the X-Y plane at Z = 8, seen in in Figure 3.15 (a). At first glance the reachable
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Figure 3.15: Plots of the reachable workspace of (a) a 2R-chain and (b) a 2R-chain, both
with non-intersecting perpendicular axes.
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workspace of the geometrically similar 2A-chain, shown in Figure 3.15 (b), appears to be

similar to that of the 2R-chain, but the 2A-chain workspace has no plane of symmetry, as can

be seen in the cross-sections of the workspace in Figure 3.16. An estimate of the intersection

a)

-10 0 10

-10

0

10

Z = -0.5

X

Y

-10 0 10

-10

0

10

Z = 1

X

Y

-10 0 10

-10

0

10

Z = 3

X

Y
-10 0 10

-10

0

10

Z = 4.5

X

Y

-10 0 10

-10

0

10

Z = 6.5

X

Y

-10 0 10

-10

0

10

Z = 8

X
Y

-10 0 10

-10

0

10

Z = 10

X

Y

-10 0 10

-10

0

10

Z = 11.5

X

Y

-10 0 10

-10

0

10

Z = 13.5

X

Y

b)

-10 0 10

-10

0

10

Y = -17

X

Z

-10 0 10

-10

0

10

Y = -13

X

Z

-10 0 10

-10

0

10

Y = -8.5

X

Z

-10 0 10

-10

0

10

Y = -4.5

X

Z

-10 0 10

-10

0

10

Y = 0

X

Z

-10 0 10

-10

0

10

Y = 4.5

X

Z

-10 0 10

-10

0

10

Y = 8.5

X

Z

-10 0 10

-10

0

10

Y = 13

X

Z

-10 0 10

-10

0

10

Y = 17.5

X

Z

c)

-10 0 10

-10

0

10

X = -17

Y

Z

-10 0 10

-10

0

10

X = -13

Y

Z

-10 0 10

-10

0

10

X = -9

Y

Z

-10 0 10

-10

0

10

X = -5

Y

Z

-10 0 10

-10

0

10

X = -1

Y

Z

-10 0 10

-10

0

10

X = 3

Y

Z

-10 0 10

-10

0

10

X = 7

Y

Z

-10 0 10

-10

0

10

X = 11

Y

Z

-10 0 10

-10

0

10

X = 15

Y

Z

Figure 3.16: Cross sections of the reachable workspace of a 2A-chain with non-intersecting
perpendicular axes along a) the Z-axis, b) the Y -axis and c) the X-axis.

of the reachable workspaces of the two manipulators can be obtained by determining which

pixels in the ambient space are reached by both the 2R- and 2A-chain. Figure 3.17 reveals

the intersection of the two workspaces and the scatter plot of the common pixels shows

that the two workspaces intersect in a planar semi-circle. Some of the additional pixels that

the two workspaces have in common are artifacts of the coarseness of the pixel’s resolution.

This shows that the 2A-chain can only reach a somewhat small number of the same points

as a 2R-chain. Regardless, the study so far has not involved any quantitative comparisons

(i.e. workspace area, etc.) between chain types. Such discussion is left until Section 3.5.3
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Figure 3.17: Plot of the intersection of the 2R-chain and 2A-chain reachable workspaces for
2-jointed chains with non-intersecting perpendicular axes.

where the reachable workspaces of four-jointed chains are examined.

Intersecting Perpendicular Axes

The pixel representation of the reachable workspace of a 2R-chain with perpendicular in-

tersecting axes is a band of pixels that lies on a cylinder about the axis of the first joint.

The DH-parameters of the 2R- and 2A-chains are provided in Table 3.5. The joint offset of

the second joint, d2 = 18, was selected to account for the length of the first link (different

Table 3.5: DH-Parameters of the two chains with two intersecting perpendicular axes.

Chain/Link i ai αi di θfi θ Range

2R-Chain

1 0 −90◦ 8 N/A 60◦ ≤ θ1 ≤ 300◦

2 5 0◦ 18 N/A −120◦ ≤ θ2 ≤ 120◦

2A-Chain

1 0 90◦ 0 0◦ 60◦ ≤ θ1 ≤ 300◦

2 5 0◦ 10 180◦ 60◦ ≤ θ2 ≤ 300◦
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from a1 for intersecting joint axes) that is 10 units long and also to account for the inherent

joint offset of A-pairs, which is approximately 8 units.

Figure 3.18 (a) shows the reachable workspace of a 2R-chain with intersecting perpendic-

ular axes. The workspace is characterised as a semi-circular band with width a2 and radius

d2 (the length of the first link plus the joint offset of the second joint). The workspace has

a plane of symmetry that is offset from the X-Y plane by the joint offset of the first joint,

d1. The reachable workspace of the geometrically similar 2A-chain (shown in Figure 3.18

(b)) appears to be more toroidal than the workspace of the 2R-chain of this configuration,

however the 2A-chain workspace has no plane of symmetry and again the centerline of the

torus-like surface is the curve for the 1A-chain shown in Figure 3.11. The torus-like struc-

ture is due to the fact that as the second joint rotates it also translates towards or away

from the Z-axis of the base reference frame (an axis passing through the middle of the void

of the torus-like surface). Cross sections of the workspace are shown in Figure 3.19.

The intersection of the two workspaces is provided in Figure 3.20. The intersection

appears to be a portion of the band that is the workspace of the 2R-chain though it is

expected that intersection is actually a planar semi-circle.

3.5.3 Four Jointed Chains

The reachable workspace of 4A-chains, or A-chains of any length, can also be computed

using the algorithm in Section 3.4.1. When considering 4A-chains the number of pos-

sible configurations is unlimited, making it difficult to generalize the resulting reachable

workspace and compare it to architecturally similar 4R-chains. The reachable workspaces

of R-chains and A-chains with similar DH-parameters will never be identical due to the

coupled translation and rotation that is present in A-chains and absent in R-chains. The

amount of the deviation of the A-chain workspace from the R-chain workspace depends on

the size of the A-pairs used as joints in the A-chain (the value of the geometric constant ρ).

The ability to recreate the reachable workspace of an R-chain is one measure of the

A-chain workspace. One must also examine characteristics such as the volume of the
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Figure 3.18: Plots of the reachable workspace of (a) a 2R-chain and (b) a 2A-chain, both
with intersecting perpendicular axes.
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Figure 3.19: Cross sections of the reachable workspace of a 2A-chain with intersecting
perpendicular axes along a) the Z-axis, b) the Y -axis and c) the X-axis.

workspace, the volume index (Section 2.2.5), and the ability of the manipulator to per-

form a desired task. The first two of these characteristics allow for a direct comparison of

the results for similar R-chains and A-chains, while the later, the ability to perform a given

task, is not easily compared. In fact, when one selects or designs a serial manipulator to

perform a certain task it may result in different DH-parameters for the A-chain and R-chain

that can perform that task, making it difficult to compare the chains in a meaningful way.

The inability to generalize the reachable workspaces of four-jointed chains due to the

large number of possible different configurations means that this section does not focus on

quantitative analysis. Such an examination is left to the comprehensive numeric example of

Section 3.8 which examines the workspace, kinematics, and dynamics of a specific 4A-chain.
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Figure 3.20: Plot of the intersection of the 2R-chain and 2A-chain reachable workspaces for
2-jointed chains with intersecting perpendicular axes.

3.6 Determination of the A-Chain Jacobian Matrix

Moving towards a velocity, force and dynamic level analysis of A-pairs and A-chains re-

quires the determination of the Jacobian matrix. The background theory for obtaining the

Jacobian matrices of manipulators containing R-pairs and P-pairs was presented in Sec-

tion 2.6. This section shows the adaptation of the standard methods to account for the

coupled translation and rotation of the A-pair. A single A-pair is examined first to show

the effect of the coupled motion and a 4A-chain is then examined to illustrate how the

Jacobian matrix is obtained for longer serial A-chains.

3.6.1 Jacobian Matrix for a Single A-Pair

Utilizing the techniques of Section 2.6 the Jacobian matrix of a single A-pair is found

by examining the rotation and translation components of the coupled motion separately.
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The state of the joint is represented by the joint variable θ1, which directly represents the

rotation component of the joint and the translation component of the joint motion is a

function of the joint variable by Equation (2.29). The Jacobian is examined in two parts,

first the linear velocity component and then the angular velocity component.

The linear velocity of the EE as induced by the motion of the joint has two components:

one component due to the rotation of the joint (perpendicular to the axis of rotation,

similar to a revolute joint) and one component due to the translation which is coupled to

the rotation by

pez = d1 + ρ sin

(
θ1

2

)
, (3.27)

where pez is the z0-component of the EE position, and di is the DH-parameter describing

the joint offset of Joint i. There is only one variable in the joint vector, q1 = θ1, and

similarly q̇1 = θ̇1. The Jacobian describing the influence of the rotation of the joint on the

linear velocity of the EE, P1r, is found as if it were a revolute joint using Equation (2.44):

P1r = 0z0 × (0pe − 0p0)

=


0

0

1

×

−a1 cos θ1 − 0

−a1 sin θ1 − 0

0



=


a1 sin θ1

−a1 cos θ1

0

 ,
(3.28)

where a1 is the DH-parameter for the link length of a link affixed to the moving platform of

the single A-pair. The translation component of the Jacobian is found by taking the time

derivative of pez to get
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q̇1P1t = d
dt


0

0

d1 + ρ sin
(
θ1
2

)


=


0

0

θ̇1
2 ρ cos

(
θ1
2

)
 ,

(3.29)

therefore P1t =

[
0 0 ρ

2 cos
(
θ1
2

) ]T
. The two components are added together to get the

mapping from the joint rate q̇1 to the EE linear velocity:

P1
= P1r + P1t =


a1 sin θ1

−a1 cos θ1

ρ
2 cos

(
θ1
2

)
 , (3.30)

and 0ṗe = JP1(q)q̇1.

The translation that is coupled with the rotation of the A-pair does not have an effect on

the orientation of the EE, thus the contribution of the A-pair actuation rate to the angular

velocity of the EE is the same as that of a revolute joint, so from Equation (2.47)

O1
= 0z0

=


0

0

1

 ,
(3.31)

and 0ωe = JO1(q)q̇1.

Combining the two components yields the full Jacobian:
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J =

 P1

O1

 =



a1 sin θ1

−a1 cos θ1

ρ
2 cos

(
θ1
2

)
0

0

1


. (3.32)

In order to examine the singularities it is useful to examine a single A-pair where the

EE is located at the geometric centre of the moving platform (the EE frame is coincident

with a base frame located at the geometric centre of the fixed base when the A-pair is in

the theoretical home position). In such a case, the origin of the EE lies on the joint axis

(a1 = 0) and

J =



0

0

ρ
2 cos

(
θ1
2

)
0

0

1


. (3.33)

This result for the Jacobian matrix makes sense conceptually when the EE origin is on the

joint axis because as the joint angle is changed the EE acquires a linear velocity component

along the z0-axis only (from the first three elements of J) and the angular velocity (the last

three elements of J) indicate a one-to-one relationship between the joint rate and the EE

angular velocity, the same as a revolute joint. In fact, when ρ = 0 the Jacobian of a single

R-pair is recovered.
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Singularity Analysis of the Single A-Pair Jacobian Matrix

The Jacobian matrix for the single A-pair is always rank deficient, which is expected because

motion in an arbitrary direction will never be possible with just a single A-pair. If one

considers only the two coupled DOF of the single A-pair with the EE origin on the joint

axis (motion along the joint axis and rotation about the same axis) a more useful analysis

can be performed.

The mapping to EE angular velocity from the joint rate is one-to-one and independent

of the joint state. This implies that, if joint limits are ignored, the angular velocity of the

EE can always be controlled one-to-one. However, the mapping of the joint rates to the

EE linear velocity is dependant on the joint state and cannot be continuously controlled.

When cos
(
θ1
2

)
goes to zero (i.e. when θ1 approaches 180◦) the joint approaches a singular

position. At the singularity the linear velocity of the EE can only be controlled in one

direction (at 180◦ only a velocity in the negative z0-direction can be achieved). This is also

evident if the Jacobian is rearranged to solve for the joint rate required to achieve a certain

velocity, v1, along the z0-axis:

θ̇1 =
2v1

ρ cos
(
θ1
2

) . (3.34)

As θ1 approaches 180◦, θ̇1 approaches infinity.

3.6.2 Jacobian Matrix for a 4A-Chain

Obtaining the Jacobian matrix for a general 4A-chain is tedious and the resulting matrices

are too large to manage in a reasonable way so such a derivation is not presented symbolically

in this dissertation. The method for obtaining the 4A-chain Jacobian is instead illustrated

with a more specific manipulator with the DH-parameters listed in table Table 3.6. These

DH-parameters are based on those of the prototype manipulator.

The position vector of the base frame origin is p0 = 0. The position of the EE, pe,
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Table 3.6: DH-Parameters of a 4A-chain.

Link i ai αi di θfi
1 0 90◦ d1 0◦

2 a2 180◦ −ρ −90◦

3 0 −90◦ −ρ 90◦

4 0 0◦ d4 0◦

is found by obtaining the matrix form of the direct kinematics equations as described in

Sections 2.2.3, 2.5.5 and 3.1.3. The pose of the EE reference frame, Σ4, is represented by

the matrix

0T4 =



1 0 0 0

pex −c1c2−3c4 + s1s4 c1c2−3s4 + s1c4 −c1s2−3

pey −s1c2−3c4 − c1s4 s1c2−3s4 − c1c4 −s1s2−3

pez −s2−3c4 s2−3s4 c2−3


, (3.35)

where

0pe =


pex

pey

pez

 =


s1ρ s

θ2
2 + c1s2a2 − s1ρ s

θ3
2 − c1s2−3ρ s

θ4
2 − c1s2−3d4

−c1ρ s
θ2
2 + s1s2a2 + c1ρ s

θ3
2 − s1s2−3ρ s

θ4
2 − s1s2−3d4

ρ s θ12 + d1 − c2a2 + ρ c2−3s
θ4
2 + d4c2−3

 (3.36)

is the position vector of the EE origin expressed in the base frame. The c1, s1, etc. terms

are defined in Section 2.11.2. In addition to the EE pose, the transformation matrices

describing the pose of each intermediate reference frame (Σi, i = 1, 2, 3) are needed. The

pose of Σ1 is given by

0T1 =



1 0 0 0

p1x c1 0 s1

p1y s1 0 −c1

p1z 0 1 0


, (3.37)
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where

0p1 =


p1x

p1y

p1z

 =


0

0

ρ s θ12 + d1

 , (3.38)

is the position vector of the origin of Σ1 expressed in the base frame; the pose of Σ2 by

0T2 =



1 0 0 0

p2x c1s2 −c1c2 −s1

p2y s1s2 −s1c2 c1

p2z −c2 −s2 0


, (3.39)

where

0p2 =


p2x

p2y

p2z

 =


ρ s1s

θ2
2 + a2 c1s2 − ρ s1

−ρ c1s
θ2
2 + a2 s1s2 + ρ c1

ρ s θ12 + d1 − a2 c2

 , (3.40)

is the position vector of the origin of Σ2 expressed in the base frame; and the pose of Σ3 by

0T3 =



1 0 0 0

p3x −c1c2−3 s1 −c1s2−3

p3y −s1c2−3 −c1 −s1s2−3

p3z −s2−3 0 c2−3


, (3.41)

where

0p3 =


p3x

p3y

p3z

 =


ρ s1s

θ2
2 + a2 c1s2 − ρ s1s

θ3
2

−ρ c1s
θ2
2 + a2 s1s2 + ρ c1s

θ3
2

ρ s θ12 + d1 − a2 c2

 , (3.42)

is the position vector of the origin of Σ3 expressed in the base frame.
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The joint axes, taken from the respective transformation matrices, are

0ẑ0 =


0

0

1

 , 0ẑ1 =


s1

−c1

0

 , 0ẑ2 =


−s1

c1

0

 , 0ẑ3 =


−c1s2−3

−s1s2−3

c2−3

 . (3.43)

The vector mapping the rate of actuation of Joint 1 to the linear velocity of the EE due

to the rotation of Joint 1 is obtained using Equation (2.44) with i = 1 to get

P1,r
= 0z0 × (0pe − 0p0)

=


ρ c1s

θ2
2 − a2 s1s2 − ρ c1s

θ3
2 + ρ s1s2−3s

θ4
2 + d4 s1s2−3

ρ s1s
θ2
2 + a2 c1s2 − ρ s1s

θ3
2 − ρ c1s2−3s

θ4
2 − d4 c1s2−3

0

 .
(3.44)

The vector mapping the rate of actuation of Joint 1 to the linear velocity of the EE due to

the translation of Joint 1 is obtained by the same method as Section 3.6.1:

P1,t
=


0

0

ρ
2 c

θ1
2

 . (3.45)

The total linear velocity Jacobian component for Joint 1 is the sum of Equations (3.44)

and (3.45) with i = 1, giving

P1
=


ρ c1s

θ2
2 − a2 s1s2 − ρ c1s

θ3
2 + ρ s1s2−3s

θ4
2 + d4 s1s2−3

ρ s1s
θ2
2 + a2 c1s2 − ρ s1s

θ3
2 − ρ c1s2−3s

θ4
2 − d4 c1s2−3

ρ
2 c

θ1
2

 . (3.46)

Because only the rotational component of the joint motion impacts the orientation of the

EE, the angular velocity component of the Jacobian is found by Equation (2.47) for i = 1
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giving

O1
=


0

0

1

 . (3.47)

Similarly for Joint 2

P2
=


a2 s1c2 − ρ s1c2−3s

θ4
2 − d4 s1c2−3 − ρ

2 c1c
θ2
2

a2 s1c2 − ρ s1c2−3s
θ4
2 − d4 s1c2−3 − ρ

2 c1c
θ2
2

a2s2 − ρs2−3s
θ4
2 − d4s2−3

 , (3.48)

and

O2
=


s1

−c1

0

 . (3.49)

For Joint 3

P3
=


ρ c1c2−3s

θ4
2 + d4 c1c2−3 − ρ

2 c
θ3
2 s1

ρ s1c2−3s
θ4
2 + d4 s1c2−3 + ρ

2 c
θ3
2 c1

ρs2−3s
θ4
2 + d4s2−3

 , (3.50)

and

O3
=


−s1

c1

0

 . (3.51)

For Joint 4

P4
=


−ρ

2 c
θ4
2 c1s2−3

−ρ
2 c

θ4
2 s1s2−3

ρ
2 c

θ4
2 c2−3

 , (3.52)

and

O4
=


−c1s2−3

−s1s2−3

c2−3

 . (3.53)
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The full 6× 4 Jacobian is assembled as

J =

 P1
P2

P3
P4

O1
O2

O3
O4

 , (3.54)

however the elements are too large to express in component form.

Preliminary Singularity Analysis of a 4A-Chain

A full examination of the singularities has yet to be conducted but a simple example of a

singular configuration is easily found. With only four joint variables it is no surprise that

there will be certain directions in which the EE cannot be moved at a given time, but in

certain situations the capabilities are further diminished. When θv1 = θv2 = θv3 = θv4 =

180◦ the Jacobian matrix becomes

J =



0 a2 + ρ+ d4 −ρ− d4 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 −1 0

1 0 0 1


(3.55)

In this configuration instantaneous linear velocities along the y0- and z0-axes and angular

velocity about the x0-axis are not achievable.

This is just one example of a singular configuration and further investigation into singu-

larities is required. The singularities of the prototype 4A-manipulator should be compared

to a similar 4R-chain (i.e. the first four joints of the A645 Thermo CRS).

3.7 Dynamic Analysis

In chains constructed using R-pairs forces that act parallel to the axis of rotation of a

revolute joint (either external or from the kinematic and potential energy of the links) have
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no effect on the joint torque, and conversely actuation of that revolute joint cannot impart

forces parallel to the joint axis. When A-pairs are used as joints this is no longer true. The

coupling of rotation and translation means that forces along the joint axis translate into

joint torques and the application of torque at an A-pair joint will produce a force parallel to

the joint axis, in addition to a force perpendicular to the joint axis as would be obtained by

a revolute joint. This is evident from the analysis of the single A-pair Jacobian in Section

3.6.1 and also influences the dynamics of a manipulator constructed using A-pairs.

The dynamic analysis of serial chains constructed using R- and P-pairs was discussed

in Section 2.7 and two methods for formulating the dynamic equations of motion were

explored: the Lagrange formulation (Section 2.7.1) which is an energy based method; and

the Newton-Euler formulation (Section 2.7.2) a recursive algorithm based on the balancing

of the forces and moments acting on each link. In this work the Lagrange formulation

is used to derive the dynamic equations of motion of A-chains, while the Newton-Euler

formulation is used to verify the results. In this dissertation the Lagrange formulation is

favored because it is straightforward, makes elegant use of the Jacobian matrices which

have already been derived, and the energy method allows for the simple inclusion of the leg

effects on the manipulator dynamics.

3.7.1 Dynamics of a Single A-Pair Using the Lagrange Formulation Ig-

noring Leg Effects

Examining the dynamics of a single A-pair before looking at longer A-chains allows for a

better understanding of the effects of the coupled motion of each joint. By initially ignoring

the mass properties of the legs a basis for comparing different dynamic models of the leg

effects is obtained and initial comparisons with R-pairs can be made. When the inertial

properties of the legs are assumed negligible the mass of the legs may be ignored completely

or included as a lumped parameter model of the moving platform. A reference coordinate

system is affixed to the fixed base, Σ0, and moving platform, Σ1. The Σ0 origin is located at

the geometric centre of the fixed base triangle, the ẑ0−axis points along the A-pair axis of

rotation towards the moving platform and the x̂0− and ŷ0−axes are arbitrarily assigned in
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the plane of the fixed base anchor point triangle. Coordinate system Σ1 is established such

that Σ0 and Σ1 are coincident when the A-pair is in the home position and Σ1 moves with

the moving platform as the A-pair is actuated. Figure 3.21 shows the single A-pair with the

coordinate systems affixed on the joint axis. For this analysis the CG of the moving link is

Figure 3.21: The coordinate systems affixed to the A-pair. For the single A-pair i = 1.

considered to be located at the origin of Σ1 in order to simplify the leg effect analysis later.

In longer A-chains (Section 3.7.4) the CG position will be more representative of the actual

link properties. The Lagrange formulation as presented in Section 2.7.1 with n = 1 is used

to obtain the dynamic equations of motion. At this time the contributions of any motors,

transmissions and friction to the dynamic equations of motion have been ignored.

When working with a single A-pair it is possible to assume, without loss in generality,

that the fixed component of the joint variable is θf = 0 and therefore θv = θ. Recalling
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Section 2.7.1 when n = 1 the linear component of the link Jacobian is

J
(link)
P =

∂plink
∂θ

=


0

0

ρ
2 cos

(
θ
2

)
 , (3.56)

and the angular component of the link Jacobian is

J
(link)
O =


0

0

1

 . (3.57)

In this example the vector and matrix quantities are really just scalars because n = 1,

however in the general case they are not, so they are still represented here as vectors and

matrices. The 1× 1 B(θ) inertial matrix is found using Equation (2.68) as

B(θ) = mlinkJ
(link)T
P J

(link)
P + J

(link)T
O R1I

1
linkR

T
1 J

(link)
O =

ρ2mlink

4
cos2

(
θ

2

)
+ Izz, (3.58)

where mlink is the mass of the moving platform (not including the mass of the legs), and

Izz is the mass moment of inertia of the moving platform about the z1-axis. Using the

trigonometric identity

cos2

(
θ

2

)
=

1 + cos (θ)

2
, (3.59)

the 1× 1 inertial matrix becomes

B(θ) =
ρ2mlink

8
(1 + cos (θ)) + Izz. (3.60)

Using Equation (2.74) the 1× 1 matrix containing the Coriolis and centrifugal terms is

C(θ, θ̇) =
1

2

(
∂B(θ)

∂θ

)
θ̇ = −ρ

2mlink

16
sin (θ) θ̇. (3.61)
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The gravitational (potential energy) term is obtained from Equation (2.72) as

gi(θ) = −mlinkg
T
0 JlinkP =

ρmlinkg

2
cos

(
θ

2

)
. (3.62)

Assembling the dynamic equations in the joint space using Equation (2.71) gives

τ1 =

(
ρ2mlink

8
(1 + cos (θ)) + Izz

)
θ̈ − ρ2mlink

16
sin (θ) θ̇2 +

ρmlinkg

2
cos

(
θ

2

)
. (3.63)

Equation (3.63) provides the solution to the inverse dynamics problem which allows for

the determination of the joint torque profile required to follow a specified trajectory (θ(t),

θ̇(t) and θ̈(t) profiles), ignoring friction and external forces. If the torque and joint state

are specified Equation (3.63) can be rearranged to solve for the resulting acceleration, θ̈,

yielding the solution to the direct dynamics problem.

3.7.2 Verification of the Single A-Pair Dynamics Using the Newton-Euler

Formulation

In this dissertation the Newton-Euler formulation is used to verify the single A-pair dy-

namic equations of motion obtained using the Lagrange formulation in Section 3.7.1. The

application of the Newton-Euler formulation to the single A-pair uses the theory presented

in Section 2.7.2. This analysis assumes that the origin of the EE coordinate system lies on

the joint axis, as does the CG of the moving platform. As was done in Section 3.7.1, the

inertial properties of the legs are ignored in this initial analysis.

The velocities and accelerations of the base link are defined as follows. The base link

is stationary, thus its angular velocity is ω0
0 =

[
0 0 0

]T
, and its angular acceleration

is ω̇0
0 =

[
0 0 0

]T
. The linear acceleration of the base frame, minus the gravity vector,

is 0, thus p̈0
0 = g =

[
0 0 g0

]T
. These vectors are then used as the initial terms in the

forward recursion of the Newton-Euler formulation.

The forward recursion is used to determine the velocities and accelerations of the first

(and only) link, Link i = 1. The angular velocity and acceleration of the moving platform
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are found using Equation (2.79) and Equation (2.80) and the results are of course

ω1
1 =


0

0

θ̇1

 , (3.64)

and

ω̇1
1 =


0

0

θ̈1

 . (3.65)

Determining the linear acceleration of the link origin uses Equation (2.81) but some con-

sideration must be given to the type of joint (the A-pair is essentially a combination of a

P-pair and an R-pair with coupled motion). For this analysis the origin of the link frame,

as shown in Figure 3.21, lies on the axis of rotation (r1
0,1 = 0) and thus the revolute joint

component of the linear acceleration is identically zero, if the origin was away from the

axis of rotation the revolute joint component would need to be added to the translation

component. This becomes relevant as more links and joints are added. The prismatic joint

component of the linear acceleration is established with Equation (2.81) using the variables

ḋ1 and d̈1 written as functions of θ, θ̇, θ̈. Using the equation for the distance between the

fixed base and moving platform of the A-pair, Equation (2.29), these values are

d1 = ρ sin

(
θ

2

)
,

ḋ1 =
ρ

2
θ̇ cos

(
θ

2

)
,

d̈1 = −ρ
4
θ̇2

1 sin

(
θ

2

)
+
ρ

2
θ̈ cos

(
θ

2

)
,

(3.66)

yielding

p̈1
1 =


0

0

g0 −
ρ

4
θ̇2 sin

(
θ

2

)
+
ρ

2
θ̈ cos

(
θ

2

)
 . (3.67)
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The forward recursion is completed by determining the linear acceleration of the centre

of gravity of Link 1 using Equation (2.82), however since the Link 1 origin and centre of

gravity are coincident p̈1
C1

= p̈1
1.

In this analysis no external forces are being applied at the EE, hence f2
2 = µ2

2 =[
0 0 0

]T
. The backward recursion is carried out to find the forces and moments re-

quired to cause the accelerations. The forces exerted by Link 1 on the base are obtained

with Equation (2.84):

f1
1 =


0

0

mlinkg0 −
mlinkρ

4
θ̇2

1 sin

(
θ1

2

)
+
mlinkρ

2
θ̈1 cos

(
θ1

2

)
 . (3.68)

The moments are computed with Equation (2.85):

µ1
1 =


0

0

Izz θ̈1

 . (3.69)

Determining the joint torques requires the examination of two components: the linear

and the rotational motions. The joint torque from the rotational motion, τr1 , comes directly

from the equation for the torque of a revolute joint (Equation (2.86)) giving

τr1 = Izz θ̈1. (3.70)

From the prismatic joint part of Equation (2.86), τl1 is actually not a torque at all, but a

force along the joint axis:

τl1 = mlinkg0 −
mlinkρ

4
θ̇2

1 sin

(
θ1

2

)
+
mlinkρ

2
θ̈1 cos

(
θ1

2

)
. (3.71)

The Jacobian matrix is used to map this to the required joint torque, i.e. J
(`1)T
T τl1 , giving
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the total required joint torque:

τ1 = τr1 + J
(`1)T
T τl1

=

(
mlinkρ

2

8
(1 + cos (θ)) + Izz

)
θ̈ − mlinkρ

2

16
sin (θ) θ̇2 +

mlinkρg0

2
cos

(
θ

2

)
.

(3.72)

The joint torque obtained by the Newton-Euler formulation is identical to that obtained

by the Lagrange formulation: c.f. Equations (3.63) and (3.72). Though these results are

unsurprising, it is important to verify the equations before performing further analysis on

the single A-pair and longer A-chains. It is important to note that friction has not been

included in either the Lagrange or Newton-Euler formulation of the dynamic model.

3.7.3 Introduction of Leg Inertial Effects on a Single A-Pair Using the

Lagrange Formulation

The Lagrange formulation is well suited to modelling the effects of the legs on the dynamic

equations of motion. The kinetic and potential energy of each leg are functions of the

generalized coordinate θ and they can easily be included in the Lagrangian and thus the

dynamic equations of motion. The symmetry of the A-pair means that the kinetic energy

effects of only one leg needs to be examined and then multiplied by six to account for all legs.

The potential energy of each individual leg depends on the orientation of the A-pair. For

a vertical joint (the gravity vector is parallel to joint axis) all legs have the same potential

energy, in other orientations the potential energy is determined using the combined CG of

the six legs (a point on the joint axis equidistant from the fixed base and moving platform).

The dynamics of parallel platforms, such as the Gough-Stewart platform, are well studied

using different formulations such as the Newton-Euler formulation [96–98], the Lagrange

formulation [99, 100], and the principle of virtual work [101–104]. In most of these works

the full dynamic model requires that the CG, linear velocity, and angular velocity of each

leg (each of which has two parts as the length of the legs change because they are prismatic

joints) be determined as a function of the joint parameters and rates. The A-pair is much

simpler in that each leg is of fixed length and the leg position and velocity are simple
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functions of the joint position and rate.

The following sections show how the kinetic and potential energy of the legs are obtained

in terms of the generalized coordinate and the influence of the legs is added to the results

of Section 3.7.1 to increase the fidelity of the dynamic model.

Kinetic Energy of the Legs

The kinetic energy of the leg has two components: the linear motion of the leg CG and

the angular motion about the leg anchor point on the fixed base. The leg is modelled as a

slender rod and thus the kinetic energy from any rotation about the centre axis of the leg

is considered to be negligible.

Figure 3.2 along with Equations (3.19) and (3.20) show that the position vector of the

fixed base anchor point of Leg 1, B1, in Σ0 is 0b1 =
[

0 ρ
√

2
2 0

]T
(noting that Equation

(3.4) is used to express the anchor point position in terms of ρ as opposed to the length of

the sides of the triangles, a) and the position of the moving platform anchor point for Leg 1,

P1, in Σ1 is 1p1 =
[

0 −ρ
√

2
4 0

]T
. Recall that a point on the moving platform projects

onto a circle in the x̂0-ŷ0 plane as θ varies, while the ẑ0 position is described by Equation

(2.29). The position vector of P1 in Σ0 is 0p1 =
[

ρ
√

2
4 sin θ −ρ

√
2

4 cos θ ρ
√

2
2 sin

(
θ
2

) ]T
.

The vector along the leg from B1 to P1, 0rP1/B1
, is

0rP1/B1
= 0p1 − 0b1 =


ρ
√

2
4 sin θ

−ρ
√

2
4 (2 + cos θ)

ρ sin
(
θ
2

)
 , (3.73)

and the position vector of the CG of Leg 1, 0pleg, is

0pleg = 0b1 +
1

2
0rP1/B1

=


ρ
√

2
8 sin θ

ρ
√

2
8 (2− cos θ)

ρ
2 sin

(
θ
2

)
 . (3.74)
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The linear component Jacobian for the CG of the leg comes from
∂pleg

∂θ and is

J
(leg)
P (θ) =


ρ
√

2
8 cos θ

ρ
√

2
8 sin θ

ρ
4 cos

(
θ
2

)
 , (3.75)

and the linear velocity of the leg CG is 0ṗleg = J
(leg)
P (θ)θ̇. The linear component of the ki-

netic energy of Leg 1 with mass mleg, utilizing the trigonometric identity in Equation (3.59),

is

TPleg
= 1

2mleg
0ṗTleg

0ṗleg

= 1
2mlegJ

(leg)T
P J

(leg)
P θ̇2

=
ρ2mleg

64 (2 + cos (θ)) θ̇2.

(3.76)

The angular component of the kinetic energy requires the determination of the angular

velocity of the leg. The velocity of P1 with respect to B1, 0vP1/B1
= 0ṙP1/B1

is the time

rate of change of 0rP1/B1
where the only variable that is a function of time is θ. Therefore

0vP1/B1
=


ρ
√

2
4 cos θ

ρ
√

2
4 sin θ

ρ
2 cos

(
θ
2

)
 θ̇. (3.77)

A reference coordinate system for the leg is established with its origin at B1 such that ẑleg

points along the leg from B1 towards P1, ŷleg is parallel to 0vP1/B1
and x̂leg completes the

right hand system, as illustrated in Figure 3.22. Since the leg is represented as a slender rod

and there is no rotation about ŷleg (it is parallel to the velocity vector), only the magnitude

of the angular velocity of the leg about x̂leg, ωxleg , is of concern. The value of ωxleg is

obtained by dividing the magnitude of the velocity of P1 with respect to B1 by the distance

from B1 to P1, giving

ωxleg =
||0vP1/B1

||
||0rP1/B1

||
=

1

3

√
2 + cos (θ)θ̇. (3.78)



147

Figure 3.22: The leg coordinate system is affixed such that the origin is at B1, the ẑleg
axis points along the leg towards P1, the ŷleg axis is parallel to vP1/B1

and the x̂leg axis
completes the right hand coordinate system.

The inertia tensor for the slender rod representing the leg in the leg reference frame is

I
(leg)
leg =


ρ
√

2
4 mleg 0 0

0 ρ
√

2
4 mleg 0

0 0 0

 . (3.79)

The angular kinetic energy of Leg 1 is

TOleg
=

1

2
ω2
xleg

Ixxleg =
ρ
√

2

72
mleg (2 + cos (θ)) θ̇2. (3.80)

The summation of Equations (3.76) and (3.80) represents the total kinetic energy of

each A-pair leg. Each of the six legs of the A-pair has the same kinetic energy at any given

time, thus the total kinetic energy of all of the legs is six times the value of the single leg,

giving

T0 = 6TOleg
. (3.81)
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Potential Energy of the Legs

The potential energy of Leg 1 from Equation (2.69) is Uleg = mlegg
T
0 pleg, and the gravity

term of the dynamic equations from Equation (2.72) is

gleg = ∂U
∂θ

= −mlegg
T
0 J

(leg)
P

= ρg
4 mleg cos

(
θ
2

)
.

(3.82)

Equation (3.82) assumes that g0 is parallel to the joint axis. In situations where the A-pair

is not vertical the component of gravity vector that is parallel to the joint axis is used. The

angle between the axis of a joint, say Joint i, and the gravity vector is a function of all of

the joints preceding Joint i in the chain, i.e. Joints 1, 2, . . . , i− 1.

Influence of Legs On the Dynamic Equations

The impact of all of the legs on the dynamic equations of motion is found by multiplying

each leg term by six. The inertial term for the six legs, Blegs(θ), is obtained from Equations

(3.76) and (3.80):

Blegs(θ) =
ρmleg

√
2

192

(
9ρ
√

2 + 8
√

3
)

(2 + cos (θ)) , (3.83)

and the Clegs(θ̇, θ) term comes from Equation (2.74) to give

Clegs(θ̇, θ) =
ρmleg

√
2

384

(
9ρ
√

2 + 8
√

3
)

sin (θ) θ̇. (3.84)

The gravitational term for all six legs, glegs(θ), is six times Equation (3.82):

glegs(θ) =
3ρmlegg

2
cos

(
θ

2

)
. (3.85)

The dynamic equations of motion of the single A-pair with the mass effects of the legs
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included is

τ = (Blink(θ) + Blegs(θ)) θ̈ +
(
Clink(θ̇, θ) + Clegs(θ̇, θ)

)
θ̇ + (glink(θ) + glegs(θ)) . (3.86)

In general the leg masses are much smaller than the link masses and the Blegs(θ) and

Clegs(θ̇, θ) terms have much larger denominators than the corresponding terms for the link

and therefore a smaller impact on the torque requirements. In the absence of friction the

potential energy term for the legs has a small denominator and a larger impact than the

kinetic energy terms, however the overall influence depends on the ratio of the link mass to

the mass of the legs. When the difference between the masses is small the leg effects will

be more pronounced and should be included. The choice to include or exclude leg effects

depends on the application and desired dynamic model fidelity. When additional terms are

introduced such as motor inertias, friction and external applied loads the impact of the leg

effects on model fidelity is diminished further. Section 3.8.6 presents a numeric example

exploring the magnitude of the leg effects for the prototype manipulator.

3.7.4 Obtaining the Dynamic Equations of Motion of a 4A-Chain

In this section the Lagrange formulation, detailed in Section 2.7.1, is used to obtain the

dynamic equations of motion of a 4A-chain. The dynamic equations of motion for a general

4A-chain are difficult to express in closed form because the equations become very large, even

in the early steps of the algorithm. In this section the algorithm for obtaining the dynamic

equations of motion is outlined using the DH-parameters defined in Table 3.6 that were used

for demonstrating how to obtain the Jacobian matrix of a 4A-chain in Section 3.6.2. Even

when examining this particular configuration the equations become difficult to portray in

any useful manner and thus the algorithm is discussed while showing only partial results.

In Section 3.8 the dynamics of a specific 4A-chain are explored.

The Lagrange formulation requires that a Jacobian matrix be assembled for each Link i

in the chain. Each link Jacobian has two components, the first mapping the joint rates to
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the linear component of the link CG velocity is of the form

J
(Linki)
P =

[


(Linki)
P1

· · · (Linki)Pi
0 · · · 0

]
, (3.87)

and the second component, used to map the joint rates to the angular velocity of the Link

CG, is of the form

J
(Linki)
O =

[


(Linki)
O1

· · · (Linki)Oi
0 · · · 0

]
. (3.88)

For a prismatic joint, the Jacobian columns are


(Linki)
Pj

= ẑj−1, 
(Linki)
Oj

= 0. (3.89)

Whereas for revolute joints they are


(Linki)
Pj

= ẑj−1 × (0pLinki − 0pj−1), 
(Linki)
Oj

= ẑj−1. (3.90)

In the case of an A-pair the column vectors are a combination of the two.

In what follows the Jacobian for Link 1 is derived, while those of the remaining links

are simply reported.

Link 1

The centre of gravity of Link 1 is known with respect to Σ1 as

1p1 =


px,Link1

py,Link1

pz,Link1

 . (3.91)
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Using 0T1 from Equation (3.37) the position of the CG of Link 1 with respect to Σ0 is

0p1 = 0T1
1p1 =


c1px,Link1 + s1pz,Link1

s1px,Link1 − c1pz,Link1

d1 + ρs θ12 + py,Link1

 . (3.92)

The component of the Jacobian accounting for the linear velocity of the CG of Link 1

due to the rotation of Joint 1 is found using Equation (3.90) (noting that ẑ0 is given in

Equation (3.43) and 0p0 = 0):


(Link1)
P1 r

= 0ẑ0 × (0pLink1 − 0p0) =


−s1px,Link1 + c1pz,Link1

c1px,Link1 + s1pz,Link1

0

 . (3.93)

The component of the Jacobian accounting for the linear velocity of the CG of Link 1 due

to the translation of Joint 1 is found using Equation (3.89):


(Link1)
P1 t

=
ρ

2
c
θ1

2
ẑ0 =


0

0

ρ
2c

θ1
2

 . (3.94)

The linear velocity components are summed and the full linear velocity Jacobian for Link 1

is

J
(Link1)
P =


−s1px,Link1 + c1pz,Link1 0 0 0

c1px,Link1 + s1pz,Link1 0 0 0

ρ
2c

θ1
2 0 0 0

 . (3.95)

The component of the Jacobian accounting for the angular velocity of the CG of Link 1
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due to the rotation of Joint 1 is found using Equation (3.90):


(Link1)
O1

= ẑ0 =


0

0

1

 . (3.96)

The complete angular velocity Jacobian for Link 1 is:

J
(Link1)
O =


0 0 0 0

0 0 0 0

1 0 0 0

 . (3.97)

Link 2

The CG of Link 2 is known with respect to Σ2 as

2p2 =


px,Link2

py,Link2

pz,Link2

 . (3.98)

Using 0T2 from Equation (3.39) the position of the CG of Link 2 with respect to Σ0 is

0p2 =0T2
2p2 =


ρ s1s

θ2
2 + a2 c1s2 − ρ s1 + c1s2px,Link2 − c1c2py,Link2 − s1pz,Link2

−ρ c1s
θ2
2 + a2 s1s2 + ρ c1 + s1s2px,Link2 − s1c2py,Link2 + c1pz,Link2

ρ s θ12 + d1 − a2 c2 − 1 c2px,Link2 − 1 s2py,Link2

. (3.99)

Using the same methods as for Link 1, the components of the Jacobian for the CG of Link

2 due to the motion of Joint 1 are


(Link2)
P1 r

=


ρ c1s

θ2
2 − a2 s1s2 − ρ c1 − s1s2px,Link2 + s1c2py,Link2 − c1pz,Link2

ρ s1s
θ2
2 + a2 c1s2 − ρ s1 + c1s2px,Link2 − c1c2py,Link2 − s1pz,Link2

0

 , (3.100)
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
(Link2)
P1 t

=


0

0

ρ
2c

θ1
2

 , (3.101)

and


(Link2)
O1

=


0

0

1

 . (3.102)

The components of the Jacobian of the CG of Link 2 due to the actuation of Joint 2 are


(Link2)
P2 r

=


−c1 (−a2 c2 − 1 c2px,Link2 − 1 s2py,Link2)

−s1 (−a2 c2 − 1 c2px,Link2 − 1 s2py,Link2)

a2 s2 + s2px,Link2 − c2py,Link2

 , (3.103)


(Link2)
P2 t

=


ρ
2 s1c

θ2
2

−ρ
2 c1c

θ2
2

0

 , (3.104)

and


(Link2)
O2

=


s1

−c1

0

 . (3.105)

The full linear and angular velocity Jacobian matrices for Link 2 are

J
(Link2)
P =

[


(Link2)
P1 r

+ 
(Link2)
P1 t


(Link2)
P2 r

+ 
(Link2)
P2 t

0 0

]
(3.106)

and

J
(Link2)
O =

[


(Link2)
O1


(Link2)
O2

0 0

]
, (3.107)

respectively.
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Link 3

The Jacobian matrix components for Link 3 are found using the same methods as for the

previous links. For the CG of Link 3 due to the actuation of Joint 1:


(Link3)
P1 r

=


ρ c1s

θ2
2 −a2 s1s2−ρ c1s

θ3
2 +s1c2−3px,Link3 +c1py,Link3 +s1s2−3pz,Link3

ρ s1s
θ2
2 +a2 c1s2−ρ s1s

θ3
2 −c1c2−3px,Link3 +s1py,Link3−c1s2−3pz,Link3

0

, (3.108)


(Link3)
P1 t

=


0

0

ρ
2c

θ1
2

 , (3.109)

and


(Link3)
O1

=


0

0

1

 . (3.110)

For the CG of Link 3 due to the actuation of Joint 2:


(Link3)
P2 r

=


−c1 (−a2 c2 − s2−3px,Link3 + c2−3pz,Link3)

−s1 (−a2 c2 − s2−3px,Link3 + c2−3pz,Link3)

a2 s2 − c2−3px,Link3 − s2−3pz,Link3

 , (3.111)


(Link3)
P2 t

=


ρ
2 s1c

θ2
2

−ρ
2 c1c

θ2
2

0

 , (3.112)

and
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
(Link3)
O2

=


s1

−c1

0

 . (3.113)

For the CG of Link 3 due to the actuation of Joint 3:


(Link3)
P3 r

=


c1 (−s2−3px,Link3 + c2−3pz,Link3)

s1 (−s2−3px,Link3 + c2−3pz,Link3)

c2−3px,Link3 + s2−3pz,Link3

 , (3.114)


(Link3)
P3 t

=


−ρ

2 s1c
θ2
2

ρ
2 c1c

θ2
2

0

 , (3.115)

and


(Link3)
O3

=


−s1

c1

0

 . (3.116)

The full linear and angular velocity Jacobian matrices for Link 3 are

J
(Link3)
P =

[


(Link3)
P1 r

+ 
(Link3)
P1 t


(Link3)
P2 r

+ 
(Link3)
P2 t


(Link3)
P3 r

+ 
(Link3)
P3 t

0

]
(3.117)

and

J
(Link3)
O =

[


(Link3)
O1


(Link3)
O2


(Link3)
O3

0

]
, (3.118)

respectively.
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Link 4

Using the same approach, the Jacobian for the CG of Link 4 due to Joint 1 is


(Link4)
P1 r

=



ρ c1s
θ2
2 − a2 s1s2 − ρ c1s

θ3
2 + ρ s1s2−3s

θ4
2 + d4 s1s2−3

− (−s1c2−3c4 − c1s4) px,Link4 − (s1c2−3s4 − c1c4) py,Link4

+s1s2−3pz,Link4

ρ s1s
θ2
2 + a2 c1s2 − ρ s1s

θ3
2 − ρ c1s2−3s

θ4
2 − d4 c1s2−3

+ (−c1c2−3c4 + s1s4) px,Link4 + (c1c2−3s4 + s1c4) py,Link4

−c1s2−3pz,Link4

0



, (3.119)


(Link4)
P1 t

=


0

0

ρ
2c

θ1
2

 , (3.120)

and


(Link4)
O1

=


0

0

1

 . (3.121)

For the CG of Link 4 due to Joint 2:


(Link4)
P2 r

=



−c1

(
−a2 c2 + ρ c2−3s

θ4
2 + d4 c2−3 − s2−3c4px,Link4

+s2−3s4py,Link4 + c2−3pz,Link4)

−s1

(
−a2 c2 + ρ c2−3s

θ4
2 + d4 c2−3 − s2−3c4px,Link4

+s2−3s4py,Link4 + c2−3pz,Link4)

a2 s2 − ρ s2−3s
θ4
2 − d4 s2−3 − px,Link4c2−3c4

+py,Link4c2−3s4 − s2−3pz,Link4


, (3.122)
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
(Link4)
P2 t

=


ρ
2 s1c

θ2
2

−ρ
2 c1c

θ2
2

0

 , (3.123)

and


(Link4)
O2

=


s1

−c1

0

 . (3.124)

For the CG of Link 4 due to Joint 3:


(Link4)
P3 r

=


c1

(
ρ c2−3s

θ4
2 +d4 c2−3−s2−3c4px,Link4 +s2−3s4py,Link4 +c2−3pz,Link4

)
s1

(
ρ c2−3s

θ4
2 +d4 c2−3−s2−3c4px,Link4 +s2−3s4py,Link4 +c2−3pz,Link4

)
ρ s2−3s

θ4
2 + d4 s2−3 + px,Link4c2−3c4 − py,Link4c2−3s4 + s2−3pz,Link4

, (3.125)


(Link4)
P3 t

=


−ρ

2 s1c
θ2
2

ρ
2 c1c

θ2
2

0

 , (3.126)

and


(Link4)
O3

=


−s1

c1

0

 . (3.127)

For the CG of Link 4 due to Joint 4:


(Link4)
P4 r

=


s1c4px,Link4 − s1s4py,Link4 + c2−3px,Link4c1s4 + c2−3py,Link4c1c4

−px,Link4c1c4 + c2−3px,Link4s1s4 + py,Link4c1s4 + c2−3py,Link4s1c4

s2−3px,Link4s4 + s2−3py,Link4c4

 , (3.128)


(Link4)
P4 t

=


−ρ

2 c
θ4
2 c1s2−3

−ρ
2 c

θ4
2 s1s2−3

ρ
2 c

θ4
2 c2−3

 , (3.129)
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and


(Link4)
O4

=


−c1s2−3

−s1s2−3

c2−3

 . (3.130)

The full linear and angular velocity Jacobian matrices for Link 4 are

J
(Link4)
P =

[


(Link4)
P1 r

+
(Link4)
P1 t


(Link4)
P2 r

+
(Link4)
P2 t


(Link4)
P3 r

+
(Link4)
P3 t


(Link4)
P4 r

+
(Link4)
P4 t

]
(3.131)

and

J
(Link4)
O =

[


(Link4)
O1


(Link4)
O2


(Link4)
O3


(Link4)
O4

]
, (3.132)

respectively.

The link Jacobian matrices, mapping the joint rates to the linear and angular velocity

of the CG of each link in the chain are required to build the inertia matrix for the sys-

tem. Once the coupling of translation and rotation of each A-pair is accounted for in the

link Jacobian matrices the inertial matrices, Bi(θ), and the centrifugal and Coriolis term

matrices, C(θ, θ̇), are obtained using the methods reported in Section 2.7.1.

3.7.5 Assembling the Inertia Matrix for a 4A-Chain

The n× n inertia matrices, Bi(θ), i = 1, . . . , 4, are computed with Equation (2.68). Since

the kinetic energy of the legs of the A-pair have been deemed negligible in Section 3.7.3

they do not impact the kinetic energy terms. For the 4A-chain (n = 4) the inertia matrix

is

B(θ) = B1(θ) + B2(θ) + B3(θ) + B4(θ). (3.133)
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While the general matrix B(θ) is too large to show here, it can be obtained symbolically

using a computer algebraic system, or numerically for a specific manipulator and orientation.

3.7.6 Building the Centrifugal and Coriolis Matrix for the 4A-Chain

The elements of the n×n matrices containing the centrifugal and coriolis terms, Ci(θ, θ̇), i =

1, . . . , 4, are found using Equation (2.74). Like the B(θ) matrix the general C(θ, θ̇) matrix

for the 4A-chain is too large to show here, but can be obtained for specific manipulators

and configurations, as is discussed in Section 3.8.

3.7.7 Potential Energy Effects of the 4A-Chain

The potential energy effects are examined in two components: the links and the legs. The

effects of the links are obtained using the method outlined in Section 2.7.1, while the six

legs of each joint are grouped together to determine the leg potential energy effects. This

inclusion of the leg effects is unique to A-chains and incorporates the analysis of the dynamic

effects of the legs of a single A-pair (Section 3.7.3) into the dynamic analysis of longer A-

chains. The potential energy effects are represented in the dynamic equations of motion

by the n × 1 vector g(θ). Each element gi represents the moment generated at Joint i by

gravity for the current configuration.

Potential Energy Effects of the Links

The link potential energy effects are obtained using Equation (2.72), with the mass

of each Link i represented by mLinki , and the CG of each with respect to Σi by
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[
pxLinki pyLinki pzLinki

]T
. The resulting gravity terms for the prototype 4A-chain are

g
(Links)
1 =

mLink1
ρg

2 c θ12 +
mLink2

ρg

2 c θ12 +
mLink3

ρg

2 c θ12 +
mLink4

ρg

2 c θ12 ,

g
(Links)
2 = (a2s2 + s2pxLink2 − c2pyLink2 )mLink2g + (a2s2 − c2−3pxLink3

−s2−3pzLink3 )mLink3g +
(
a2s2 − ρ s2−3s

θ4
2 − d4s2−3 − pxLink4 c2−3c4

+pyLink4 c2−3s4 − s2−3pzLink4
)
mLink4g,

g
(Links)
3 = (c2−3pxLink3 + s2−3pzLink3 )mLink3g +

(
ρ s2−3s

θ4
2 + d4s2−3 + pxLink4 c2−3c4

−pyLink4 c2−3s4 + s2−3pzLink4
)
mLink4g,

g
(Links)
4 =

(
s2−3pxLink4 s4 + s2−3pyLink4 c4 + 1/2 ρ c θ42 c2−3

)
mLink4g.

(3.134)

These link gravity terms represent the moment induced at each joint due to the mass

of the links in the chain. Joint 1 has an induced moment, even though the gravity vector

is parallel to the rotation axis, because the coupling of translation and rotation in A-pairs

means that when a force is applied parallel to the axis of rotation a torque is induced about

the joint axis. This is not true in R-pairs and is one of the major differences in the dynamics

between the two types of kinematic pairs.

Potential Energy Effects of the Legs

The legs of each joint move relative to the joint’s base and platform based on the position

of joint. In Section 3.7.3 it was shown that for the purposes of determining the potential

energy influence of the legs in each joint the mass of the six legs can be considered as a

lumped point mass on the joint axis equidistant from the fixed base and moving platform

anchor point planes. Once the position of the point mass is known the leg potential energy

effects for each joint can be determined using Equation (2.72), and this method is used for

some of the joints, however it is possible to determine some of the leg potential energy terms

by analysis of the manipulator geometry. The total moment induced at each Joint i by the

legs of Joint i, Joint i + 1, . . . , Joint n is the sum of the moment contributions from each

joint’s leg point mass.

For Joint 1 the joint axis is always vertical, as was the case with the link potential energy
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in Equation (3.134), so the induced moment on Joint 1 by the mass of the Joint i leg point

masses, mLegsi , is

g
(Legs1)
1 =

mLegs1ρg

4
c
θ1

2
, (3.135)

where the effect is half of what it was for that of the potential energy of the links because

the leg CG translates half the distance of the links for the same joint rotation. The legs of

Joints 2, 3, and 4 move in the same way that Links 2, 3, and 4 move as Joint 1 is actuated

(see Equation (3.134)), thus

g
(Legsi)
1 =

mLegsiρg

2
c
θ1

2
, (3.136)

for i = 2, 3, 4. In this dissertation, each of the A-pairs in the 4A-chain are identical so

the legs in all of the joints posses the same mass properties. The total moment induced in

Joint 1 by the mass of all of the legs in all of the joints, g
(Legs)
1 :

g
(Legs)
1 = g

(Legs1)
1 + g

(Legs2)
1 + g

(Legs3)
1 + g

(Legs4)
1 =

7mLegsiρg

4
c
θ1

2
. (3.137)

The axis of Joint 2 is at all times horizontal and the point mass representing the legs

of Joint 2 is always on the joint axis and thus there is no change in potential energy as

Joint 2 is actuated and no moment is induced on the joint. The legs of Joints 3 and 4

are cantilevered from Joint 2 and do induce a moment. Since the axis of Joint 3 is always

horizontal the potential energy of the point mass representing the legs of Joint 3 does not

change as it is actuated and the distance from the axis of Joint 2 to the axis of Joint 3 (as

well as its leg point mass) is constant. The Joint 3 leg point mass is a distance a2 (the

length of Link 2) from the Joint 2 axis, thus the moment induced on Joint 2 by the legs of

Joint 3 is

g
(Legs3)
2 = mLegs3ga2s2. (3.138)

The impact of the Joint 4 legs on the moment induced at Joint 2 is more difficult to

determine. A method similar to determining the the gravitation effects of the links works
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well. The position of the leg point mass of Joint 4 with respect to Σ3, 3pLegs4 , is

3pLegs4 =


0

0

d4 + ρ
2s

θ4
2

 , (3.139)

which is transformed to the base frame using 0pLegs4 = 0T3
3

0pLegs4 . The linear velocity of

the Joint 4 leg point mass due to the rotation of Joint 2 is


(Legs4)
P2 r

= 0ẑ1 × (0pLegs4 − 0p1)

=


−c1

(
−c2a2 + c2−3

(
d4 + ρ

2s
θ4
2

))
−s1

(
−c2a2 + c2−3

(
d4 + ρ

2s
θ4
2

))
s2a2 − s2−3d4 − ρ

2s2−3s
θ4
2

 .
(3.140)

The linear velocity component of the Joint 4 legs due to the translation of Joint 2 does not

influence the potential energy terms because the axis of Joint 2 is horizontal and translation

in a horizontal plane does not change the potential energy. The moment induced in Joint 2

by the legs of Joint 4 is found using Equation (2.72):

g
(Legs4)
2 =

mLegs4g

2

(
s2a2 − s2−3d4 −

ρ

2
s2−3s

θ4

2

)
. (3.141)

The total moment induced at Joint 2 by all of the joint legs is

g
(Legs)
2 = g

(Legs3)
2 + g

(Legs4)
2 . (3.142)

The moment induced at Joint 3 is not influenced by the legs of Joint 3 because the joint

axis is at all times horizontal. The legs of Joint 4 do impart a moment at Joint 3 which is

obtained by a method similar to the obtaining the influence of the Joint 4 legs on Joint 2.

The result is

g
(Legs)
3 = g

(Legs4)
3 =

mLegs4g

2
s2−3

(
d4 +

ρ

2
s
θ4

2

)
. (3.143)
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The moment induced in Joint 4 by its own legs is found using the point mass representing

the six legs that travels on the joint axis, z3. The induced moment in Joint 4 by its own

legs is

g
(Legs)
4 = g

(Legs4)
4 =

mLegs4gρ

4
c2−3c

θ4

2
. (3.144)

Total Potential Energy Effects

The total potential energy effects, considering both the link and leg influences on the mo-

ments induced at the joints, are obtained by

g = g(Links) + g(Legs). (3.145)

The elements of g represent the moment induced by gravity on the respective joints. The

vector g is used along with the inertia matrix and the centrifugal and coriolis matrix to

assemble the dynamic equations of motion for the prototype 4A-chain.

3.7.8 Dynamic Equations of Motion for a 4A-Chain

Combining the kinetic and potential energy terms together, as per Section 2.7.1, yields the

dynamic equations of motion for the 4A-chain. The inverse dynamics can be written as

τ = B(θ)θ̈ + C(θ̇,θ)θ̇ + (g(Links) + g(Legs)) + JT (θ)he, (3.146)

where τ is the vector of joint torques, and the JT (θ)he term represents the joint torque

induced by forces and moments applied by the EE on the surrounding environment. This

work has not considered friction and external loading when deriving the dynamic equations

of motion, however if the effects of friction are included in the model, the dynamic equations

become

τ = B(θ)θ̈ + C(θ̇,θ)θ̇ + (g(Links) + g(Legs)) + Fvθ̇ + Fssgn(θ̇) + JT (θ)he, (3.147)



164

where the terms Fvθ̇ and Fssgn(θ̇) are basic representations of the viscous and static friction

models.

The dynamic equations of motion for general 4A-chains, and even for the chain described

by the DH-parameters in Table 3.6 are too extensive to present here, as is the case with

the study of the dynamics of most serial kinematic chains constructed using other types of

kinematic pairs. This section outlines the method to follow to obtain the dynamic equations

for 4A-chains, or A-chains of any length. In most cases the dynamic equations of motion

will not be written out but utilized by software for simulation or control of serial A-chains.

A numeric example of a 4A-chain is explored in Section 3.8 to illustrate the application of

the techniques developed in this section.

3.8 Numeric Example

It is useful to examine a specific numeric example to illustrate the application of the the-

oretical techniques and to initiate comparisons between A-chains and geometrically sim-

ilar R-chains. In this section the kinematics and dynamics of the prototype 4A-chain,

introduced in Section 3.3, are examined. The prototype 4A-chain is shown in Figure 3.7.

The kinematics of the prototype 4A-chain are examined through the definition of the DH-

parameters, obtaining the direct kinematic equations in matrix form, approximating the

reachable workspace, and application of the inverse kinematics algorithm. Also examined

are the dynamics of a single A-pair and the dynamics of the prototype 4A-chain including

the derivation of its Jacobian matrix, application of the Lagrange formulation to obtain the

direct and inverse dynamics models, and the development of a rudimentary dynamic model

of the manipulator for simulation.

3.8.1 Geometric Constant and DH-Parameters

The determination of the geometric constant ρ is covered in Section 3.1.2. The A-pairs of

the prototype 4A-chain are all constructed using legs that are l = 6.000 in long. Using this

value and rearranging Equation (3.3) the length of the sides of the fixed base and moving
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Joint/Link ai di αi θfi
1 0.000 in 7.343 in 90.000◦ 0.000◦

2 12.000 in −ρ ≈ −5.657 in 180.000◦ −90.000◦

3 0.000 in −ρ ≈ −5.657 in −90.000◦ 90.000◦

4 0.000 in 8.000 in 0.000◦ 0.000◦

Table 3.7: DH-parameters for the prototype manipulator.

platform anchor point triangles are 2l/
√

3 ≈ 6.928 in and by Equation (3.4) the value of

ρ is 4
√

2 ≈ 5.657 in. This corresponds to the distance between the fixed base and moving

platform of the A-pairs when θ = 180◦.

The assignment of DH-parameters to A-chains is discussed in Sections 2.5.4 and 3.1.1.

The corresponding DH-parameters of the 4A-chain prototype are listed in Table 3.7. These

values are based on the geometry of the first four joints and links of the Thermo CRS

A465 manipulator. The values assigned to d2 and d3 in the 4A-chain are to account for the

translation that is coupled to the rotation of the respective joints. The values of θf2 and θf3

are selected such that when θi = 180◦ the manipulator is fully extended along the z0 axis.

3.8.2 Direct Kinematics

The direct kinematics equations are derived via the method presented in Sections 2.5.5 and

Section 3.1.3. With four joints i = 4 Equation (2.19) becomes

0T4 = M1G1M2G2M3G3M4G4, (3.148)

where the Mi and Gi are defined in Equations (3.5) and (2.20), respectively.

The transformation matrix 0T4 was already constructed in Equation (3.35) as part of

the process of obtaining the Jacobian matrix for a 4A-chain with the same symbolic DH-

parameters in Section 3.6.2. The matrix 0T4 is the matrix representation of the direct

kinematics equations.
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3.8.3 Reachable Workspace

The reachable workspace of the prototype 4A-chain is obtained using the new algorithm

described in Section 3.4. The reachable workspace is shown in Figure 3.23 and cross sections
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Figure 3.23: Isometric view of the reachable workspace of the prototype 4A-chain.

of the workspace are shown in Figure 3.24. When pixels are 0.5 in × 0.5 in × 0.5 in the EE

reaches 487, 640 pixels, meaning the workspace is approximately 60, 955 in3. If the pixels are

1 in × 1 in × 1 in then 60, 416 pixels are reached. The resolution of the ambient workspace

affects precision (smaller pixels mean better resolution) however it becomes difficult to plot

when there are more pixels. For this workspace the joint limits are set as 60◦ ≤ θi ≤ 300◦

and self collisions have been ignored. The reachable workspace resembles a deformed sphere

with a hollow core.
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Figure 3.24: Cross sections of the reachable workspace along a) the Z-axis, b) the Y -axis
and c) the X-axis.

3.8.4 Inverse Kinematics

The inverse kinematics algorithm for 4A-chains is presented in Section 2.5.6. Novel to this

dissertation is the use of the revised 2A-chain constraint varieties obtained in Section 3.1.4.

In this section the inverse kinematics algorithm is applied to the prototype 4A-manipulator

to obtain the joint variables that place the EE in a desired target pose, Σtarget.

Target Pose

To ensure that Σtarget is obtainable by the prototype 4A-chain a set of four random joint

values is used to obtain the target pose. These joint variable values are not used by the
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algorithm but do allow for confirmation of the results. The following randomly generated

(within the joint limits) joint variables are used:

θ1 = 84.100◦,

θ2 = 224.200◦,

θ3 = 106.800◦,

θ4 = 237.000◦.

(3.149)

Using these values the target pose, obtained using the results of the direct kinematics, is

Σtarget = 0T4 =



1.000 0.000 0.000 0.000

−1.345 −0.860 −0.502 −0.0911

−19.850 −0.163 0.440 −0.883

13.760 0.484 −0.744 −0.4604


. (3.150)

2A-Chain Constraint Varieties

The inverse kinematics algorithm begins by theoretically breaking the 4A-chain into two

2A-chains. The base 2A-chain contains Joints and Links 1 and 2, and the EE 2A-chain

contains Joints and Links 3 and 4.

The base reference frame of the base 2A-chain, Σ0L, is coincident with the base of the

4A-chain, i.e Σ0L = Σ0. The constraint variety of the base 2A-chain is therefore represented
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by the intersection of the five polynomials of Equation (3.11). After substitution of the DH-

parameters of Table 3.7 the polynomials become

1 : x0y0 + x1y1 + x2y2 + x3y3 = 0,

2 : x0
2 − x1

2 − x2
2 + x3

2 = 0,

3 : −12x0x1 + 2x0y0 − 12x2x3 + 2x3y3 = 0,

4 : −x3y0

(
13− 4

√
2
)

+ x1y2

(
13− 4

√
2
)
− x2y1

(
13− 4

√
2
)

+ x0y3

(
13− 4

√
2
)

−8x0x1 + 8x2x3 + 1/2x1
2
(
13− 4

√
2
)2

+ 1/2x2
2
(
13− 4

√
2
)2 − 12x2y3

+12x3y2 − 8x1x3 + 12x0y1 − 12x1y0 + 8x0x2 − 12x0x2

(
13− 4

√
2
)

+4x2y1

√
2 + 4x0y3

√
2− 4x1y2

√
2 + 12x1x3

(
13− 4

√
2
)
− 4x3y0

√
2 + 72x1

2

+72x2
2 + y0

2 + y1
2 + y2

2 + y3
2 = 0,

5 : 2x0x3y0 − 12x2x3
2 − 2x0

2y3 + 2x2
2y3 − 12x0x1x3 + 2x1

2y3 = 0.

(3.151)

Obtaining the constraint variety EE 2A-chain in terms of Σ0 requires some manipulation

of the polynomials in Equation (3.16). The EE 2A-chain constraint variety was obtained

with respect to Σ0R = Σ4. In order to represent the constraint variety with respect to Σ0

a transformation in the base frame from Σ0 to Σtarget is required. Section 2.1.8 discusses

the effect of transformations in Euclidean space on points in the kinematic image space.

Using Equations (2.14) and (2.15) the Study parameters of 0T4 are obtained. These Study

parameters are substituted into Equation (2.17) to obtain the matrix Tb(
0T4). The Study

parameters are transformed by

x′ = Tb(
0T4)x, (3.152)

where

x =
[
x0 x1 x2 x3 y0 y1 y2 y3

]T
,

x′ =
[
x′0 x′1 x′2 x′3 y′0 y′1 y′2 y′3

]T
,

The values of x′ are substituted for the corresponding x terms in the constraint variety

polynomials of Equation (3.16). The resulting set of five polynomials that intersect to give
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the constraint variety of the EE 2A-chain with respect to Σ0 are

1 : x0y0 + x1y1 + x2y2 + x3y3 = 0,

2 : −0.26068x2
2 + x2x3 + 0.26068x3

2 + 0.26068x0
2 − 1.0x0x1 + 0.10322x0x2

−0.26068x1
2 + 0.10322x1x3 = 0,

3 : 3.9150x0x1 + 44.490x0x2 + 44.490x1x3 − 3.9150x2x3 + 0.64926x2
2 + 0.19045x2y0

+1.1276x2y2 + 1.8452x2y3 − 0.64926x3
2 + 0.19045x3y1 + 1.8452x3y2 + 3.0516x3y3

−0.64926x0
2 + 3.0516x0y0 − 1.8452x0y1 + 0.19045x0y2 + 0.64926x1

2 − 1.8452x1y0

+1.1276x1y1 + 0.19045x1y3 = 0,

4 : 59.046x1x2 + 1393.2x0
2 + 569.51x1

2 + 8.3585 y3
2 + 8.3585 y2

2 + 8.3585 y0
2+

8.3585 y1
2 + 106.85x2y0 − 106.85x3y1 − 106.85x0y2 + 106.85x1y3 + 1387.1x3

2

+731.71x0x1 + 563.42x2
2 − 36.420x0x2 + 25.150x1x3 − 5.1470x0y1 + 5.1470x1y0

−5.1470x2y3 + 5.1470x3y2 − 193.10x3y0 − 98.539x2y1 + 193.10x0y3 + 98.539x1y2

−731.71x2x3 + 59.046x0x3 = 0,

5 : 2.2709x1x2y3 + 1.4969x0x2y3 − 0.79836x0x3y3 − 1.2112x1x3y3 + 1.0574x2x3y3

+46.679x0x1x2 + 38.612x0x2x3 + 9.0867x1x2x3 + 2.5653x0x1y0 − 0.30551x1x2y0

−0.73099x0x2y0 − 0.078081x1x3y0 − 5.2734x2x3y0 + 4.4867x0x1y1 − 0.88349x1x2y1

−1.4490x0x2y1 + 0.59614x0x3y1 + 0.076804x1x3y1 − 8.8079x2x3y1 + 2.3655x0x1y2

−2.3260x0x2y2 − 3.6645x1x2y2 + 1.9952x1x3y2 + 1.2588x0x3y2 − 0.83971x2x3y2

−1.7103x0x1y3 + 0.053195x2
2y3 − 0.25231x1

2y3 + 125.33x2x3
2 + 0.48101x0

2y3

−87.846x0x1x3 + 0.28190x0x3y0 + 9.9322x0
3 + 0.75533x1

3 − 1.8686x2
3 + 32.091x3

3

−37.847x0
2x1 − 5.3242x0x1

2 + 37.483x0
2x2 + 3.7624x0x2

2 − 1.8686x1
2x2

+0.75533x1x2
2 + 32.091x0

2x3 + 9.9322x0x3
2 + 0.76432x1x3

2 − 2.1606x0
2y0

−0.85350x1
2y0 + 1.4174x2

2y0 − 1.3623x3
2y0 − 3.6169x0

2y1 − 1.3540x1
2y1

+2.3105x2
2y1 − 2.3581x3

2y1 − 0.42220x0
2y2 + 0.55704x1

2y2 − 0.32645x2
2y2

−1.0183x3
2y2 + 0.76291x3

2y3 − 25.336x2
2x3 + 21.343x1

2x3 = 0.

(3.153)
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Intersecting the Constraint Varieties

Recalling Section 2.5.6 the inverse kinematics problem is solved by intersecting the con-

straint varieties of the base and EE 2A-chains to determine all possible poses where

ΣL = ΣR. When the 2A-chain EE frames are coincident the two frames are represented by

identical sets of Study parameters (after the homogeneous Study parameters are normal-

ized). The set(s) of Study parameters that satisfy this condition are obtained by intersecting

the polynomials that represent the base and EE 2A-chains.

Examining the polynomials of Equations (3.151) and (3.153) reveals that both sets

contain the Study quadric and therefore there are nine equations in the eight unknown

homogeneous Study parameters. The homogeneity of the Study parameters means that

they can be normalized by dividing all of the parameters by x0 and the system becomes

nine equations and seven unknowns. To solve this over determined system of equations seven

of the polynomials will be used to determine the set(s) of Study parameters that satisfy the

system and the results will be substituted into the remaining two polynomials to ensure

that the full system is satisfied. In this case the seven equations used are Polynomials 1, 2,

3, and 4 from the base 2A-chain constraint variety in Equation (3.151) and Polynomials 2,

3, and 4 from the EE 2A-chain constraint variety in Equation (3.153).

Solving the system of equations numerically using Maple 16 yields two sets of Study

parameters:

X1 =



x0

x1

x2

x3

y0

y1

y2

y3



=



1.000

0.362

−1.043

−0.457

−0.525

−11.590

0.863

−12.030



, X2 =



x0

x1

x2

x3

y0

y1

y2

y3



=



1.000

0.422

−1.049

−0.527

−3.270

−6.590

2.925

−17.300



. (3.154)
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Both sets of Study parameters, X1 and X2, also satisfy the remaining equations, the fifth

polynomial in each of Equation (3.151) and (3.153). This means that both sets are solutions

to the system of polynomials and describe the intersection of the base and EE 2A-chain

constraint varieties. The sets of Study parameters describe the pose of the coincident frames

ΣL and ΣR and to obtain the corresponding joint variables the 2A-chain inverse kinematics

problem must be solved for both the base and EE 2A-chains.

Obtaining the Joint variables

The two sets of Study parameters resulting from the constraint variety intersection are now

used to find the corresponding joint variables. The two sets, X1 and X2, are examined

separately, starting with X1.

To obtain the joint variables of Joints 1 and 2 the transformation matrix describing ΣL

with respect to Σ0, 0TL, in terms of the joint variables u1 and u2 is obtained by

0TL = M1G1M2G2. (3.155)

The Study parameters of 0TL in terms of u1 and u2 are obtained by Equations (2.14) and

(2.15). The resulting parametric equations for the eight Study parameters are normalized

by dividing all of the Study parameters by the equation for x0. The normalized equations

are now set equal to the Study parameters of X1, resulting in an over determined system of

seven equations in terms of the two unknown joint variables. Solving two of the equations

yields several possible solutions. In this example solving the equations x2 and x3 yielded

eight pairs of solutions for u1 and u2. Each pair is tested in the remaining five equations

and the only pair found to satisfy all of the equations is

u1 = 0.384, u2 = 1.485. (3.156)

The joint variables u3 and u4 are obtained by a similar method, but only after some

manipulation to account for Σtarget being away from the origin. The transformation matrix
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corresponding to the Study parameters of X1, 0TR is found by Equation (2.11) to be

0TR =



1.000 0.000 0.000 0.000

−1.272 −0.072 0.074 −0.995

−8.280 −0.694 0.713 0.103

19.730 0.717 0.698 0.000


. (3.157)

The transformation matrix describing the pose of Σtarget with respect to ΣR, RTtarget, is

found using Equation (2.37) and is

RTtarget =



1.000 0.000 0.000 0.000

3.747 0.522 −0.803 0.289

−12.420 0.157 −0.242 −0.957

−1.116 0.839 0.545 0.000


. (3.158)

The normalized Study parameters of RTtarget, found using Equations (2.14) and (2.15), are



x0

x1

x2

x3

y0

y1

y2

y3



=



1.000

1.174

−0.430

0.751

4.450

3.027

8.271

−5.928



. (3.159)

The transformation matrix RTtarget in terms of the unknown joint variables u3 and u4 is

obtained by

RTtarget = M3G3M4G4, (3.160)
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and the Study parameters describing the transformation RTtarget in terms of u3 and u4

are found using Equations (2.14) and (2.15) and normalized. By equating the parametric

form Study parameters in terms of the two joint variables with the corresponding Study

parameters of Equation (3.159) a system of seven equations in terms of the two unknown

joint variables is obtained. This over-determined system is solved in the same manner as

was used to find u1 and u2 and the joint variables for Joints 3 and 4 are found to be

u1 = 0.503, u2 = 1.681. (3.161)

Recalling that when the constraint variety of the 2A-chains were constructed in Sec-

tion 3.1.4 tangent of the half-angle substitution (Section 2.11.1) was used to eliminate

trigonometric functions, thus φi = 2 tan−1(ui) and

φ1 = 42.053◦,

φ2 = 112.101◦,

φ3 = 53.395◦,

φ4 = 118.498◦.

(3.162)

Also recall that θvi = 2φi was used to eliminate fractions, therefore the joint variables

resulting from the inverse kinematics algorithm are

θv1 = 84.107◦,

θv1 = 224.203◦,

θv1 = 106.791◦,

θv1 = 236.997◦,

(3.163)

which are the same as the starting joint variables of Equation (3.149). The first set of Study

parameters provided the intended solution to the inverse kinematics problem, the second

solution must also be examined.

The set of Study parameters X2 from Equation (3.154) are examined in the same way as

X1. When solving the over determined system of seven equations for the joint variables u1
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and u2 no solution is obtained. In Section 2.3.1 it was noted that the implicit representation

of the constraint variety may be larger than the actual constraint variety, which could

potentially lead to spurious results. In this case the results of the intersection yielded one

solution that is in the true constraint variety (X1) and one that is not (X2). This illustrates

the importance of confirming that the results of the algorithm provide the correct solution to

the problem. In this case there is one real solution to the inverse kinematics problem, though

it is possible that this is not the general case. A 4R-chain, in general, may posses multiple

solutions to the inverse kinematics problem [9] depending on the manipulator configuration.

Further research is required to determine the number of solutions for the general 4A-chain.

3.8.5 Jacobian Matrix

The Jacobian matrix of the 4A-chain was derived in Section 3.6.2 using the prototype ma-

nipulator DH-parameters. The 6×4 Jacobian is assembled in Equation (3.54) completed for

the prototype manipulator by substituting the DH-parameters in Table 3.7. The Jacobian

is not repeated here as its structure is the same as that presented in Section 3.6.2.

3.8.6 Dynamics of a Single A-Pair

Examining the dynamics of a single A-pair both with and without the leg mass effects

illustrates the influence the legs have on the overall dynamic equations of motion. The

mass properties for this example are derived from the first joint in the prototype serial A-

chain. The mass of the single link, mlink, is the mass of the A-pair moving platform and the

various components attached to it. The moving platform is approximated as a 10.000 in by

8.000 in plate weighing 4.135 lb and the CG of the plate lies on the joint axis. The moment

of inertia about the joint axis is Izz =
ml1
12 (102 + 82) lb-in2. Each of the six legs is a 6.000

in long slender rod weighing 0.115 lb. The acceleration due to gravity is g = 386.088 in/s2.

The A-pair is examined in two orientations, the first vertical, where the joint axis is par-

allel to the gravity vector and the potential energy terms dominate the dynamic equations

and the second horizontal, where the joint axis is perpendicular to the gravity vector and

the kinetic energy terms dominate. Friction is not included in this analysis. All simulations
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were run using MATLAB Simulink software. The assigned joint trajectory (θ(t), θ̇(t), and

θ̈(t)) rotated the A-pair from a stationary θ = 60◦ to a stationary θ = 300◦ in ten seconds.

The different dynamic models are compared using the total work done to follow the assigned

trajectory.

In the vertical orientation the effects of gravity on the A-pair motion are most evident.

The four different versions of the dynamic model compared are: massless legs, leg mass

included as part of the link (lumped mass), leg effects fully accounted for (with legs),

and considering only the leg potential energy terms (PE only). Equation (3.86) is used

to obtain the dynamic equations and determine the torque required to follow the given

trajectory. The appropriate mass values and the resulting total torque required to follow

the desired trajectory are provided in Table 3.8. The torque time histories of the various

models following the desired trajectory are provided in Figure 3.25(a).

Table 3.8: Masses and total work done for the different dynamic models of the single A-pair
in the vertical and horizontal orientations to follow the 10 s joint trajectory.

Total Work

Model mlinkg mlegg Vertical Horizontal

Massless Legs 4.135 lb 0.000 lb 28.520 in-lb 0.090 in-lb
Lumped Mass 4.825 lb 0.000 lb 33.279 in-lb 0.105 in-lb

With Legs 4.135 lb 0.115 lb 30.894 in-lb 0.092 in-lb
PE Only 4.135 lb 0.115 lb 30.892 in-lb N/A

When the A-pair axis is horizontal the gravity effects are removed and, since friction

is ignored, the inertial effects of the link and legs dominate the dynamic equations. Three

versions of the dynamic model, massless legs, lumped mass, and with legs are compared in

Table 3.8. The torque time histories of the various models following the desired trajectory

are provided in Figure 3.25(b).

To further examine the kinetic effects the trajectory is repeated at a faster rate. The

joint trajectory now rotates the A-pair from stationary θ = 60◦ to a stationary θ = 300◦ in

one second. The average joint velocity is now 240◦/s as opposed to 24◦/s for the previous

simulations. The increased rates are intended to highlight the mass effects on the dynamics

of the system. Table 3.9 shows the total work required for the various models to follow
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Figure 3.25: Torque vs. time plots for the various models of an A-pair following a 10 s joint
trajectory.
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Table 3.9: Masses and total work done for the different dynamic models of the single A-pair
in the vertical and horizontal orientations to follow the 1 s joint trajectory.

Total Work

Model mlinkg mlegg Vertical Horizontal

Massless Legs 4.135 lb 0.000 lb 44.999 in-lb 12.456 in-lb
Lumped Mass 4.825 lb 0.000 lb 52.508 in-lb 14.535 in-lb

With Legs 4.135 lb 0.115 lb 47.955 in-lb 12.632 in-lb
PE Only 4.135 lb 0.115 lb 47.772 in-lb N/A

the defined joint trajectory and Figures 3.26 (a) and (b) show the torque time histories to

follow the trajectory for the vertical and horizontal trajectories, respectively.

The two different orientations of the A-pair considered illustrate the impact of the

inertial effects of the legs on the potential energy terms (vertical) and kinetic energy terms

(horizontal). Analysis of the results provides some insight as to how to account for the leg

effects in longer chains. The decision as to include leg effects or not and which model to

use depends on the desired fidelity and the relative masses of the links and legs.

When the A-pair axis is vertical the potential energy effects of the link and legs dominate

the dynamic equations (with friction ignored) and the kinetic energy effects are essentially

negligible. For the masses used in the numerical example the total work done for the massless

legs model is 7.7% less than that of the full leg model which is in turn 7.2% less than the

lumped mass model for the 10 s simulation (6.2% and 8.7% for the 1 s simulation). If the

difference between the link and leg mass is increased these percent differences decrease. For

example if the link mass increases to 8.000 lb there is a 4% difference in total work done

between the full leg and lumped mass models for the 10 s simulation. While the reason for

the underestimation of the magnitude of the required torque by the massless legs model

is obvious (the leg mass has been completely ignored) the difference between the lumped

mass and full leg models results from the difference in the change in potential energy of

the link versus the leg. As the trajectory is followed the difference in height of the link

CG from the minimum to the maximum is 2.829 in while the CG of the legs varies by only

1.414 in. In the lumped mass model the change of potential energy for the leg mass is twice

the actual value. The combined potential energy of the six legs can be determined by a
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Figure 3.26: Torque vs. time plots for the various models of an A-pair following a 1 s joint
trajectory.
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point mass equal to the total mass of the six legs on the joint axis equidistant to the fixed

base and moving platform planes. Using this CG model allows for the determination of the

leg potential energy when the A-pair joint axis is tilted away from vertical.

In the horizontal orientation the potential energy terms go to zero and only the kinetic

energy terms are evident. The lumped mass model overestimates the total work by 14.3%

for the 10 s simulation (15.1% for the 1 s simulation) while the massless leg model under-

estimates the total work by only 2.1% for the 10 s simulation (1.4% for the 1 s simulation).

This suggests that for the masses used in this example the kinetic energy effects of the legs

may be considered to be negligible.

The results of this numerical example suggests that little fidelity is lost if the leg kinetic

energy terms are ignored, however the leg potential energy terms are important.

3.8.7 Dynamics of a 4A-Chain

The dynamic equations of motion for the prototype 4A-chain are derived in Section 3.7.4.

This section focuses on the application of these equations to build a Simulink model of

the prototype 4A-chain that can be used to determine the joint torques required to follow

a given trajectory in the joint space or the trajectory of the EE for given joint torque time

histories.

Mass Properties of the 4A-Chain

The mass properties of the prototype 4A-chain links were obtained using Pro/Engineer

solid models. The aluminum was assumed to be a density of 0.100 lb/in3 [105]. The mass

properties of the links of the prototype 4A-chain are provide in Table 3.10. The CG and

inertial tensor of Link i is given with respect to Σi. Each of the legs in the A-pairs is

represented as a slender rod with a weight of 0.115 lb.

Assembling the Dynamic Equations for a 4A-chain

The derivation of the dynamic equations using the Lagrange method is covered in general

in Section 2.7.1 and with regards to the prototype 4A-chain in Section 3.7.4. The inertia
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Link Vol. Weight CG iILinki
(in3) (lb) (in) (lb− in2)

1 105.062 10.506

 −6.585×10−5

−4.062
−1.636

  3684.737 −6.562×10−2 0.000
−6.562×10−2 1565.909 −315.626

0.000 −315.626 3765.518


2 70.676 7.068

 −6.409
0.000
−2.807

  1060.898 0.000 −985.056
0.000 5801.630 0.000
−98.506 0.000 5316.994


3 79.967 7.997

 0.000
−1.419
3.562

  2229.924 0.000 0.000
0.000 2174.462 226.346
0.000 226.346 851.930


4 28.511 2.851

 0.000
−3.140×10−4

−1.268

  248.954 0.000 0.000
0.000 248.962 −3.071×10−2

0.000 −3.071×10−2 130.650


Table 3.10: Mass properties for the links of the prototype 4A-chain.

matrix, B(θ), the matrix containing the centrifugal and coriolis terms, C(θ, θ̇), and the

vector containing the potential energy terms g(θ) are required to assemble the dynamic

equations.

Using the link CG positions from Table 3.10 the link Jacobians are found using the

equations of Section 3.7.4. The linear velocity components of the Jacobians, JLink1P , JLink2P ,

JLink3P , and JLink4P , are found by Equations (3.95), (3.106), (3.117), and (3.131), respectively.

The angular velocity Jacobians, JLink1O , JLink2O , JLink3O , and JLink4O are found by Equations

(3.97), (3.107), (3.118), and (3.132), respectively. The inertial matrix, Bi(θ), of each link is

found using Equation (2.68) with the motor masses and inertial properties ignored at this

time, thus

Bi(θ) = mLinkiJ
(Linki)T
P J

(Linki)
P + J

(Linki)T
O Ri

iILinkiR
T
i J

(Linki)
O , (3.164)

where the link mass and inertial properties are obtained from Table 3.10. The full inertial

matrix, B(θ), is found by

B(θ) = B1(θ) + B2(θ) + B3(θ) + B4(θ). (3.165)
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The resulting inertial matrix is too large to express explicitly. The B(θ) matrix was obtained

using Maple and converted to MATLAB format for use in Simulink.

The centrifugal and Coriolis terms of the C(θ, θ̇) matrix are obtained by Equation

(2.74). Constructed using the elements of B(θ), the C(θ, θ̇) is again to large to express

here but was obtained using Maple and converted to MATLAB format for use in Simulink.

The potential energy effects of the links and legs are derived in Section 3.7.7. The

potential energy terms for the four links are derived in Equation (3.134), describing the

moment induced at each joint by the mass of each link, as a function of the joint angles θ.

The moment induced on each joint due to the legs of each A-pair are given by Equations

(3.137), (3.142), (3.143), and (3.144) for Joint 1, 2, 3, and 4, respectively. The total

potential energy effects are assembled in Equation (3.145), resulting in the 4 × 1 vector g

whose elements describe the moment induced at each joint by the potential energy in the

system.

The inverse dynamic equations, describing the torque, τ , is provided in Equation (3.146).

In this work friction and other dissipative effects are not included and it is assumed that

the EE is free, exerting no forces or moments on the environment, thus the inverse dynamic

equations can be written as

τ = B(θ)θ̈ + C(θ̇,θ)θ̇ + g. (3.166)

Simulation and Results

A simple feedback controller is built using the dynamic results for the prototype 4A-chain

using the method discussed in Section 2.10. The elements of the dynamic equations, B(θ̇),

C(θ, θ̇), and G(θ) for the prototype 4A-manipulator are used to construct a Simulink

model in the form of the block diagram in Figure 2.18.

To illustrate the application of the inverse dynamic equations a simple set of joint

trajectories based on the capabilities of the Thermo CRS A645 robot arm. Table 3.11

shows the joint specifications of the A645 Thermo CRS. Only the first four joints are of

concern when comparing to the prototype 4A-chain and the acceleration and maximum
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Joint Range Max. Speed Default Accel. Cont. Stall Torque Rating

1 ±175◦ 180◦/s 720◦/s2 350 in− lb
2 ±90◦ 180◦/s 720◦/s2 350 in− lb
3 ±110◦ 180◦/s 720◦/s2 350 in− lb
4 ±180◦ 171◦/s 1430◦/s2 61 in− lb
5 ±105◦ 173◦/s 1430◦/s2 61 in− lb
6 ±171◦ 171◦/s 1430◦/s2 22 in− lb

Table 3.11: Joint specifications for the A645 Thermo CRS [95].

speed values are used to determine the torque required to actuate the prototype 4A-chain

to similar specifications. The maximum range of motion of the A-pairs (180◦±120◦) is used

as opposed to the joint limits of the A645 Thermo CRS.

The joint trajectories are based on starting at rest at one joint extreme, accelerating

the joint at the default acceleration to the maximum speed, holding the maximum speed

and decelerating to rest at the other joint extreme. Figure 3.27 shows the shape of the

Figure 3.27: Approximations of the acceleration and velocity profiles for each joint in the
4A-chain.

acceleration and velocity time histories for such motion. Using the kinematic equations of

motion the times for acceleration changes can be determined. For Joints 1, 2, and 3 starting

at θ = 60◦ the joints accelerate at 720◦/s2 from time t = 0 s to t = 0.25 s, hold at a constant

180◦/s (acceleration is 0◦/s2) until t = 1.33 s and accelerate at −720◦/s2 to rest at 300◦ at

t = 1.58 s. Similarly, Joint 4 starts at θ = 60◦, accelerates at 1430◦/s2 from time t = 0 s to
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t = 0.12 s, holds at a constant 171◦/s (acceleration is 0◦/s2) until t = 1.4 s and accelerates

at −1430◦/s2 to rest at 300◦ at t = 1.52 s.

The time history of the four joint torques obtained by the Simulink model are as shown

in Figure (3.28). The joint requiring the most torque is Joint 2. This is because there is a
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Figure 3.28: Plot of Simulink results for torque vs. time for the four joints of the prototype
4A-chain to follow the prescribed joint trajectories.

large mass (three links and two joints) cantilevered off of the joint with a long moment arm.

The torque required for Joint 2 to follow the trajectory approaches a maximum of 300 in-lb

(34 N-m). This is on par with the continuous stall torque rating listed in Table 3.11. The

discontinuities in the torque time histories (between 0.2 s and 0.4 s, and between 1.2 s

and 1.4 s) correspond to the instances in the joint trajectories where there is a step in the

acceleration.

The sinusoidal shape of the torque time histories for Joints 2 and 3 is unsurprising and
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is similar to what would be obtained for an R-chain. The axes of these two joints are always

perpendicular to the gravity vector, supporting a cantilevered load. Interestingly, the torque

time history of Joint 1 also follows a distinct sinusoidal path. The axes of Joint 1 is at all

times parallel to the gravity vector. A motor driving an R-pair in such an orientation would

require an almost constant torque to drive the joint at a constant velocity while the A-pair

requires additional torque to raise and lower the mass of all of links parallel to the joint

axis as the joint rotates. As the joint rotates from θ1 = 60◦ to θ1 = 180◦ the torque is

required to lift the mass of the manipulator and from θ1 = 180◦ to θ1 = 300◦ a torque in

the opposite direction is required to resist the mass of the manipulator as it is lowered.

This basic model of the prototype 4A-chain is presented to illustrate the implementation

of the dynamic equations of motion. It can be used as a first step towards sizing motors

for the prototype manipulator. A higher fidelity model will include motor and transmission

mass effects, friction and damping effects, external loading, etc.



Chapter 4

Concluding Remarks

The main contribution of this dissertation was the characterisation of the kinematics and dy-

namics of A-pairs and A-chains. The analysis of the reachable workspace of serial A-chains

was also initiated with the introduction of a novel algorithm for approximating the reach-

able workspaces of serial manipulators. Much of the presented material applies to general

nA-chains though emphasis has been placed on 4A-chains to correspond with the design of

a prototype 4A-manipulator. The work presented represents the first full kinematic and dy-

namic analysis of A-chains, major tools that will be required in the further study of chains

constructed using this novel kinematic pair. The resulting formulations of the kinematic

and dynamic equations can be utilised for manipulator design, the development of control

schemes, manipulator simulation and the comparison of A-pairs and A-chains with R-pairs

and R-chains. This research represents a significant advancement in the study of A-pairs

and A-chains.

The position level kinematics of A-chains have been generalised. To do this, the A-chain

DH-parameters which unambiguously describe the kinematic geometry of the A-chain have

been revised to apply to general A-chains. This required that the joint angle θ be represented

by the sum of two components, one fixed, θf and one variable, θv. The geometric constant

ρ is also determined to provide for the general description of the A-pair. The derivation of

the direct kinematic equations has been revised to account for these changes. The equations

describing the constraint varieties of 2A-chains have been revised to account for the changes

in the DH-parameters. As well, a new method for obtaining the implicit representation of

186
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the constraint varieties has been employed. The resulting sets of equations that describe

the constraint varieties are employed in the inverse kinematics algorithm for 4A-chains.

The joint limits of the new kinematic pair have been determined based on self-collisions

between the legs of the A-pair, allowing for the determination of the maximum reachable

workspace of nA-chains. Legs with a radius of zero were used to determine that the maxi-

mum range of motion is 240◦ or 60◦ < θv < 300◦. Cylinder collision detection was used to

determine the joint limits when the thickness of the legs is considered. A novel algorithm for

approximating the reachable workspace of serial manipulators was introduced that signifi-

cantly reduces the time required to determine the workspace relative to existing methods,

while producing comparable results. The new reachable workspace algorithm was applied

to find the reachable workspaces of A-chains possessing 1, 2, and 4 joints.

The derivation of the Jacobian matrix for a single A-pair and nA-chains was described

providing for velocity level kinematics and static force analysis. The method is based

on existing techniques but their application to A-pairs is unique because of the sinusoidal

coupling of translation and rotation. The Jacobian of a 4A-chain was derived to illustrate the

method of obtaining Jacobian matrices for longer A-chains and the technique is applicable

to general nA-chains.

The dynamic equation of motion of a single A-pair was obtained using both the Lagrange

and Newton-Euler formulations concurrently. As expected, the two methods provided iden-

tical results. The Lagrange formulation was also used to determine the influence of the mass

properties of the A-pair legs on the dynamics of the single A-pair. The decision whether

to include the leg mass effects in the dynamic model or not depends on factors such as the

desired model fidelity and the relative mass of the legs and the other links in the chain.

Results for the prototype manipulator suggest that the kinetic energy effects of the legs can

be considered negligible, but the potential energy effects of the legs should be included as

a point mass on the axis of rotation of the A-pair. The dynamic equations of motion for a

specific configuration of a 4A-chain were obtained to illustrate the method of obtaining the

equations for longer chains and incorporating the leg potential energy effects. Though only

a 4A-chain was examined in this dissertation, the method applies to general nA-chains.
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A numeric example based on a prototype 4A-chain was presented to illustrate the ap-

plication of the techniques developed in this dissertation.

4.1 Future Research

The kinematic and dynamic analysis presented in this dissertation lays the foundation for

future study in the area of A-pairs and A-chains. One area that should be pursued is the

comparison of A-pairs and A-chains with R-pairs and R-chains. This is an important topic

in that it will show the benefits and disadvantage of A-pairs when compared to the more

traditional R-pair. The following is a list of suggestions for future study with regards to

the comparison of A-pairs and R-pairs.

• The A-pair was initially proposed to take advantage of the stiffness inherent to parallel

manipulators. While the self-motions of the A-pair lead to a well-defined one DOF

motion about and along the axis of rotation the joint maintains the stiffness of a

parallel manipulator in all other directions. A characterisation of this stiffness needs

to be made and compared to the traditional R-pair. Literature on the topic has

proven to be difficult to find so it is likely that future research will need to develop

performance indices for joint stiffness and examine different designs of revolute joints

and A-pair joints.

• Comparisons of the reachable workspaces of A-chains and R-chains should be explored

in more depth. In this dissertation the chains are compared based on the amount of the

R-chain reachable workspace that can be recreated by the A-chain. Other comparisons

can be made with regards to workspace volume, the volume index performance index

(relationship between workspace volume and manipulator length), the shape of the

workspace, or other performance indices.

• A full comparison of the Jacobian matrices of similar A-chains and R-chains, especially

a singularity analysis may show some important differences between the two types of

kinematic chains. The A-chain singularities demonstrated in this dissertation do not
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constitute a full singularity analysis but intend only to illustrate some basic singular-

ities. The coupled translation and rotation of the A-pair may lead to instances where

the R-chain possesses singularities but the the A-chain does not, or vice versa. The

singularities of wrist partitioned 6R-chains are well studied [106], however A-chains do

not function in the same manner as wrist partitioned manipulators, so a full analysis

would be useful.

• A full comparison of the dynamic equations of motion would provide insight into the

differences between A-chains and R-chains with regards to torque requirements to

follow given trajectories. One interesting characteristic of the A-pair is that when the

joint axis is vertical the coupled motion means that the rotation causes the attached

links to raise or lower. This means that for part of the rotation the joint must lift the

entire mass of the links, while at other times the mass of the link aids in the rotation

of the joint. Further study is required to determine if this characteristic can be used

as an advantage.

In addition to the comparison of A-chains and R-chains there are many topics in the

study of A-pairs that lend themselves to future research. The following is a non-exhaustive

list of topics in the study of A-pairs that should be explored in the future.

• Expand the number of joints from four to six and examine the dexterity of such a

manipulator. The coupled translation and rotation will greatly influence the dexterous

workspace.

• Examine other configurations of A-chains. It may be the case that mimicking an

existing R-chain does not result in the optimal configuration for an A-chain.

• Adapt the algorithm for the inverse kinematics of 6R-chains to 6A-chains using the

new method for obtaining 2A-chain constraint varieties.

• Use the dynamic model to size and select a motor and transmission for the prototype

manipulator.
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• Increase the fidelity of the dynamic model by including a friction model.

• Use the dynamic model to build a more detailed controller for the prototype manip-

ulator.

In addition to the study of A-pairs and A-chains this dissertation introduced a new

algorithm for quickly obtaining the reachable workspace of A-chains. Though the algorithm

has proven to be effective more study is needed to optimize the algorithm and investigate

how well it approximates the actual workspace. The new algorithm has applications beyond

the study of A-chains as it can be applied to open serial chains constructed using any joint

type.
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Appendix A

Prototype Manipulator Assembly Drawings

The figures on the following pages are the assembly drawings for the prototype 4A-chain.

Figure A.1 shows the full 4A-chain, Figure A.2 shows the construction of the A-pair joints,

and Figure A.3 provides the bill of materials.
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Figure A.1: Full assembly drawing of the prototype manipulator.
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Figure A.2: Assembly drawing of joints of the prototype manipulator.
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Figure A.3: Bill of materials for the prototype manipulator.


