
Multiobjective Kinematic Trajectory Planning

An Application to the

Captive Trajectory Simulation (CTS) System

by

Alexis Guigue

B.Sc. equivalent, École Nationale Supérieure de l’Aéronautique et de l’Espace,

M.A.Sc., École Polytechnique de Montréal

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Ottawa-Carleton Institute for

Mechanical and Aerospace Engineering

Department of

Mechanical and Aerospace Engineering

Carleton University

Ottawa, Ontario

December 22, 2009

c⃝ Copyright

2009 - Alexis Guigue



The undersigned recommend to

the Faculty of Graduate Studies and Research

acceptance of the thesis

Multiobjective Kinematic Trajectory Planning

An Application to the

Captive Trajectory Simulation (CTS) System

submitted by Alexis Guigue, B.Sc. equivalent, M.A.Sc.

in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

Dr. M. Ahmadi
Thesis Supervisor

Dr. M.J.D. Hayes
Thesis Supervisor

Dr. R.G. Langlois
Thesis Supervisor

Dr. M.I. Yaras
Chair, Department of

Mechanical and Aerospace Engineering

Carleton University

December 22, 2009

ii



Abstract

In this thesis, a new approach to the resolution of multiobjective trajectory planning

problems is proposed. Rather than providing a single solution with the weighting method,

it is proposed to provide the entire Pareto optimal set, or more generally the entire mini-

mal element set when the objective space is partially ordered by a cone. This approach is

applied to the general class of multiobjective deterministic finite horizon optimal control

problems to which many multiobjective trajectory planning problems, including the joint

space trajectory planning problem arising from a wind-tunnel experimental setup called

captive trajectory simulation (CTS) system, can be shown to belong. A new discrete

dynamic programming (DDP) approximation method for the resolution of this class of

problems is developed, from which an approximate minimal element set is obtained. Par-

tial convergence results of this approximate set towards the original minimal element set is

obtained using set convergence in the sense of Hausdorff. When the DDP approximation

method is applied to the joint space trajectory planning problem for the CTS system,

the approximate Pareto optimal set is shown to provide a better representation of the

Pareto optimal set than the set obtained with the weighting method. In order to improve

the computational efficiency of the DDP approximation method, a clustering approach is

introduced. With the application of clustering, the DDP approximation method is shown

to have polynomial complexity, which yields a dramatic reduction in the resolution time.

When the DDP approximation method with clustering is applied to the joint trajectory

planning problem for the CTS system, the resulting set still provides a better represen-

tation of the Pareto optimal set than the set obtained with the weighting method. The

Hausdorff distance is proposed as a measure for comparison. Finally, the complete CTS

trajectory planning problem is solved by sequentially solving the problem in the task and

joint spaces. For the resolution of the task space problem, an algorithm based on the

resolution of a rural postman problem is proposed. The proposed sequential approach for

iii



the resolution of the CTS trajectory planning problem allows for fast resolution times.

iv



Contents

Acceptance ii

Abstract iii

Contents v

List of Tables x

List of Figures xii

List of Symbols xvi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A Multiobjective Approach to Trajectory Planning Problems . . . . . . . . 8

1.3 Synopsis and Summary of Results . . . . . . . . . . . . . . . . . . . . . . . 14

2 Problem Definition 19

2.1 The CTS System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Wind-Tunnel Testing with the CTS System . . . . . . . . . . . . . 22

2.2 The CTS Manipulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



2.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 Forward Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.4 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.5 Inverse Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 The CTS Trajectory Planning Problem . . . . . . . . . . . . . . . . . . . . 33

2.3.1 A Sequential Approach to the Resolution of the CTS Trajectory

Planning Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 The Store Trajectory in PCTS1 . . . . . . . . . . . . . . . . . . . . 36

2.3.3 PCTS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Resolution of the Problem in the Joint Space 46

3.1 The Weighting Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.2 Application of the Weighting Method to PCTS2 . . . . . . . . . . . 49

3.1.3 Resolution of PCTS2,s1 and PCTS2,s2 . . . . . . . . . . . . . . . . . 50

3.1.4 Determining the Objective Space for PCTS2 . . . . . . . . . . . . . 56

3.2 A DDP Approximation Method for a Single Objective Function Problem . 70

3.2.1 Reformulation of PCTS2,s1 with the Redundancy Parameter . . . . 72

3.2.2 A First-Order Discretization in Time . . . . . . . . . . . . . . . . . 73

3.2.3 A DDP Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.4 A Discretization in the Redundancy Parameter . . . . . . . . . . . 75

3.2.5 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.6 Numerical Experiments for PCTS2,s1 . . . . . . . . . . . . . . . . . 82

3.2.7 The DDP Approximation Method for PCTS2,s2 . . . . . . . . . . . 93

3.2.8 Numerical Experiments for PCTS2,s2 . . . . . . . . . . . . . . . . . 95

3.3 A DDP Approximation for a Multiple Objective Function Problem . . . . 101

vi



3.3.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3.2 Application to the Variant of PCTS2 . . . . . . . . . . . . . . . . . 103

3.3.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.4 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4 A Multiobjective Optimal Control Problem 113

4.1 The Multiobjective Deterministic Finite-Time Horizon Optimal Control

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.1 Topological Properties of (ℳ,ℋ) and (K,ℋ) [1] . . . . . . . . . . . 119

4.2.2 Existence of Minimal Elements and External Stability for Compact

Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3 A First-Order Discretization in Time . . . . . . . . . . . . . . . . . . . . . 125

4.4 A Direct Convergence Proof . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4.1 Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4.2 Generating Convergent Samples of the Sequence (Vℎ(x0)) . . . . . . 131

4.5 A Discrete Dynamic Programming Formulation . . . . . . . . . . . . . . . 135

4.6 A Discretization in the State Space . . . . . . . . . . . . . . . . . . . . . . 140

4.7 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.8 Further Results: Minimal Element Map Continuity . . . . . . . . . . . . . 144

5 Practical Considerations 147

5.1 Resolution Time Reduction via Clustering . . . . . . . . . . . . . . . . . . 148

5.1.1 Complexity of the DDP Approximation Method . . . . . . . . . . . 148

5.1.2 Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.1.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.1.4 Conclusion and Extensions . . . . . . . . . . . . . . . . . . . . . . . 161

vii



5.2 A Quantitative Comparison between the Weighting Method and DDP . . . 164

5.2.1 An Upper Bound for the Performance Measure . . . . . . . . . . . . 164

5.2.2 A Lower Bound for the Performance Measure . . . . . . . . . . . . 168

5.2.3 Bounding the Performance Measure . . . . . . . . . . . . . . . . . . 169

5.2.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.2.5 Conclusion and Extensions . . . . . . . . . . . . . . . . . . . . . . . 175

5.3 Generating Continuous Joint Trajectories . . . . . . . . . . . . . . . . . . . 176

6 Resolution of the Problem in the Task Space 178

6.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.2 A Lower Bound on the Number of Store Trajectories . . . . . . . . . . . . 181

6.3 Some Definitions in Graph Theory . . . . . . . . . . . . . . . . . . . . . . 183

6.4 An Approximation Algorithm Based on the Resolution of a Rural Postman

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.4.1 The Rural Postman Problem . . . . . . . . . . . . . . . . . . . . . . 186

6.4.2 Generating Paths from the Solution to the Rural Postman Problem 187

6.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.6 An Example of a Complete Resolution of PCTS . . . . . . . . . . . . . . . 192

7 Conclusions and Future Work 199

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.2.1 The Trajectory Planning Problem for a Captive Load Experiment . 201

7.2.2 Completing the Convergence Proof for the DDP Approximation Method202

7.2.3 Extension to the DDP Approximation Method . . . . . . . . . . . . 203

References 203

viii



Appendices 212

A DH Parameters 212

B Inverse Kinematics 215

C Building Subtask Trajectories 219

C.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

C.2 One-Dimensional Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . 219

C.3 n-Dimensional Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

C.4 Application to the Subtask Trajectories . . . . . . . . . . . . . . . . . . . . 226

ix



List of Tables

2.1 Operating envelope and end-effector velocity specification. . . . . . . . . . 26

2.2 Joint type for the CTS manipulator. R for revolute or P for prismatic. . . 27

3.1 Values of the objective functions for (NT , NX) = (13, 290). . . . . . . . . . 84

3.2 Values of the objective functions when increasing both NT and NX with a

constant NT/NX ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3 Values of the objective functions when increasing both NT and NX with a

NT/NX ratio converging towards zero. . . . . . . . . . . . . . . . . . . . . 87

3.4 Values of the objective functions for a second instance of PCTS2. . . . . . 91

3.5 Values of the objective functions for (NT , NX) = (13, 290). . . . . . . . . . 95

3.6 Values of the objective functions when increasing both NT and NX with a

NT/NX ratio converging towards zero. . . . . . . . . . . . . . . . . . . . . 97

3.7 Values of the objective functions for a second instance of PCTS2. . . . . . 99

5.1 Description of the clustering methods. (E) indicates that the cluster con-

tains at least one extreme point by construction. . . . . . . . . . . . . . . . 157

5.2 First series of tests: comparison based on the smallest Hausdorff distance. . 160

5.3 Second series of tests: comparison based on the smallest Hausdorff distance. 160

5.4 Lower and upper bounds for the set A1 of Pareto objective vectors obtained

with the weighting method and A2 = Jℎ,d0 (v0). . . . . . . . . . . . . . . . . 172

x



5.5 Lower and upper bounds for the set A1 of approximate Pareto objective

vectors obtained with the weighting method and A2 = Jℎ,d0 (v0). . . . . . . . 175

6.1 Duration for the subtasks in S and in S1. The duration is the same regard-

less the store angle of attack. . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.2 Duration for the subtasks in S2. The duration is independent from the

position, and only depends on the difference ∣Δ�∣ between the two store

angles of attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.3 Duration for the subtasks in S0. . . . . . . . . . . . . . . . . . . . . . . . . 189

6.4 Comparing the lower bound on the number of paths with the number of

paths provided by the approximation algorithm. . . . . . . . . . . . . . . . 190

6.5 Comparing the two upper bounds. . . . . . . . . . . . . . . . . . . . . . . . 191

6.6 The store trajectory durations. . . . . . . . . . . . . . . . . . . . . . . . . 194

6.7 List of subtasks completed by the store trajectories. . . . . . . . . . . . . . 194

A.1 Set of DH parameters for the 8-DOF CTS manipulator. . . . . . . . . . . . 212

xi



List of Figures

1.1 The CTS manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Graphical model of the MK-83BSU. . . . . . . . . . . . . . . . . . . . . . . 20

2.2 The original experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 The CTS manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 An example of a grid survey experiment. . . . . . . . . . . . . . . . . . . . 24

2.5 The store path 1-2-3-1-4 generated to complete the grid survey experiment. 25

2.6 Joint motions for the CTS manipulator. . . . . . . . . . . . . . . . . . . . 27

2.7 Three different joint configurations for the same store position and orientation. 28

2.8 The frames obtained from the DH convention. . . . . . . . . . . . . . . . . 30

2.9 Illustration of the plane P . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.10 The aerodynamic interference function as a function of q6 and q2 + q5. . . 42

3.1 Pareto objective vectors (circles) obtained for PCTS2,s1 . . . . . . . . . . . . 54

3.2 Pareto objective vectors (circles) obtained for PCTS2,s2 . . . . . . . . . . . . 55

3.3 The vector z′ − z is perpendicular to Z at z. . . . . . . . . . . . . . . . . . 57

3.4 The objective space for the function F(⋅) : (x1, x2)→ (x1, x
3
1(1 + x22)). . . . 60

3.5 Determining the objective space when f2 is taken as an integral cost. . . . 63

3.6 Verifying the exactness of the objective space when f2 is taken as an integral

cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xii



3.7 The weighting method cannot generate any Pareto objective vector in the

set z2 − int(R2
+) when f2 is taken as an integral cost. . . . . . . . . . . . . 65

3.8 Determining the objective space when f2 is taken as a terminal cost. . . . . 67

3.9 Verifying the exactness of the objective space when f2 is taken as a terminal

cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.10 The weighting method can generate any Pareto objective vector in the set

z2 − int(R2
+) when f2 is taken as a terminal cost. . . . . . . . . . . . . . . 69

3.11 The three solutions, BVP1, BVP2, and BVP3, to the BVP (3.6) and (3.8)

(dotted lines), and v∗ℎ,d(⋅) (plain line) when f2 is taken as integral cost. . . 86

3.12 Visualization of the convergence results from Tables 3.2 and 3.3. . . . . . . 89

3.13 Eliminating the oscillations by limiting the number of modes when f2 is

taken as an integral cost. For the three figures, the unique, and therefore

optimal, solution to the BVP (3.6) and (3.8) is represented with a dotted

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.14 The three solutions, BVP1, BVP2, and BVP3, to the BVP (3.7) and (3.9)

(dotted lines), and v∗ℎ,d(⋅) (plain line) when f2 is taken as terminal cost. . . 96

3.15 Visualization of the convergence results from Table 3.6. . . . . . . . . . . . 98

3.16 Eliminating the oscillations by limiting the number of modes when f2 is

taken as a terminal cost. For the three figures, the unique, and therefore

optimal, solution to the BVP (3.6) and (3.8) is represented with a dotted

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.17 Comparing the set of approximate Pareto objective vectors Jℎ,d0 (v0) and the

objective space when f2 is taken as an integral cost. . . . . . . . . . . . . . 106

3.18 When f2 is taken as an integral cost, as opposed to the weighting method,

approximate Pareto objective vectors can be found in the set z2 − int(R2
+). 108

xiii



3.19 Comparing the set of approximate Pareto objective vectors Jℎ,d0 (v0) and the

objective space when f2 is taken as a terminal cost. . . . . . . . . . . . . . 110

3.20 When f2 is taken as a terminal cost, as opposed to the weighting method,

approximate Pareto objective vectors can be found in the set z2 − int(R2
+). 111

5.1 Performing the partition based on the NBI method for a given set and for

m = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.2 Variation of the Hausdorff distance as a function of NC for the clustering

methods M1 to M7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.3 Comparison between the set obtained from the resolution of the approxi-

mate dynamic programming equation with M7 and NC = 30 (circles) and

the set Jℎ,d0 (v0) (plus signs). . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.4 Comparison between the set obtained from the resolution of the approxi-

mate dynamic programming equation with M7 and NC = 30 (circles) and

the set obtained when applying directly M7 with NC = 30 to Jℎ,d0 (v0) (plus

signs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.5 Illustration of the set B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.6 Geometric determination of yi. . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.7 The set A1 of Pareto objective vectors obtained with the weighting method

(circles) and A2 = Jℎ,d0 (v0) (dots). . . . . . . . . . . . . . . . . . . . . . . . 170

5.8 Building the rectangles to find an upper bound. . . . . . . . . . . . . . . . 171

5.9 The set A1 of approximate Pareto objective vectors obtained with the

weighting method (circles) and A2 = Jℎ,d0 (v0) (dots). . . . . . . . . . . . . . 173

5.10 Building the rectangles to find an upper bound. . . . . . . . . . . . . . . . 174

6.1 An example of a grid survey experiment. . . . . . . . . . . . . . . . . . . . 192

6.2 The grid resulting from the discretization. . . . . . . . . . . . . . . . . . . 195

xiv



6.3 Approximate Pareto objective vectors obtained from the resolution of the

approximate dynamic programming equation with the clustering method

M7 and NC = 20, and the maximum number of modes m = 2. . . . . . . . 197

6.4 The optimal discrete trajectories (plain lines) corresponding to the approxi-

mate Pareto objective vectors from Figure 6.3 and the boundary of the grid

(dots). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.5 The optimal discrete trajectories (plus signs) and the interpolated continu-

ous joint trajectories (plain lines) corresponding to the approximate Pareto

objective vectors from Figure 6.3. . . . . . . . . . . . . . . . . . . . . . . . 198

A.1 The frames obtained from the DH convention. . . . . . . . . . . . . . . . . 213

A.2 The frames obtained from the DH convention without the CTS manipulator.214

C.1 A C1 profile for the second derivative . . . . . . . . . . . . . . . . . . . . . 221

C.2 The case v2max − 1+�
2
amax(xf − x0) < 0. . . . . . . . . . . . . . . . . . . . . 224

C.3 The case v2max − 1+�
2
amax(xf − x0) = 0. . . . . . . . . . . . . . . . . . . . . 224

xv



List of Symbols

p end-effector position and orientation

W operating envelope of the CTS manipulator

ṗ end-effector velocity.

ṗmax maximum end-effector velocity.

q joint configuration

Q joint range of the CTS manipulator, Q = [qmin,qmax]

q̇ joint speed

q̇max maximum joint speed

q̈ joint acceleration

v redundancy parameter

S set of subtasks to be completed during a grid survey experiment

Ttunnel run time of the wind tunnel

∂Z boundary of the set Z

∣Z∣ cardinality of the set Z

B closed unit ball

B(x, r) closed ball with center x and radius r

cl(Z) closure of the set Z

∥ ⋅ ∥ Euclidian norm in Rn

int(Z) interior of the set Z

⟨⋅, ⋅⟩ scalar product in Rn

SO(3) Special Orthogonal group in three dimensions

xvi



BVP Boundary Value Problem

CTS Captive Trajectory Simulation

DH Denavit-Hartenberg

DOF Degrees Of Freedom

DDP Discrete Dynamic Programming

HJB Hamilton-Jacobi-Bellman

IAR Institute for Aerospace Research

IVP Initial Value Problem

NBI Normal-Boundary Intersection

NRC National Research Council

xvii



Chapter 1

Introduction

1.1 Background

The motion of a robotic manipulator can be observed in three different spaces: the task,

joint, and actuation spaces. The task space is the space in which the task is specified. Task

specification is generally done in the space R3×SO(3), where R3 is the three-dimensional

Euclidian space used to describe the position, and SO(3) is the group of all rigid body

rotations used to describe the orientation. The joint space and the actuation space are the

set of all possible values that can be taken by the joint and actuator variables, respectively.

In the absence of actuator redundancy, both the joint space and the actuation space are

subsets of Rn, where Rn is the n-dimensional Euclidian space, and n is the number of

joints or degrees of freedom (DOF) [2, p. 5]. Although the task is specified in the task

space, a robotic manipulator is commanded either in the joint or actuation space. A tra-

jectory planning problem is therefore the problem of finding a joint or actuator trajectory

to complete the task. A major difficulty in trajectory planning problems arises when the

task can be completed with an infinite number of joint or actuator trajectories, which

occurs, for example, when the robotic manipulator is either kinematically or task redun-

1



CHAPTER 1. INTRODUCTION 2

dant [3], i.e., when the dimension of the joint space is greater than the dimension of the

task space. This thesis aims at solving such a problem for a captive trajectory simulation

(CTS) system, which will be hereinafter referred to as the CTS trajectory planning problem.

The CTS system [4, 5, 6, 7], currently under development at the National Research

Council (NRC) Institute for Aerospace Research (IAR), is a wind-tunnel experimental

setup devised to investigate the release of stores from aircraft. In this context, a store is

any object that can be released from an aircraft. The purpose of these investigations is

to check whether the release of a store from its parent aircraft is safe, i.e., occurs without

any collision. The most common type of experiment conducted with the CTS system is

the grid survey experiment [5, 8]. The objective of a grid survey experiment is to build

a look-up table of interference coefficients between the store and the parent aircraft as a

function of the store angle of attack, trajectory angle, and Mach number. The information

contained in this table will later serve as an input to an equation of motion solver to simu-

late the store release trajectory [5]. This look-up table is built by moving the store model

along segments in R3 at constant angles of attack within the interference flow field of the

parent aircraft model, and measuring the loads acting on the store model. At each point

along these segments, the interference coefficients are calculated by dividing the measured

aerodynamic loads by the freestream loads (measured for the same store model at the

same angle of attack and Mach number in the absence of the parent aircraft model). From

the above discussion, a grid survey experiment can therefore be interpreted as a set of

(segment,store angle of attack,Mach number) that needs to be covered by the store model.

As illustrated in Figure 1.1, the main component of the CTS system is a redundant

robotic manipulator, which will be hereinafter referred to as the CTS manipulator. The

CTS manipulator holds at its end-effector a balance to which the store model is attached.



CHAPTER 1. INTRODUCTION 3

Figure 1.1: The CTS manipulator.

The store model can therefore be positioned and oriented anywhere within the interference

flow field of the parent aircraft model where the loads acting on the store model can be

measured. The task for the CTS manipulator is to perform a grid survey experiment.

Therefore, the CTS trajectory planning problem is the problem of finding a set of actu-

ator or joint trajectories such that the store model covers the set of (segment,store angle

of attack,Mach number) prescribed by the given grid survey experiment. From the CTS

trajectory planning problem, two subproblems can be identified. The first subproblem is

the problem of building a set of store trajectories such that the store model covers the set



CHAPTER 1. INTRODUCTION 4

of (segment,store angle of attack,Mach number) prescribed by the grid survey experiment.

This subproblem will be referred to as the task space CTS trajectory planning problem.

The second subproblem is the problem of building an actuator or a joint trajectory such

that the end-effector of the CTS manipulator follows a given store trajectory. This sub-

problem will be referred to as the joint space CTS trajectory planning problem. It will be

shown in Chapter 2 that the CTS trajectory planning problem can be solved by solving

these two subproblems sequentially.

The joint space CTS trajectory planning problem is discussed first. In this thesis, most

of the attention is given to this problem. The main reason is that, as it will be detailed

in Chapter 2, the joint space CTS trajectory planning problem is a typical example of

multiobjective kinematic trajectory planning problems [9]. Therefore, it is expected that

the contributions made in this thesis can be applied to other problems of this type. The

first step when formulating a trajectory problem is to choose between a kinematic or a

dynamic formulation [9]. With a kinematic formulation, the trajectory planning problem

is purely kinematic and its resolution produces a joint trajectory. It is implicitly assumed

that joint trajectories can be executed by the actuation system of the robotic manipula-

tor. With a dynamic formulation, the dynamic equations of motion are involved. Both

the actuator trajectory and its corresponding joint trajectory are produced. For the CTS

trajectory planning problem, an accurate model of the aerodynamic loads acting on the

CTS manipulator is not available. Therefore, a kinematic formulation has been preferred.

The actuation system of the CTS manipulator has been selected at the design phase of

the CTS system [6] such that any joint trajectory satisfying the kinematic constraints in

the joint space CTS trajectory planning problem can be executed even in the presence of

the worst-case aerodynamic loads.



CHAPTER 1. INTRODUCTION 5

The next step in the formulation of a trajectory planning problem is to identify the

constraints to be satisfied by the trajectories. The constraints in the joint space CTS tra-

jectory planning problem are typical constraints that can be found in kinematic trajectory

planning problems [10]. These constraints, which can only be kinematic, include joint

speed and joint mechanical limits. Self-collisions between parts of the CTS manipulator

and collisions [10, 11] between the CTS manipulator and its surrounding environment,

namely the wind-tunnel and the parent aircraft model, must also be avoided.

For redundant robotic manipulators, even in the presence of constraints, the task can

generally still be completed with an infinite number of trajectories. The most common

method used to choose a final trajectory is to find a trajectory that corresponds to the

optimum value of a performance criterion defined over the set of trajectories. Many perfor-

mance criteria have been considered in the literature [12]. For dynamic trajectory planning

problems, some common performance criteria are the final time [13] and the norm or the

weighted norm of the joint torque to minimize the energy required by the actuators [11].

For kinematic trajectory planning problems, the norm of the joint speed is generally used

instead of the norm of the joint torque [10]. The identification of relevant performance

criteria is therefore part of the formulation of a trajectory planning problem. For exam-

ple, for the joint space CTS trajectory planning problem, it is desirable to have the main

body of the CTS manipulator as far as possible from the parent aircraft since its presence

disturbs the flow field, and this disturbance adversely affects the measurement of the aero-

dynamic loads acting on the store.

By choosing a trajectory that corresponds to the optimum of a performance criterion,

trajectory planning problems mathematically become extremum problems involving func-

tions. Optimal control theory [14], dynamic programming for continuous-time systems [15],



CHAPTER 1. INTRODUCTION 6

and calculus of variations [16] are the theories that have been developed for solving such

problems. Nakamura [17], Martin [18], and Shin [19] have been, respectively, pioneers in

applying optimal control theory, calculus of variations, and dynamic programming to the

resolution of trajectory planning problems. Nakamura [17] stated the problem of following

a given Cartesian trajectory for the end-effector of a redundant robotic manipulator as

an optimal control problem. Both kinematic and dynamic formulations for this trajec-

tory planning problem were considered. Martin [18] stated the same kinematic trajectory

planning problem as in [17] as a problem in calculus of variations. Shin [19] stated the

problem of moving the end-effector of a non-redundant robotic manipulator along a path

in R3 × SO(3) under joint torque and joint torque derivative constraints as an optimal

control problem. To solve this optimal control problem, discretization in the path param-

eter variables was first performed. The resulting discrete problem was then solved using

dynamic programming.

The main reason why the trajectory planning problems considered in the pioneering

work discussed above are rather simple is that problems in calculus of variations and op-

timal control theory are generally very difficult to solve numerically, particularly in the

presence of constraints. As a result, the more recent work in trajectory planning has been

more focused on applying existing efficient numerical algorithms [20, 21, 22, 23, 24] to tra-

jectory planning problems with constraints. Galicki [11] stated the problem of moving the

end-effector of a redundant robotic manipulator along a path in R3 × SO(3) under joint

torque constraints and in the presence of obstacles as an optimal control problem. The

proposed numerical algorithm consisted of the resolution of a sequence of linear programs

obtained from the discretization of the negative formulation of the Pontryagin’s maximum

principle. Shen [10] stated the problem of moving a robotic manipulator under kinematic

constraints, and with a fixed final time, as a problem in calculus of variations. The pro-



CHAPTER 1. INTRODUCTION 7

posed numerical algorithm started with a discretization of the Lagrange function which

converted the original variational problem into a finite-dimensional optimization prob-

lem. Newton’s algorithm was then applied to obtain a solution to this finite-dimensional

optimization problem. Cahill [13] stated the problem of moving the end-effector of a non-

redundant robotic manipulator along a path in R3×SO(3) under joint torque constraints

as an optimal control problem. This optimal control problem was solved using dynamic

programming. The first step was to derive the Hamilton-Jacobi-Bellman (HJB) partial

differential equation satisfied by the value function of the optimal control problem. An

approximate solution to the HJB equation was finally obtained using a finite difference

method.

It can be seen that trajectory planning problems have been widely studied. However,

it appears that there is one important aspect of these problems that has not received

sufficient attention. It is a fact that, for a given trajectory planning problem, many different

performance criteria can be considered for the selection of the final trajectory. For the joint

space CTS trajectory planning problem, together with the performance criterion mentioned

above, it is also desirable for example to operate under low joint speeds. In [10], several

performance criteria including the joint speed norm and the joint acceleration norm were

also considered. The approach in this paper was to combine linearly the objective functions

with positive weights to obtain a new single performance criterion. In the multiobjective

optimization literature, this classical approach is referred to as the weighting method [25,

pp. 78–85]. Different optimal joint trajectories with respect to this new performance

criterion could then be obtained by varying the weights. The weighting method seems

to be the only approach that has been applied to solve trajectory planning problems

with multiple performance criteria, which will be hereinafter referred to as multiobjective

trajectory planning problems.



CHAPTER 1. INTRODUCTION 8

1.2 A Multiobjective Approach to Trajectory Plan-

ning Problems

In this thesis, the joint space CTS trajectory planning problem is considered as a multi-

objective trajectory planning problem. Before defining what an optimal solution for such

a problem is, some preliminary definitions are needed. The objective space [25, p. 5] is the

set of all possible values that can be taken by the p objective functions, or p performance

criteria, seen as a vector in Rp. The objective space is therefore a subset of Rp. An element

of the objective space is an objective vector [25, p. 5]. The concept of optimality in mul-

tiobjective optimization problems derives from the choice of a preference in the objective

space. The following preference is considered for the joint space CTS trajectory planning

problem, which is the natural extension of the “less than or equal to” or “≤” preference

when p = 1: given two vectors z1 and z2 in Rp, z1 is said to be preferred to z2 if and

only if each component of z1 is less than or equal to its corresponding component of z2.

Therefore, an objective vector z1 is defined as optimal (with respect to this preference) if

there is no other objective vector z2, z2 ∕= z1, that can be preferred to it. This classical

concept of optimality is known as Pareto optimality in the multiobjective optimization

literature [25, 26, 27] and the optimal objective vectors are referred to as Pareto objective

vectors. The difficulty of multiobjective optimization problems is precisely that the op-

timal solutions form a set, the Pareto optimal set, which does not generally reduce to a

singleton, as is the case for single objective optimization problems.

Based on the problem description from Section 1.1, the joint space CTS trajectory

planning problem can finally be formulated as a multiobjective problem in calculus of

variations. The resolution of this problem therefore consists of determining the Pareto

optimal set and the corresponding joint trajectories. The first proposed resolution method



CHAPTER 1. INTRODUCTION 9

in this thesis is the weighting method. The weighting method belongs to the class of

scalarization methods [27, pp. 86–101]. The general principle for these methods is to

transform the original multiobjective optimization problem into a parameterized single

objective optimization problem and vary the parameters to obtain Pareto optimal solu-

tions. For the weighting method, the parameters are the weights, and it can be shown

that the objective vector corresponding to the optimal solution of the scalarized problem

is Pareto optimal [25, pp. 78–79]. Because of its simplicity, the weighting method is still

widely used. However, it suffers from important known weaknesses [28], which will be

illustrated with the joint space CTS trajectory planning problem. In particular, it will

be shown that the objective space for the joint space CTS trajectory planning problem is

not convex, which results that a large subset of the Pareto optimal set cannot be obtained

with the weighting method.

One of the main contributions of this thesis is the development of a new discrete dy-

namic programming (DDP) approximation method to solve the joint space CTS trajectory

planning problem. Dynamic programming [29] is a very general principle that applies in

particular to variational problems such as trajectory planning problems. Dynamic pro-

gramming for continuous-time systems, calculus of variations, and optimal control, are

theories that are intimately connected [15]. However, the primary focus of calculus of

variations and optimal control theory is to find an optimal trajectory. Meanwhile, the

primary focus of dynamic programming is to determine the value function [15, p. 9] or

return function [30, p. 129] defined as the optimal value of the objective function as a

function of the initial conditions of the trajectories. This is the main reason why dynamic

programming is believed to be very suitable for multiobjective optimization problems: the

return function takes its value precisely in the space where the preference is defined. The

proposed DDP approximation method details as follows. The first step is a first-order



CHAPTER 1. INTRODUCTION 10

discretization in the time variable. For the resulting discrete problem, a set-valued return

function is defined as the Pareto optimal set as a function of the initial conditions of the

discrete joint trajectories. The application of the dynamic programming principle then

yields a multiobjective dynamic programming equation satisfied by this set-valued func-

tion. This equation is finally discretized in the state-space variable from which results an

approximate multiobjective dynamic programming equation that can be easily solved by

performing a finite number of comparisons. In the resolution process of this approximate

equation, the optimal discrete joint trajectories corresponding to the approximate Pareto

objective vectors are obtained. It will be shown that, when compared to the weighting

method, the DDP approximation method provides a much better representation of the

Pareto optimal set.

Interestingly, the proposed DDP approximation method can also be applied to the

class of multiobjective deterministic finite horizon optimal control problems [31] to which

the unconstrained joint space CTS trajectory planning problem can be shown to belong.

This method also remains valid for a general class of preferences defined in terms of a

pointed convex closed cone D ⊂ Rp containing the origin [26]. Pareto optimality, as de-

fined above, is just a particular case of these preferences with D = Rp
+. When considering

these preferences, the term minimal element will be used instead of Pareto objective vec-

tor. Accordingly, the term minimal element set will be used instead of Pareto optimal set.

A natural question that arises when deriving approximations is the question of con-

vergence. For the proposed DDP approximation method, this question amounts to deter-

mining whether the set of approximate minimal elements converges in some sense towards

the minimal element set for the original problem. Note that for this convergence study,

it is not assumed that the objective space is convex. Therefore, it is expected that the



CHAPTER 1. INTRODUCTION 11

proposed DDP approximation will provide a good representation of the minimal element

set regardless of the convexity of the objective space for the given problem. The first step

to answer the question of convergence is to properly define convergence. This is done by

introducing a topology on the family of compact sets of Rp defined from the Hausdorff dis-

tance [1]. With this topology, the minimal element map, which is the map that associates

with each compact set its minimal element set, is shown to be continuous. Other results

related to the existence of minimal elements and the external stability property [26, p. 59]

for compact sets are also stated. As detailed above for the joint space CTS trajectory

planning problem, the DDP approximation method starts with a first-order discretiza-

tion in time. This discretization yields a discrete multiobjective optimal control problem,

called the discrete problem. By choosing a particular sequence of time steps, and using the

external stability property, it is shown that convergent sequences of minimal elements of

the corresponding discrete problems can be constructed. Using the dynamic programming

principle, a multiobjective dynamic programming equation with respect to the ordering

cone D is then obtained. The solution to this equation is shown to be the minimal ele-

ment set of the discrete problem. The final step of the DDP approximation method is a

state-space discretization of the multiobjective dynamic programming equation. Using the

continuity of the minimal element map, the solution to the resulting approximate multiob-

jective dynamic programming equation is shown to converge towards the minimal element

set of the discrete problem in the sense of Hausdorff.

For dynamic programming based resolution methods, such as the proposed DDP ap-

proximation method, a well-known limiting factor is the curse of dimensionality, which

is intrinsic to dynamic programming [29]. For the joint space CTS trajectory planning

problem, the curse of dimensionality appears as follows: the algorithmic complexity of

the resolution of the approximate multiobjective dynamic programming equation is expo-



CHAPTER 1. INTRODUCTION 12

nential in the discretization size. This problem can be addressed by clustering [32, pp.

325–329] the Pareto optimal set at each step of the resolution of the approximate mul-

tiobjective dynamic programming equation, i.e., by substituting into the actual Pareto

optimal set one of its subsets. It is proposed to choose for this subset, the closest subset

to the actual Pareto optimal set in terms of the Hausdorff distance among all the subsets

with a given cardinality. Note that this idea of clustering can also be generalized to the

class of multiobjective deterministic finite horizon optimal control problems.

The clustering method based on the Hausdorff distance can be shown to be equiva-

lent to the resolution of the restricted central k-clustering problem for a set of cardinality

n included in Rp, which is a well-known problem in geometric location theory [33] [34,

pp. 325–327]. Unfortunately, in dimension two and above (p ≥ 2), the restricted central

k-clustering problem is a very difficult problem to solve: it is NP-hard [35, pp. 114–145]

for approximation factors of � in the central cluster size if � <
√

3 ([33], Theorem 12).

Nevertheless, polynomial algorithms, such as the farthest-point clustering algorithm [34,

p. 326] [36] can be used. The farthest-point clustering algorithm, which is the “best”

known polynomial algorithm for solving the restricted central k-clustering problem, is a

O(nk) algorithm that guarantees a solution at most within two times the minimum central

cluster size. The O(nk) complexity was later improved to O(n log(k)) in [33]. Using the

farthest-point clustering algorithm, the algorithmic complexity of the proposed DDP ap-

proximation method reduces to polynomial, and it will be shown that a dramatic reduction

in the resolution time results.

By adding another layer of approximation, it is natural to wonder whether the DDP

approximation method with clustering will still provide a better representation of the

Pareto optimal set than the weighting method. The difficulty of providing a measure to



CHAPTER 1. INTRODUCTION 13

the quality of a representation of the Pareto optimal set is that the Pareto optimal set for

the joint space CTS trajectory planning problem is unknown. Nevertheless, using again

the Hausdorff distance, it is possible to provide a lower bound and an upper bound to the

quality of a given representation of the Pareto optimal set. By calculating these bounds

for the sets obtained with the weighting method and the DDP approximation method, it

will be shown that the DDP approximation method with clustering still outperforms the

weighting method.

As mentioned above, the task space CTS trajectory planning problem is given less

attention in this thesis. Nevertheless, this problem is still extremely important for the

operation of the CTS system. Recall that the task space CTS trajectory planning problem

is the problem of building a set of store trajectories such that the store model covers the set

of (segment,store angle of attack,Mach number) prescribed by the grid survey experiment.

Knowing that a store trajectory corresponds to a wind-tunnel run, the objective for this

problem is to reduce the operation cost for the CTS system by building the minimum

number of store trajectories. The difficulty for the task space CTS trajectory planning

problem is that for a given Mach number, the prescribed set of (segment,store angle of

attack) is not necessarily connected. Therefore, when building the store trajectories, some

extra motions, such as moving the store at a constant angle of attack to connect two

segments, or changing the angle of attack at the edge of a segment, might have to be

added. An algorithm based on the resolution of a rural postman problem [37] is proposed

to solve the task space CTS trajectory planning problem. The motions that need to be

added are generated during the resolution process. It will be shown that, compared to

the method previously used at IAR to generate store trajectories, the proposed algorithm

yields a reduction in the number of wind-tunnel runs, and therefore a reduction in the

operation cost for the CTS system.



CHAPTER 1. INTRODUCTION 14

1.3 Synopsis and Summary of Results

Chapter 2: Problem Definition

The CTS system is first described in detail. Particular attention is given to the CTS

manipulator and its kinematics. The CTS trajectory planning problem is discussed next,

and it is explained how this problem can be solved by solving sequentially the task space

CTS trajectory planning problem and the joint space CTS trajectory planning problem.

The formulation for these two problems follows starting with the task space CTS trajec-

tory planning problem. For the joint space CTS trajectory planning problem, a detailed

description of the constraints and performance criteria is first provided, and a formulation

as a multiobjective problem in calculus of variations is then presented.

Chapter 3: Resolution of the Problem in the Joint Space

The weighting method is first described in general. This method is then applied to the

joint space CTS trajectory planning problem. The scalarized problem is a problem in cal-

culus of variations that is solved by solving the boundary value problem (BVP) obtained

from the first-order necessary conditions for optimality or Euler-Lagrange equations. The

difficulty in evaluating the performance of the weighting method for providing a good

representation of the Pareto optimal set is that the Pareto optimal set is not available.

Therefore, a method for deriving the boundary of the objective space is proposed. Know-

ing the boundary of the objective space, the Pareto optimal set is derived. The well-known

drawbacks of the weighting method are then illustrated. The DDP approximation method

is presented next. For clarity, it is first presented with a single objective, i.e., the scalarized

problem obtained from the weighting method. The reasons for proceeding this way are to



CHAPTER 1. INTRODUCTION 15

simplify the presentation of the DDP approximation method, and to validate the results

obtained with this method by comparing them to the results obtained by solving the BVP.

Finally, the DDP approximation method is applied to the joint space CTS trajectory plan-

ning problem and the results are compared to those obtained with the weighting method.

Chapter 4: A Multiobjective Optimal Control Problem

The unconstrained joint space CTS trajectory planning problem is first shown to be-

long to a class of multiobjective deterministic finite horizon optimal control problems.

The DDP approximation method developed for the joint space CTS trajectory planning

problem is then generalized to this class of problems. The convergence of the DDP ap-

proximation for this class of problems is studied.

Chapter 5: Practical Considerations

The complexity of the resolution of the approximate multiobjective dynamic program-

ming equation obtained from the DDP approximation method for the joint space CTS

trajectory planning problem is first determined. It is then shown that with clustering, the

algorithmic complexity of the resolution of this equation can be reduced. Three cluster-

ing methods are proposed and compared: the first method is a purely random method,

the second is inspired from the normal-boundary intersection (NBI) method, and the third

method is based on the Hausdorff distance. The problem of giving a measure to the quality

of a representation of the Pareto optimal set is then discussed. The weighting method and

the DDP approximation method with clustering are then evaluated with this measure and

compared. Finally, a description of how continuous trajectories can be derived from the

discrete joint trajectories obtained from the resolution of the approximate multiobjective



CHAPTER 1. INTRODUCTION 16

dynamic programming equation is presented.

Chapter 6: Resolution of the Problem in the Task Space

This chapter is entirely dedicated to the task space CTS trajectory planning problem.

A detailed formulation for this problem is first provided. Given a grid survey experiment,

it is shown how a lower bound on the number of required store trajectories to complete the

experiment can be obtained. The relation between the task space CTS trajectory plan-

ning problem and a well-chosen rural postman problem is highlighted next. From there,

an algorithm to solve the task space CTS trajectory planning problem is proposed. This

algorithm provides an upper bound on the number of required store trajectories to com-

plete the experiment. Numerical simulations using a grid survey experiment previously

conducted at IAR are finally performed. The number of store trajectories obtained with

the algorithm is compared to the number obtained with the method previously used at

IAR to generate store trajectories.

Chapter 7: Conclusions and Future Work

The results obtained in this thesis are summarized and the direction proposed for future

work is discussed.



CHAPTER 1. INTRODUCTION 17

Contributions

The new results and new areas of investigation presented in this thesis are summarized

below.

1. A new approach for the resolution of multiobjective trajectory planning problems is

proposed. Rather than providing a single solution through scalarization, it is pro-

posed to provide the entire Pareto optimal set, or more generally the entire minimal

element set when the objective space is partially ordered by a cone.

2. A new DDP approximation method for the class of multiobjective deterministic

finite horizon optimal control problems is developed. Partial convergence results of

the approximate minimal set obtained from the DDP approximation method towards

the original minimal element set are obtained using set convergence in the sense of

Hausdorff. These results do not require the assumption that the objective space is

convex.

3. The DDP approximation method is applied to the joint space trajectory planning

problem arising from a CTS system for which a complete formulation is provided. For

this problem, the approximate Pareto optimal set is shown to provide a much better

representation of the Pareto optimal set than the set obtained with the weighting

method through varying the weights. This example confirms that the weighting

method is not an appropriate method to solve multiobjective optimization problems.

4. For the practical applicability of the DDP approximation method, the idea of clus-

tering is introduced. With clustering, the complexity of the method is shown to

reduce to polynomial, which therefore yields a dramatic reduction in the resolution

time. For the joint space CTS trajectory planning problem, the set obtained with the

DDP approximation method with clustering is shown, using a measure derived from



CHAPTER 1. INTRODUCTION 18

the Hausdorff distance, to still provide a much better representation of the Pareto

optimal set than the set obtained with the weighting method.

5. A sequential approach for the resolution of the complete CTS trajectory planning

problem is proposed. For the resolution of the task space problem, an algorithm

based on the resolution of a rural postman problem is developed. For the resolution

of the joint space problem, the DDP approximation method with clustering is used.



Chapter 2

Problem Definition

This chapter begins by describing in Section 2.1 what the CTS system is and what are the

two types of experiment that can be performed with such a system. In this thesis, only

the grid survey experiment is considered and the related trajectory planning problem is

referred to as the CTS trajectory planning problem. A detailed kinematic analysis of the

CTS manipulator, which is the main component of the CTS system, follows in Section 2.2.

Finally, a complete formulation for the CTS trajectory planning problem is provided in

Section 2.3.

2.1 The CTS System

2.1.1 Overview

The store release research community defines a store as any object that can be released

from an aircraft, including bombs, fuel tanks, and missiles. Figure 2.1 presents an example

of a store, the MK-83 BSU, which is a free-fall non-guided general-purpose 1,000 pound

bomb. The certification of a new store consists of ensuring that the separation of the

store from the parent aircraft is safe. In other words, when released in the surrounding

19



CHAPTER 2. PROBLEM DEFINITION 20

Figure 2.1: Graphical model of the MK-83BSU.

airflow, the store must not collide with any other store attached to the parent aircraft or

the parent aircraft itself. The investigation of the store separation can be accomplished

with real-flight tests [8]. However, these tests are expensive, take time to perform, and

represent a serious risk for the pilot safety. An alternative is to simulate the store release

trajectory by integrating the 6-DOF equations of motion of the store [8]. However, this

approach is limited by the difficulty in accurately modelling the aerodynamic loads acting

on the store within the interference flow field of the parent aircraft, particularly in the

transonic flow regime [8]. Therefore, another alternative is to experimentally obtain these

loads by performing wind-tunnel tests on a scaled model of the parent aircraft and the

store.

The 1.5 m Trisonic Blowdown wind tunnel of IAR is used for the investigation of store

separation. A detailed description and the specification of this wind tunnel can be found

in [38]. As it will be explained in Section 2.3, two parameters about the wind tunnel, im-

portant to the CTS trajectory planning problem, are the run time and the time between

two consecutive wind-tunnel runs. The run time of the wind tunnel Ttunnel, which depends



CHAPTER 2. PROBLEM DEFINITION 21

Figure 2.2: The original experimental setup.

on the airflow conditions, is typically 30 s. The time between two consecutive wind-tunnel

runs, which corresponds to the time needed to pressurize the plenum chamber of the wind

tunnel, is typically 30 min.

Figure 2.2 presents the original wind-tunnel experimental setup designed by IAR to

investigate store separation. This system featured a scaled model of the store and the

parent aircraft and an articulated sting, which could be described as a 4-DOF kinematic

chain with only two DOF being actuated. The parent aircraft model was attached to

a sting mounted to the roof of the wind-tunnel test section, while the store model was

attached to the extremity of the articulated sting. The articulated sting was instrumented

with a 5-DOF balance, which allowed measurement of the forces and moments acting on

the store model with the exception of the axial force. Due to its limited positioning and

orienting capability, the articulated sting is in the process of being replaced by a fully

actuated 8-DOF manipulator, the CTS manipulator, shown in Figure 2.3.



CHAPTER 2. PROBLEM DEFINITION 22

Figure 2.3: The CTS manipulator.

2.1.2 Wind-Tunnel Testing with the CTS System

Two different types of experiment can be performed with the CTS system, namely “grid

survey” and “captive load” [8]. Conceptually, a grid survey experiment corresponds to an

“open-loop” approach for the simulation of the store release trajectory, while the captive

load experiment corresponds to a “closed-loop” approach. Both experiments are described

below. However, only the grid survey experiment, being the most commonly performed

experiment [8], is considered in this thesis.

A captive load experiment starts with the store model positioned close to the carriage

position, which corresponds to the position on the parent aircraft where the store is ini-



CHAPTER 2. PROBLEM DEFINITION 23

tially mounted. The forces and moments measured by the balance serve as inputs to the

6-DOF equations of motion of the store. At the initial moment of the separation, the

ejection forces are also included. The integration of the equations of motion provides the

position and orientation that the store should reach after a small fixed time increment.

The CTS manipulator then moves the store model to this new position and orientation.

This process is repeated until either a potential collision is detected [4], or the store model

has been moved a sufficient distance from the parent aircraft model, or the wind-tunnel

run ends.

A grid survey experiment [5] consists of building a look-up table of interference coeffi-

cients between the store and the parent aircraft as a function of the store angle of attack,

the trajectory angle �, and the Mach number. This look-up table is built by moving the

store model along segments at constant velocities and angles of attack within the inter-

ference flow field of the parent aircraft. The interference coefficients are then calculated

by dividing the measured aerodynamic loads by the freestream loads (measured for the

same store model at the same store angle of attack and Mach number in the absence of

the parent aircraft model). Once the look-up table is built, the interference coefficients

at any store position and orientation and Mach number can be obtained using a multi-

dimensional interpolation. The store trajectory can therefore be simulated by solving the

same equations of motion as in the captive load experiment. In this case, instead of the

measured values, the forces and moments acting on the store at the current position and

orientation are calculated by multiplying the freestream aerodynamic coefficients of the

store and the interpolated interference coefficients.

Figure 2.4 [5] illustrates a typical example of a grid survey experiment. The objective

of this experiment is to obtain the interference coefficients along the segments (1,2), (1,3),



CHAPTER 2. PROBLEM DEFINITION 24

Figure 2.4: An example of a grid survey experiment.

and (1,4) for the store angles of attack {0∘,−3∘,−6∘,−9∘,−12∘,−15∘,−18∘} and a given

Mach number. The segments (1,2), (1,3), and (1,4) correspond to the trajectory angles

25∘, 50∘, and 3∘ respectively. The distance d represents the distance after which the store

separation is considered safe. With the articulated sting, this experiment was performed

as illustrated in Figure 2.5. For each store angle of attack, the store model was moved

along the path 1-2-3-1-4. Each motion could be completed in less time than the run time

of the wind tunnel. Therefore, seven wind-tunnel runs were needed to perform this grid

survey experiment.

The main reason why the grid survey experiment described above was performed as

illustrated in Figure 2.5 is that, with the articulated sting, it was not possible to change

the store angle of attack during a wind-tunnel run. Therefore, to build a path for the store,

either the segment (2,3) or (2,4) could be added. The segment (2,3) was added instead

of (2,4) because it is shorter (∣ tan 25∘− tan 3∘∣ < ∣ tan 50∘− tan 25∘∣), and therefore, takes

less time to complete. In other words, if the segment (2,4) was added instead of (2,3),

it might not have been possible to move the store model along the resulting path in less



CHAPTER 2. PROBLEM DEFINITION 25

Figure 2.5: The store path 1-2-3-1-4 generated to complete the grid survey
experiment.

time than the run time of the wind tunnel. With the CTS manipulator, it is possible

to change the store angle of attack during a wind-tunnel run. Therefore, the number

of possible paths that can be built to perform the experiment is much larger. Indeed,

motions such as, moving the store model along the segment (2,3), changing the store angle

of attack at position 3, and moving back along the segment (2,3), now become available.

From this added flexibility might result a reduction in the number of wind-tunnel runs

needed to complete a grid survey experiment. As discussed in Section 2.3, it is precisely

the objective of the CTS trajectory planning problem to address this question.

2.2 The CTS Manipulator

2.2.1 Design

From the capabilities of the existing CTS systems around the world, an exhaustive list of

specifications for the CTS manipulator was defined by IAR. Two of these specifications

directly concern the CTS trajectory planning problem: the operating envelope W of the

CTS manipulator and the maximum end-effector velocity within this envelope. The op-



CHAPTER 2. PROBLEM DEFINITION 26

erating envelope, provided in Table 2.1, is defined relative to the carriage position and

corresponds to the set of positions and orientations that the end-effector must be able to

reach.

Table 2.1: Operating envelope and end-effector velocity specification.

Axial Vertical Lateral Roll Pitch Yaw
±15 in +3, -18 in +5, -25 in ±180 deg ±30 deg ±35 deg
5 in⋅s−1 2 in⋅s−1 2 in⋅s−1 20 deg⋅s−1 2 deg⋅s−1 2 deg⋅s−1

The maximum end-effector velocity, also provided in Table 2.1, corresponds to the max-

imum velocity at which the store model can be moved during a grid survey experiment.

It was chosen such that, starting from the carriage position, the end-effector could reach

any position and orientation within W in less time than the run time of the wind tunnel.

The resulting design for the CTS manipulator [6] is described in Section 2.2.2. The joint

mechanical limits qmin and qmax were selected to satisfy the operating envelope specifica-

tion. Let Q = [qmin,qmax] be the set of joint configurations within the joint mechanical

limits. The actuation system was chosen to be able to achieve the maximum joint speed

q̇max, which guarantees that the maximum end-effector velocity specification is satisfied

anywhere within W [39].

2.2.2 Description

The CTS manipulator, presented in Figure 2.6, is an 8-DOF manipulator. The joint

arrangement of the CTS manipulator, provided in Table 2.2, consists of a prismatic joint

at the base followed by a revolute joint connected to two more prismatic joints. The last

four joints are all revolute, and mainly contribute to the orienting of the end-effector.

The prismatic joints 3 and 4 form a telescopic arrangement resulting from design con-



CHAPTER 2. PROBLEM DEFINITION 27

Table 2.2: Joint type for the CTS manipulator. R for revolute or P for prismatic.

Joint 1 2 3 4 5 6 7 8
Type P R P P R R R R

Figure 2.6: Joint motions for the CTS manipulator.

straints [6]. These two joints are therefore kinematically equivalent to a single prismatic

joint and will be considered as such in this thesis. With this simplification, the number of

DOF for the CTS manipulator reduces to 7. The joint configuration q, joint speed q̇, and

joint acceleration q̈ become 7-dimensional vectors. However, for clarity, the index of the

joint will be preserved.

As simplified, the CTS manipulator is a kinematically redundant manipulator with

only one degree of redundancy [3]. Within W , the CTS manipulator therefore has the



CHAPTER 2. PROBLEM DEFINITION 28

capability of positioning and orienting the store model at a given position and orientation

with an infinite number of joint configurations. An illustration of this fact is provided

in Figure 2.7. Redundancy tends to considerably complicate the resolution of trajectory

Figure 2.7: Three different joint configurations for the same store position and
orientation.

planning problems by adding the problem of choosing a joint configuration. On the other

hand, redundancy provides freedom in the joint motion and this is precisely the reason why

it was chosen to design a redundant manipulator for the CTS system [6]. This freedom

can be used in many ways. For example, in Figure 2.7, the first two joint configurations

are preferable to the last one which brings the CTS manipulator too close to the walls

of the wind tunnel. Between the first and the second position, the first one is worse as

it brings the CTS manipulator closer to the parent aircraft model. It is known that the

presence of the CTS manipulator disturbs the interference flow field of the parent aircraft

model, and this disturbance affects the aerodynamic loads acting on the store model.

2.2.3 Forward Kinematics

Forward Kinematics at the Position Level

To describe the position and orientation of the end-effector of the CTS manipulator, two

frames, the tool frame and the base frame, are needed [2, p. 5]. The tool frame is attached



CHAPTER 2. PROBLEM DEFINITION 29

to the end-effector while the base frame is attached to the non-moving part of the CTS

manipulator. These two frames are represented in Figure 2.8 by the frames indexed 0 to 8

respectively. The position and orientation of the end-effector therefore correspond to the

relative position and orientation of the tool frame with respect to the base frame. In this

thesis, the convention used to describe the orientation is the Z-Y-X Euler angles (roll (
),

pitch (�), yaw (�)) convention [2, p. 41]. Let p = (x, y, z, 
, �, �)T be the 6-dimensional

vector representing the position and orientation of the end-effector.

The forward kinematics equation provides the position and orientation of the end-

effector p, given the joint configuration q:

f(q) = p. (2.1)

The most common method to derive this highly nonlinear equation is to use the Denavit-

Hartenberg (DH) convention [40, p. 38]. The DH convention provides a systematic way

of attaching frames to the links. The relative position and orientation between two neigh-

bouring links is described with four parameters, the DH parameters, which include the

joint configuration. The frames assigned by the DH convention to the 8-DOF CTS manip-

ulator are illustrated in Figures 2.8, A.1, and A.2. The corresponding set of DH parameters

is provided in Appendix A.

Forward Kinematics at the Velocity Level

The forward kinematics equation at the velocity level provides the end-effector velocity

ṗ = (ẋ, ẏ, ż, 
̇, �̇, �̇)T , given the joint speed q̇:

J̃(q)q̇ = ṗ, (2.2)



CHAPTER 2. PROBLEM DEFINITION 30

Figure 2.8: The frames obtained from the DH convention.

where J̃(q) is a 6 × 7 matrix. This equation can be derived in two steps. The first step

is to obtain the relation between the vector ˙̃p = (ẋ, ẏ, ż, wx, wy, wz)
T of the linear (ẋ, ẏ, ż)

and angular (wx, wy, wz) end-effector velocity and the joint speed [40, p. 69]. This relation

involves the 6× 7 Jacobian matrix J(q) of the CTS manipulator:

J(q)q̇ = ˙̃p. (2.3)



CHAPTER 2. PROBLEM DEFINITION 31

The second step is to derive the relation between ˙̃p and ṗ:

˙̃p = J̃A(p)ṗ, (2.4)

where the 6× 6 matrix J̃A(p) is given by

J̃A(p) =

⎡⎢⎣ I3 0

0 JA(p)

⎤⎥⎦ ,
and JA(p) is the 3× 3 matrix that transforms the Euler rates to the angular velocity [41,

p. 44]:

JA(p) =

⎡⎢⎢⎢⎢⎣
1 0 − sin(�)

0 cos(
) sin(
) cos(�)

0 − sin(
) cos(
) cos(�)

⎤⎥⎥⎥⎥⎦ .
From the operating envelope specification provided in Table 2.1, it follows that

det(JA(p)) = cos(�) ∕= 0.

Hence, the matrix J̃A(p) is always invertible. Therefore, combining (2.3) 1 and (2.4) yields

J̃(q) = J̃−1A (p)J(q). (2.5)

2.2.4 Singularities

A singularity for a robotic manipulator [2, p. 151] is a joint configuration where the ma-

nipulator Jacobian matrix loses rank. As a consequence, at a singularity, there is at least

one direction in the task space in which the end-effector cannot move. Another conse-

1In this thesis, equations will be referred with respect to SIAM’s TEX and File Submission Guidelines,
e.g., (2.3) will be used instead of Equation (2.3).



CHAPTER 2. PROBLEM DEFINITION 32

quence is that, near a singularity, very large joint speeds are required to achieve very small

end-effector velocities in some direction in the task space. The presence of singularities

is therefore an important problem, which has been investigated extensively in the early

robotics literature [42]. The CTS manipulator has been designed such that the singularities

are outside the joint mechanical limits [6]. Therefore, issues related to singularities, such

as singularity avoidance [43], are not included in the CTS trajectory planning problem.

2.2.5 Inverse Kinematics

Inverse Kinematics at the Position Level

At the design stage [6], the joint arrangement of the CTS manipulator was chosen such

that a closed-form solution to the inverse kinematics problem [2, p. 101] in W could be

derived. The inverse kinematics equation, detailed in Appendix B, can be formally stated

as follows:

q = g(p, v), (2.6)

where q ∈ Q, p ∈ W , and the scalar v = q2 + q5 is the redundancy parameter. The set

of values A(p) that can be taken by v for a given end-effector position and orientation

p is a function of p. From the definition of the redundancy parameter, it follows that

A(p) ⊂ [qmin,2 + qmin,5,qmax,2 + qmax,5], denoted [vmin, vmax].

Inverse Kinematics at the Velocity Level

The function g(⋅, ⋅) being smooth means (2.6) can be differentiated with respect to time,

yielding

q̇ = G̃(q)ṗ + N(q)v̇, (2.7)

where

G̃(q) = G(q)J̃A, (2.8)



CHAPTER 2. PROBLEM DEFINITION 33

and G(q) is a 7 × 6 matrix and N(q) a 7-dimensional vector. The matrix G(q) is a

generalized inverse of the manipulator Jacobian matrix J(q):

J(q)G(q) = I7,

where I7 is the 7 × 7 identity matrix. The vector N(q) represents the null space of the

manipulator Jacobian matrix J(q):

J(q)N(q) = 07,

where 07 is the 7-dimensional vector whose components are all identically zero.

To accelerate the computations in the resolution of the CTS trajectory planning prob-

lem, the forward kinematics equation (2.1), the matrices J(q) and G(q), and the vec-

tor N(q) have been derived analytically with the symbolic computer algebra software

Maple [44].

2.3 The CTS Trajectory Planning Problem

2.3.1 A Sequential Approach to the Resolution of the CTS Tra-

jectory Planning Problem

Based on the example provided in Section 2.1.2, a grid survey experiment can be for-

mally defined as follows. Assume the Mach number fixed. At this Mach number, let

A = {Ai, i = 1, . . . , I} be a set of positions defined relative to the parent aircraft model,

and ℬ = {�j, j = 1, . . . , J} be a set of store angle of attacks. A grid survey experiment

consists of moving the store along a set of segments K = {(Ai, Ai′)} (by convention, i′ > i).



CHAPTER 2. PROBLEM DEFINITION 34

Along each of these segments, the store angle of attack is constant and is taken to be in

the set ℬi,i′ . The velocity is also assumed to be constant. Note that the set ℬi,i′ does

not need to be the same for each segment and does not need to be equal to ℬ. Note also

that the set K does not need to be the set of all possible segments between the points Ai.

For example, for the grid survey experiment presented in Section 2.1.2, A = {1, 2, 3, 4},

ℬ = {0∘,−3∘,−6∘,−9∘,−12∘,−15∘,−18∘}, K = {(1, 2), (1, 3), (1, 4)} and it happens that

ℬi,i′ = ℬ for all the segments in K. If a subtask is defined as the task of moving the store

model from Ai with an angle of attack �j to Ai′ with an angle of attack �j′ , or equivalently

by the quadruplet (i, j, i′, j′), then a grid survey experiment consists of completing all the

subtasks (i, j, i′, j′) that satisfy (Ai, Ai′) ∈ K and j′ = j with �j ∈ ℬi,i′ . The set of such

subtasks is denoted S.

For a given grid survey experiment as defined above, the CTS trajectory planning

problem, denoted PCTS, can therefore be defined as follows.

Problem PCTS: Find the minimum number of joint trajectories such that all the sub-

tasks in S are completed under the constraint that the duration of each joint trajectory is

less than the run time of the wind tunnel.

The first important difficulty in PCTS relates to the task space. Indeed, the set of seg-

ments K being not necessarily connected, it might therefore be required to add some idle

motions to move the store from one segment of the grid to another segment. These idle

motions correspond to subtasks that do not belong to S. For example, for the grid sur-

vey experiment presented in Section 2.1.2, seven subtasks, i.e., {(2, j, 3, j), j = 1, . . . , J}

were added. Moreover, as mentioned in Section 2.1.2, it is now possible with the CTS

manipulator to change the angle of attack from �j to �j′ at a position Ai. These other idle



CHAPTER 2. PROBLEM DEFINITION 35

motions correspond to the subtasks (i, j, i, j′) which also do not belong to S. Adding these

subtasks obviously has a cost in time, but overall might result in a reduction in the number

of joint trajectories needed to complete S. Therefore, they have to be considered. The

problem of finding the minimum number of store trajectories such that all the subtasks in

S are completed is referred to as the task space CTS trajectory planning problem or PCTS1.

Problem PCTS1: Find the minimum number of store trajectories such that all the sub-

tasks in S are completed under the constraint that the duration of each store trajectory

is less than the run time of the wind tunnel.

The second important difficulty in PCTS relates to the joint space. As the CTS ma-

nipulator is redundant, there is an infinite number of joint trajectories such that the

end-effector follows a given trajectory. The problem of finding a joint trajectory given a

store trajectory is referred to as the joint space CTS trajectory planning problem or PCTS2.

Problem PCTS2: Find a joint trajectory such that the end-effector follows a given store

trajectory.

The resolution approach to PCTS consists of solving PCTS1 and PCTS2 sequentially.

The main motivation for choosing such a simplified approach concerns the resolution time,

which must be less than the time between two consecutive wind-tunnel runs. Indeed, it

may very well happen that, based on the results obtained during a wind-tunnel run, it

becomes necessary to modify the grid [5]. The velocity used to plan the store trajectories

in PCTS1 is the end-effector velocity specified in Table 2.1. From the design, it is therefore

guaranteed that there will always be a solution to PCTS2.



CHAPTER 2. PROBLEM DEFINITION 36

2.3.2 The Store Trajectory in PCTS1

As mentioned in Section 2.3.1, the velocity for each subtask in S and each subtask that

eventually could be added is constant and equal to the end-effector velocity ṗmax specified

in Table 2.1. The trajectory for each subtask is therefore known. A store trajectory is then

obtained by arranging sequentially the individual subtask trajectories for all the subtasks

that should be completed by the store trajectory. However, because the velocity for each

subtask is different and the store must be moved along the store path, it is necessary that

the velocity at the beginning and the end of each subtask trajectory is zero. How to build

such a trajectory is now discussed.

Formally, a subtask consists of moving the store from an initial position and orientation

p0 at t0 to a final position and orientation pf at the constant velocity ṗmax. This motion

can be realized with the following trajectory:

p(t) = p0 +
t− t0
tf − t0

(pf − p0), (2.9)

where

tf = t0 + max

{∣∣∣∣pf i − p0i

ṗmaxi

∣∣∣∣, i = 1, . . . , 6

}
. (2.10)

However, the initial and final velocities are not zero for the trajectory (2.9). This problem

can be addressed by adding two parabolic blends at t0 and tf [2, p. 210]. As a con-

sequence, tf increases. With these modified subtask trajectories, the velocity along the

resulting store trajectory is therefore continuous and the initial and final velocities are

zero. However, considering the high aerodynamic loads acting on the CTS manipulator

during a wind-tunnel run, it is preferred to have an even more regular store trajectory,

i.e., a trajectory with a continuous acceleration and zero initial and final acceleration. It

is detailed in Appendix C how the subtask trajectories can be built to obtain such a store



CHAPTER 2. PROBLEM DEFINITION 37

trajectory.

Therefore, for the resolution of PCTS1, which will be performed in Chapter 6, it will

be assumed that, for each subtask in S and each subtask that eventually could be added,

the trajectory and the duration of this trajectory are known.

2.3.3 PCTS2

Given a store trajectory obtained from the resolution of PCTS1, the problem PCTS2 is to

find a corresponding joint trajectory q(⋅). Even in the presence of constraints, the number

of joint trajectories for which the end-effector follows the prescribed store trajectory is

infinite. The final joint trajectory can then be selected as the optimal joint trajectory

with respect to an objective function, in which case PCTS2 becomes a problem in calculus

of variations. However, several objective functions can be considered for the choice of the

final joint trajectory.

The Constraints

The joint trajectory is subject to four different constraints.

1. The forward kinematics equation (2.1) imposes that

f(q(t)) = p(t). (2.11)

2. The joint configuration is limited by the joint mechanical limits:

qmin ≤ q(t) ≤ qmax. (2.12)



CHAPTER 2. PROBLEM DEFINITION 38

3. The joint speed is limited by the maximum joint speeds:

−q̇max ≤ q̇(t) ≤ q̇max. (2.13)

4. Self-collision between parts of the CTS manipulator must be avoided. The dan-

ger of self-collision between the CTS manipulator links was addressed during the

design stage of the CTS manipulator [6] through a proper selection of the joint me-

chanical limits. For the collision between the CTS manipulator and its surrounding

environment, an efficient distance determination algorithm for the CTS system was

proposed in [4]. This algorithm starts by including the CAD-generated geometrical

models of the CTS manipulator links, the parent aircraft model, and the wind tunnel

into a set of convex sub-hulls. From there, the minimum distance between any CTS

manipulator link geometry and any parent aircraft model or wind-tunnel geometry

can be calculated using any convex distance determination algorithm. Therefore, the

collision constraint is a one-dimensional inequality constraint which can be written as

dsafe − c(q(t)) ≤ 0, (2.14)

where c(⋅) is a function that returns the minimum distance between the CTS manip-

ulator and its surrounding environment for any given joint configuration and dsafe is

a safety distance defined by the operator of the CTS system.

From the design of the CTS manipulator [6], it is known that there exists at least one joint

trajectory satisfying the constraints (2.11)-(2.14).



CHAPTER 2. PROBLEM DEFINITION 39

The Objective Functions

As the CTS manipulator is redundant, the number of joint trajectories satisfying the

constraints (2.11)-(2.14) is infinite. The final joint trajectory can then be selected as the

optimal joint trajectory with respect to an objective function. A detailed review of the

objective functions commonly used in the robotic manipulation literature as well as a new

categorization of these objective functions can be found in [12]. In general, the choice of

the objective functions depends on the application. For a grid survey experiment, at least

two objective functions have been identified.

∙ To obtain a good tracking performance from the CTS manipulator control system,

particularly at large Mach numbers, it is highly desirable for the CTS manipulator

to operate under low joint speeds. Therefore, the first objective function f1(⋅) to be

considered for PCTS2 is the joint speed norm, given by

f1(q(t)) =
1

2
⟨q̇(t), q̇(t)⟩, (2.15)

where ⟨⋅, ⋅⟩ denotes the scalar product in R7. The weighted joint speed norm can

also be considered instead of the joint speed norm, given by

1

2
⟨q̇(t),Wq̇(t)⟩, (2.16)

where W is 7 × 7 positive definite symmetric matrix. The matrix W is used for

normalization purposes, and allows taking into account the fact that the joints can

be different in nature (revolute or prismatic) and have different speed ranges.

∙ The presence of the CTS manipulator close to the parent aircraft is highly unde-

sirable as it disturbs the interference flow field, which affects the reliability of the

measurement of the aerodynamic loads acting on the store model. This presence also



CHAPTER 2. PROBLEM DEFINITION 40

imposes additional loads on the CTS manipulator links. This effect can be reduced

by maintaining the last three links of the manipulator as close as possible to the

vertical. As illustrated in Figure 2.9, this amounts to minimizing the angle between

the plane P passing through the origins O6, O7, and O8 of the frames 6, 7, and 8

defined in Figure 2.8 and the vertical plane, i.e., the plane with normal X0. The

Figure 2.9: Illustration of the plane P .

normal n to the plane P is

n =

−−−→
O7O8 ×

−−−→
O7O6

∥
−−−→
O7O8 ×

−−−→
O7O6∥

=

⎛⎜⎜⎜⎜⎝
cos(q6) cos(q2 + q5)

cos(q6) sin(q2 + q5)

sin(q6)

⎞⎟⎟⎟⎟⎠ ,

where the coordinates of the origins O6, O7, and O8 can be obtained in the frame 0



CHAPTER 2. PROBLEM DEFINITION 41

with the forward kinematics. Therefore, the angle between the plane P and the ver-

tical plane is arccos(⟨X0,n⟩) = arccos(cos(q6) cos(q2 +q5)). Note that in Figure 2.9,

q6 is equal to zero, in which case the angle between the plane P and the vertical

plane is directly given by q2 + q5 mod �. The second objective function f2(⋅) to be

considered for PCTS2 is the aerodynamic interference function defined by

f2(q) = arccos(cos(q6) cos(q2 + q5)).

Figure 2.10 illustrates that the aerodynamic interference function has only one mini-

mum in Q. This minimum is zero and is reached when both q2 + q5 and q6 are zero.

When both q2 + q5 and q6 are zero, the last three links of the CTS manipulator are

vertical as desired.

Having described the constraints and the objective functions appearing in PCTS2, the

concept of solution for optimization problems involving multiple objective functions must

be investigated before being able to finally formulate PCTS2.

The Definition of Optimality in Multiobjective Optimization

Let F(⋅) = (F1(⋅), . . . ,Fp(⋅)) be a real vector-valued function defined on a subset K of

a normed linear space X. The objective space Z is defined as the set F(K) ⊂ Rp. An

objective vector is an element of the objective space. The definition of an optimal objective

vector derives from the choice of a preference in the objective space. In a general setting,

preferences can be represented by a binary relation denoted ≻ [26, p. 25]. Let z1, z2 ∈ Z,

z1 ≻ z2 implies that the objective vector z1 is preferred to z2.

Example 2.1. Assume p = 1. The function F(⋅) is then a real-valued function, denoted

F (⋅). Two examples of binary relation are:



CHAPTER 2. PROBLEM DEFINITION 42

Figure 2.10: The aerodynamic interference function as a function of q6 and q2 + q5.

∙ Let z1, z2 ∈ F (K), z1 ≻ z2 if z1 ≤ z2. Therefore, a lower value for the objective

function is preferrable.

∙ Let z1, z2 ∈ F (K), z1 ≻ z2 if z1 ≥ z2. Therefore, a higher value for the objective

function is preferrable.

Example 2.2 (Pareto optimality [27, p. 39], [25, p. 10], [26, p. 30]). Let z1, z2 ∈ Z,

z1 ≻ z2 if ∀i = 1, . . . , p, z1i ≤ z2i. Therefore, a lower value for all the objective functions

is preferrable. Pareto optimality is by far the most used binary relation in multiobjective

optimization.



CHAPTER 2. PROBLEM DEFINITION 43

Example 2.3 (Lexicographic order [26, p. 31]). Let z1, z2 ∈ Z, z1 ≻ z2 if ∃k ∈

{1, . . . , p} such that ∀i < k, z1i = z2i, and z1k < z2k.

Example 2.4 (Partial order generated by a cone D ⊂ Rp [45]). By definition, a set

D ⊂ Rp is a cone if �D = D, for every � ∈ R, � > 0 [26, p. 7]. A cone D is said to

be pointed if D ∩ −D ⊂ {0} [26, p. 7]. It is possible to define a binary relation in terms

of a cone D. Let z1, z2 ∈ Z, z1 ≻ z2 if z2 ∈ z1 + D. Conditions on D can be imposed

such that this binary relation defines a partial order. By definition, a binary relation is a

partial order if it is reflexive, antisymmetric, and transitive. These three properties impose

D to contain the origin, to be pointed, and convex respectively. A cone satisfying these

properties is referred to as an ordering cone.

The binary relation defined in Example 2.4 is the most general binary relation that will

be considered in this thesis. It contains as particular cases Pareto optimality and the lexico-

graphic order where D = Rp
+, and D = {d ∈ Rp : ∃k ∈ {1, . . . , p} such that ∀i < k, di = 0,

and dk > 0}∪{0} [26, p. 31] respectively. It also contains as particular cases the two binary

relations defined in Example 2.1 where D = R+ and D = R− respectively. However, note

that these two binary relations are in fact total orders.

An objective vector z1 can now be defined as optimal with respect to the partial order

defined in terms of a cone D if there does not exist an objective vector z2, z2 ∕= z1, that

can be preferred to it [26, p. 28]. In other words, the objective vector z1 is optimal if there

does not exist an objective vector z2, z2 ∕= z1, such that z1 ∈ z2 +D. For the two binary

relations defined in Example 2.1, this definition of an optimal objective vector corresponds

to the definition of the minimum and the maximum value of the function F (⋅) over the

set K respectively. The set of optimal objective vectors is denoted ℰ(Z,D) and is referred

to as the minimal element set. An element of the minimal element set is referred to as

a minimal element. However, for Pareto optimality, the classical terminology of Pareto



CHAPTER 2. PROBLEM DEFINITION 44

optimal set and Pareto objective vector is used instead. Finally, the objective in multiob-

jective optimization is to find the minimal element set, which generally does not reduce to

a singleton, and the elements in K corresponding to the minimal elements.

Before going further, the question of existence of minimal elements needs to be ad-

dressed. For Example 2.1, it is known that if the function F (⋅) is continuous, and the set

K is compact, then the set F (K) is also compact ([46, p. 15], Theorem 1). Therefore, the

minimum z∗1 and the maximum z∗2 exist, i.e., there is at least one x∗1 ∈ X and x∗2 ∈ X

such that z∗1 = F (x∗1), and z∗2 = F (x∗2) ([46, p. 16], Theorem 2). In the general case of

Example 2.4, the existence of minimal elements can be stated under similar conditions.

Proposition 2.1 ([47, 48]). If the set Z is compact, then there exists a minimal element.

Proof. Two different approaches for the proof of Proposition 2.1 can be found in the

literature. The first proof [47], valid in infinite-dimensional spaces, uses Zorn’s lemma

but requires cl(D) to be pointed, which, for example, is not satisfied by the ordering

cone generating the lexicographic order. The second proof [48] consists of an induction

argument on the dimension p and assumes a weaker property than compactness for Z.

Formulation of PCTS2

From the definition of optimality for multiobjective optimization problems provided above,

PCTS2 can now be formulated. To obtain a good tracking performance from the CTS

manipulator control system, the joint trajectories must at least be C1. Therefore, let T

be the subset of C1([t0, tf ],R
7) such that the constraints (2.11)-(2.14) are satisfied. The

real vector-valued objective function F(⋅) is then defined as:

F(⋅) : q(⋅) ∈ C1([t0, tf ],R
7)→

(∫ tf

t0

f1(q(⋅))dt,
∫ tf

t0

f2(q(⋅))dt
)
. (2.17)



CHAPTER 2. PROBLEM DEFINITION 45

The objective space Z is the set F(T ). PCTS2 can therefore be reformulated as follows.

Problem PCTS2: Find the minimal element set ℰ(cl(Z), D) and the optimal joint tra-

jectories q∗(⋅) ∈ T corresponding to the minimal elements, if they exist.

Once PCTS2 is solved, the final joint trajectory can be chosen from the joint trajecto-

ries corresponding to the minimal elements in the minimal element set. This choice will

depend on the operating conditions of the CTS system. For example, at larger Mach

numbers, it is more desirable to have low joint speeds, therefore, a minimal element with

a lower value for F1 will be chosen. At lower Mach numbers, having low joint speeds is

less critical, therefore, a minimal element with a lower value for F2 will be chosen. Such a

choice will increase the reliability of the measurement of the aerodynamic loads acting on

the store model.

The resolution of PCTS2 is the subject of Chapter 3. A new DDP approximation method

for the resolution of PCTS2 is proposed. The results obtained with this method are com-

pared to the results obtained with the commonly used weighting method.



Chapter 3

Resolution of the Problem in the

Joint Space

For multiobjective optimization problems, methods for finding the minimal element set

are referred to as a posteriori methods [25, p. 77]. Among the a posteriori methods,

the weighting method has been chosen to solve PCTS2 in Section 3.1. There are several

reasons for this choice. First, the weighting method has been the only method used

to solve multiobjective trajectory planning problems [10, 13, 17, 18, 49]. Second, the

resolution of PCTS2 provides an illustration of the well-known weaknesses [28] of the

weighting method. As an alternative to the weighting method for solving PCTS2, a DDP

approximation method is proposed. To check the validity of this approximation method,

it is first applied in Section 3.2 to the scalarized problem resulting from the application

of the weighting method to PCTS2. The DDP approximation method is then applied to

PCTS2 in Section 3.3, and the results are compared with the Pareto objective vectors

obtained with the weighting method and the Pareto optimal set [50].

46



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 47

3.1 The Weighting Method

The formal description of the weighting method is first provided in Section 3.1.1. The

application of the weighting method to PCTS2 follows in Section 3.1.2. Solving PCTS2

with the weighting method amounts to solving a set of problems in calculus of variations

with a single objective parameterized by a weighting coefficient. The numerical resolution

of these problems is performed in Section 3.1.3 by solving the BVP obtained from the

first-order necessary conditions for optimality. To evaluate whether the weighting method

is able to provide a good representation of the Pareto optimal set, the Pareto optimal set

must be determined. This is done in Section 3.1.4 by finding the boundary of the objective

space.

3.1.1 Description

Basically, the weighting method consists of combining the objective functions linearly,

thereby transforming the original multiobjective optimization problem into a single objec-

tive optimization problem. Formally, the weighting method can be described as follows.

Let D ⊂ Rp be a cone, the strict positive polar Dso is defined by [26, p. 8]

Dso = {d∗ ∈ Rp : ⟨d∗,d⟩ > 0, ∀d ∈ D, d ∕= 0}.

For example, the strict positive polar of the cone Rp
+ is int(Rp

+). Consider now the general

multiobjective optimization problem defined in Section 2.3.3, and let S(d∗, Z), d∗ ∈ Dso

be the set of solutions to the single objective optimization problem

inf
z∈Z
⟨d∗, z⟩,



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 48

i.e.,

S(d∗, Z) = {z∗ ∈ Z, ⟨d∗, z∗⟩ = inf
z∈Z
⟨d∗, z⟩}.

It can be shown that every element of S(d∗, Z) is a minimal element ([26, p. 72], The-

orem 3.4.3). Hence, by varying d∗ in Dso, a subset D(Z,D) of the minimal element set

ℰ(Z,D) of Z can be obtained:

D(Z,D) =
∪

d∗∈Dso

S(d∗, Z) ⊂ ℰ(Z,D). (3.1)

In other words, the set of minimal elements that can be obtained with the weighting method

is included in the minimal element set. However, the main weakness of the weighting

method is that not all the minimal elements can be obtained in general unless Z is convex.

Indeed, if Z is convex, then ([26, p. 72], Theorem 3.4.4)

ℰ(Z,D) ⊂
∪

d∗∈Do∖{0}

S(d∗, Z), (3.2)

where Do is the positive polar cone defined by [26, p. 8]

Do = {d∗ ∈ Rp : ⟨d∗,d⟩ ≥ 0, ∀d ∈ D}.

The most favorable case for the weighting method occurs when D is open, in which case

([26, p. 74], Corollary 3.4.1):

ℰ(Z,D) = D(Z,D) =
∪

d∗∈Do∖{0}

S(d∗, Z),

which means that any minimal element can be obtained with the weighting method. How-

ever, on the other end, it is possible that no minimal element can be obtained with the

weighting method, as shown by the following example. Let p = 2, X = R, F(⋅) : t →



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 49

(cos(t), sin(t)), K =]0, �/2[, andD = R2
+. Then, Z = F(K) = {x2+y2 = 1, x > 0, y > 0}.

It is easy to check that ℰ(Z,R2
+) = Z, and S(d∗, Z) = ∅, ∀d∗ ∈ int(R2

+).

3.1.2 Application of the Weighting Method to PCTS2

Applying the weighting method to PCTS2, as formulated in Section 2.3.3, yields the single

objective optimization problem, for some d∗ ∈ Dso,

inf
z∈cl(Z)

⟨d∗, z⟩ = inf
z∈Z
⟨d∗, z⟩ = inf

q(⋅)∈T

∫ tf

t0

(d∗1f1(q(t)) + d∗2f2(q(t)))dt. (3.3)

For the rest of this chapter, the binary relation used is the Pareto optimality, i.e., D = Rp
+.

As in general, S(d∗, Z) = S(�d∗, Z), ∀� > 0, the objective function in (3.3) can be nor-

malized, yielding the equivalent scalarized problem PCTS2,s1 :

Problem PCTS2,s1 :

inf
q(⋅)∈T

∫ tf

t0

(f1(q(t)) + wf2(q(t)))dt, (3.4)

where w > 0 is referred to as the weighting coefficient. Moreover, a variant of PCTS2 is

introduced where the terminal cost, rather than the integral cost, is taken for the aerody-

namic interference function f2. The resulting scalarized problem PCTS2,s2 is:

Problem PCTS2,s2 :

inf
q(⋅)∈T

∫ tf

t0

f1(q(t))dt+ wf2(q(tf )). (3.5)

The main motivation for introducing this new problem is to have an example of a tra-

jectory planning problem with terminal cost. Introducing such a problem is not strictly

necessary since a terminal cost can always be reformulated as an integral cost and con-

versely. Regardless, it is interesting to detail how a terminal cost can be specifically treated.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 50

One of the main objectives in this section is to illustrate the weaknesses of the weighting

method. Therefore, for simplicity and for this section only, all the constraints described in

Section 2.3.3 except the store trajectory constraint (2.11) are removed from PCTS2,s1 and

PCTS2,s2 . The initial joint configuration q0, which satisfies f(q0) = p(t0), is also supposed

to be known.

3.1.3 Resolution of PCTS2,s1 and PCTS2,s2

The minimizers to PCTS2,s1 and PCTS2,s2 are obtained by solving the BVP formed by the

Euler-Lagrange equations [16, p. 45] and the necessary boundary conditions for optimality.

The Euler-Lagrange Equations

For PCTS2,s1 and PCTS2,s2 , a system of first-order differential equations equivalent to

the Euler-Lagrange equations was obtained in [18], which is recalled for clarity. Let 
 =

NT (q)q̇, where N(q) is the null space of the CTS manipulator Jacobian matrix J(q)

obtained in Equation (2.7). The necessary conditions for optimality obtained in [18] are

as follows:

∙ For PCTS2,s1 , ⎧⎨⎩ q̇ = J+J̃Aṗ + N(NTN)−1



̇ = ṄT q̇ + wNT∇f2
, (3.6)

where J+ denotes the Moore-Penrose inverse of J, and ∇f2 is the gradient of the

function f2. Moreover [18],

ṄT = q̇T
∂N

∂q
,

where the 7 × 7 (symmetric) matrix ∂N/∂q can be derived analytically with any

symbolic computer algebra software, such as Maple [44].



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 51

∙ For PCTS2,s2 , ⎧⎨⎩ q̇ = J+J̃Aṗ + N(NTN)−1



̇ = ṄT q̇
. (3.7)

The Boundary Conditions

For PCTS2,s1 and PCTS2,s1 , the initial joint configuration is known. This condition to-

gether with the natural boundary condition at tf [18] yields:

∙ For PCTS2,s1 , ⎧⎨⎩ q(t0) = q0


(tf ) = 0
. (3.8)

∙ For PCTS2,s2 , ⎧⎨⎩ q(t0) = q0


(tf ) = −wNT (q(tf ))∇f2(q(tf ))
. (3.9)

The systems of first-order differential equations (3.6) and (3.7) together with their

respective boundary conditions (3.8) and (3.9) form two BVPs. It is therefore not possible

to impose additional desirable conditions for PCTS2,s1 and PCTS2,s2 , such as zero initial

and final joint speeds. One possibility to do so would be to formulate PCTS2 at the

acceleration level. Another possibility would be to keep the current formulation at the

velocity level, and define the initial and final joint speeds as objective functions to be

minimized. Neither of these approaches are pursued. It will be shown in Chapter 5 how

the issues of zero initial and final joint speeds can be practically addressed.

Numerical Experiments

For the numerical experiments presented here, only one task in S is considered. The store

trajectory p(⋅) is planned as described in Section 2.3.2. For simplicity, only PCTS2,s1 is



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 52

discussed. A minimizer q∗(⋅) to PCTS2,s1 , if it exists, necessarily satisfies the BVP (3.6)

and (3.8). However, without some convexity assumptions [16, p. 46], the converse is not

necessarily true. A solution to the BVP (3.6) and (3.8) could, for example, correspond

to a maximizer. Therefore, to find the minimizer(s) to PCTS2,s1 , all the solutions to the

BVP (3.6) and (3.8) need to be found. The value of the objective function can then be

computed for each of these solutions, from which the solution(s) corresponding to the min-

imizer(s) can be determined. To obtain all the solutions to the BVP (3.6) and (3.8), it is

taken advantage of the fact that 
 is a scalar. The key point is to observe that finding the

solutions to the BVP (3.6) and (3.8) amounts to finding the set of values 
0 such that the

solution to the initial value problem (IVP) formed by (3.6) and the boundary conditions

(q0, 
(t0) = 
0) verifies 
(tf ) = 0. By performing a one-dimensional search, approximate

values 
̃0 to each 
0 can be found. The solution to the IVP (3.6) and boundary condi-

tions (q0, 
̃0) then serves as an initial guess for the collocation method used to solve the

BVP (3.6) and (3.8) [51].

Let w = 0, 1, . . . , 30. The vector (1, 0) corresponding to w = 0 belongs to the positive

polar of Rp
+, but not to the strict positive polar. However, it can be shown that, if the

solution in S(d∗, Z) for some d∗ ∈ Do∖(Dso ∪ {0}) is unique, then the corresponding

objective vector is a minimal element. Note that when w = 0, the objective function for

the scalarized problem PCTS2,s1 is simply

∫ tf

t0

f1(q(⋅))dt,

and therefore does not include the aerodynamic interference function. The Pareto objective

vectors obtained for PCTS2,s1 with this set of values for w are displayed in Figure 3.1(a).

It can be observed that the Pareto objective vector for w = 0 is isolated from the other



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 53

Pareto objective vectors obtained for w > 0. A closer look at the Pareto objective vectors

obtained for w > 0 is provided in Figure 3.1(b). Recall from (2.17) that

Fi(q(⋅)) =

∫ tf

t0

fi(q(⋅))dt, i = 1, 2.

The same experiment is performed for PCTS2,s2 . Note again that when w = 0, the

objective function for the scalarized problem PCTS2,s2 is simply

∫ tf

t0

f1(q(⋅))dt,

and therefore does not include the aerodynamic interference function. The Pareto objective

vectors obtained for this problem are displayed in Figure 3.2(a). It can be observed that

the Pareto objective vectors for w = 0, 1, 2 are isolated from the other Pareto objective

vectors obtained for w > 2. A closer look at the Pareto objective vectors obtained for

w > 2 is provided in Figure 3.2(b). In this case,

F2(q(⋅)) = f2(q(tf )).

Figures 3.1(a)-3.2(b) provide a good illustration of the first important weakness of

the weighting method. A small variation in the weighting coefficient does not necessarily

result in a small variation in the Pareto objective vector. Indeed, a sudden jump in the

objective vector can be observed both in Figure 3.1(a) (between w = 0 and w = 1) and in

Figure 3.2(a) (between w = 2 and w = 3). A large variation in the weighting coefficient

does not also necessarily results in a large variation in the Pareto objective vector, as

illustrated in Figure 3.1(b) (for w > 0) and Figure 3.2(b) (for w > 2).



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 54

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.1

0.2

0.3

0.4

0.5

F1

F
2

Zoom

w = 0

(a) w = 0, 1, . . . , 30.

0.35 0.36 0.37 0.38 0.39 0.40  
2.5

3.0

3.5

4.0

4.5

5.0

F1

F
2

(1
0
−

3
)

w=1,...,30

(b) Zoom for w > 0.

Figure 3.1: Pareto objective vectors (circles) obtained for PCTS2,s1 .



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.05

0 

0.05 

0.10 

0.15 

0.20 

F1

F
2

Zoom

w=0,1,2

(a) w = 0, 1, . . . , 30.

0.360 0.365 0.370 0.375 0.380
8

10

12

14

16

18

20

F1

F
2

(1
0
−

4
)

w=3,...,30

(b) Zoom for w > 2.

Figure 3.2: Pareto objective vectors (circles) obtained for PCTS2,s2 .



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 56

3.1.4 Determining the Objective Space for PCTS2

Description

It is proposed to determine the objective space for PCTS2 by finding its boundary (or

finding a large set of boundary points). Pareto objective vectors being boundary points,

the Pareto objective vectors obtained with the weighting method provide a first set of

boundary points for PCTS2. A second set of boundary points for PCTS2 is given by the

objective vectors corresponding to the solutions (with the exception of the minimizers

to which correspond Pareto objective vectors already belonging to the first set) to the

BVP obtained from the first-order optimality conditions for PCTS2,s1 . Recall that, in

Section 3.1.3, these solutions have all been found to determine the minimizers. However,

precautions need to be taken with this second set as Proposition 3.2 only shows that these

objective vectors are candidates to be boundary points. In other words, it might be pos-

sible to have a solution satisfying the first-order optimality conditions, or the BVP, whose

corresponding objective vector is not a boundary point.

First, the geometric notion of perpendicular [52, p. 11] needs to be introduced. Let

Z be a nonempty closed subset of Rp, and let z ∈ ∂Z. A vector v ∈ Rp is said to be

perpendicular to Z at z if v = z′ − z, where the point z′ has unique closest point z in Z.

Or, equivalently, v = z′− z, where there is a closed ball centered at z′ which meets Z only

at z. An illustration of this definition is provided in Figure 3.3. The following property of

perpendiculars will prove useful:

Proposition 3.1 ([52, p. 66]).

∀z′′ ∈ Z, ⟨v, z′′ − z⟩ ≤ 1

2
∥z− z′′∥22.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 57

Figure 3.3: The vector z′ − z is perpendicular to Z at z.

Consider now the general multiobjective optimization problem defined in Section 2.3.3.

For simplicity, K is chosen to be equal to X. Assume that the function F(⋅) is C1(X,Rp).

In this setting, Proposition 3.2 provides a characterization of the boundary points of

Z. It is shown that, under certain conditions, the elements in X corresponding to the

boundary points of Z satisfies the first-order optimality conditions for the single objective

optimization problem

inf
x∈X
⟨v, F (x)⟩.

Proposition 3.2. Let z ∈ ∂Z ∩ Z, and x̄ ∈ X such that F(x̄) = z. Assume that there

exists a vector v ∈ Rp perpendicular to Z at z, then

∀h ∈ X,
p∑
i=1

viF
′
i (x̄)h = 0, (3.10)

where F ′i (x̄) is the Fréchet derivative at x̄.

Proof. First, recall the definition of differentiability in the setting of normed linear spaces [46,

p. 115]. A function G(⋅) : X → R is differentiable at x if there exists � > 0 such that



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 58

∀h ∈ X, ∥h∥X < �,

G(x + h) = G(x) +G′(x)h + ∥h∥X"(h),

with

lim
∥h∥X→0

"(h) = 0,

and where the Fréchet derivative G′(x) at x is an element of L(X,R), the space of bounded

linear maps from X to R. Applying Proposition 3.1 with z′′ = F(x̄ + h) yields

p∑
i=1

vi(Fi(x̄ + h)− Fi(x̄)) ≤ 1

2

p∑
i=1

(Fi(x̄ + h)− Fi(x̄))2. (3.11)

Let h be such that ∥h∥X < �. Using the differentiability of the function Fi(⋅) at x̄,

Equation (3.11) becomes

p∑
i=1

vi(F
′
i (x̄)h + ∥h∥X"i(h)) ≤ 1

2

p∑
i=1

(F ′i (x̄)h + ∥h∥X"i(h))2. (3.12)

Let 0 < t < 1, th satisfies ∥th∥X < �. Therefore, substituting h by th in Equation (3.12)

yields, using the linearity of the maps F ′i (x̄),

t

p∑
i=1

vi(F
′
i (x̄)h + ∥h∥X"i(th)) ≤ 1

2
t2

p∑
i=1

(F ′i (x̄)h + ∥h∥X"i(th))2. (3.13)

Dividing both sides by t, and letting t→ 0 finally gives

p∑
i=1

viF
′
i (x̄)h ≤ 0. (3.14)

Equation (3.14) remains valid for −h, which proves the proposition.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 59

Corollary 3.1. The element x̄ defined in Proposition 3.2 satisfies the first-order optimality

conditions for the single objective optimization problem

inf
x∈X
⟨v, F (x)⟩.

Proof. The first-order optimality conditions for the above problem are ([46, p. 145], The-

orem 1):
p∑
i=1

viF
′
i (x̄)h = 0.

The conclusion therefore follows from Proposition 3.2.

Numerical experiments where Proposition 3.2 is applied to obtain boundary points

of the objective space for PCTS2 are presented below. For now, consider a simple illus-

trative example. Let p = 2, X = R2, and F(⋅) : (x1, x2) → (x1, x
3
1(1 + x22)). In this

example, the objective space Z is easily determined, and is represented in Figure 3.4.

Let v = (w, 1), w ∈ R. The function F(⋅) being C1(R2,R2), the first-order optimality

conditions (3.10) are:

∀h ∈ R2,

⎧⎨⎩ w∂F1/∂x1h1 + ∂F2/∂x1h2 = 0

w∂F1/∂x2h1 + ∂F2/∂x2h2 = 0
,

which implies ⎧⎨⎩ w∂F1/∂x1 + ∂F2/∂x1 = 0

w∂F1/∂x2 + ∂F2/∂x2 = 0
,

and finally yields the system of nonlinear equations

⎧⎨⎩ w + 3x21(1 + x22) = 0

x31x2 = 0
.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 60

Figure 3.4: The objective space for the function F(⋅) : (x1, x2)→ (x1, x
3
1(1 + x22)).

Solving this system requires consideration of several cases:

1. x1 = 0. This implies w = 0 and x2 can take any value. Now, (x1 = 0, x2) corresponds

the objective vector (0, 0).

2. x1 ∕= 0. This implies x2 = 0, and therefore x21 = −w/3. If w < 0, then there are two

solutions for x1 to which correspond the two objective vectors z1 and z2 as illustrated

in Figure 3.4. If w > 0, then there is no solution to the system.

Hence, by varying w, all the points on the curve C defined by the equation F2 = F 3
1 can be

obtained, and it can easily be checked that this curve, together with the line F1 = 0, form

the boundary of Z. Some interesting facts about this example are also worth mentioning:

∙ The line F1 = 0 does not belong to Z. Therefore, Proposition 3.2 does not apply to

any point on this line.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 61

∙ The origin (0, 0) was obtained in Case 1 above. However, from Figure 3.4, it is clear

that there does not exist any perpendicular at (0, 0). This shows that a boundary

point for which there does not exist any perpendicular can still satisfy the first-order

optimality conditions. It also shows that a perpendicular at a boundary point does

not always exist.

∙ In Case 2 above, the two solutions were obtained under the condition w < 0, which

is consistent with the fact that the direction of the perpendicular at any point on C

except the origin satisfies w < 0.

∙ For a given value of w, there is only one point z1 on C having the perpendicular

(1, w). However, two solutions were obtained in Case 2. This can be explained by

the fact that, in general, the first-order optimality conditions (3.10) remain valid for

−v, and that, for this example, there exists a point z2 on C having the perpendicular

(−1,−w) as illustrated in Figure 3.4.

Numerical Experiments

For the numerical experiments presented now, the same instance of PCTS2 as in Sec-

tion 3.1.3 is used. First, the results with f2 as integral cost are presented. For Figures

3.5(a)-3.7(b), to get more boundary points, PCTS2,s1 is also solved for w = −20,−19, . . . , 0.

In Figures 3.5(a) and 3.5(b), the boundary points obtained as discussed at the beginning

of this section are plotted. The Pareto objective vectors are identified as in Figures 3.1(a)

and 3.1(b). At each boundary point, the tangent direction (−w, 1) is drawn. The objec-

tive space Z is as indicated on the figures. It can be concluded that the objective space is

unbounded. This is expected as any desired self-motion can be added to a joint trajectory

satisfying the store trajectory constraint (2.11). It can also be concluded that the objective



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 62

space is not convex. Therefore, as mentioned in Section 3.1.1, it is expected that not all

the Pareto objective vectors can be obtained with the weighting method.

Recall that the points obtained from Proposition 3.2 are in fact only candidates to be

boundary points. To quickly verify whether the objective space obtained in Figures 3.5(a)

and 3.5(b) corresponds to the “real” objective space, random joint trajectories satisfying

the store trajectory constraint (2.11) could be generated and the corresponding objective

vectors plotted. Another option, which is the one pursued, is to use the joint trajecto-

ries generated in Section 3.1.3 when performing the one-dimensional search to find the

approximate values 
̃0. The corresponding objective vectors are plotted in Figures 3.6(a)

and 3.6(b) which also contain the boundary points and tangent lines from Figures 3.5(a)

and 3.5(b). It can be concluded that the points obtained from Proposition 3.2 are indeed

boundary points.

Knowing the boundary of the objective space, the Pareto optimal set can be easily

obtained. The boundary points, the Pareto optimal set obtained from these boundary

points, and the Pareto objective vectors obtained with the weighting method are plotted

in Figures 3.7(a) and 3.7(b). Let z1 and z3 be the Pareto objective vectors obtained

with w = 0 and w = 1 respectively. Define z2 as the point in the plane with the same

F2 component as z1 and the same F1 component as z3. It can be observed that the set

z2− int(R2
+) contains Pareto objective vectors. However, none of them could be obtained

with the weighting method. Note that this set corresponds to the nonconvex part of the

objective space.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.1

0.2

0.3

0.4

0.5

F1

F
2

Zoom

Z

(a) Boundary points (dots), tangents at each boundary point (dotted lines), and Pareto
objective vectors obtained with the weighting method (circles).

0.35 0.36 0.37 0.38 0.39 0.40  
2.5

3.0

3.5

4.0

4.5

5.0

F1

F
2

(1
0
−

3
)

Z

(b) Zoom.

Figure 3.5: Determining the objective space when f2 is taken as an integral cost.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.1

0.2

0.3

0.4

0.5

F1

F
2

Zoom

(a) Boundary points (dots), tangent lines at each boundary point (plain lines), and set of
objective vectors (dots).

0.35 0.36 0.37 0.38 0.39 0.40 
2.5

3.0

3.5

4.0

4.5

5.0

F1

F
2

(1
0−

3
)

(b) Zoom.

Figure 3.6: Verifying the exactness of the objective space when f2 is taken as an
integral cost.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.1

0.2

0.3

0.4

0.5

F1

F
2 Z

Zoom

z1
z2 − int(R2

+)

(a) Boundary points (dots), Pareto objective vectors obtained from the boundary points
(plus signs), and Pareto objective vectors obtained with the weighting method (circles).

0.35 0.36 0.37 0.38 0.39 0.40
2.5

3.0

3.5

4.0

4.5

5.0

F1

F
2

(1
0−

3
)

Z

z3

(b) Zoom.

Figure 3.7: The weighting method cannot generate any Pareto objective vector in the
set z2 − int(R2

+) when f2 is taken as an integral cost.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 66

The results with f2 as terminal cost follow. For Figures 3.8(a)-3.10(b), to get more

boundary points, PCTS2,s2 is also solved for w = −20,−19, . . . , 0. Figures 3.8(a)-3.10(b)

exactly correspond to Figures 3.5(a)-3.7(b). Essentially, the same observations as with f2

as terminal cost can be made. However, several facts are worth mentioning.

∙ As illustrated in Figure 3.8(a), the shape of the boundary space seems to be much

more complicated, particularly in the region A delimited by a circle. It might be

possible that some objective vectors in this region are in fact not boundary points,

therefore providing examples of points obtained from Proposition 3.2 that are not

boundary points. Further investigations about the objective space and its boundary

in A were not conducted, as it is clear that A does not contain any Pareto objective

vector.

∙ The number of objective vectors in Figure 3.9(a) is very small compared to Figure

3.6(a). This can be explained by the fact that when f2 is taken as a terminal cost, the

system of first-order differential equations (3.7) for the IVP solved to obtain these

objective vectors does not depend on w. Therefore, for each value of w, the same set

of objective vectors is obtained.

∙ In this case, z1 and z3 are the Pareto objective vectors obtained with w = 2 and

w = 3 respectively.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 67

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.05

0

0.05

0.10

0.15

0.20

F1

F
2

Zoom

Z

A

(a) Boundary points (dots), tangents at each boundary point (dotted lines), and Pareto
objective vectors obtained with the weighting method (circles).

0.360 0.365 0.370 0.375 0.380 
8

10

12

14

16

18

20

F1

F
2

(1
0
−

4
)

Z

(b) Zoom.

Figure 3.8: Determining the objective space when f2 is taken as a terminal cost.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 68

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.05

0

0.05

0.10

0.15

0.20

F1

F
2

Zoom

Z

(a) Boundary points (dots), tangent lines at each boundary point (plain lines), and set of
objective vectors (dots).

0.360 0.365 0.370 0.375 0.380
8

10

12

14

16

18

20

F1

F
2

(1
0−

4
) Z

(b) Zoom.

Figure 3.9: Verifying the exactness of the objective space when f2 is taken as a
terminal cost.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 69

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.05

0    

0.05

0.10

0.15

0.20

F1

F
2 Z

Zoom

z1

z2 − int(R2
+)

(a) Boundary points (dots), Pareto objective vectors obtained from the boundary points
(plus signs), and Pareto objective vectors obtained with the weighting method (circles).

0.360 0.365 0.370 0.375 0.380
8

10

12

14

16

18

20

F1

F
2

(1
0−

4
)

Z

z3

(b) Zoom.

Figure 3.10: The weighting method can generate any Pareto objective vector in the
set z2 − int(R2

+) when f2 is taken as a terminal cost.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 70

The two examples above clearly illustrate the two main weaknesses of the weighting

method in being able to provide a good representation of the Pareto optimal set [28].

∙ It is not possible in general to obtain every Pareto objective vector with the weighting

method. The set of Pareto objective vectors that cannot be obtained with the

weighting method can be large, limiting its suitability for real applications.

∙ The Pareto objective vector obtained with the weighting method is not, in general,

a Lipschitzian function of the weighting coefficients [25, p. 83]. In other words, a

uniform distribution of the weighting coefficients does not necessarily yields a uniform

distribution of the Pareto objective vectors, which makes the choice of a “good” set

of weighting coefficients extremely difficult.

3.2 A DDP Approximation Method for a Single Ob-

jective Function Problem

As an alternative to the weighting method for solving PCTS2, a DDP approximation

method is now proposed. This approximation method is first validated in this section

with the scalarized problem PCTS2,s1 resulting from applying the weighting method to

PCTS2 by comparing to the results that were obtained for this problem in Section 3.1.3.

For simplicity, in Section 3.1.2, the constraints (2.12)-(2.14) were not included in the

definition of PCTS2,s1 . However, in this section, these constraints are taken into account.

For clarity, PCTS2,s1 is recalled below.

inf
q(⋅)∈C1([t0,tf ])

∫ tf

t0

(f1(q(t)) + wf2(q(t)))dt, (3.15)

subject to:

f(q(t)) = p(t), (3.16)



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 71

qmin ≤ q(t) ≤ qmax, (3.17)

−q̇max ≤ q̇(t) ≤ q̇max, (3.18)

dsafe − c(q(t)) ≤ 0, (3.19)

with initial joint configuration q0. Therefore, for comparison, the instances of PCTS2,s1

will be carefully selected such that the constraints (3.17)-(3.19) are strictly satisfied by the

optimal joint trajectory.

The proposed DDP approximation method consists of three steps. A preliminary step,

detailed in Section 3.2.1, consists of reformulating PCTS2,s1 with the redundancy parame-

ter. This step is crucial for the applicability of the approximation method as it reduces the

dimension of the state in PCTS2,s1 from seven to one. The DDP approximation method

applies to this reformulation of PCTS2,s1 .

The first step of the proposed approximation method is to proceed to a first-order ap-

proximation in time, from which results a nonlinear programming problem. This problem

can be solved with standard nonlinear programming resolution methods [53]. However,

another approach using the dynamic programming principle [29] is followed. The main

reason to choose this approach is that it can easily be extended to multiple objectives,

as illustrated in Section 3.3. For this nonlinear programming problem, the dynamic pro-

gramming principle consists of: first, defining the return function [30] as the optimal value

of the objective function as a function of the initial conditions of the joint trajectory;

second, determining the functional equation or dynamic programming equation satisfied

by the return function. The final step of the approximation method, presented in Sec-

tion 3.2.4, consists of discretizing the dynamic programming equation in the redundancy

parameter, yielding an approximate dynamic programming equation that can easily be



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 72

solved by performing a finite number of comparisons. The question of convergence of the

approximation is briefly discussed in Section 3.2.5. For validation purposes, the results ob-

tained with the approximation method are compared in Section 3.2.6 to those obtained in

Section 3.1.3. Finally, the extension of the approximation method to PCTS2,s2 is discussed

in Sections 3.2.7 and 3.2.8.

3.2.1 Reformulation of PCTS2,s1 with the Redundancy Parameter

Using the inverse kinematics equation at the position level (2.6) and at the velocity

level (2.7), PCTS2,s1 can be reformulated as follows:

inf
v(⋅)∈C1([t0,tf ])

∫ tf

t0

(f̃1(t, v(t), v̇(t)) + wf̃2(t, v(t))dt, (3.20)

subject to:

v(t) ∈ A(t), (3.21)

v̇(t) ∈ ℬ(t, v(t)), (3.22)

v(t) ∈ A′(t), (3.23)

with initial redundancy parameter v0, and where

f̃1(t, v(t), v̇(t)) =
1

2
∥G̃(g(p(t), v(t)))ṗ(t) + N(g(p(t), v(t)))v̇(t)∥22,

and

f̃2(t, v(t), v̇(t)) = f2(g(p(t), v(t))).

Note the explicit dependance on the time for the functions f̃1 and f̃2 which comes from

the term p(t). In the reformulation (3.20)-(3.23), the constraint (3.16) obviously disap-

pears. The set A(t), already introduced in Section 2.2.5, represents the set of redundancy



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 73

parameter values at a given time t along p(⋅) such that the joint mechanical limits (3.17)

are respected. The set ℬ(t, v) represents the set of values at a given time t and redundancy

parameter v that can be taken by the derivative of the redundancy parameter such that

the maximum joint speeds (3.18) are respected. From the definition of the redundancy pa-

rameter, it follows that ℬ(t, v(t)) ⊂ U , where U = [q̇min,2 + q̇min,5, q̇max,2 + q̇max,5]. Finally,

the set A′(t) represents the set of redundancy parameter values at a given time t along

p(⋅) such that the collision constraint (3.19) is respected. Both the collision constraint and

joint mechanical limits have the same effect of reducing the set of values that can be taken

by the redundancy parameter. Therefore, they can be grouped together. For simplicity,

the set A(t) ∩ A′(t) will be denoted A(t) hereinafter.

3.2.2 A First-Order Discretization in Time

The first step in the proposed approximation method is to proceed to a first-order dis-

cretization in time of PCTS2,s1 as reformulated in Section 3.2.1. The time step ℎ is

(tf − t0)/NT , where NT is the number of discretization steps. Let vi = v(ti), i = 0, . . . , NT

and v̇i = v̇(ti), i = 0, . . . , NT − 1. The derivative of the redundancy parameter v̇i at time

ti is approximated using the forward Euler scheme:

v̇i =
vi+1 − vi

ℎ
.

The integral in the objective function (3.20) is approximated with the rectangle formula.

Defining Aℎi = A(ti) and ℬℎi (vi) = ℬ(ti, vi), the following nonlinear programming problem

results from these two approximations:



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 74

inf
{vi, i=0,...,NT }

ℎ

NT−1∑
i=0

f̃1(i, vi, v̇i) + wf̃2(i, vi), (3.24)

subject to:

vi ∈ Aℎi . (3.25)

v̇i ∈ ℬℎi (vi), (3.26)

with initial redundancy parameter v0. As mentioned above, the problem (3.24)-(3.26) is

a nonlinear programming problem which could be efficiently solved with standard non-

linear programming resolution methods [53]. However, considering that the objective of

Section 3.2 is only to validate the DDP approximation method used in Section 3.3 to solve

PCTS2, the next step of this approximation method is pursued.

3.2.3 A DDP Equation

Let T ℎk (vk) be the set of discrete trajectories {vi, i = k+ 1, . . . , NT} with initial condition

vk such that the constraints (3.25) and (3.26) are satisfied. The return function Jℎk (⋅) is

defined as the function that associates, for each vk ∈ Aℎk, the infimum cost over all the

discrete trajectories in T ℎk (vk):

Jℎk (⋅) : vk ∈ Aℎk → Jℎk (vk) = inf
T ℎ
k (vk)

ℎ

NT−1∑
i=k

f̃1(i, vi, v̇i) + wf̃2(i, vi). (3.27)

Setting k = 0 in (3.27) exactly yields the nonlinear programming problem (3.24)-(3.26).

Using the fact that vk + ℎv̇k = vk + ℎ(vk+1 − vk)/ℎ = vk+1, the return function Jℎk (⋅) can

be shown to satisfy the dynamic programming equation



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 75

Jℎk (vk) = inf
v̇k∈ℬℎk (vk)

ℎ(f̃1(k, vk, v̇k) + wf̃2(k, vk)) + Jℎk+1(vk + ℎv̇k), (3.28)

with terminal data condition

JℎNT
(vNT

) = 0. (3.29)

The return function Jℎ0 (⋅), and therefore the solution to the nonlinear programming prob-

lem (3.24)-(3.26), can then be obtained by solving recursively the dynamic programming

equation (3.28) starting from the terminal data condition (3.29).

3.2.4 A Discretization in the Redundancy Parameter

The return function Jℎ0 (⋅) is now approximated by performing a discretization in the re-

dundancy parameter. Let d = (vmax−vmin)/NX be the discretization step, where NX is the

number of discretization steps. LetAℎ,dk be the set resulting from the discretization ofAℎk in

the redundancy parameter. The approximate return function Jℎ,dk (⋅) is defined as the solu-

tion to the dynamic programming equation (3.28) with the terminal data condition (3.29)

where the redundancy parameter is restricted to take on values only in Aℎ,dk , i.e.,

∀vk ∈ Aℎ,dk , Jℎ,dk (vk) = inf
v̇k∈ℬℎ,dk (vk)

ℎ(f̃1(k, vk, v̇k) + wf̃2(k, vk)) + Jℎ,dk+1(vk + ℎv̇k), (3.30)

with terminal data condition

∀vNT
∈ Aℎ,dNT

, Jℎ,dNT
(vNT

) = 0. (3.31)

The set ℬℎ,dk (vk) ⊂ ℬℎk(vk) is finite. The values that can be taken by v̇k ∈ ℬℎ,dk (vk) are such

that v̇k = (vk+1 − vk)/ℎ, where vk ∈ Aℎ,dk and vk+1 ∈ Aℎ,dk+1. The approximate dynamic

programming equation (3.30) with terminal data condition (3.31) is straightforward to

solve. Indeed, let vk ∈ Aℎ,dk and assume that the approximate return function Jℎ,dk+1(⋅) is



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 76

known. The term ℎ(f̃1(k, vk, v̇k) + wf̃2(k, vk)) + Jℎ,dk+1(vk + ℎv̇k) can be calculated for each

v̇k ∈ ℬℎ,dk (vk), which is a finite set. Therefore, to determine Jℎ,dk (vk), ∣ℬℎ,dk (vk)∣ compar-

isons are needed. Repeating this procedure for every vk ∈ Aℎ,dk yields the approximate

return function Jℎ,dk (⋅). Therefore, starting from the terminal data condition (3.31), the

approximate return function Jℎ,d0 (⋅) can be recursively obtained.

3.2.5 Convergence

Let J0(q0) be the optimal value for PCTS2,s1 , i.e.,

J0(q0) = inf
q(⋅)∈T

∫ tf

t0

(f1(q(t)) + wf2(q(t)))dt,

where q0 is the initial joint configuration. The question is to determine whether Jℎ,d0 (v0),

resulting from the DDP approximation method proposed in Sections 3.2.2, 3.2.3, and 3.2.4,

converges towards J0(q0) as both ℎ and d tend towards zero. This is investigated in Sec-

tion 3.2.6 by performing numerical experiments. In this section, theoretical investigations

are pursued. The problem of determining the convergence of Jℎ,d0 (v0) towards J0(q0) can

be divided into two subproblems, i.e., the convergence of Jℎ0 (v0) towards J0(q0) as ℎ tends

towards zero, and the convergence of Jℎ,d0 (v0) towards Jℎ0 (v0) as d tends towards zero. As

it concerns convergence in functional spaces, the convergence of Jℎ0 (v0) towards J0(q0) is

much more difficult to establish than the convergence of Jℎ,d0 (v0) towards Jℎ0 (v0) which

concerns convergence in the finite dimensional space RNT . The convergence of Jℎ0 (v0) to-

wards J0(q0) can be studied with the theory of viscosity solutions for first-order partial

differential equations of Hamilton-Jacobi type [22]. However, such a study is beyond the

scope of this thesis. On the other hand, the convergence of Jℎ,d0 (v0) towards Jℎ0 (v0) is stated

in Proposition 3.4 for the unconstrained case, i.e., without the constraints (3.17)-(3.19).



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 77

In such a case, denoting U = [umin, umax], we have:

⎧⎨⎩ A
ℎ
k = [v0 + kℎumin, v0 + kℎumax]

ℬℎk(vk) = U
. (3.32)

The proof of Proposition 3.4 first requires showing that the return functions Jℎk (⋅) are

Lipschitz, which is established in Proposition 3.3.

Proposition 3.3. Assume that the functions f̃1(t, ⋅, �) and f̃2(t, ⋅) are Lipschitz, i.e.,

∀t ∈ [t0, tf ], ∀� ∈ U, ∀(x, y) ∈ R×R, ∣f̃1(t, x, �)− f̃1(t, y, �)∣ ≤ K1∣x− y∣,

and

∀t ∈ [t0, tf ], ∀(x, y) ∈ R×R, ∣f̃2(t, x)− f̃2(t, y)∣ ≤ K2∣x− y∣,

then

∀(x, y) ∈ R×R, ∣Jℎk (x)− Jℎk (y)∣ ≤ Lk∣x− y∣ℎ, (3.33)

where Lk = (K1 + wK2)(NT − k).

Proof. The proof is a proof by induction using the dynamic programming equation (3.28)

with the terminal data condition (3.29).

∙ Let k = NT − 1, we have:

Jℎk (x) = inf
v̇k∈U

ℎ(f̃1(k, x, v̇k) + wf̃2(k, x)).

Therefore,

∣Jℎk (y)− Jℎk (x)∣ ≤ ℎ sup
v̇k∈U
∣f̃1(k, y, v̇k)− f̃1(k, x, v̇k) + w(f̃2(k, y)− f̃2(k, x))∣.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 78

Using the Lipschitz assumption for the functions f̃1(t, ⋅, �) and f̃2(t, ⋅) yields

∣Jℎk (y)− Jℎk (x)∣ ≤ (K1 + wK2)∣y − x∣ℎ.

Therefore, LNT−1 = (K1 + wK2).

∙ Assume now that the function Jℎk+1(⋅) is Lipschitz. We have:

Jℎk (x) = inf
v̇k∈U

ℎ(f̃1(k, x, v̇k) + wf̃2(k, x)) + Jℎk+1(x+ ℎv̇k).

Therefore, using the Lipschitz assumption for the functions f̃1(t, ⋅, �) and f̃2(t, ⋅) and

the induction assumption,

∣Jℎk (y)− Jℎk (x)∣ ≤ (K1 + wK2)∣y − x∣ℎ+ Lk+1∣y + ℎv̇k − x− ℎv̇k∣ℎ,

or,

∣Jℎk (y)− Jℎk (x)∣ ≤ (K1 + wK2 + Lk+1)∣y − x∣ℎ.

Therefore, Lk = K1 + wK2 + Lk+1.

It is a simple induction to show that Lk = (K1 + wK2)(NT − k).

Proposition 3.4 provides an error estimate between the return function Jℎk (⋅) and the

approximate return function Jℎ,dk (⋅). As explained below, this error estimate allows to

conclude the convergence of Jℎ,d0 (v0) towards Jℎ0 (v0).

Proposition 3.4. Under the same assumptions as in Proposition 3.4, and the assumption

that the function f̃1(t, x, ⋅) is Lipschitz, i.e.,

∀t ∈ [t0, tf ], ∀v ∈ R, ∀(x, y) ∈ U × U, ∣f̃1(t, v, x)− f̃1(t, v, y)∣ ≤ K3∣x− y∣,



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 79

then, for all x ∈ Aℎ,dk ,

0 ≤ Jℎ,dk (x)− Jℎk (x) ≤ L′kd,

where L′k = (K3 + L0ℎ)(NT − k).

Proof. The proof is a proof by induction using the dynamic programming equations (3.28)

and (3.30) with their respective terminal data condition (3.29) and (3.31). In the uncon-

strained case, the sets ℬℎ,dk (vk) are identical, and denoted Ud ⊂ U .

∙ Let k = NT − 1, and x ∈ Aℎ,dk . We have:

Jℎk (x) = inf
v̇k∈U

ℎ(f̃1(k, x, v̇k) + wf̃2(k, x)),

and

Jℎ,dk (x) = inf
v̇k∈Ud

ℎ(f̃1(k, x, v̇k) + wf̃2(k, x)).

As Ud ⊂ U , 0 ≤ Jℎ,dk (x)− Jℎk (x). U being a compact set and the function f̃1(t, x, ⋅)

being continuous, there exists v̇∗k ∈ U such that Jℎk (x) = ℎ(f̃1(k, x, v̇
∗
k) + wf̃2(k, x)).

Therefore, for all v̇k ∈ Ud,

Jℎ,dk (x)− Jℎk (x) ≤ ℎ(f̃1(k, x, v̇k) + wf̃2(k, x))− ℎ(f̃1(k, x, v̇
∗
k) + wf̃2(k, x)),

or using the Lipschitz assumption for the function f̃1(t, x, ⋅)

Jℎ,dk (x)− Jℎk (x) ≤ K3∣v̇∗k − v̇k∣ℎ.

It is always possible to take v̇k ∈ Ud such that ∣v̇∗k − v̇k∣ ≤ d/ℎ. Therefore, we get:

Jℎ,dk (x)− Jℎk (x) ≤ K3d ≤ (K3 + L0ℎ)d.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 80

Finally, L′NT−1 = K3 + L0ℎ.

∙ Assume now that for all x ∈ Aℎ,dk+1,

0 ≤ Jℎ,dk+1(x)− Jℎk+1(x) ≤ L′k+1d.

Let x ∈ Aℎ,dk . We have:

Jℎk (x) = inf
v̇k∈U

ℎ(f̃1(k, x, v̇k) + wf̃2(k, x)) + Jℎk+1(x+ ℎv̇k),

and

Jℎ,dk (x) = inf
v̇k∈Ud

ℎ(f̃1(k, x, v̇k) + wf̃2(k, x)) + Jℎ,dk+1(x+ ℎv̇k).

From the induction assumption, we have, for all v̇k ∈ Ud:

Jℎk+1(x+ ℎv̇k) ≤ Jℎ,dk+1(x+ ℎv̇k).

Therefore,

inf
v̇k∈Ud

ℎ(f̃1(k, x, v̇k) + wf̃2(k, x)) + Jℎk+1(x+ ℎv̇k) ≤ Jℎ,dk (x).

As Ud ⊂ U ,

Jℎk (x) ≤ inf
v̇k∈Ud

ℎ(f̃1(k, x, v̇k) + wf̃2(k, x)) + Jℎk+1(x+ ℎv̇k).

Combining the two inequalities yields

0 ≤ Jℎ,dk (x)− Jℎk (x).



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 81

To prove the right-hand side inequality, introducing again v̇∗k, we get, for all v̇k ∈ Ud:

Jℎ,dk (x)− Jℎk (x) ≤ ℎ(f̃1(k, x, v̇k)− f̃1(k, x, v̇∗k)) + Jℎ,dk+1(x+ ℎv̇k)− Jℎk+1(x+ ℎv̇∗k).

Using the fact that the return function Jℎk+1(⋅) is Lipschitz, as shown in Proposi-

tion 3.3,

Jℎ,dk+1(x+ ℎv̇k)− Jℎk+1(x+ ℎv̇∗k) ≤ Jℎ,dk+1(x+ ℎv̇k)− Jℎk+1(x+ ℎv̇k) + Lk+1∣v̇k − v̇∗k∣ℎ2.

Therefore, using the Lipschitz assumption for the function f̃1(t, x, ⋅), and knowing

that Lk+1 ≤ L0,

Jℎ,dk (x)− Jℎk (x) ≤ K3∣v̇k − v̇∗k∣ℎ+ L′k+1d+ L0∣v̇k − v̇∗k∣ℎ2.

Again, it is always possible to take v̇k ∈ Ud such that ∣v̇∗k − v̇k∣ ≤ d/ℎ. Therefore,

we get:

Jℎ,dk (x)− Jℎk (x) ≤ (K3 + L0ℎ+ L′k+1)d.

Finally,

L′k = K3 + L0ℎ+ L′k+1.

It is a simple induction to show that L′k = (K3 + L0ℎ)(NT − k).

Specialized to the case k = 0, Proposition 3.4 yields

0 ≤ Jℎ,d0 (x)− Jℎ0 (x) ≤ L′0d,



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 82

where,

L′0 = (K3 + L0ℎ)NT = (K3 + (K1 + wK2)NTℎ)NT .

Knowing that NTℎ = tf − t0, we finally obtain:

0 ≤ Jℎ,d0 (x)− Jℎ0 (x) ≤ (K3 + (K1 + wK2)(tf − t0))(tf − t0)d/ℎ = Cd/ℎ. (3.34)

The interpretation of the inequality (3.34) is that Jℎ,d0 (v0) converges towards Jℎ0 (v0) when

d converges towards zero, which is expected. However, more interestingly, it shows the

importance of the ratio d/ℎ for the convergence of Jℎ,d0 (v0) towards J0(q0). This fact

will be illustrated in Section 3.2.6 with numerical experiments. Intuitively, the ratio d/ℎ

corresponds to the discretization in the redundancy parameter derivative. Therefore, it

makes perfect sense that this ratio should also converge towards zero, when both ℎ and

d converge towards zero. Interestingly, an error estimate in d/ℎ was also obtained with a

similar DDP approximation method applied to a general infinite horizon optimal control

problem ([22, p. 476], Theorem 1.4).

3.2.6 Numerical Experiments for PCTS2,s1

The exact value for J0(q0) is supposed to be the value that was obtained in Section 3.1.2.

As already mentioned, the instances of PCTS2,s1 have been carefully selected such that

the constraints (3.17)-(3.19) are strictly satisfied by the optimal joint trajectory.

First, it is described how Jℎ,d0 (v0) can be practically obtained. Let the store trajectory

p(⋅) planned as described in Section 2.3.2, and ℎ and d be given. The discretization in the

time and the redundancy parameter yields a grid {(k, vk,i), k = 0, . . . , NT , i = 0, . . . , NX}.

At each point (k, vk,i) of this grid, the joint configuration q is calculated using the inverse

kinematics equation at the position level (2.6) with vk,i and p(tk). If q does not satisfy



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 83

the joint mechanical limits (3.17) or the collision constraint (3.19), then the point is re-

moved from the grid. Repeating this procedure yields the sets Aℎ,dk . For each remaining

node (k, vk,i) of the grid, the sets ℬℎ,dk (vk) are determined using the inverse kinematics

equation at the velocity level (2.7) and the values of the function f̃1 and f̃2 are calcu-

lated. Finally, the approximate dynamic programming equation (3.30) with terminal data

condition (3.31) is solved as discussed in Section 3.2.4, yielding the approximate return

functions Jℎ,dk (⋅), and in particular Jℎ,d0 (v0).

The immediate question is the a priori choice of ℎ and d. To answer this question,

practical considerations about the CTS system that were mentioned in Section 2.1 need to

be recalled. In practice, it might be possible that, based on the results obtained during a

wind-tunnel run, it becomes necessary to modify the grid. As a consequence, a new CTS

trajectory planning problem would have to be solved and the new joint trajectories for the

CTS manipulator would have to be available before the next wind-tunnel run. Therefore,

it is critical that PCTS2 must be able to be solved very efficiently, which explains why

computation efficiency rather than accuracy is the main concern of the study below. Given

that the run time of the wind-tunnel, or the duration of the store trajectory tf − t0, does

not exceed 30 s, a reasonable choice for ℎ and d, yielding a reasonable grid size, was found

to be ℎ = 0.5 s and d = 1 deg. Note that it is not possible to estimate what accuracy

can be expected from these values of ℎ and d, as: first, no global error estimate for the

proposed DDP approximation is available, and second, each initial condition q0 and each

store trajectory p(⋅) yield a different instance of PCTS2,s1 . It might be argued that the

value of ℎ, in particular, is much too high to expect the forward Euler scheme to provide

a good approximation of the redundancy parameter derivative. However, recall that one

of the objectives in PCTS2 is to minimize the integral of the joint speed norm. Hence, the

joint speeds along the optimal joint trajectory are expected to stay small.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 84

Three numerical experiments are now presented. The objective of the first experiment

is to compare J0(q0) and Jℎ,d0 (v0), and the corresponding optimal joint trajectories for an

instance of PCTS2,s1 . The objective of the second experiment is to show for this same

instance how the accuracy is improved by letting the ratio d/ℎ converge towards zero as

predicted from Proposition 3.4. The third experiment presents a case where the joint

speeds for the optimal joint trajectory are much larger, and the chosen values for ℎ and d

prove to be inappropriate. Without changing the values of ℎ and d, a heuristic approach

is proposed that allows obtaining a “reasonable” optimal discrete trajectory.

For the first experiment, the same instance of PCTS2,s1 as in Section 3.1.3 is used.

w is set to 0.5. The chosen values for ℎ and d yield (NT , NX) = (13, 290). The values

of Jℎ,d0 (v0) and J0(q0) are provided in Table 3.1. Table 3.1 also contains the individual

optimal value for the two objective functions, i.e., F1(q
∗(⋅)), F2(q

∗(⋅)), F ℎ,d
1 , and F ℎ,d

2 ,

where, {v∗i , i = 0, . . . , NT} being the optimal discrete trajectory:

F ℎ,d
1 = ℎ

NT−1∑
i=0

f̃1(i, v
∗
i , v̇
∗
i ),

and

F ℎ,d
2 = ℎ

NT−1∑
i=0

f̃2(i, v
∗
i ).

Note that with these notations, Jℎ,d0 (v0) = F ℎ,d
1 + wF ℎ,d

2 . Recall also that J0(q0) =

F1(q
∗(⋅)) + wF1(q

∗(⋅)). In Figures 3.11(a) and 3.11(b), are plotted the three trajecto-

Table 3.1: Values of the objective functions for (NT , NX) = (13, 290).

F ℎ,d
1 F1(q

∗(⋅)) F ℎ,d
2 F2(q

∗(⋅)) Jℎ,d0 (v0) J0(q0)
0.133054 0.080497 0.259263 0.291530 0.262685 0.226262



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 85

ries v(⋅) obtained from the three joint trajectories solution to the BVP (3.6) and (3.8),

denoted BVP1, BVP2, and BVP3, and the optimal discrete trajectory. Hereinafter, for

plotting, the piecewise constant extension to [t0, tf ] for the optimal discrete trajectories is

considered, i.e.,

∀t ∈ [t0, tf ], v
∗
ℎ,d(t) = v∗i , i = [

tf − t0
ℎ

].

In Figure 3.11(a), the grid is also represented, and examples of Aℎ,dk are provided.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 86

0 1 2 3 4 5 6 7
−100

−80

−60

−40

−20

0

20

40

60

80

t (s)

v
(d

eg
)

BVP1

BVP2

BVP3

Ah,d
k

(a) With the grid resulting from the discretization.

0 1 2 3 4 5 6 7
−40

−35

−30

−25

−20

−15

−10

−5

0

5

t (s)

v
(d

eg
)

BVP1

BVP2

BVP3

(b) Without the grid resulting from the discretization.

Figure 3.11: The three solutions, BVP1, BVP2, and BVP3, to the BVP (3.6) and
(3.8) (dotted lines), and v∗ℎ,d(⋅) (plain line) when f2 is taken as integral cost.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 87

For the second experiment, the same instance of PCTS2,s1 as for the first experiment is

used. First, both ℎ and d are allowed to converge towards zero with a constant ratio d/ℎ,

or a constant NT/NX ratio. Second, both ℎ and d are allowed to converge towards zero

with a ratio d/ℎ also converging towards zero, or a ratio NT/NX converging towards zero.

The resulting values for Jℎ,d0 (v0) are provided in Tables 3.2 and 3.3. In both these two

tables, the column (∞,∞) indicates J0(q0), while the row denoted nodes indicates the size

of the grid. Note that, to have comparable grid size between Tables 3.2 and 3.3, whenever

ℎ and d are decreased by a factor � in Table 3.2, ℎ is decreased by �2/3 and d by �4/3 in

Table 3.3. Therefore, in Table 3.2, the decrease in d is the square of the decrease in ℎ.

The results from Tables 3.2 and 3.3 are illustrated in Figures 3.12(a), 3.12(b), and 3.12(c).

Note that because of rounding, the ratio NT/NX in Tables 3.2 does not exactly remain

constant.

Table 3.2: Values of the objective functions when increasing both NT and NX with a
constant NT /NX ratio.

(NT , NX) (13,290) (25,580) (37,870) (49,1160) (∞,∞)
# nodes 1018 3898 8652 15290 -

F ℎ,d
1 0.133054 0.130806 0.128881 0.127499 0.080497

F ℎ,d
2 0.259263 0.275611 0.274619 0.277891 0.291530

Jℎ,d0 (v0) 0.262685 0.268611 0.266190 0.266444 0.226262

Table 3.3: Values of the objective functions when increasing both NT and NX with a
NT /NX ratio converging towards zero.

(NT , NX) (13,290) (20,731) (26,1255) (31,1842) (∞,∞)
# nodes 1018 3935 8798 15366 -

F ℎ,d
1 0.133054 0.103298 0.099311 0.094645 0.080497

F ℎ,d
2 0.259263 0.271164 0.270547 0.276147 0.291530

Jℎ,d0 (v0) 0.262685 0.238880 0.234585 0.232718 0.226262



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 88

Figure 3.12(c) confirms that better convergence is obtained by letting the ratio d/ℎ

converge towards zero. Interestingly, it can be observed from Figures 3.12(a) and 3.12(b)

that letting the ratio d/ℎ converge towards zero mainly impacts F ℎ,d
1 . This can be ex-

plained by the fact that F ℎ,d
1 does depend on the redundancy parameter derivative, while

F ℎ,d
2 does not.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 89

0 2000 4000 6000 8000 10000 12000 14000 16000
0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

Nodes

F
h

,d
1

NT /NX constant

NT /NX decreasing

(∞,∞)

(a) The first objective function, Fℎ,d
1 .

0 2000 4000 6000 8000 10000 12000 14000 16000
0.25

0.26

0.27

0.28

0.29

0.30

Nodes

F
h

,d
2

NT /NX constant

NT /NX decreasing

(∞,∞)

(b) The second objective function, Fℎ,d
2 .

0 2000 4000 6000 8000 10000 12000 14000 16000
0.22

0.23

0.24

0.25

0.26

0.27

0.28

Nodes

J
h

,d
0

(v
0
)

NT /NX constant

NT /NX decreasing

(∞,∞)

(c) The objective function Jℎ,d
0 (v0) = Fℎ,d

1 + wFℎ,d
2 .

Figure 3.12: Visualization of the convergence results from Tables 3.2 and 3.3.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 90

For the third experiment, a different instance of PCTS2,s1 than the one used for the

first two experiments is used. Again, w is set to 0.5. The values of Jℎ,d0 (v0) and J0(q0) are

provided in Table 3.4. Note that, for this instance, F1(q
∗(⋅)) = 7.457361 is much larger

than the value for F1(q
∗(⋅)) = 0.080497 obtained in the first experiment, which indicates

that the joint speeds are much larger. It can be observed in Table 3.4 that the value of

Jℎ,d0 (v0) is very different from J0(q0), which is confirmed in Figure 3.13(a), where the corre-

sponding optimal trajectories are shown. The oscillations of the optimal discrete trajectory

in Figure 3.13(a) are not acceptable. The first possibility to eliminate these oscillations

would be to increase both NT and NX . As seen in Table 3.4 for (NT , NX) = (78, 731),

Jℎ,d0 (v0) approaches J0(q0). The corresponding discrete optimal trajectory does not show

the oscillations as illustrated in Figure 3.13(b). However, as mentioned at the beginning of

this section, for computational efficiency, it is not desirable to increase the size of the grid,

or change the values of d and ℎ. Therefore, it is proposed to use the following heuristic

approach to eliminate the oscillations:

⇒ Limit the number of times v̇k ∈ ℬℎ,dk (vk) can change sign to m, referred to as the

maximum number of modes.

Note that this heuristic approach can easily be implemented with the dynamic program-

ming equation (3.28). The resulting optimal discrete trajectory obtained for m = 1 is

plotted in Figure 3.13(c). It can be observed that for this trajectory, the sign of v̇k

changes only one time. The sign of v̇k is negative at the beginning of the trajectory, and

then becomes positive. The value of Jℎ,d0 (v0) is provided for information in Table 3.4.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 91

Table 3.4: Values of the objective functions for a second instance of PCTS2.

(NT , NX) (13,290), m = 1 (13,290) (78,731) (∞,∞)
# nodes 1475 1475 22254 -

F ℎ,d
1 4.399287 3.218412 7.314223 7.457361

F ℎ,d
2 0.189770 0.052837 0.033882 0.032749

Jℎ,d0 (v0) 4.494172 3.244830 7.331164 7.473736



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 92

0 1 2 3 4 5 6 7
−25

−20

−15

−10

−5

0

5

10

t (s)

v
(d

eg
)

BVP

(a) v∗ℎ,d(⋅) with (NT , NX) = (13, 290) (plain line).

0 1 2 3 4 5 6 7
−20

−15

−10

−5

0

5

10

t (s)

v
(d

eg
)

BVP

(b) v∗ℎ,d(⋅) with (NT , NX) = (78, 731) (plain line).

0 1 2 3 4 5 6 7
−35

−30

−25

−20

−15

−10

−5

0

5

10

t (s)

v
(d

eg
)

BVP

m = 1

(c) v∗ℎ,d(⋅) with (NT , NX) = (13, 290) (plain line), and
v∗ℎ,d(⋅) with (NT , NX) = (13, 290) and m = 1 (bold line).

Figure 3.13: Eliminating the oscillations by limiting the number of modes when f2 is
taken as an integral cost. For the three figures, the unique, and therefore optimal,

solution to the BVP (3.6) and (3.8) is represented with a dotted line.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 93

3.2.7 The DDP Approximation Method for PCTS2,s2

The same developments as in Sections 3.2.1, 3.2.2, 3.2.3, and 3.2.4 can be made for

PCTS2,s2 . The dynamic programming equation satisfied by the return function Jℎk (⋅)

slightly differs, the main difference being the terminal data condition (3.36):

Jℎk (vk) = inf
v̇k∈Cℎk (vk)

ℎf̃1(k, vk, v̇k) + Jℎk+1(vk + ℎv̇k), (3.35)

with terminal data condition

JℎNT
(vNT

) = wf̃2(NT , vNT
). (3.36)

Accordingly, the approximate return function Jℎ,dk (⋅) solves:

∀vk ∈ Aℎ,dk , Jℎ,dk (vk) = inf
v̇k∈ℬℎ,dk (vk)

ℎf̃1(k, vk, v̇k) + Jℎ,dk+1(vk + ℎv̇k), (3.37)

with terminal data condition

∀vNT
∈ Aℎ,dNT

, Jℎ,dNT
(vNT

) = wf̃2(NT , vNT
). (3.38)

Propositions 3.3 and 3.4 can be easily adapted. Proposition 3.6 provides an error estimate

between the return function Jℎk (⋅) and the approximate return function Jℎ,dk (⋅). This error

estimate allows to conclude to the convergence of Jℎ,d0 (v0) towards Jℎ0 (v0). The proof of

Proposition 3.6 first requires showing that the return functions Jℎk (⋅) are Lipschitz, which

is established in Proposition 3.5.

Proposition 3.5. Assume that the functions f̃1(t, ⋅, �) and f̃2(t, ⋅) are Lipschitz, i.e.,

∀t ∈ [t0, tf ], ∀� ∈ U, ∀(x, y) ∈ R×R, ∣f̃1(t, x, �)− f̃1(t, y, �)∣ ≤ K1∣x− y∣,



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 94

and

∀t ∈ [t0, tf ], ∀(x, y) ∈ R×R, ∣f̃2(t, x)− f̃2(t, y)∣ ≤ K2∣x− y∣,

then

∀(x, y) ∈ R×R, ∣Jℎk (x)− Jℎk (y)∣ ≤ Lk∣x− y∣ℎ, (3.39)

where Lk = K1(NT − k) + wK2/ℎ.

Proposition 3.6. Under the same assumptions as in Proposition 3.5, and the assumption

that the function f̃1(t, x, ⋅) is Lipschitz

∀t ∈ [t0, tf ], ∀v ∈ R, ∀(x, y) ∈ U × U, ∣f̃1(t, v, x)− f̃1(t, v, y)∣ ≤ K3∣x− y∣,

then, for all x ∈ Aℎ,dk ,

0 ≤ Jℎ,dk (x)− Jℎk (x) ≤ L′kd,

where L′k = (K3 + L0ℎ)(NT − k).

The main case of interest for Proposition 3.6 is when k = 0. In such a case,

0 ≤ Jℎ,d0 (x)− Jℎ0 (x) ≤ L′0d,

where,

L′0 = (K3 + L0ℎ)NT = (K3 +K1NTℎ+ wK2)NT .

Knowing that NTℎ = tf − t0, we finally obtain:

0 ≤ Jℎ,d0 (x)− Jℎ0 (x) ≤ (K3 +K1(tf − t0) + wK2)(tf − t0)d/ℎ = Cd/ℎ. (3.40)

A similar discussion about the error estimate obtained in Proposition 3.6 as in Section 3.2.5

can be made. The main consequence of the inequality (3.40) is that Jℎ,d0 (v0) converges



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 95

towards Jℎ0 (v0) when d converges towards zero.

3.2.8 Numerical Experiments for PCTS2,s2

The same three experiments as in Section 3.2.6 are conducted for PCTS2,s2 . Note that

the results obtained for PCTS2,s1 and PCTS2,s2 are very similar, particularly for the third

experiment. This similarity is just arising from our choice of examples.

For the first experiment, the values of Jℎ,d0 (v0) and J0(q0) are provided in Table 3.5.

F2(q
∗(⋅)) and F ℎ,d

2 are now respectively equal to f2(q
∗(tf )) and f̃2(NT , v

∗
NT

).

Table 3.5: Values of the objective functions for (NT , NX) = (13, 290).

F ℎ,d
1 F1(q

∗(⋅)) F ℎ,d
2 F2(q

∗(⋅)) Jℎ,d0 (v0) J0(q0)
0.127024 0.077434 0.114659 0.104485 0.184353 0.129676

In Figures 3.14(a) and 3.14(b), the three trajectories v(⋅) obtained from the three joint

trajectories solution to the BVP (3.7) and (3.9), denoted BVP1, BVP2, and BVP3, and

the optimal discrete trajectory are plotted.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 96

0 1 2 3 4 5 6 7
−100

−80

−60

−40

−20

0

20

40

60

80

t (s)

v
(d

eg
)

BVP1

BVP2

BVP3

(a) With the grid resulting from the discretization.

0 1 2 3 4 5 6 7
−40

−35

−30

−25

−20

−15

−10

−5

0

5

t (s)

v
(d

eg
)

BVP1

BVP2

BVP3

(b) Without the grid resulting from the discretization.

Figure 3.14: The three solutions, BVP1, BVP2, and BVP3, to the BVP (3.7) and
(3.9) (dotted lines), and v∗ℎ,d(⋅) (plain line) when f2 is taken as terminal cost.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 97

For the second experiment, both ℎ and d are allowed to converge towards zero with a

ratio d/ℎ also converging towards zero, or a ratio NT/NX converging towards zero. The

resulting values for Jℎ,d0 (v0) are provided in Table 3.6. The results from Table 3.6 are

illustrated in Figures 3.15(a), 3.15(b), and 3.15(c).

Table 3.6: Values of the objective functions when increasing both NT and NX with a
NT /NX ratio converging towards zero.

(NT , NX) (13,290) (20,731) (26,1255) (31,1842) (∞,∞)
# nodes 1018 3935 8798 15366 -
F1 0.127024 0.103298 0.095174 0.092355 0.077434
F2 0.114659 0.104089 0.106673 0.105563 0.104485

Jℎ,d0 (v0) 0.184353 0.155343 0.148510 0.145137 0.129676



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 98

0 2000 4000 6000 8000 10000 12000 14000 16000

0.08

0.09

0.10

0.11

0.12

0.13

Nodes

F
h

,d
1

NT /NX decreasing

(∞,∞)

(a) The first objective function, Fℎ,d
1 .

0 2000 4000 6000 8000 10000 12000 14000 16000
0.100

0.104

0.108

0.112

0.116

Nodes

F
h

,d
2

(∞,∞)

NT /NX decreasing

(b) The second objective function, Fℎ,d
2 .

0 2000 4000 6000 8000 10000 12000 14000 16000
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

Nodes

J
h

,d
0

(v
0
)

NT /NX decreasing

(∞,∞)

(c) The objective function for Jℎ,d
0 (v0) = Fℎ,d

1 +wFℎ,d
2 .

Figure 3.15: Visualization of the convergence results from Table 3.6.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 99

For the third experiment, oscillations for the optimal discrete trajectory are also ob-

tained in Figure 3.16(a). These oscillations can be eliminated by increasing both NT and

NX , as shown for (NT , NX) = (78, 731) in Table 3.7 and as illustrated in Figure 3.16(b).

The heuristic approach also eliminates the oscillations as shown with m = 1 in Table 3.7

and as illustrated in Figure 3.16(c).

Table 3.7: Values of the objective functions for a second instance of PCTS2.

(NT , NX) (13,290), m = 1 (13,290) (78,731) (∞,∞)
# nodes 1475 1475 22254 -
F1 4.399287 3.218412 7.313932 7.457426
F2 0.018189 0.020603 0.018973 0.018370

Jℎ,d0 (v0) 4.408382 3.228713 7.323418 7.466611



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 100

0 1 2 3 4 5 6 7
−25

−20

−15

−10

−5

0

5

10

t (s)

v
(d

eg
)

BVP

(a) v∗ℎ,d(⋅) with (NT , NX) = (13, 290) (plain line).

0 1 2 3 4 5 6 7
−20

−15

−10

−5

0

5

10

t (s)

v
(d

eg
)

BVP

(b) v∗ℎ,d(⋅) with (NT , NX) = (78, 731) (plain line).

0 1 2 3 4 5 6 7
−35

−30

−25

−20

−15

−10

−5

0

5

10

t (s)

v
(d

eg
)

BVP

m = 1

(c) v∗ℎ,d(⋅) with (NT , NX) = (13, 290) (plain line), and
v∗ℎ,d(⋅) with (NT , NX) = (13, 290) and m = 1 (bold line).

Figure 3.16: Eliminating the oscillations by limiting the number of modes when f2 is
taken as a terminal cost. For the three figures, the unique, and therefore optimal,

solution to the BVP (3.6) and (3.8) is represented with a dotted line.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 101

3.3 A DDP Approximation for a Multiple Objective

Function Problem

3.3.1 Presentation

The DDP approximation proposed method in Section 3.2 for PCTS2,s1 can be generalized

to PCTS2. For clarity, PCTS2, after reformulation with the redundancy parameter as

performed in Section 3.2.2 for PCTS2,s1 , is now presented.

Problem PCTS2: find the Pareto optimal set ℰ(cl(F̃(T )),R2
+), where F̃(⋅) is the real

vector-valued objective function defined by

F̃(⋅) : v(⋅) ∈ C1([t0, tf ],R)→
(∫ tf

t0

f̃1(t, v(t), v̇(t))dt,

∫ tf

t0

f̃2(t, v(t))dt

)
,

where T is the subset of C1([t0, tf ],R) such that the following constraints are satisfied:

v(t) ∈ A(t),

v̇(t) ∈ ℬ(t, v(t)).

The same first-order discretization in time as performed in Section 3.2.2 yields the

following multiobjective nonlinear programming problem: find the Pareto optimal set

ℰ(cl(F̃ℎ(T ℎ0 (v0))),R
2
+), where F̃ℎ(⋅) is the real vector-valued objective function defined by

F̃ℎ(⋅) : {vi, i = 1, . . . , NT} ∈ T ℎ0 (v0)→
(
ℎ

NT−1∑
i=0

f̃1(i, vi, v̇i), ℎ

NT−1∑
i=0

f̃2(i, vi)

)
,

v0 being the known initial condition.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 102

The dynamic programming equation (3.28) with the terminal data condition (3.29)

obtained in Section 3.2.3 can also be generalized to take into account multiple objective

functions. Let Jℎk (⋅) be the set-valued return function that associates, for each vk ∈ Aℎk,

the Pareto optimal set ℰ(cl(F̃ℎ(T ℎk (vk))),R
2
+):

Jℎk (⋅) : vk ∈ Aℎk → Jℎk (vk) = ℰ(cl(F̃ℎ(T ℎk (vk))),R
2
+). (3.41)

Note that setting k = 0 in (3.41) yields exactly the multiobjective nonlinear programming

problem described above. The set-valued return function Jℎk (⋅) can be shown to satisfy

the dynamic programming equation

Jℎk (vk) = ℰ(cl({ℎ(f̃1(k, vk, v̇k), f̃2(k, vk)) + Jℎk+1(vk + ℎv̇k), v̇k ∈ ℬℎk(vk)}),R2
+), (3.42)

with terminal data condition

JℎNT
(vNT

) = {(0, 0)}. (3.43)

Finally, the same discretization in the redundancy parameter as performed in Sec-

tion 3.2.4 leads to the introduction of the approximate return set-valued function Jℎ,dk (⋅)

defined as the solution to the dynamic programming equation (3.42) with the terminal data

condition (3.43) where again the redundancy parameter is restricted to take on values only

in Aℎ,dk , i.e., ∀vk ∈ Aℎ,dk ,

Jℎ,dk (vk) = ℰ({ℎ(f̃1(k, vk, v̇k), f̃2(k, vk)) + Jℎ,dk+1(vk + ℎv̇k), v̇k ∈ ℬℎ,dk (vk)},R2
+), (3.44)

with terminal data condition

∀vNT
∈ Aℎ,dNT

, Jℎ,dNT
(vNT

) = {(0, 0)}. (3.45)



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 103

Note that the closure has been removed in the dynamic programming equation (3.44), as

all the sets involved are finite. The approximate dynamic programming equation (3.44)

with terminal data condition (3.45) is straightforward to solve. Indeed, let vk ∈ Aℎ,dk

and assume that the approximate set-valued return function Jℎ,dk+1(⋅) is known. Knowing

v̇k ∈ ℬℎ,dk (vk), the term ℎ(f̃1(k, vk, v̇k), f̃2(k, vk)) can be calculated, from which the set

{ℎ(f̃1(k, vk, v̇k), f̃2(k, vk))+J
ℎ,d
k+1(vk+ℎv̇k)} can be determined. The set ℬℎ,dk (vk) being finite,

the set {ℎ(f̃1(k, vk, v̇k), f̃2(k, vk)) + Jℎ,dk+1(vk + ℎv̇k), v̇k ∈ ℬℎ,dk (vk)} is also finite. Therefore,

to determine the Pareto optimal set of {ℎ(f̃1(k, vk, v̇k), f̃2(k, vk)) + Jℎ,dk+1(vk + ℎv̇k), v̇k ∈

ℬℎ,dk (vk)}, which is precisely Jℎ,dk (vk), a finite number of comparisons are needed. Repeating

this procedure for every vk ∈ Aℎ,dk yields the approximate set-valued return function Jℎ,dk (⋅).

Therefore, starting from the terminal data condition (3.44), the approximate set-valued

return function Jℎ,d0 (⋅) can be recursively obtained.

3.3.2 Application to the Variant of PCTS2

The developments in Section 3.3.1 can be easily generalized when f2 is taken as a terminal

cost. The dynamic programming equation satisfied by the set-valued return function

Jℎk (⋅) (3.42) becomes:

Jℎk (vk) = ℰ(cl({ℎ(f̃1(k, vk, v̇k), 0) + Jℎk+1(vk + ℎv̇k), v̇k ∈ ℬℎk(vk)}),R2
+). (3.46)

The terminal data condition (3.43) involves now f̃2:

JℎNT
(vNT

) = {(0, f̃2(NT , vNT
))}. (3.47)

Accordingly, the approximate set-valued return function Jℎ,dk (⋅) solves:

∀vk ∈ Aℎ,dk , Jℎ,dk (vk) = ℰ({ℎ(f̃1(k, vk, v̇k), 0)+Jℎ,dk+1(vk +ℎv̇k), v̇k ∈ ℬℎ,dk (vk)},R2
+), (3.48)



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 104

with terminal data condition

∀vNT
∈ Aℎ,dNT

, Jℎ,dNT
(vNT

) = {(0, f̃2(NT , vNT
))}. (3.49)

3.3.3 Numerical Experiments

The numerical experiments presented next use the instance of PCTS2 from Sections 3.1.3

and 3.1.4. The first objective of these experiments is to compare the objective spaces that

were obtained in Section 3.1.4 with the set Jℎ,d0 (v0) obtained from the resolution of the

approximate dynamic programming equations (3.44) and (3.48) with their respective ter-

minal data conditions (3.45) and (3.49). The second objective of these experiments is to

compare Jℎ,d0 (v0) with the Pareto objective vectors obtained with the weighting method.

This comparison has to be done carefully as the Pareto objective vectors obtained with

the weighting method in Section 3.1.3 are “exact”, whereas the elements of Jℎ,d0 (v0) are

approximate Pareto objective vectors. However, qualitatively, it will be seen that approxi-

mate Pareto objective vectors can be obtained in regions where the weighting method fails

to generate Pareto objective vectors. Detailed quantitative investigations on this subject

will be performed in Chapter 5.

Let ℎ and d be chosen as in Section 3.2.6, and the number of modes be unlimited.

Therefore, (NT , NX) = (13, 290). In Figures 3.17(a) and 3.17(b), the objective space ob-

tained in Section 3.1.4 is plotted together with the set of approximate Pareto objective

vectors Jℎ,d0 (v0). Note that ∣Jℎ,d0 (v0)∣ = 138. The main observation from these two figures

is that Jℎ,d0 (v0) is fairly close to the boundary of the objective space, except the subset of

Jℎ,d0 (v0) in Figure 3.17(b). In this region of the objective space, first, the value of F1 is

higher, therefore, as observed in Section 3.2.6, the accuracy of the DDP approximation is

less. Second, and more importantly, not all the joint trajectories corresponding to bound-



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 105

ary points satisfy the joint mechanical limits whereas all the optimal discrete trajectories

do satisfy this constraint. Therefore, the comparison cannot really be performed.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 106

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.1

0.2

0.3

0.4

0.5

F1

F
2

Z

Zoom

(a) Boundary points (dots), tangents at each boundary point (dotted lines), and approximate
Pareto objective vectors (crosses).

0.3 0.4 0.5 0.6 0.7
−0.01

0

0.01

0.02

0.03

0.04

0.05

F1

F
2

Z

(b) Zoom.

Figure 3.17: Comparing the set of approximate Pareto objective vectors Jℎ,d0 (v0) and
the objective space when f2 is taken as an integral cost.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 107

It would be interesting to perform an experimental convergence study of Jℎ,d0 (v0) to-

wards the Pareto optimal set for PCTS2. However, this is not practically feasible. Indeed,

as discussed in Chapter 5, the algorithmic complexity for the resolution of the approximate

dynamic programming equation (3.44) increases exponentially with the grid size. As an

example, it took 24,628 s, or more than 6 h, to obtain the set Jℎ,d0 (v0) above. In Chapter 5,

it will be shown how the time required to solve the approximate dynamic programming

equation (3.44) can be drastically reduced without too much loss of optimality.

In Figure 3.18, the same information as in Figure 3.7(a) is reproduced, except for

the Pareto objective vectors obtained from the boundary points (this is only for clarity).

Figure 3.18 also includes the set Jℎ,d0 (v0). Three remarks can be made about Jℎ,d0 (v0).

∙ The fact that the Pareto optimal set is disconnected, or at least composed of two

clear subsets, is captured well.

∙ It was mentioned in Section 3.1.4 that the weighting method fails to generate Pareto

objective vectors in the set z2 − int(R2
+). Clearly, Jℎ,d0 (v0) ∩ z2 − int(R2

+) ∕= ∅.

∙ The points in Jℎ,d0 (v0) seem to be evenly distributed, and therefore provide a good

representation of the Pareto optimal set.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 108

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.1

0.2

0.3

0.4

0.5

F1

F
2

z1

z3

Z

z2 − int(R2
+)

Figure 3.18: When f2 is taken as an integral cost, as opposed to the weighting
method, approximate Pareto objective vectors can be found in the set z2 − int(R2

+).



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 109

The results obtained when f2 is taken as a terminal cost will now be presented. The

same discussion as above can be made. However, two extra interesting remarks are worth

mentioning:

∙ ∣Jℎ,d0 (v0)∣ = 18. This is much smaller than 138, as obtained above. When f2 is

taken as a terminal cost, it is easy to see that there is at most one optimal discrete

trajectory that has vNT
∈ Aℎ,dNT

as terminal data condition. Therefore, ∣Jℎ,d0 (v0)∣ is

necessarily bounded above by ∣Aℎ,dNT
∣.

∙ The time needed to solve the approximate dynamic programming equation (3.48) is

only 77 s. The explanation for this is similar to the explanation provided for the

cardinality of Jℎ,d0 (v0). For each vk ∈ Aℎ,dk , ∣Jℎ,dk (vk)∣ is necessarily bounded above by

∣Aℎ,dNT
∣. Therefore, the algorithmic complexity for the resolution of the approximate

dynamic programming equation (3.48) is in fact polynomial in the grid size instead

of exponential.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 110

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.05

0    

0.05

0.10

0.15

0.20

F1

F
2

Zoom

Z

(a) Boundary points (dots), tangents at each boundary point (dotted lines), and approximate
Pareto objective vectors (crosses).

0.3 0.4 0.5 0.6
−0.05

0    

0.05

0.10

0.15

0.20

0.25

F1

F
2

Z

(b) Zoom.

Figure 3.19: Comparing the set of approximate Pareto objective vectors Jℎ,d0 (v0) and
the objective space when f2 is taken as a terminal cost.



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 111

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.05

0    

0.05

0.10

0.15

0.20

F1

F
2

z1

z3

z2 − int(R2
+)

Z

Figure 3.20: When f2 is taken as a terminal cost, as opposed to the weighting
method, approximate Pareto objective vectors can be found in the set z2 − int(R2

+).



CHAPTER 3. RESOLUTION OF THE PROBLEM IN THE JOINT SPACE 112

3.4 Summary of Results

The objective of this chapter was to solve PCTS2, i.e., to obtain a good representation of

the Pareto optimal set for PCTS2. The first approach was to use the traditional weighting

method. The weighting method was shown to only be able to identify a small subset of

the Pareto optimal set. As an alternative to the weighting method, a DDP approximation

method was proposed. An interesting advantage of this approximation method is that the

constraints for PCTS2 can be easily handled. Constraints have the impact of reducing

the size of the sets Aℎ,dk and ℬℎ,dk (vk), which in turn makes the resolution of the approxi-

mate dynamic programming equation faster. More importantly, it was shown that a good

representation of the Pareto optimal set can be obtained with the proposed DDP approx-

imation method. Similar conclusions were obtained with a variant to PCTS2 where the

aerodynamic interference function was taken as a terminal cost instead of an integral cost.

Some work remains to make the proposed DDP approximation method practically ap-

plicable. First, sufficiently smooth joint trajectories need to be built from the optimal

discrete trajectories {v∗i , i = 0, . . . , NT}. Second, as already mentioned, for practical rea-

sons, PCTS2 must be able to be solved very efficiently. Therefore, the time required to

solve the approximate dynamic programming equation needs to be reduced dramatically.

These two questions are addressed in Chapter 5. In Chapter 5, it is also attempted to com-

pare quantitatively the Pareto objective vectors obtained with the weighting method and

the approximate Pareto objective vectors obtained with the DDP approximation method.

However, first, Chapter 4 investigates whether the DDP approximation method pro-

posed for PCTS2 can be applied to a more general class of problems.



Chapter 4

A Multiobjective Optimal Control

Problem

In Chapter 3, PCTS2 was reformulated using the redundancy parameter, v, as follows:

find the Pareto optimal set ℰ(cl(F̃(T )),R2
+), where F̃(⋅) is the real vector-valued objective

function defined by

F̃(⋅) : v(⋅) ∈ C1([t0, tf ],R)→
(∫ tf

t0

f̃1(t, v(t), v̇(t))dt,

∫ tf

t0

f̃2(t, v(t))dt

)
,

where T is the subset of C1([t0, tf ],R) such that the following constraints are satisfied:

v(t) ∈ A(t),

v̇(t) ∈ ℬ(t, v(t)),

with A(t) ⊂ [vmin, vmax], ℬ(t, v(t)) ⊂ U , and initial redundancy parameter v0. By retaining

only the constraint v̇(t) ∈ U , and defining the control u(⋅) as u(t) = v̇(t), PCTS2 can

be seen as a particular case of the following multiobjective deterministic finite horizon

113



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 114

optimal control problem: find the minimal element set ℰ(cl(F(x0,U)), D), where F(⋅) is a

real vector-valued objective function defined by

F(x0, u(⋅)) =

(∫ tf

t0

L1(t, x(t), u(t))dt,

∫ tf

t0

L2(t, x(t), u(t))dt)

)
,

U is a set of controls u(⋅) : [t0, tf ]→ U , and U is a compact set. Given a control in U , the

trajectory x(⋅) is the solution to the differential equation

ẋ(s) = f(s, x(s), u(s)), t0 ≤ s ≤ tf ,

with initial conditions

x(t0) = x0.

The objective of this chapter is to apply the DDP approximation method proposed in

Chapter 3 to the above general multiobjective deterministic finite horizon optimal control

problem, and to study the convergence of the approximation. This achievement, published

in [31], constitutes an advance in optimal control theory.

The multiobjective optimal control problem studied in this chapter, as well as the as-

sumptions required for the convergence study, are detailed in Section 4.1. Some mathemat-

ical preliminaries follow in Section 4.2. In particular, a topology on the family of compact

sets of Rp defined from the Hausdorff distance [1] is introduced. With this topology, the

minimal element map, which is the map that associates its minimal element set with each

compact set, is shown to be continuous. The external stability property ([27, p. 53], [26, p.

59]) for compact sets is also stated in Section 4.2. As in Chapter 3, the proposed approxi-

mation method starts with a first-order discretization in time detailed in Section 4.3. This

discretization yields a discrete multiobjective optimal control problem, called the discrete



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 115

problem. In Section 4.4, it is shown that by choosing a particular sequence of time steps

and using the external stability property, convergent sequences of minimal elements of the

corresponding discrete problems can be constructed. In Section 4.5, using the dynamic

programming principle [54, 15], a discrete multiobjective dynamic programming equation

with respect to the ordering cone D is obtained. The solution to this equation is shown

to be the minimal element set of the discrete problem. The second step of the approx-

imation method, presented in Section 4.6, consists of a state-space discretization of the

above-mentioned discrete multiobjective dynamic programming equation. Using the con-

tinuity of the minimal element map, the solution to the resulting approximate dynamic

programming equation is shown to converge towards the minimal element set of the dis-

crete problem in the sense of Hausdorff. This result concludes the presentation of the

proposed approximation method. The conditions needed for the developments to remain

valid for more general classes of multiobjective optimal control problems are discussed in

Section 4.7. Finally, further mathematical results extending those obtained in [31] are

presented in Section 4.8.

4.1 The Multiobjective Deterministic Finite-Time Hori-

zon Optimal Control Problem

Consider the evolution over a fixed finite-time interval I = [t0, t1] (t0 < t1) of a dynamical

system whose n-dimensional state dynamics are given by a continuous function f(⋅, ⋅, ⋅) :

I ×Rn × U → Rn, where the control space U is a nonempty compact subset of Rm [15].

The function f(t, ⋅,u) is assumed to be Lipschitz:

∀u ∈ U, ∀t ∈ I, ∀(x,y) ∈ Rn×n, ∥f(t,x,u)− f(t,y,u)∥ ≤ Kf∥x− y∥, (4.1)



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 116

where ∥ ⋅ ∥ denotes the Euclidian norm. A control u(⋅) : [t, t1] ⊂ I → U is a bounded,

Lebesgue measurable function. The set of such controls u(⋅) is denoted by U(t), which is

nonempty for any t. The Lipschitz condition (4.1) guarantees that, given any control u(⋅),

the system of differential equations governing the dynamical system

ẋ(s) = f(s,x(s),u(s)), t ≤ s ≤ t1,

with initial conditions

x(t) = xt,

has a unique solution x̃(⋅) : [t, t1] → Rn [14, pp. 467–492], called a trajectory of the

dynamical system, x̃(s) being the state of the system at time s. The cost of each trajectory

x(⋅) is evaluated by a p-dimensional vector function J(⋅, ⋅, ⋅) : I ×Rn × U(t)→ Rp,

J(t,xt,u(⋅)) =

∫ t1

t

L(s,x(s),u(s))ds, (4.2)

where the p-dimensional vector function L(⋅, ⋅, ⋅) : I × Rn × U → Rp, usually called the

running cost function [15], is assumed to be continuous. The objective space Y (t,xt) is

defined as the set of all possible costs (4.2):

Y (t,xt) = {J(t,xt,u(⋅)),u(⋅) ∈ U(t)}.

For simplicity, no terminal cost [15] has been included in (4.2). Moreover, the dynamical

system is assumed to be autonomous, ∂f/∂t = 0, and the running cost function indepen-

dent of the time, ∂L/∂t = 0. These simplifications will be discussed later in Section 4.7.

Consequently, let t0 = 0, T = t1 − t0, I = [0, T ], U = U(0), and Y (x0) = Y (0,x0).

Moreover, throughout this chapter, the following additional assumptions on the functions

f and L are made.



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 117

∙ The function f is uniformly bounded:

∀x ∈ Rn, ∀u ∈ U, ∥f(x,u)∥ ≤Mf . (4.3)

∙ The function L(⋅,u) is Lipschitz:

∀u ∈ U, ∀(x,y) ∈ Rn ×Rn, ∥L(x,u)− L(y,u)∥ ≤ KL∥x− y∥. (4.4)

∙ The function L is uniformly bounded:

∀x ∈ Rn, ∀u ∈ U, ∥L(x,u)∥ ≤ML. (4.5)

From the definition of optimality for multiobjective optimization problems provided in

Section 2.3.3, the multiobjective deterministic finite-time horizon optimal control problem

denoted (P) can now be defined. In this chapter, the ordering cone D is additionally

assumed to be closed.

Problem (P): determine the minimal element set V (x0),

V (x0) = ℰ(cl(Y (x0)), D), (4.6)

and the corresponding optimal controls u∗(⋅), if they exist, for which these minimal ele-

ments are reached.

Considering the closure of the objective space, cl(Y (x0)), instead of the objective space,

Y (x0), in (4.6) guarantees the existence of minimal elements as shown in Proposition 2.1.

A special case of interest occurs when p = 1 and setting D = R+ in (4.6). The problem (P)



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 118

then reduces to the single objective deterministic finite-time horizon optimal control prob-

lem. The minimal element set V (x0) becomes a singleton that can be identified with the

so-called value function [15, p. 9], defined for nonautonomous problems by

V (t,xt) = inf{J(t,xt,u(⋅)), u(⋅) ∈ U(t)}.

4.2 Mathematical Preliminaries

Since the minimal elements of the objective space Y (x0) form a set, the approximation

method proposed in this chapter requires careful attention to the problem of convergence

of sequences of sets. In this perspective, the pseudometric space (ℳ,ℋ) and the met-

ric space (K,ℋ), where ℳ = {M ⊂ Rp, M ∕= ∅, M bounded}, K = {K ⊂ Rp, K ∕=

∅, K compact}, andℋ(⋅, ⋅) is the Hausdorff distance, are considered. Section 4.2.1 presents

some topological properties of the spaces (ℳ,ℋ) and (K,ℋ). In Section 4.2.2, three im-

portant results related to minimal elements are then provided. In particular, it is shown

that for compact sets, the existence of minimal elements is guaranteed (Proposition 2.1),

and the external stability or domination property holds ([27, p. 53], [26, p. 59]) (Propo-

sition 4.4). Proposition 4.4, together with the more convenient equivalent definition of

the convergence of a sequence of sets in ℳ in terms of the convergence of sequences of

elements of these sets provided by Proposition 4.2, allows to state the continuity of the

minimal element map E(⋅) : K ∈ K → ℰ(K,D) ∈ ℳ (Proposition 4.5). This key result

is used in Section 4.6 to prove the convergence of the state-space approximation. In the

following, B is the unit closed ball in Rp.



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 119

4.2.1 Topological Properties of (ℳ,ℋ) and (K,ℋ) [1]

Let (M1,M2) ∈ℳ×ℳ; the Hausdorff distance [55, p. 365] ℋ(⋅, ⋅) between M1 and M2 is

ℋ(M1,M2) = max{ sup
m1∈M1

d(m1,M2), sup
m2∈M2

d(m2,M1)},

where, for M ∈ℳ,

d(x,M) = inf
m∈M

∥x−m∥.

It is easy to check that the Hausdorff distance ℋ(⋅, ⋅) defines a pseudometric onℳ (since

ℋ(M1,M2) = 0 ⇔ cl(M1) = cl(M2)) and a metric on K. An equivalent definition for the

Hausdorff distance ℋ(⋅, ⋅) is introduced in Proposition 4.1.

Proposition 4.1.

ℋ(M1,M2) = inf
l
{l ≥ 0, M1 ⊂M2 + lB and M2 ⊂M1 + lB}.

Proof. Let ℒ = {l ≥ 0, M1 ⊂ M2 + lB and M2 ⊂ M1 + lB} and l∗ = inf ℒ; it is proved

below that ℋ(M1,M2) = l∗.

First, note that l∗ is well defined as M1 and M2 belong to ℳ. Let l ∈ ℒ; then by

definition, M1 ⊂ M2 + lB. Hence, ∀m1 ∈ M1, ∃m2 ∈ M2, ∥m1 −m2∥ ≤ l, which implies

∀m1, d(m1,M2) ≤ l and sup{d(m1,M2), m1 ∈ M1} ≤ l. Similarly, sup{d(m2,M1), m2 ∈

M2} ≤ l. Hence, ℋ(M1,M2) ≤ l. Since the inequality holds for any l ∈ ℒ, it follows that

ℋ(M1,M2) ≤ l∗.

Conversely, ℋ(M1,M2) ≥ sup{d(m2,M1), m2 ∈ M2} ≥ d(m2,M1), ∀m2 ∈ M2. Hence,

∀� > 0, ∀m2 ∈M2, ∃m1 ∈M1, ℋ(M1,M2) > ∥m1−m2∥−�, and M2 ⊂M1+(ℋ(M1,M2)+

�)B. By symmetry, M1 ⊂ M2 + (ℋ(M1,M2) + �)B. Hence, ∀� > 0, ℋ(M1,M2) + � ∈ ℒ,



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 120

which implies l∗ ≤ ℋ(M1,M2).

Combining the two inequalities yields ℋ(M1,M2) = l∗.

Let (Mn)n∈N be a sequence inℳ and M ∈ℳ. The sequence (Mn) is said to converge

towards M in the sense of Hausdorff if and only if

lim
n→∞

ℋ(Mn,M) = 0.

A more convenient equivalent definition of the convergence of a sequence of sets in terms

of the convergence of samples of these sets, where a sample is defined as a sequence (mn)

such that ∀n ∈ N, mn ∈Mn, is introduced in Proposition 4.2.

Proposition 4.2. The sequence (Mn) converges towards M in the sense of Hausdorff if

and only if the two conditions S1 and S2 are satisfied:

1. Condition S1: For all m ∈M , there exists a sample (mn) of the sequence (Mn) such

that

lim
n→∞

mn = m.

2. Condition S2: For any sample (mn) of the sequence (Mn), there exists a sequence

(xn) in M such that

lim
n→∞

(mn − xn) = 0.

Proof. From Proposition 4.1, we have

lim
n→∞

ℋ(Mn,M) = 0⇔ ∀� > 0, ∃n0, ∀n ≥ n0, M ⊂Mn + �B and, Mn ⊂M + �B.

This equivalence, together with



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 121

1. ∀n ≥ n0, M ⊂ Mn + �B ⇔ ∀m ∈ M, ∀n ≥ n0, ∃mn ∈ Mn, ∥mn − m∥ < � ⇔

condition S1 holds, and

2. ∀n ≥ n0, Mn ⊂ M + �B ⇔ ∀n ≥ n0, ∀mn ∈ Mn, ∃xn ∈ M, ∥mn − xn∥ < � ⇔

condition S2 holds,

yields the result.

Corollary 4.1. If the sequence (Mn) converges towards M , then the following holds:

1.
∪
Mn is bounded;

2. Each sample of the sequence (Mn) is bounded;

3. If M ∈ K, any convergent subsequence of a sample of the sequence (Mn) has its limit

in M .

Proof. Part (i) follows from the boundedness of the sets Mn and M and the condition S2

from Proposition 4.2. Part (ii) is a consequence of Part (i). Part (iii) follows from the

closure of the set M and the condition S2 from Proposition 4.2.

Proposition 4.3 describes the relation between the set convergence in the sense of

Hausdorff and the well-known Kuratowski–Painlevé limit of sets [55, p. 16].

Proposition 4.3. Let (Kn)n∈N be a sequence of sets in K and K ∈ K; the sequence (Kn)

converges towards K in the sense of Hausdorff if and only if
∪
Kn is bounded and the

sequence (Kn) converges towards K in the sense of Kuratowski–Painlevé.

4.2.2 Existence of Minimal Elements and External Stability for

Compact Sets

Two important results related to minimal elements of compact sets are established below.



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 122

1. Proposition 4.4 shows that compactness yields the external stability or domination

property. This property states that for each element k ∈ K, there exists a minimal

element of K that is preferred to k.

2. For a given compact set K0 ∈ K, and under the assumption that the minimal el-

ements of the set K0 with respect to the ordering cone D is equal to the minimal

elements of the set K0 with respect to the ordering cone int(D)′, where int(D)′ =

int(D) ∪ {0}, Proposition 4.5 shows that the minimal element map E(⋅) : K ∈ K →

ℰ(K,D) ∈ ℳ is continuous at K0. Note that in the definition of the minimal el-

ement map, as ℰ(K,D) is bounded but not necessarily closed, it is only true that

ℰ(K,D) ∈ℳ.

Proposition 4.4. Let K ∈ K; then for each element k ∈ K, there exists a minimal

element of K that is preferred to k, or equivalently, ℰ(K,D) ∩ (k −D) ∕= ∅.

Proof. The proof is divided into two steps. Let k ∈ K. First, it is proved that ℰ(K ∩ (k−

D), D) ∕= ∅, and then that ℰ(K ∩ (k − D), D) ⊂ ℰ(K,D). These two facts ensure that

ℰ(K,D)∩(k−D) ∕= ∅. The first part is a consequence of Proposition 2.1 as K∩(k−D) ∈ K

from the assumptions on K and D. For the second part, let k′ ∈ ℰ(K ∩ (k − D), D),

then K ∩ (k − D) ∩ (k′ − D) = {k′}. As k′ ∈ (k − D), (k′ − D) ⊂ (k − D). Hence,

K ∩ (k′ −D) ⊂ K ∩ (k−D)∩ (k′ −D) = {k′}, which proves that k′ is a minimal element

of K.

Lemma 4.1. Let Y ⊂ Rp, Y ∕= ∅, and then cl(ℰ(Y,D)) ⊂ ℰ(Y, int(D)′), where int(D)′ =

int(D) ∪ {0}.

Proof. If int(D) = ∅, then the result is obvious. Otherwise, let y ∈ cl(ℰ(Y,D)), and then

there exists a sequence (yn) in ℰ(Y,D) converging towards y. Assume y /∈ ℰ(Y, int(D)′);



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 123

then there exists y′ ∈ Y, y′ ∕= y such that y ∈ y′ + int(D)′. We have

lim
n→∞

yn − y′ = y − y′ ∈ int(D)′.

Hence, yn − y′ ∈ int(D)′ ⊂ D for large enough n, which contradicts the fact that yn ∈

ℰ(Y,D).

Corollary 4.2. Let K ∈ K, and assume that ℰ(K,D) = ℰ(K, int(D)′), then ℰ(K,D) is

compact.

Proof. It is enough to show that ℰ(K,D) is closed, which is a consequence of Lemma 4.1.

Indeed, cl(ℰ(K,D)) ⊂ ℰ(K, int(D)′) ⊂ ℰ(K,D); hence cl(ℰ(K,D)) = ℰ(K,D).

Proposition 4.5. Let K ∈ K, and assume that ℰ(K,D) = ℰ(K, int(D)′); then E(⋅) is

continuous at K.

Proof. Consider a sequence of sets (Kn) in K converging towards K in the sense of Haus-

dorff. Proposition 4.2 is used below to prove that the sequence (E(Kn)) = (ℰ(Kn, D))

converges towards E(K) = ℰ(K,D) in the sense of Hausdorff. As a result, the proof is

divided into two parts.

Part 1 (proof of S1): Let k ∈ ℰ(K,D); it is needed to find a sample of (ℰ(Kn, D))

that converges towards k. Knowing that k ∈ K and from S1, there exists a sample (k′n)

of (Kn) such that the sequence (k′n) converges towards k. From the external stability

property (Proposition 4.4), for all k′n, there exists kn ∈ ℰ(Kn, D) such that k′n ∈ kn + D.

The sequence (kn) can be shown to converge towards k. From Corollary 4.1, the sequence

(kn) is bounded. Therefore, it is only needed only to show that any of its convergent

subsequences converges towards k. Let (k (n)) be such a convergent subsequence

lim
n→∞

k (n) = a.



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 124

Since D is closed, k−a ∈ D. By assumption, k ∈ ℰ(K,D) and from Corollary 4.1, a ∈ K,

which implies a = k.

Part 2 (proof of S2): Let (kn) be a sample of (ℰ(Kn, D)), hence of (Kn). From S2,

there exists a sequence (xn) in K such that

lim
n→∞

(kn − xn) = 0.

From the external stability property (Proposition 4.4), for all xn, there exists yn ∈ ℰ(K,D)

such that xn ∈ yn + D. The sequence (kn − yn) can be shown to converge towards zero.

From the boundedness of the sequence (kn) (Corollary 4.1) and knowing that the sequence

(yn) is in K, the sequence (kn − yn) is bounded. Therefore, it is only needed to show that

any of its convergent subsequences converges towards zero. It is possible to find convergent

subsequences (k (n) − y (n)), (k (n)), and (y (n)) such that

lim
n→∞

k (n) − y (n) = a, lim
n→∞

k (n) = k, and lim
n→∞

y (n) = y.

Hence, a = k − y. It is additionally true that

lim
n→∞

x (n) = k.

D being closed, it follows that a ∈ D. Now, it is claimed that k ∈ ℰ(K,D). Otherwise,

from the assumption of the proposition, k /∈ ℰ(K,D) implies k /∈ ℰ(K, int(D)′). Hence,

there exists v ∈ K, v ∕= k such that k ∈ v + int(D)′. Applying S1 to v, there exists a

sample (vn) of (Kn) that converges towards v, and

lim
n→∞

k (n) − v (n) = k − v ∈ int(D)′.



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 125

Hence, k (n) − v (n) ∈ int(D)′ ⊂ D for large enough n, which contradicts the fact that

k (n) ∈ ℰ(K (n), D). Finally, from Corollary 4.2, ℰ(K,D) is compact; hence y ∈ ℰ(K,D).

To summarize, it has been shown that a = k−y with a ∈ D and both k and y in ℰ(K,D),

which implies a = 0.

Note that the assumption ℰ(K,D) = ℰ(K, int(D)′) in Proposition 4.5 is only used in the

proof of S2.

4.3 A First-Order Discretization in Time

In this section, a first-order discretization in time with a fixed step ℎ of the problem (P)

is performed. This discretization yields a discrete multiobjective optimal control problem

denoted by (Pℎ). It is shown, in Section 4.4, how to generate convergent samples of the

sequence of sets (ℰ(cl(Yℎ(x0)), D)) as ℎ converges towards zero, where the set Yℎ(x0) is

defined as the objective space for the problem (Pℎ).

Consider a division of I into N intervals of equal length ℎ = T/N and the instants

(ti)i=0,...,N , where ti = iℎ. The discrete multiobjective optimal control problem (Pℎ) is

built by considering that the controls u(⋅), the dynamics f(⋅, ⋅), and the running cost L(⋅, ⋅)

remain constant in any time interval [ti, ti+1). Hence, the discrete control (ui)i=0,...,N for

the problem (Pℎ) is defined by

ui = u(ti), u(⋅) ∈ U .

The discrete trajectory (xi)i=1,...,N is obtained by the recursion

xi+1 = xi + ℎf(xi,ui) (4.7)



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 126

with initial conditions x0. And finally, the discrete cost Jh(x0,u(⋅)) is given by the series

Jh(x0,u(⋅)) = ℎ
N−1∑
i=0

L(xi,ui). (4.8)

Therefore, the discrete objective space Yℎ(x0) is defined by

Yℎ(x0) = {Jh(x0,u(⋅)),u(⋅) ∈ U},

and the set of minimal elements of the discrete objective space, Vℎ(x0), hereinafter referred

to as the discrete minimal element set, is

Vℎ(x0) = ℰ(cl(Yℎ(x0)), D).

Note that the final value of the trajectory xN and the final control uN do not play any

role in the proposed discretization as they do not appear in (4.8).

For the error estimates that will follow in Section 4.4.1, it is convenient to consider the

piecewise constant extension uh(⋅) to I of the discrete control:

∀t ∈ I, uh(t) = ui, i = [
t

ℎ
], (4.9)

and similarly, the piecewise constant extension xh(⋅) to I of the discrete trajectory:

∀t ∈ I, xh(t) = xi, i = [
t

ℎ
].

The piecewise constant extensions uh(⋅) and xh(⋅) are also referred to as discrete control

and discrete trajectory. If Uℎ ⊂ U denotes the set of discrete controls (4.9), the discrete



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 127

objective space Yℎ(x0) is equivalently defined by

Yℎ(x0) = {Jh(x0,uh(⋅)),uh(⋅) ∈ Uℎ}.

Evidently, the definition of the discrete minimal element set Vℎ(x0) remains the same.

The existence of minimal elements (Proposition 2.1) and the external stability property

(Proposition 4.4) for the discrete objective space Yℎ(x0) are needed in Section 4.4 to build

convergent samples of the sequence of discrete minimal element sets Vℎ(x0) as the time step

ℎ converges towards zero. For this purpose, it is stated in Proposition 4.6 the compactness

of the discrete objective space Yℎ(x0), from which follows that Vℎ(x0) = ℰ(Yℎ(x0), D).

Proposition 4.6. The discrete objective space Yℎ(x0) is a compact set.

Proof. Let g(⋅) : RN → RN be the function that associates a discrete control to the discrete

trajectory and h(⋅, ⋅) : RN ×RN → Rp be the function that associates a discrete control

and the discrete trajectory to the cost. Both these functions are continuous as f(⋅, ⋅) and

L(⋅, ⋅) are continuous by assumption. The discrete objective space Yℎ(x0) can be viewed

as the image of the compact set UN by the continuous function h(g(⋅), ⋅) : RN → Rp.

Hence, it is itself compact.

4.4 A Direct Convergence Proof

In this section, a recursive procedure which generates convergent samples of the sequence

of discrete minimal element sets Vℎ(x0) as the time step ℎ converges towards zero is

proposed. It is worth mentioning that under certain assumptions, the discrete objective

space Yℎ(x0) can be shown to converge towards the objective space Y (x0) in the sense

of Hausdorff. It then follows from the continuity of the minimal element map (Propo-



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 128

sition 4.5) that the discrete minimal element set Vℎ(x0) converges towards the minimal

element set V (x0). This guarantees that the samples generated by the recursive procedure

converge in the minimal element set V (x0). The key idea behind this procedure is to

use the sequence (ℎr), ℎr = T/2r, r ∈ N, for the time step [56]. Using this sequence,

it is possible to obtain an error estimate between the minimal elements of the discrete

objective space Y2ℎ(x0) and elements of the discrete objective space Yℎ(x0) as any discrete

control u2h(⋅) in U2ℎ can always be viewed as a discrete control uh(⋅) ∈ Uℎ satisfying

uh(t2i) = uh(t2i+1), i = 0, . . . , N − 1. A minimal element of the discrete objective space

Yℎ(x0) can finally be obtained using the external stability property (Proposition 4.4). The

error estimate between the elements of the discrete objective space Y2ℎ(x0) and elements of

the discrete objective space Yℎ(x0) is derived in Section 4.4.1, while Section 4.4.2 contains

the proposed procedure and the proof of convergence for the samples generated by the

procedure.

4.4.1 Error Estimation

Let u2h(⋅) be a discrete control in U2ℎ and choose the discrete control uh(⋅) in Uℎ such that

u2h(t) = uh(t), ∀t ∈ I. An intermediate step in the derivation of an error estimate between

the discrete costs Jh(x0,uh(⋅)) and J2h(x0,u2h(⋅)) is the derivation of an error estimate

between the discrete trajectories xh(⋅) and x2h(⋅). This step will be achieved in Propo-

sition 4.7 using the Gronwall–Bellman inequality. The derivation of the error estimate

between the discrete costs Jh(x0,uh(⋅)) and J2h(x0,u2h(⋅)) will follow in Proposition 4.8.

Note that both the error estimates obtained in Proposition 4.7 and in Proposition 4.8 are

of order ℎ and uniform in x0.

Proposition 4.7 (Error estimate for the discrete trajectories). Under the assumption (4.3)

that the function f is uniformly bounded, and for two discrete controls uh(⋅) ∈ Uℎ and

u2h(⋅) ∈ U2ℎ satisfying uh(t) = u2h(t), ∀t ∈ I, the following error estimate between the



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 129

discrete trajectories xh(⋅) and x2h(⋅) at time t ∈ I holds:

∥xℎ(t)− x2ℎ(t)∥ ≤ C1ℎ expKf t,

where C1 is a constant.

Proof. Equation (4.7) can be rewritten as

xh(t) =

∫ [ t
ℎ
]ℎ

0

f(xh(s),uh(s))ds+ x0.

Similarly,

x2h(t) =

∫ [ t
2ℎ

]2ℎ

0

f(x2h(s),u2h(s))ds+ x0.

Now, we have

∥xℎ(t)− x2ℎ(t)∥ ≤ I1 + I2 + I3,

where

I1 =

∫ t

0

∥f(xh(s),uh(s))− f(x2h(s),u2h(s))∥ds,

I2 =

∫ [ t
ℎ
]ℎ

t

∥f(xh(s),uh(s))∥ds,

I3 =

∫ [ t
2ℎ

]2ℎ

t

∥f(x2h(s),u2h(s))∥ds.

The uniform boundedness assumption on f leads directly to

I2 ≤ ℎMf ,

I3 ≤ 2ℎMf .



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 130

Knowing that u2h(s) = uh(s), ∀s ∈ I, and using the Lipschitz condition on f , we obtain

I1 ≤ Kf

∫ t

0

∥xh(s)− x2h(s)∥ds.

Finally,

∥xℎ(t)− x2ℎ(t)∥ ≤ 3ℎMf +Kf

∫ t

0

∥xℎ(s)− x2ℎ(s)∥ds.

Applying the Gronwall–Bellman inequality [57] yields

∥xℎ(t)− x2ℎ(t)∥ ≤ 3Mfℎ expKf t = C1ℎ expKf t,

where C1 = 3Mf .

Proposition 4.8 (Error estimate for the discrete costs). Under the same assumptions

as in Proposition 4.7 and the assumption (4.4) that the function L(⋅,u) is Lipschitz, the

following error estimate between the discrete costs Jh(x0,uh(⋅)) and J2h(x0,u2h(⋅)) holds:

∥Jh(x0,uh(⋅))− J2h(x0,u2h(⋅))∥ ≤ C2ℎ,

where C2 is a constant.

Proof. Equation (4.8) can be rewritten as

Jh(x0,uh(⋅)) =

∫ T

0

L(xh(s),uh(s))ds.

Knowing that u2h(s) = uh(s), ∀s ∈ I, and using the Lipschitz condition on L, we obtain

∥Jh(x0,uh(⋅))− J2h(x0,u2h(⋅))∥ ≤ KL

∫ T

0

∥xh(s)− x2h(s)∥ds.

Substituting the error estimate for the discrete trajectories obtained in Proposition 4.7



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 131

and integrating yields

∥Jh(x0,uh(⋅))− J2h(x0,u2h(⋅))∥ ≤ 3MfKL

Kf

(exp(KfT )− 1)ℎ = C2ℎ,

where C2 = 3MfKL

Kf
(exp(KfT )− 1).

4.4.2 Generating Convergent Samples of the Sequence (Vℎ(x0))

The proposed procedure to generate samples of the sequence Vℎ(x0), detailed below as

Procedure 1, is a recursive procedure consisting of two main steps. Starting from an el-

ement J2h(x0,uh(⋅)) of the minimal element set V2ℎ(x0), the discrete cost Jh(x0,uh(⋅))

corresponding to the discrete control uh(⋅) satisfying uh(t) = u2h(t),∀t ∈ I, is calculated.

Then, the application of the external stability property (Proposition 4.4) to the discrete

objective set Yℎ(x0) yields an element in the minimal element set Vℎ(x0) preferred to the

discrete cost Jh(x0,uh(⋅)).

Procedure 1: let ℎ → 0 through the sequence (ℎr) with ℎr = T/2r, r ∈ N . Let the

set Zr be defined by Zr = Vℎr(x0) (x0 is dropped for brevity), and let (zr) be any sample

of the sequence (Zr) built recursively as follows.

Step 1. Let r = 0. From Propositions 2.1 and 4.6, the set Z0 is nonempty; hence let

z0 ∈ Z0. Note that it is possible to initiate Procedure 1 at any r = r0 > 0.

Step 2. Proposition 4.8 yields an element yr+1 in the discrete objective space Yℎr+1(x0)

such that

∥zr − yr+1∥ ≤ C2ℎr+1.

Step 3. From the external stability property (Proposition 4.4) and Proposition 4.6, there

exists zr+1 ∈ Zr+1 such that yr+1 ∈ zr+1 +D.



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 132

Step 4. Repeat Step 2.

The convergence of the sequence (zr) built from Procedure 1 will be proved in Proposi-

tion 4.10. The main idea behind this proof is to show that every element of the sequence

(zr) is in an appropriate neighborhood of elements of any converging subsequence, from

which the convergence of the whole sequence can be concluded. This proof requires the

following preliminaries.

Lemma 4.2 (Lemma 3.2.3, [26, p. 52]). Let K ∈ K, and Y ⊂ Rp be a closed set; then the

set K + Y is closed.

Define D̂ = {d ∈ D, ∥d∥ = 1} and D̃(d,D) = D ∩ (d − D), ∀d ∈ D. Let also

�(D) = inf{∥x− y∥, x ∈ D̂, y ∈ −D}.

Lemma 4.3. �(D) > 0.

Proof. Assume �(D) = 0; then there exists a sequence (xn) in D̂ and a sequence (yn) in

−D such that

lim
n→∞

∥xn − yn∥ = 0.

D̂ being compact, there exists a convergent subsequence (x (n)) such that

lim
n→∞

x (n) = x ∈ D̂.

It follows that the sequence (y (n)) is bounded. Hence, there exists a convergent subse-

quence (y�∘ (n)) such that

lim
n→∞

y�∘ (n) = y ∈ −D.

Finally, x+ (−y) = 0 with both x and −y in D. Knowing that D is pointed implies that

x = y = 0, which is a contradiction.

Lemma 4.4. ∀y ∈ D̃(d,D), ∥y∥ ≤ ∥d∥/�(D).



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 133

Proof. If y = 0, then the result is obvious. Let y ∈ D̃(d,D), y ∕= 0, and y ∈ d−D; hence

there exists x ∈ D such that y + x = d. Divide this last expression by ∥y∥, and rewrite it

as

y

∥y∥
− −x
∥y∥

=
d

∥y∥
,

y/∥y∥ ∈ D̂, and −x/∥y∥ ∈ −D. The proof is completed by taking the norm on both sides

and using the definition of �(D).

Proposition 4.9. Consider (K1, K2) ∈ K × K such that (K1 + D) ∩K2 ∕= ∅ and define

K = (K1 +D) ∩ (K2 −D). Then, K ∈ K and ∀(k, k̃) ∈ K ×K,

∥k − k̃∥ ≤ 2

�(D)
sup{∥k1 − k2∥, (k1, k2) ∈ K1 ×K2}+ diam(K1),

where diam(K1) denotes the diameter of the set K1.

Proof. Let k ∈ K; then there exists k1 ∈ K1, k2 ∈ K2, (d1, d2) ∈ D × D such that

k = k1 + d1 and k = k2 − d2. Hence, k2 − k1 = d1 + d2, and therefore k2 − k1 ∈ D. Now,

it can be written k = k1 + (k2 − k1) − d2. Hence, k − k1 ∈ (k2 − k1) −D. Knowing that

k − k1 ∈ D yields k − k1 ∈ D̃(k2 − k1, D). Similarly, let k̃ ∈ K; then there exists k̃1 ∈ K1

and k̃2 ∈ K2 such that k̃ − k̃1 ∈ D̃(k̃2 − k̃1, D). We have

∥k − k̃∥ ≤ ∥k − k1∥+ ∥k1 − k̃1∥+ ∥k̃1 − k̃∥.

From Lemma 4.4, ∥k − k1∥ ≤ ∥k2 − k1∥/�(D) and ∥k̃1 − k̃∥ ≤ ∥k̃2 − k̃1∥/�(D). Hence,

∥k − k1∥+ ∥k1 − k̃1∥+ ∥k̃1 − k̃∥ ≤
1

�(D)
∥k2 − k1∥+ ∥k1 − k̃1∥+

1

�(D)
∥k̃2 − k̃1∥.



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 134

Finally,

∥k − k̃∥ ≤ 2

�(D)
sup{∥k1 − k2∥, (k1, k2) ∈ K1 ×K2}+ diam(K1),

which shows that K is bounded. The closure is a consequence of Lemma 4.2. Hence, K is

compact.

Proposition 4.10. Under the assumption (4.5) that the function L is uniformly bounded,

the sequence (zr) converges.

Proof. The uniform boundedness assumption on L implies that

∀x0 ∈ Rn, ∀u(⋅) ∈ Uℎ, ∥Jh(x0,u(⋅))∥ ≤ TML,

which shows that the sets Yℎ(x0), and consequently Zr, are uniformly bounded. The

sequence (zr) being bounded has at least one accumulation point z. From the definition

of z,

∀� > 0, ∀r0, ∃r > r0, ∥zr − z∥ < �.

Repeatedly applying this definition with �p = 1/p, p = 1, . . . ,∞ yields an increasing

sequence (rp) such that ∥zrp − z∥ < 1/p. Setting  (p) = rp, a subsequence (z (p)) which

converges towards z and satisfies ∥z (p) − z∥ < 1/p, ∀p ≥ 1 is obtained. The key point is

to observe that necessarily, from the construction of the sequence (zr),

zr ∈ K, ∀r ∈ [ (p),  (p+ 1)],

where B(x, r) denotes the closed ball centered at x with radius r,

K = (B(z (p+1), l) +D)
∩

(B(z (p), l)−D),



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 135

and

l = C2

 (p+1)∑
r= (p)+1

ℎr ≤ C2
T

2 (p)
.

Applying Proposition 4.9 with K1 = B(z (p+1), l) and K2 = B(z (p), l) leads to

∥zr − z (p)∥ ≤
2

�(D)

(
2l + ∥z (p+1) − z (p)∥

)
+ l.

By applying the triangular inequality,

∥z (p) − z (p+1)∥ < ∥z (p) − z∥+ ∥z− z (p+1)∥ <
1

p
+

1

p+ 1
,

which implies that ∥zr − z (p)∥ < �p, where the sequence (�p) converges towards zero.

Let now r ∈ N; then there exists a unique p such that r ∈ [ (p),  (p + 1)). By ap-

plying the triangular inequality,

∥zr − z∥ ≤ ∥zr − z (p)∥+ ∥z (p) − z∥ ≤ �p +
1

p
,

which shows that the sequence (zr) converges towards z.

4.5 A Discrete Dynamic Programming Formulation

After having performed the time discretization, the problem is to determine the discrete

minimal element set Vℎ(x0). This is done in two steps. First, it is proved in Corol-

lary 4.3, using the dynamic programming principle [15], that the discrete minimal element

set Vℎ(x0) is also the solution to a discrete multiobjective dynamic programming equation

with respect to the ordering cone D denoted by (HJℎ). Second, in Section 4.6, a discretiza-

tion in the state space of the discrete multiobjective dynamic programming equation (HJℎ)



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 136

is performed, yielding an approximate multiobjective dynamic programming equation de-

noted by (HJdℎ). The solution to this approximate equation is shown in Corollary 4.4 to

converge towards the discrete minimal element set Vℎ(x0) in the sense of Hausdorff.

The statement of the discrete multiobjective dynamic programming equation (HJℎ)

in Proposition 4.11 requires the introduction of a few additional notations, which are

introduced below. For 0 ≤ k ≤ m ≤ N − 1, the discrete objective space Y k,m
ℎ (xk) is

defined by

Y k,m
ℎ (xk) = {Jk,mℎ (xk,u(⋅)) = ℎ

m∑
i=k

L(xi,ui),u(⋅) ∈ Uℎ},

and the corresponding discrete minimal element set by

V k,m
ℎ (xk) = ℰ(cl(Y k,m

ℎ (xk)), D).

With this notation, it can be seen that the discrete objective space Yℎ(x0) is the same

as the set Y 0,N−1
ℎ (x0) and the discrete minimal element set Vℎ(x0) is the same as the set

V 0,N−1
ℎ (x0). The set Ỹ k,m

ℎ (xk) that will also be called discrete objective space is defined

by

Ỹ k,m
ℎ (xk) = {Jk,mℎ (xk,u(⋅)) + V m+1,N−1

ℎ (xm+1),u(⋅) ∈ Uℎ}, (4.10)

and the corresponding discrete minimal element set by

Ṽ k,m
ℎ (xk) = ℰ(cl(Ỹ k,m

ℎ (xk)), D).

In the definition of the discrete objective space Ỹ k,m
ℎ (xk), the particular case m = N − 1

yields the discrete minimal element set V N,N−1
ℎ (xN), which is usually referred to as the



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 137

terminal data condition [15], and is set to

V N,N−1
ℎ (xN) = {0}. (4.11)

The definition of the discrete objective space Ỹ k,m
ℎ (xk) can be justified by noting that

the discrete objective space Y m+1,N−1
ℎ (xm+1) is bounded from the uniform boundedness

of the running cost function L(⋅, ⋅), which guarantees the existence of minimal elements

from Proposition 2.1. The existence of minimal elements for the discrete objective space

Ỹ k,m
ℎ (xk) can be justified using a similar argument.

Proposition 4.11. For 0 ≤ k ≤ m ≤ N − 1, the discrete multiobjective dynamic pro-

gramming equation denoted by (HJℎ) is

V k,N−1
ℎ (xk) = Ṽ k,m

ℎ (xk),

which yields, together with (4.10),

Ṽ k,m
ℎ (xk) = ℰ(cl({Jk,mℎ (xk,u(⋅)) + Ṽ m+1,m′

ℎ (xm+1),u(⋅) ∈ Uℎ}), D),

with m+ 1 ≤ m′ ≤ N − 1. From (4.11), the terminal data condition is

Ṽ N,N
ℎ (xN) = {0}.

Proof. For clarity, the following three lemmas to be used in the proof of Proposition 4.11

are first proved and this proof is postponed to the end of this section.

Lemma 4.5. Ỹ k,m
ℎ (xk) ⊂ cl(Y k,N−1

ℎ (xk)).

Proof. Let ỹ ∈ Ỹ k,m
ℎ (xk) and � > 0; then there exists ũ(⋅) ∈ Uℎ and ym+1 ∈ Y m+1,N−1

ℎ (xm+1)



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 138

such that

∥ỹ − Jk,mℎ (xk, ũ(⋅))− ym+1∥ ≤ �,

with ym+1 = Jm+1,N−1
ℎ (xm+1, û(⋅)) for some û(⋅) ∈ Uℎ. Define the new control u(⋅) ∈ Uℎ

as

u =

⎧⎨⎩ ũ, j = 1, . . . ,m,

û, j = m+ 1, . . . , N − 1.

Then, Jk,mℎ (xk, ũ(⋅)) + ym+1 = Jk,N−1ℎ (xk,u(⋅)) = y ∈ Y k,N−1
ℎ (xk), and y verifies

∥ỹ − y∥ ≤ �.

Hence, ỹ ∈ cl(Y k,N−1
ℎ (xk)).

Lemma 4.6. cl(Y k,N−1
ℎ (xk)) ⊂ cl(Ỹ k,m

ℎ (xk) +D).

Proof. Let y ∈ cl(Y k,N−1
ℎ (xk)) and � > 0; then there exists y ∈ Y k,N−1

ℎ (xk) such that

∥y − y∥ ≤ �. Writing y = Jk,mℎ (xk,u(⋅)) + ym+1 with ym+1 ∈ Y m+1,N−1
ℎ (xm+1) yields

∥y − Jk,mℎ (xk,u(⋅))− ym+1∥ ≤ �.

We also have ym+1 ∈ cl(Y m+1,N−1
ℎ (xm+1)). From the external stability property, there

exists ym+1
∗ ∈ V m+1,N−1

ℎ (xm+1) such that ym+1 ∈ ym+1
∗ +D. Therefore,

∥y − Jk,mℎ (xk,u(⋅))− ym+1
∗ − d∥ ≤ �,

which leads to Jk,mℎ (xk,u(⋅)) + ym+1
∗ ∈ Ỹ k,m

ℎ (xk). Hence, y ∈ cl(Ỹ k,m
ℎ (xk) +D).

Lemma 4.7. cl(Ỹ k,m
ℎ (xk) +D) ⊂ cl(Ỹ k,m

ℎ (xk)) +D.

Proof. This is a consequence of the facts that the discrete objective space Ỹ k,m
ℎ (xk) is

bounded and D is closed.



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 139

Lemma 4.8. Let K1 ⊂ K, K2 ⊂ K satisfying K1 ⊂ K2 and K2 ⊂ K1+D; then ℰ(K1, D) =

ℰ(K2, D).

Proof. From Proposition 2.1, ℰ(K1, D) ∕= ∅. Let k1 ∈ ℰ(K1, D), and hence k1 ∈ K1 ⊂ K2.

Assume that k1 /∈ ℰ(K2, D), and hence there exists k2 ∈ K2, d ∈ D, d ∕= 0 such that

k1 = k2 + d. By assumption, k2 ∈ K1 + D; hence there exists k′1 ∈ K1, d
′ ∈ D such that

k2 = k′1 + d′, which yields k1 = k′1 + d + d′. D being convex, d + d′ ∈ D with d + d′ ∕= 0,

which contradicts the fact that k1 ∈ ℰ(K1, D). Therefore, ℰ(K1, D) ⊂ ℰ(K2, D).

From Proposition 2.1, ℰ(K2, D) ∕= ∅. Let k2 ∈ ℰ(K2, D); then k2 ∈ K2. By assumption,

k2 ∈ K1 + D; hence there exists k1 ∈ K1, d ∈ D such that k2 = k1 + d. By assumption,

k1 ∈ K2. Hence, necessarily, as k2 ∈ ℰ(K2, D), we have d = 0, k2 = k1, and k2 ∈ K1. From

the assumption K1 ⊂ K2 follows that k2 ∈ ℰ(K1, D). Therefore, ℰ(K2, D) ⊂ ℰ(K1, D).

Combining the two inclusions yields ℰ(K1, D) = ℰ(K2, D).

Proposition 4.11 can now be proved.

Proof. Apply Lemma 4.8 with K1 = cl(Ỹ k,m
ℎ (xk)) and K2 = cl(Y k,N−1

ℎ (xk)). The sets

cl(Ỹ k,m
ℎ (xk)) and cl(Y k,N−1

ℎ (xk)) are compact. The inclusion K1 ⊂ K2 comes from Lem-

ma 4.5, while the inclusion K2 ⊂ K1 +D comes from Lemmas 4.6 and 4.7.

Corollary 4.3. The discrete minimal element set Vℎ(x0) is equal to the discrete mini-

mal element set Ṽ 0,0
ℎ (x0), which can be obtained from the discrete multiobjective dynamic

programming equation (HJℎ)

Ṽ k,k
ℎ (xk) = ℰ(cl({ℎL(xk,u) + Ṽ k+1,k+1

ℎ (xk + ℎf(xk,u)),u ∈ U}), D), (4.12)



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 140

with terminal data condition

Ṽ N,N
ℎ (xN) = {0}. (4.13)

Proof. Recalling that the discrete element set Vℎ(x0) is the same as the set V 0,N−1
ℎ (x0),

this result follows directly from Proposition 4.11.

4.6 A Discretization in the State Space

This section describes the last step of the approximation method proposed in this chap-

ter. This step consists of a discretization in the state space of the discrete multiobjective

dynamic programming equation (4.12) of Corollary 4.3, which yields an approximate mul-

tiobjective dynamic programming equation (HJdℎ). Using the continuity of the minimal

element map (Proposition 4.5), the solution to the approximate multiobjective dynamic

programming equation (HJdℎ) is shown in Corollary 4.4 to converge towards the discrete

minimal element set Vℎ(x0) in the sense of Hausdorff as the state-space discretization con-

verges towards zero.

The discretization of the state space is first performed. If Xk, k = 0, . . . , N de-

notes the set of possible values for the state at the instant tk, assuming that the set

X0 is compact, then it can be observed, using the continuity of the function f(⋅, ⋅), that

each set Xk, k = 1, . . . , N is compact. By compactness, each set Xk, k = 0, . . . , N

can be covered by a finite number Mk of closed balls B(xk,j, �k), j = 1, . . . ,Mk. Define

d = max{�k, k = 0, . . . , N} as the size of the state-space discretization.

Let k = 0, . . . , N − 1 and xk ∈ Xk; then there always exists j such that xk ∈ B(xk,j, �k).

The set Ŷ k,k
ℎ (xk), representing the state-space approximation to the discrete objective



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 141

space Ỹ k,k
ℎ (xk), is defined by

Ŷ k,k
ℎ (xk) = {ℎL(xk,j,u) + ℰ(cl(Ŷ k+1,k+1

ℎ (xk + ℎf(xk,u))), D),u ∈ U}, (4.14)

while the set Ŷ N,N
ℎ (xN) is defined by

Ŷ N,N
ℎ (xN) = {0}. (4.15)

Proposition 2.1, together with the boundedness assumption on the running cost function

L(⋅, ⋅), justify the definition of the set Ŷ k,k
ℎ (xk). The minimal element set V̂ k,k

ℎ (xk), rep-

resenting the state-space approximation to the minimal element set Ṽ k,k
ℎ (xk), is defined

by

V̂ k,k
ℎ (xk) = ℰ(cl(Ŷ k,k

ℎ (xk)), D).

From (4.14)-(4.15), it can be written

V̂ k,k
ℎ (xk) = ℰ(cl({ℎL(xk,j,u) + V̂ k+1,k+1

ℎ (xk + ℎf(xk,u)),u ∈ U}), D), (4.16)

and

V̂ N,N
ℎ (xN) = {0}. (4.17)

The multiobjective dynamic programming equation (4.16) denoted by (HJdℎ), together with

the terminal data condition (4.17), is an approximation to the multiobjective dynamic

programming equation (4.12), together with the terminal data condition (4.13). Using the

continuity of the minimal element map, it is shown in Proposition 4.12 that the minimal

element set V̂ k,k
ℎ (xk) converges towards the discrete minimal element set Ṽ k,k

ℎ (xk) in the

sense of Hausdorff as the state-space discretization d converges towards zero.



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 142

Proposition 4.12. With the assumption (see Proposition 4.5)

Ṽ k,k
ℎ (xk) = ℰ(cl(Ỹ k,k

ℎ (xk)), int(D)′), ∀k = 0, . . . , N − 1, ∀xk ∈ Xk,

we have

lim
d→0
ℋ(V̂ k,k

ℎ (xk), Ṽ k,k
ℎ (xk)) = 0, ∀xk ∈ Xk.

Proof. The proposed proof is a proof by induction.

Step 1. Proof for the case k = N − 1. Let xN−1 ∈ XN−1. We have

Ỹ N−1,N−1
ℎ (xN−1) = {ℎL(xN−1,u),u ∈ U},

and

Ŷ N−1,N−1
ℎ (xN−1) = {ℎL(xN−1,j,u),u ∈ U}.

To be able to apply Proposition 4.5, it must be verified that the sets cl(Ỹ N−1,N−1
ℎ (xN−1))

and cl(Ŷ N−1,N−1
ℎ (xN−1)) are compact, and they are as both these sets are bounded.

It is also required that

lim
�N−1→0

ℋ(cl(Ŷ N−1,N−1
ℎ (xN−1)), cl(Ỹ N−1,N−1

ℎ (xN−1))) = 0.

This follows from the Lipschitz assumption on the running cost L(⋅, ⋅).

Step 2. Proof for the case k − 1 assuming that the result is true for k > 1, i. e.,

lim
(�k,...,�N−1)→0

ℋ(V̂ k,k
ℎ (xk), Ṽ k,k

ℎ (xk)) = 0,∀xk ∈ Xk. (4.18)

Let xk−1 ∈ Xk−1. To be able to apply Proposition 4.5, it must be verified that the

sets cl(Ỹ k−1,k−1
ℎ (xk−1)) and cl(Ŷ k−1,k−1

ℎ (xk−1)) are compact, and they are as both



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 143

these sets are bounded. It is also required that

lim
(�k−1,...,�N−1)→0

ℋ(cl(Ŷ k−1,k−1
ℎ (xk−1)), cl(Ỹ k−1,k−1

ℎ (xk−1))) = 0.

This follows from comparing (4.10), which can be rewritten, using Proposition 4.11,

Ỹ k−1,k−1
ℎ (xk−1) = {ℎL(xk−1,u) + Ṽ k,k

ℎ (xk−1 + ℎf(xk−1,u)),u ∈ U},

with (4.14), which can be rewritten,

Ŷ k−1,k−1
ℎ (xk−1) = {ℎL(xk−1,j,u) + V̂ k,k

ℎ (xk−1 + ℎf(xk−1,u)),u ∈ U},

and using both the induction assumption (4.18) and the Lipschitz assumption on the

running cost L(⋅, ⋅).

Corollary 4.4. The minimal element set V̂ 0,0
ℎ (x0), solution to the multiobjective dynamic

programming equation approximation (4.16) with terminal condition (4.17), converges to-

wards the discrete minimal element set Vℎ(x0) in the sense of Hausdorff as the state-space

discretization d converges towards zero.

Proof. From Proposition 4.12, it is known that the minimal element set V̂ 0,0
ℎ (x0) converges

towards the discrete minimal element set Ṽ 0,0
ℎ (x0). From Corollary 4.3, the discrete mini-

mal element set Ṽ 0,0
ℎ (x0) has been shown to be equal to the discrete minimal element set

Vℎ(x0), which completes the proof.



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 144

4.7 Extensions

The results obtained in this chapter remain valid, with minimal changes, for nonau-

tonomous problems, including terminal cost. At the expense of adding constraints on

the terminal state, a terminal cost can be reformulated as an integral cost [54, pp. 25–

26]. However, such constraints are not considered in this chapter. Another alternative

is to directly include the terminal cost in the formulation of the multiobjective problem.

In this case, the terminal cost function is required to be Lipschitz for the error estimate

(Proposition 4.8), and uniformly bounded for the proof of convergence (Proposition 4.10).

Another important modification concerning the terminal data condition (4.13) and (4.17)

is to include the terminal cost evaluated at the terminal state xN. For nonautonomous

problems, the time variable appears explicitly at each step of the approximation method.

In this case, the Lipschitz assumption in time is also required [58, 59].

4.8 Further Results: Minimal Element Map Continu-

ity

The continuity of the minimal element map at K ∈ K was established in Proposition 4.5

under the condition that ℰ(K,D) = ℰ(K, int(D)′). It will be shown in Proposition 4.14

that the continuity of the minimal element map remains valid under the weaker condi-

tion cl(ℰ(K,D)) = ℰ(K, int(D)′). This condition is in fact also necessary as shown in

Proposition 4.13.

Proposition 4.13. If the minimal element map is continuous at K ∈ K, then cl(ℰ(K,D)) =

ℰ(K, int(D)′).

Proof. Recall that from Lemma 4.1, cl(ℰ(K,D)) ⊂ ℰ(K, int(D)′). Therefore, to prove

the proposition, it is only needed to establish that ℰ(K, int(D)′) ⊂ cl(ℰ(K,D)). Let



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 145

y ∈ ℰ(K, int(D)′); consider a sequence (yn) such that yn ∈ y− int(D) and limn→∞ yn = y,

and define the sequence of compact sets Kn = K ∪ {yn}. By construction, yn ∈ ℰ(Kn, D).

Moreover, from limn→∞ yn = y, it follows that the sequence (Kn) converges towards K in

the sense of Hausdorff. By continuity of the minimal element map at K, it follows that

the sequence (ℰ(Kn, D)) converges towards ℰ(K,D) in the sense of Hausdorff. Hence,

y ∈ cl(ℰ(K,D)) and finally cl(ℰ(K,D)) ⊂ ℰ(K, int(D)′).

The following lemma will prove useful for the proof of Proposition 4.14.

Lemma 4.9. Let (kn) be a bounded sequence in Rn, and A be the set of cluster points

of the sequence (kn), then there exists a sequence (xn), xn ∈ A such that

lim
n→∞

kn − xn = 0. (4.19)

Proof. Given that the sequence (kn) is bounded, it follows that A is compact. Let

(xn), xn ∈ A be a sequence such that:

∀n, ∥kn − xn∥ = d(kn, A).

It remains to be proven that (4.19) holds with (xn) as defined above. Let � > 0, A

being compact, there is a finite number of open balls B(x∗i , �), i = 1, . . . , p, x∗i ∈ A

such that A ⊂ ∪i=1,⋅⋅⋅ ,pB(x∗i , �). It is now proved that there exists n0 such that ∀n ≥ n0,

kn ∈ ∪i=1,...,pB(x∗i , �). Assume the contrary, then it is possible to find a subsequence (k (n))

such that ∀n, k (n) /∈ ∪i=1,...,pB(x∗i , �). Let (k�∘ (n)) be a subsequence of (k (n)) converging

towards k∗. By the definition of A, k∗ ∈ A, and therefore k∗ ∈ ∪i=1,...,pB(x∗i , �), where

∪i=1,...,pB(x∗i , �) is an open set. It follows that (k�∘ (n)) ∈ ∪i=1,...,pB(x∗i , �) for large enough

n, which is a contradiction. Now, given n ≥ n0, there exists an index i(n) ∈ {1, . . . , p}

such that kn ∈ B(x∗i(n), �). Therefore, ∥xn − kn∥ = d(kn, A) ≤ ∥x∗i(n) − kn∥ = �, which



CHAPTER 4. A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM 146

completes the proof.

Proposition 4.14. If cl(ℰ(K,D)) = ℰ(K, int(D)′), then the minimal element map is

continuous at K ∈ K.

Proof. It is needed to prove the two conditions S1 and S2 as defined in Proposition 4.2.

Part 1 (proof of S1): In Part 1 of the proof of Proposition 4.5, it was shown that ev-

ery element in ℰ(K,D) is the limit of a sample of the sequence (ℰ(Kn, D)). Hence, it

can be deduced that every element in cl(ℰ(K,D)) is the limit of a sample of the sequence

(ℰ(Kn, D)).

Part 2 (proof of S2): Let (kn) be a sample of the sequence (ℰ(Kn, D)), it is needed to

show that there exists a sequence (xn) in cl(ℰ(K,D)) such that

lim
n→∞

kn − xn = 0.

As
∪
n∈N Kn is bounded, it follows that the sequence (kn) is bounded. It can simply be

shown that each cluster point of (kn) belongs to ℰ(K, int(D)′); therefore, by assumption,

it also belongs to cl(ℰ(K,D)). Then, the sequence (xn) can be directly obtained from

Lemma 4.9.

Corollary 4.5. The minimal element map is continuous at K if and only if cl(ℰ(K,D)) =

ℰ(K, int(D)′).

Proof. This follows directly from Proposition 4.13 and 4.14.



Chapter 5

Practical Considerations

As described in Chapter 3, the major issue with using DDP to solve PCTS2 is the resolu-

tion time. As shown in Section 5.1, this issue arises from the fact that the complexity of

the DDP approximation method is exponential with the grid size. By clustering [32, pp.

325–329] the Pareto optimal set at each step of the resolution of the approximate multiob-

jective dynamic programming equation, this complexity can be reduced to polynomial. In

Section 5.2, a measure indicating how well a given set of points may represent the Pareto

optimal set is introduced. This measure is applied to the Pareto objective vectors and

the approximate Pareto objective vectors as obtained in Chapter 3 with the weighting

method and the DDP approximation method respectively. This measure is also applied to

the set of points obtained when solving the approximate dynamic programming equation

with clustering. Finally, in Section 5.3, it is shown how continuous joint trajectories can

be generated from the discrete joint trajectories obtained with the DDP approximation

method.

147



CHAPTER 5. PRACTICAL CONSIDERATIONS 148

5.1 Resolution Time Reduction via Clustering

5.1.1 Complexity of the DDP Approximation Method

For clarity, the approximate dynamic programming equation (3.44) resulting from the

DDP approximation method is

Jℎ,dk (vk) = ℰ({ℎ(f̃1(k, vk, v̇k), f̃2(k, vk)) + Jℎ,dk+1(vk + ℎv̇k), v̇k ∈ ℬℎ,dk (vk)},R2
+),

with (3.45) as terminal data condition:

Jℎ,dNT
(vNT

) = {(0, 0)}.

The complexity of the resolution of the approximate dynamic programming equation is

directly related to the cardinality of the sets Jℎ,dk (vk). Indeed, the set Jℎ,dk (vk) is determined

by performing comparisons between the elements of the set {ℎ(f̃1(k, vk, v̇k), f̃2(k, vk)) +

Jℎ,dk+1(vk + ℎv̇k), v̇k ∈ ℬℎ,dk (vk)} with cardinality

∑
v̇k∈ℬℎ,dk (vk)

∣Jℎ,dk+1(vk + ℎv̇k)∣.

Therefore, using a simple element by element comparison method, the complexity to obtain

the set Jℎ,dk (vk) is

O

(( ∑
v̇k∈ℬℎ,dk (vk)

∣Jℎ,dk+1(vk + ℎv̇k)∣
)2)

.

Recalling that ∣ℬℎ,dk (vk)∣ = O(NX), we obtain

O

(( ∑
v̇k∈ℬℎ,dk (vk)

∣Jℎ,dk+1(vk + ℎv̇k)∣
)2)

= O(N2
X ∣J

ℎ,d
k+1(vk+1)∣2), (5.1)



CHAPTER 5. PRACTICAL CONSIDERATIONS 149

All the sets Jℎ,dk (vk) at tk can therefore be determined in O(N3
X ∣J

ℎ,d
k+1(vk+1)∣2), and the sets

Jℎ,d0 (v0) in
NT−1∑
k=0

O(N3
X ∣J

ℎ,d
k+1(vk+1)∣2). (5.2)

To express (5.2) as a function of NT and NX only, ∣Jℎ,dk+1(vk+1)∣ must be determined. From

the equality ∣ℬℎ,dk (vk)∣ = O(NX), it can be deduced that the cardinality of the sets Jℎ,dk (vk)

increases, in the worst case, by a factor of NX between each time step. It is therefore a

simple induction to show that ∣Jℎ,dk (vk)∣ = O(NNT−k
X ), which substituted in (5.2), yields

NT−1∑
k=0

O(N3
X ∣J

ℎ,d
k+1(vk+1)∣2) =

NT−1∑
k=0

O(N2NT−2k+3
X ) = O(N2NT+3

X ). (5.3)

The worst case for the resolution of the approximate dynamic programming equation (3.44)

with terminal data condition (3.45) is therefore exponential in the grid size, which explains

why the resolution time to obtain the set Jℎ,d0 (v0) in Section 3.3.3 was as large as 24,628 s.

It also justifies a posteriori why no experimental convergence study for the DDP approxi-

mation method was performed in Chapter 3.

The clustering problem [32, p. 325–329] is defined as the problem of determining the

“best” partition of a given set into subsets, or clusters. As already noted, the complexity

of the resolution of the approximate dynamic programming equation directly relates to

the cardinality of the sets Jℎ,dk (vk). Therefore, once the set Jℎ,dk (vk) is obtained, it is pro-

posed to determine a cluster of Jℎ,dk (vk) with cardinality NC and use this cluster for the

subsequent iteration of the approximate dynamic programming equation. As a result, the

cardinality of the sets Jℎ,dk+1(vk +ℎv̇k) is at most NC , the complexity (5.1) to obtain the set

Jℎ,dk (vk) becomes O(N2
XN

2
C), and the cardinality of the set Jℎ,dk (vk) is O(NXNC). Accord-

ingly, the complexity (5.2) to obtain the sets Jℎ,d0 (v0) becomes O(NTN
3
XN

2
C). Therefore,

the complexity of the resolution of the approximate dynamic programming equation be-



CHAPTER 5. PRACTICAL CONSIDERATIONS 150

comes polynomial in the grid size.

However, to be precise, the effect of the clustering complexity f(m,n), where m is

the cardinality of the cluster and n the cardinality of the original set, must also be taken

into account. As seen above, with clustering, the complexity to obtain the set Jℎ,dk (vk) is

O(N2
XN

2
C) and the cardinality of the set Jℎ,dk (vk) is O(NXNC). Therefore, the complexity

to obtain a cluster of the set Jℎ,dk (vk) is O(N2
XN

2
C)+f(NC , O(NXNC)). Hence, the clusters

for all the sets Jℎ,dk (vk) at tk can be determined in O(N3
XN

2
C) +NXf(NC , O(NXNC)), and

finally the clusters for the sets Jℎ,d0 (v0) in

NT−1∑
k=0

O(N3
XN

2
C) +NXf(NC , O(NXNC)) = O(NTN

3
XN

2
C) +NTNXf(NC , O(NXNC)). (5.4)

Equation (5.4) shows that, for the complexity of the resolution of the approximate dynamic

programming equation with clustering to be polynomial, it is necessary that the clustering

complexity is itself polynomial. In Section 5.1.2, attention will therefore be restricted to

clustering methods with polynomial complexity.

5.1.2 Clustering Methods

As PCTS2 has only two objective functions, the sets Jℎ,dk (vk) are subsets of R2. Therefore,

the clustering problem for PCTS2 can be formally stated as follows. Let A = {xi, i =

1, . . . , n} be a set of distinct points in the plane. Given m (m < n), the clustering problem

for PCTS2 is the problem of selecting m points in A, or equivalently, choosing the cluster

as an element Ã∗ of the set Am, where Am = {Ã ⊂ A, ∣Ã∣ = m} is the set of subsets

of A with cardinality m. Three clustering methods are proposed below. For each of the

clustering methods, the complexity f is provided. The functions f that are provided are

only indicative of the actual implementation of the clustering methods, and might not



CHAPTER 5. PRACTICAL CONSIDERATIONS 151

correspond to the “best” complexity or the “best” implementation for these methods. For

each of the clustering methods, the resulting complexity for the resolution of the approxi-

mate dynamic programming equation, calculated using (5.4), is shown to be O(NTN
3
XN

2
C).

For the description of the clustering methods, the concept of extreme points needs to

be introduced. The extreme points are the two points with the lowest x and y coordinates

and will be assumed to correspond to x1 and xn respectively. As explained below, each of

the clustering methods has some freedom, which, in particular, allows for the inclusion of

the extreme points in the construction of the cluster Ã∗. The impact of such a choice over

a random point in A will be illustrated in Section 5.1.3. It also explains why variants are

introduced for each clustering method.

Random clustering

The first clustering method, denoted M5, consists of selecting the m points randomly. A

variant of this clustering method, denoted M4, is to include the two extreme points among

the m points. For M5, f(m,n) = O(m). Therefore, substituting in (5.4) yields

O(NTN
3
XN

2
C) +O(NTNXNC) = O(NTN

3
XN

2
C).

For M4, O(n) is required to find the extreme points, therefore f(m,n) = O(m + n).

Substituting in (5.4) yields

O(NTN
3
XN

2
C) +NTNXO(NC +NXNC) = O(NTN

3
XN

2
C) +O(NTN

2
XNC) = O(NTN

3
XN

2
C).



CHAPTER 5. PRACTICAL CONSIDERATIONS 152

Clustering Based on the Hausdorff Distance

The Hausdorff distance, introduced in Chapter 4, is a distance function between compact

sets. Therefore, it is natural to suggest, as a second clustering method, to select a cluster

Ã∗ that minimizes the Hausdorff distance to A. From Chapter 4, the Hausdorff distance

between the sets Ã and A is:

ℋ(Ã, A) = max{max
xi∈Ã

min
xj∈A
∥xi − xj∥,max

xi∈A
min
xj∈Ã
∥xi − xj∥}.

By definition, Ã ⊂ A, therefore:

∀xi ∈ Ã, min
xj∈A
∥xi − xj∥ = 0.

Hence,

ℋ(Ã, A) = max
xi∈A

min
xj∈Ã
∥xi − xj∥ = max

xi∈A∖Ã
min
xj∈Ã
∥xi − xj∥.

The cluster Ã∗ therefore satisfies

ℋ(Ã∗, A) = min
Ã∈Am

ℋ(Ã, A) = min
Ã∈Am

max
xi∈A∖Ã

min
xj∈Ã
∥xi − xj∥.

In Proposition 5.1, it is shown that Ã∗ can be obtained by solving the restricted central

m-clustering problem for the set A. The restricted central m-clustering problem for a

given set is a well-known problem in geometric location theory [33], [34, pp. 325–327],

which can be described as follows. Call a partition of A into m clusters, Ai, i = 1, . . . ,m,

an m-clustering. The central cluster size of an m-clustering is defined as the least value d

for which all the points in each cluster Ai are within the distance d of some cluster centre

which can be any point in space. The central clustering problem is to find, for a given set

A and integer m, an m-clustering for A with minimum central cluster size d∗. When the



CHAPTER 5. PRACTICAL CONSIDERATIONS 153

cluster centres are restricted to belong to A, the central m-clustering problem is referred

to as the restricted central m-clustering problem [33].

Proposition 5.1. Let d∗ be the minimum central cluster size for A and A∗i , i = 1, . . . ,m

be an m-clustering with central cluster size d∗. If Â is the set of the m cluster centres,

then

ℋ(Â, A) = min
Ã∈Am

ℋ(Ã, A),

d∗ = ℋ(Â, A), and hence, the cluster Ã∗ can be chosen to be Â.

Proof. The proof of this result uses the following characterization of the Hausdorff distance

provided in Chapter 4:

ℋ(Ã, A) = min
l≥0
{Ã ⊂ A+ lB and A ⊂ Ã+ lB}.

By definition, Ã ⊂ A, therefore:

ℋ(Ã, A) = min
l≥0
{A ⊂ Ã+ lB}.

First, we prove that ∀Ã ∈ Am, ℋ(Ã, A) ≥ d∗ by building an m-clustering for each Ã ∈ Am.

Without loss of generality, it can be assumed that Ã = {x1, . . . , xm}. First, define the set

A1 which contains x1 and all the elements in A∖Ã within a distance of ℋ(Ã, A) from x1:

A1 = {x1} ∪ {xi ∈ B(x1,ℋ(Ã, A)) ∩ (A∖Ã)}.

Then, define, recursively from j = 2 tom, the set Aj, which contains xj and all the elements

in A∖Ã within a distance of ℋ(Ã, A) from xj that have not already been included in the



CHAPTER 5. PRACTICAL CONSIDERATIONS 154

sets Ai, i < j:

Aj = {xj} ∪ {xi ∈ B(xj,ℋ(Ã, A)) ∩ (A∖(Ã ∪j−1i=1 Ai))}.

It follows, from the above characterization of the Hausdorff distance, that ∪m1 Aj = A.

Hence, the sets Aj, j = 1, . . . ,m form an m-clustering whose size is by construction

smaller than or equal in size to ℋ(Ã, A). Therefore, ∀Ã ∈ Am, d∗ ≤ ℋ(Ã, A), which

yields

d∗ ≤ min
Ã∈Am

ℋ(Ã, A).

To prove the reverse inequality, from its definition, Â is the set of the m cluster cen-

tres. Therefore, by definition of the central cluster size, A ⊂ Â + d∗B. From the above

characterization of the Hausdorff distance, it follows that

ℋ(Â, A) ≤ d∗.

Hence, combining the two above inequalities yields

d∗ = ℋ(Â, A) = min
Ã∈Am

ℋ(Ã, A).

Hence, the cluster Ã∗ can be chosen to be Â.

Unfortunately, for dimension two and above, the restricted central m-clustering prob-

lem is very difficult to solve: it is NP-hard [35, pp. 114–145] for approximation factors of �

in the central cluster size if � <
√

3 ([33], Theorem 12). In other words, unless P=NP, there

does not exist any deterministic polynomial algorithm that can solve the approximate re-

stricted central m-clustering problem with an approximation factor less than
√

3. The best

known algorithms in terms of algorithmic complexity for the resolution of the restricted



CHAPTER 5. PRACTICAL CONSIDERATIONS 155

central m-clustering problem and its (1 + �)-approximation (� > 0) are the ones from [60]

with an algorithmic complexity respectively of nO(
√
m) and O(n log(m) + (m/�)O(

√
m)).

However, these two algorithms do not satisfy the requirement of polynomial complexity.

The “best” known polynomial algorithm for the resolution of the restricted central m-

clustering problem is the farthest-point clustering from [34, p. 326] and [36]. This O(nm)

algorithm guarantees a solution within at most two times the minimum central cluster

size. The O(nm) algorithmic complexity was improved to O(n log(m)) in [33]. However,

due to simplicity of its implementation, the O(nm) algorithm from [36] is preferred and

used here. Substituting f(m,n) = O(nm) in (5.4) yields

O(NTN
3
XN

2
C) +NTNXf(NC , O(NXNC) = O(NTN

3
XN

2
C) +O(NTN

2
XN

2
C) = O(NTN

3
XN

2
C).

For the farthest-point clustering, the choice of the initial point is arbitrary. Therefore, for

the method M6, the initial point is chosen randomly, and for the variant M7, the initial

point is chosen to be the extreme point x1.

Clustering based on the Normal-Boundary Intersection (NBI) method [61]

The third clustering method is inspired by the NBI method developed to solve multiobjec-

tive nonlinear optimization problem [61], and aims at selecting points that are “uniformly

distributed”. This clustering method is based on the following essential observation. From

the definition of the extreme points x1 and xn, it follows that the set A is completely

contained in a rectangle with x1 as the upper left corner, and xn as the lower right corner.

From there, trace the diagonal between x1 and xn, and divide this diagonal into m − 2

identical segments. By tracing lines perpendicular to the diagonal at the extremities of

these segments, a partition Ai, 1 ≤ i ≤ m − 2 of the set A∖{x1, xn} is obtained. This

procedure is illustrated in Figure 5.1.



CHAPTER 5. PRACTICAL CONSIDERATIONS 156

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

F1

F
2

Figure 5.1: Performing the partition based on the NBI method for a given set and for
m = 10.

The final step of this clustering method consists of selecting one point in each set Ai,

which can be done as follows:

∙ Method M1: take the most “centred” point in each set Ai, i.e., the closest point to

the line perpendicular to the diagonal dividing the set Ai evenly.

∙ Method M2: take the furthest point from the diagonal in the direction of the origin.

∙ Method M3: take the point randomly.

Once one point in each Ai is selected, the extreme points are added. Note that it is possible

that a set Ai does not contain any point. In such a case, this clustering method provides

a subset with a cardinality less than m.



CHAPTER 5. PRACTICAL CONSIDERATIONS 157

Table 5.1: Description of the clustering methods. (E) indicates that the cluster
contains at least one extreme point by construction.

NBI Random Hausdorff

M1 M2 M3 M4 M5 M6 M7

(E) (E) (E) (E) - - (E)

For all the three methods, it is required to find the extreme points and select a point

in Ai. Therefore, the complexity f(m,n) is O(m+ n). Substituting in (5.4) yields

O(NTN
3
XN

2
C) +NTNXO(NC +NXNC) = O(NTN

3
XN

2
C) +O(NTN

2
XNC) = O(NTN

3
XN

2
C).

The three proposed clustering methods therefore yield the same complexity O(NTN
3
XN

2
C)

for the resolution of the approximate dynamic programming equation. A summary of the

methods is provided Table 5.1.

5.1.3 Numerical Results

The same problem PCTS2 as solved in Section 3.3.3 is also used in this section. Therefore,

NT and NX are fixed. Two series of tests are performed and reported below. For the

first series of tests in Figure 5.2(a), clustering is applied directly to the set Jℎ,d0 (v0) whose

cardinality in Section 3.3.3 was found to be 138. With the notation from Section 5.1.2, this

corresponds to A = Jℎ,d0 (v0). For the second series of tests in Figure 5.2(b), the clustering

is applied to the resolution of the approximate dynamic programming equation, i.e., A =

Jℎ,dk (vk). The objective of these two series of tests is to find which clustering method

performs the best, to illustrate the importance of including the extreme points, and finally

to verify that clustering indeed reduces the resolution time of the approximate dynamic

programming equation. As a measure to compare the clustering methods, the Hausdorff

distance between the final set obtained with clustering and the original set Jℎ,d0 (v0) is used.



CHAPTER 5. PRACTICAL CONSIDERATIONS 158

For the clustering method involving randomness, an average of ten executions was found

to provide consistent results.



CHAPTER 5. PRACTICAL CONSIDERATIONS 159

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

NC

H
au

sd
or

ff 
di

st
an

ce

 

 
M1
M2
M3
M4
M5
M6
M7

(a) First series of tests: clustering applied to Jℎ,d
0 (v0).

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NC

H
au

sd
or

ff 
di

st
an

ce

 

 
M1
M2
M3
M4
M5
M6
M7

(b) Second series of tests: clustering applied to the approximate dynamic programming
equation.

Figure 5.2: Variation of the Hausdorff distance as a function of NC for the clustering
methods M1 to M7.



CHAPTER 5. PRACTICAL CONSIDERATIONS 160

From Figures 5.2(a) and 5.2(b), for each of the clustering methods, the trend is that the

Hausdorff distance decreases as NC increases, which is expected. It is clear that clustering

based on the NBI method, i.e., M1, M2, and M3, and clustering based on the Hausdorff

distance, i.e., M6 and M7, perform much better than random clustering, i.e., M4 and M5.

The comparison between clustering based on the NBI method and clustering based on the

Hausdorff distance is less obvious, therefore, it is proposed to count the number of times

these methods provide the best Hausdorff distance. When different methods provide the

same Hausdorff distance, the counter for each of these methods is incremented. The results

are provided in Tables 5.2 and 5.3, which indicate that clustering based on the Hausdorff

distance performs the best.

Table 5.2: First series of tests: comparison based on the smallest Hausdorff distance.

NBI Random Hausdorff
4 0 10

M1 M2 M3 M4 M5 M6 M7

3 1 0 0 0 4 6

Table 5.3: Second series of tests: comparison based on the smallest Hausdorff
distance.

NBI Random Hausdorff
2 0 4

M1 M2 M3 M4 M5 M6 M7

1 1 0 0 0 0 4

When comparing M6 and M7 from Tables 5.2 and 5.3, the same conclusion as when

comparing M4 and M5 from Figures 5.2(a) and 5.2(b) can be made. The variants of the

clustering methods which include the extreme points by construction, i.e., M4 and M7,

perform better. This can be explained by the fact that including the extreme points in the



CHAPTER 5. PRACTICAL CONSIDERATIONS 161

clustering method guarantees that the extreme points at each iteration of the approximate

dynamic programming equation are the same with and without clustering. In other words,

the rectangle defined from the extreme points in Figure 5.1 is the same at each iteration

with and without clustering. On the other hand, if the extreme points are not included,

then, at each iteration, the rectangle with clustering becomes smaller and smaller com-

pared to the rectangle without clustering. From the above discussion, M7 is retained as

the clustering method for the rest of this section.

The approximate dynamic programming equation is now solved with M7 and NC = 30.

The resulting set is shown, together with Jℎ,d0 (v0), in Figure 5.3. The Hausdorff distance

between these two sets is 0.0351. The resolution time drops considerably from 24,628 s

to 159 s. As expected, note that the resulting set includes the extreme points without

clustering. This shows that it is possible to obtain an approximate set to Jℎ,d0 (v0) in a very

short time which is very close to Jℎ,d0 (v0) in terms of the Hausdorff distance.

It is also interesting to compare the set obtained above with the set obtained when

applying M7 directly with NC = 30 to Jℎ,d0 (v0). Indeed, the Hausdorff distance obtained

when directly applying M7 to Jℎ,d0 (v0) represents the “best” Hausdorff distance that can

be expected when applying clustering to the resolution of the approximate dynamic pro-

gramming equation. In this case, a Hausdorff distance of 0.0213 was obtained, which is

close to the value 0.0351 previously obtained. The two resulting sets are represented in

Figure 5.4.

5.1.4 Conclusion and Extensions

Clustering has been shown to address very efficiently the resolution time issue associated

with using DDP by reducing the complexity from exponential to polynomial in the grid



CHAPTER 5. PRACTICAL CONSIDERATIONS 162

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

F1

F
2

x1

xn

Figure 5.3: Comparison between the set obtained from the resolution of the
approximate dynamic programming equation with M7 and NC = 30 (circles) and the

set Jℎ,d0 (v0) (plus signs).

size. The resolution time increases by increasing the clustering parameter NC , but reduces

the Hausdorff distance with the set Jℎ,d0 (v0) of approximate Pareto objective vectors. The

choice of NC will be discussed in Section 5.2.

The clustering methods proposed in Section 5.1.2 have been developed for two objective

functions. However, the clustering method based on the NBI method cannot be extended

to more than two objective functions. Indeed, the construction of the rectangle containing

the Pareto objective vectors does not extend to dimension three and above as shown by

the following example. Let x1 = (1, 0, 0) be the Pareto objective vector with the smallest

x component, x2 = (3, 2,−2) is another Pareto objective vector which happens to have

both the smallest y and z components. Any point xn = (2, n,−1), n > 0 could be another



CHAPTER 5. PRACTICAL CONSIDERATIONS 163

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

F1

F
2

x1

xn

Figure 5.4: Comparison between the set obtained from the resolution of the
approximate dynamic programming equation with M7 and NC = 30 (circles) and the

set obtained when applying directly M7 with NC = 30 to Jℎ,d0 (v0) (plus signs).

Pareto objective vector. Therefore, the set of Pareto objective vectors is not necessarily

bounded by the extreme points. However, the farthest point algorithm used in the clus-

tering method based on the Hausdorff distance is valid in any dimension. Interestingly, its

complexity does not depend on the dimension of the space. Therefore, the complexity of

the resolution of the approximate dynamic programming equation with clustering based

on the Hausdorff distance will remain polynomial for dimension three and above.



CHAPTER 5. PRACTICAL CONSIDERATIONS 164

5.2 A Quantitative Comparison between the Weight-

ing Method and DDP

In Chapter 3, the comparison between the approximate Pareto objective vectors obtained

with the DDP approximation method and the Pareto objective vectors obtained with the

weighting method was only qualitative. This section aims at providing a performance

measure [62, pp. 187–211] of how well these two sets represent the Pareto optimal set.

Naturally, the Hausdorff distance is chosen for this measure. However, as the Pareto

optimal set is not known, the Hausdorff distance cannot be applied directly. Nevertheless,

lower and upper bounds can still be derived, which are sufficient to conclude that the DDP

approximation method outperforms the weighting method.

5.2.1 An Upper Bound for the Performance Measure

Let A∗ ⊂ R2 be a Pareto optimal set, and A = {x1, . . . , xn} be a subset of A∗, where x1

and xn are assumed to be the extreme points of A∗. The objective of this section is to

derive an upper bound for ℋ(A,A∗) when A∗ is supposed to be not known and A is known.

As already explained in Section 5.1.2, A∗ is included in the rectangle R with x1 as the

upper left corner and xn as the lower right corner. Also, from the definition of a Pareto

objective vector, it follows that there cannot be any Pareto objective vector in any of the

sets (xi + R2
+) ∪ (xi − R2

+), i = 1, . . . , n. Therefore, A∗ ⊂ B, where the open set B,

illustrated in Figure 5.5, is defined as follows:

B =
n∪
1

R∖((xi + R2
+) ∪ (xi −R2

+)).



CHAPTER 5. PRACTICAL CONSIDERATIONS 165

Figure 5.5: Illustration of the set B.

Hence, an upper bound for ℋ(A,A∗) is given by

sup{ℋ(A,C), A ⊂ C ⊂ B, C compact},

which corresponds to the worst-case Hausdorff distance knowing that the Pareto optimal

set A∗ includes A, which is known, and is included in B, which can easily be built from

A. As shown in Proposition 5.2, the problem of finding this worst-case distance amounts

to searching for the point in B with the largest distance from A.



CHAPTER 5. PRACTICAL CONSIDERATIONS 166

Proposition 5.2.

sup{ℋ(A,C), A ⊂ C ⊂ B, C compact} = sup
x∈B

d(x,A).

Proof. Let x ∈ B, the set A ∪ {x} is compact and satisfies A ⊂ A ∪ {x} ⊂ B, hence

ℋ(A,A ∪ {x}) ≤ sup{ℋ(A,C), A ⊂ C ⊂ B, C compact}.

Or,

ℋ(A,A ∪ {x}) = d(x,A).

Therefore,

d(x,A) ≤ sup{ℋ(A,C), A ⊂ C ⊂ B, C compact}, (5.5)

and finally,

sup
x∈B

d(x,A) ≤ sup{ℋ(A,C), A ⊂ C ⊂ B, C compact}.

Conversely, let C be a compact set such as A ⊂ C ⊂ B, as A ⊂ C, by definition of the

Hausdorff distance, it must be that:

ℋ(A,C) = sup
x∈C

d(x,A).

As C ⊂ B,

sup
x∈C

d(x,A) ≤ sup
x∈B

d(x,A).

Hence,

sup{ℋ(A,C), A ⊂ C ⊂ B, C compact} ≤ sup
x∈B

d(x,A), (5.6)

Combining (5.5) and (5.6) completes the proof.



CHAPTER 5. PRACTICAL CONSIDERATIONS 167

To find supx∈B d(x,A), assume that the points xi have been ordered from the lowest to

the highest x coordinate, and define the open rectangle Ri with upper left corner xi and

lower right corner xi+1. Hence:

sup
x∈B

d(x,A) = max
i=1,...,n−1

sup
x∈Ri

d(x,A). (5.7)

Let x ∈ Ri, it is clear that

sup
x∈Ri

d(x,A) = min{d(x, xi), d(x, xi+1)}.

The solution of min{d(x, xi), d(x, xi+1)} is given by the distance d(xi, yi) as illustrated in

Figure 5.6, where the point yi is defined by the intersection of the median of the segment

defined by the two points xi and xi+1 with the rectangle Ri. A simple geometric argument

gives

d(xi, yi) =
d(xi, xi+1)

2

2Li
,

where Li is the length of the rectangle Ri. Substituting in (5.7) yields,

sup
x∈B

d(x,A) = max
i=1,...,n−1

d(xi, xi+1)
2

2Li
,

which, from Proposition 5.2, corresponds to an upper bound for ℋ(A,A∗):

ℋ(A,A∗) ≤ max
i=1,...,n−1

d(xi, xi+1)
2

2Li
.



CHAPTER 5. PRACTICAL CONSIDERATIONS 168

Figure 5.6: Geometric determination of yi.

5.2.2 A Lower Bound for the Performance Measure

Let A1 and A2 be two subsets of A∗, as A1 ∪ A2 ⊂ A∗, it follows that

ℋ(A1, A1 ∪ A2) ≤ ℋ(A1, A
∗),

and

ℋ(A2, A1 ∪ A2) ≤ ℋ(A2, A
∗).

Therefore,ℋ(A1, A1∪A2) andℋ(A2, A1∪A2) can be seen as lower bounds for the Hausdorff

distances ℋ(A1, A
∗) and ℋ(A2, A

∗).



CHAPTER 5. PRACTICAL CONSIDERATIONS 169

5.2.3 Bounding the Performance Measure

Combining the upper and lower bounds obtained from Sections 5.2.1 and 5.2.2, we obtain:

ℋ(A1, A1 ∪ A2) ≤ ℋ(A1, A
∗) ≤ max

i=1,...,∣A1∣−1

d(xi, xi+1)
2

2Li
,

and

ℋ(A2, A1 ∪ A2) ≤ ℋ(A2, A
∗) ≤ max

i=1,...,∣A2∣−1

d(xi, xi+1)
2

2Li
,

where the sets of rectangles Ri have been determined for both A1 and A2 as described in

Section 5.2.1.

5.2.4 Numerical Experiments

In this section, the bounds derived in Section 5.2.3 are applied to the Pareto objective

vectors A1 obtained with the weighting method and to the approximate Pareto objective

vectors obtained with the DDP approximation, i.e., A2 = Jℎ,d0 (v0). Strictly, as only ap-

proximate Pareto objective vectors are obtained with the DDP approximation method,

A2 is not a subset of the Pareto optimal set A∗, and the bounds do not apply. Neverthe-

less, these bounds are determined and their validity will be discussed later in this section.

For clarity, the sets A1 and A2 are reproduced in Figure 5.7, which is identical to Fig-

ure 3.18. The rectangles Ri for determining the upper bounds for A1 and A2 are drawn in

Figures 5.8(a) and 5.8(b) respectively.



CHAPTER 5. PRACTICAL CONSIDERATIONS 170

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

F1

F
2

A1

A2

Figure 5.7: The set A1 of Pareto objective vectors obtained with the weighting

method (circles) and A2 = Jℎ,d0 (v0) (dots).



CHAPTER 5. PRACTICAL CONSIDERATIONS 171

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

F1

F
2

(a) For the Pareto objective vectors A1 obtained with the weighting method.

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

F1

F
2

(b) For the approximate Pareto objective vectors A2 = Jℎ,d
0 (v0).

Figure 5.8: Building the rectangles to find an upper bound.



CHAPTER 5. PRACTICAL CONSIDERATIONS 172

The resulting bounds are presented in Table 5.4. It can be concluded from Table 5.4

that the Hausdorff distance between A2 = Jℎ,d0 (v0) and the Pareto optimal set is much

lower than the Hausdorff distance between the set A1 of Pareto objective vectors obtained

with the weighting method and the Pareto optimal set, which indicates that the DDP

approximation method provides a much better representation of the Pareto optimal set

than the weighting method.

Table 5.4: Lower and upper bounds for the set A1 of Pareto objective vectors

obtained with the weighting method and A2 = Jℎ,d0 (v0).

Lower bound Upper bound
A1 0.21 0.28
A2 0.069 0.068

It can be noted in Table 5.4 that for the DDP approximation method, the lower bound

is slightly greater than the upper bound. This comes from the assumption made above

that the approximate Pareto objective vectors are Pareto objective vectors. Therefore,

it is proposed to perform another comparison not requiring that assumption. For this

comparison, the weighting method is applied to the grid resulting from the DDP approx-

imation. In this way, the weighting method also produces approximate Pareto objective

vectors. As in Section 3.1.3, the weighting coefficient w is given the value 0, 1, . . . , 30. Only

four different approximate Pareto objective vectors result, which are plotted together with

Jℎ,d0 (v0) in Figure 5.9. The rectangles Ri to determine the upper bound for A1 and A2 are

drawn in Figures 5.10(a) and 5.10(b) respectively.



CHAPTER 5. PRACTICAL CONSIDERATIONS 173

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

F1

F
2

A1

A2

Figure 5.9: The set A1 of approximate Pareto objective vectors obtained with the

weighting method (circles) and A2 = Jℎ,d0 (v0) (dots).



CHAPTER 5. PRACTICAL CONSIDERATIONS 174

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

F1

F
2

(a) For the approximate Pareto objective vectors A1 obtained with the weighting method.

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

F1

F
2

(b) For the approximate Pareto objective vectors A2 = Jℎ,d
0 (v0).

Figure 5.10: Building the rectangles to find an upper bound.



CHAPTER 5. PRACTICAL CONSIDERATIONS 175

The lower and upper bounds are recalculated in Table 5.5. From Figure 5.9, as A1 ⊂ A2,

it is normal that the lower bound for A2 is zero. It can be observed that the lower and

upper bounds obtained for A1 in Table 5.5 are very similar to those obtained in Table 5.4,

which indicates that our original assumption that the approximate Pareto objective vectors

are Pareto objective vectors was reasonable. It can again be concluded that the DDP

approximation method provides a much better representation of the Pareto optimal set

than the weighting method.

Table 5.5: Lower and upper bounds for the set A1 of approximate Pareto objective

vectors obtained with the weighting method and A2 = Jℎ,d0 (v0).

Lower bound Upper bound
A1 0.19 0.24
A2 0.0 0.068

5.2.5 Conclusion and Extensions

The lower bound that was derived in Section 5.2.2 remains valid for dimension two and

above. However, the geometric construction for the derivation of the upper bound cannot

be extended to more than two objective functions for the same reason mentioned in Sec-

tion 5.1.4 for the clustering method based on the NBI method.

Returning to clustering and the choice of the clustering parameter NC , it can be con-

cluded from Figure 5.2(b) and the results from Tables 5.4 and 5.5 that even a small value

for NC still yields a better representation of the Pareto optimal set from the DDP ap-

proximation method. Indeed, the lower bound for the weighting method was found to be

around 0.2 in Tables 5.4 and 5.5, whereas, for example, from Figure 5.2(b), the Hausdorff

distance for M7 and NC = 5 is 0.14.



CHAPTER 5. PRACTICAL CONSIDERATIONS 176

5.3 Generating Continuous Joint Trajectories

Together with the set of approximate Pareto objective vectors, the DDP approximation

provides the corresponding discrete trajectories {vi, i = 0, . . . , NT}, as introduced in Sec-

tion 3.2.3. From these discrete trajectories, it is required to produce continuous trajectories

v(t) such that the joint configuration, joint speed, and joint acceleration can be known

at any time t ∈ [t0, tf ]. The common approach is to interpolate with cubic splines [63,

pp. 9–17]. The main reason for such a choice is that, by construction, cubic spline inter-

polation guarantees that the first and second derivatives are continuous. Therefore, from

the inverse kinematics equation (2.6), interpolating {vi, i = 0, . . . , NT} with cubic splines

guarantees that the joint speed and joint acceleration will be continuous. The illustration

for cubic spline interpolation will be provided in Section 6.6.

As mentioned in 3.1.2, it is desirable to have zero initial and final joint speeds. However,

this was never taken into account as a constraint. The two degrees of freedom in cubic

spline interpolation can be advantageously used to set the initial and final redundancy pa-

rameter first derivative to zero, which yields, from the inverse kinematics equation (2.7),

zero initial and final joint speeds.

One drawback of the proposed DDP approximation method is that the constraints are

only satisfied at ti, i = 0, . . . , NT . At other times, it cannot be guaranteed a priori that

the constraints will be satisfied due to the discretization. The joint trajectories have to

be checked a posteriori against the constraints. This can be done by evaluating the joint

configuration and joint speeds for a small time step. The possibility of generating joint

trajectories not satisfying the constraints everywhere is aggravated by the fact that, to

limit the grid size, the discretization in time should not be chosen to be too small. Nev-



CHAPTER 5. PRACTICAL CONSIDERATIONS 177

ertheless, first, as already mentioned, the joint speeds are expected to be small, therefore,

the variation of the joint configuration is expected to be small between two instants ti and

ti+1. Second, one advantage of the DDP approximation method has been shown to be its

ability to produce a desired number NC of approximate Pareto objective vectors that are

well distributed in the objective space. As will be illustrated in Section 6.6, joint trajec-

tories corresponding to these approximate Pareto objective vectors span the configuration

space. Therefore, by applying a safety factor on the constraints, it is expected that few

joint trajectories will be eliminated from the checking process.



Chapter 6

Resolution of the Problem in the

Task Space

For clarity, the definition of PCTS1 is recalled in Section 6.1, and additional notation is

introduced. To obtain fast resolution times, an approximation algorithm is used to solve

PCTS1. To evaluate the performance of this algorithm, a lower bound on the number

of store trajectories needed to complete all the subtasks in S is derived in Section 6.2.

To ease the presentation of the algorithm presented in Section 6.4, standard definitions

in graph theory are recalled in Section 6.3. The approximation algorithm, detailed in

Section 6.4, is based on the resolution of a rural postman problem [37, 64]. Numerical

experiments evaluating the performance of this algorithm are presented in Section 6.5.

Finally, in Section 6.6, for a given grid survey experiment, PCTS is entirely solved using

the developments of Chapters 3, 5, and 6.

178



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 179

6.1 Problem Definition

For clarity, the notation introduced in Section 2.3.1 is recalled. A subtask was defined as

the task of moving the store from Ai with an angle of attack �j to Ai′ with an angle of

attack �j′ , and was represented by the quadruplet (i, j, i′, j′). A grid survey experiment

consists of completing the set of subtasks S such that (Ai, Ai′) ∈ K, and j′ = j, �j ∈ ℬi,i′ ,

where K = {(Ai, Ai′)} is a set of segments, A = {Ai, i = 1, . . . , I} a set of positions

defined relative to the parent aircraft, and ℬi,i′ is a set of store angles of attack. Also,

ℬ =
∪

(Ai,Ai′ )∈K

ℬi,i′ .

Some additional notation is introduced now. Let S1 be the set of subtasks consisting of

moving the store along a segment with a constant angle of attack, but that do not belong

to S. Subtasks in S1 are store motions between segments of the grid that are only required

to connect segments of the grid together. For subtasks in S1, either the segment belongs

to K and the angle of attack does not belong to ℬi,i′ , which corresponds to (Ai, Ai′) ∈ K,

and j′ = j, �j /∈ ℬi,i′ , �j ∈ ℬ, or the segment does not belong to K which corresponds to

(Ai, Ai′) /∈ K, and j′ = j, �j ∈ ℬ. In this latter case, the angle of attack can be any angle of

attack in ℬ. Let S2 be the set of subtasks consisting of changing the angle of attack from �j

to �j′ at a position Ai. Subtasks in S2 are store motions for which the position of the store

is fixed but the store angle of attack is changed to another desired value in ℬ. Subtasks in

S2 correspond to i = i′, �j ∈ ℬ, and �j′ ∈ ℬ. For example, for the grid survey experiment

presented in Figure 2.4, where ℬi,i′ = ℬ = {0∘,−3∘,−6∘,−9∘,−12∘,−15∘ − 18∘},

∙ The set S consists of the subtasks {(1, j, 2, j), (1, j, 3, j), (1, j, 4, j), �j ∈ ℬ}. There-

fore, ∣S∣ = 21.

∙ The set S1 consists of the subtasks {(2, j, 3, j), (2, j, 4, j), (3, j, 4, j), �j ∈ ℬ}. There-



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 180

fore, ∣S1∣ = 21.

∙ The set S2 consists of the subtasks {(1, j, 1, j′), (2, j, 2, j′), (3, j, 3, j′), (4, j, 4, j′), �j ∈

ℬ, �j′ ∈ ℬ}. Therefore, ∣S2∣ = 4(6 + 5 + 4 + 3 + 2 + 1) = 84.

The trajectory for each subtask s in S ∪ S1 ∪ S2 is built as discussed in Section 2.3.2.

Therefore, the duration for each subtask trajectory is known and is denoted by ts. Finally,

recall from Section 2.3.2 that a store trajectory is obtained by arranging sequentially sub-

task trajectories.

In Section 2.3.1, PCTS1 was defined as follows.

Problem PCTS1: Find the minimum number of store trajectories such that all the sub-

tasks in S are completed under the constraint that the duration of each store trajectory

is less than the run time of the wind tunnel Ttunnel.

Recall from Section 2.1 that Ttunnel is typically 30 s. For safety reasons with respect

to the large aerodynamic loading at the beginning of the wind-tunnel run, the additional

constraint that the store trajectories all start at the “safe” position A0 is imposed. Let

S0 be the set of subtasks consisting of moving the store from the safe position A0 with

zero angle of attack to any position Ai′ with angle of attack �j′ ∈ ℬ. By convention, these

subtasks will be given the value zero for i and j, and will correspond to (0, 0, i′, j′). For

example, for the grid survey experiment presented in Section 2.1.2, there are four positions

and for each position, seven possible angles of attack, therefore ∣S0∣ = 28. The trajectory

for each subtask in S0 is also built as discussed in Section 2.3.2. Therefore, the duration

for each subtask trajectory in S0 is also known.



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 181

For clarity, the assumptions made for the resolution of PCTS1 are reviewed:

1. The duration of each subtask in S ∪ S0 ∪ S1 ∪ S2 is assumed to be known and less

than Ttunnel.

2. When the wind-tunnel starts, the store is supposed to be located at the “safe”

position A0. Therefore, all the store trajectories start at A0.

3. The store trajectories do not need to end at A0. The store can be brought back to

A0 between two consecutive wind-tunnel runs.

4. No segment can be broken into two parts and performed in two different wind-tunnel

runs.

6.2 A Lower Bound on the Number of Store Trajec-

tories

The duration of a subtask in S is ts, therefore the total duration needed to complete all

the subtasks in S is simply

TS =

∣S∣∑
s=1

ts.

Let t0 be the minimum duration among all the subtasks in S0, N be the minimum number

of store trajectories needed to complete S, and Ttraj be the total duration of these N

trajectories. As each store trajectory must start at the safe position A0, it takes at least

t0 for each store trajectory to get to the first position Ai, and the N store trajectories

complete S, it follows that

TS +Nt0 ≤ Ttraj. (6.1)



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 182

Moreover, the duration of each store trajectory is less than the run time of the wind tunnel.

Hence,

Ttraj ≤ NTtunnel. (6.2)

Combining (6.1) and (6.2) yields

TS +Nt0 ≤ NTtunnel. (6.3)

Hence, the minimum number of store trajectories needed to complete S is bounded below

by

Nlower =

[
TS

(Ttunnel − t0)

]
≤ N. (6.4)

The duration Tlower calculated from Nlower is therefore a lower bound for Ttraj:

Tlower = TS + t0Nlower ≤ Ttraj.

The quantities Nlower and Tlower assume that no subtasks from neither S1 nor S2 need to

be added to build the store trajectories and that all the store trajectories start by the

subtask(s) in S0 corresponding to t0. Therefore, practically, it is expected that either

Nlower is reached but Tlower is not, or Nlower is not reached. The first case corresponds to

some subtasks that need to be added, and S and the added subtasks can still be completed

with Nlower store trajectories. The second case corresponds to some subtasks that need

to be added, but S and the added subtasks cannot be completed with only Nlower store

trajectories.



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 183

6.3 Some Definitions in Graph Theory

Let G = (V,E), where V is a set of vertices, and E a set of undirected edges, be an

undirected graph.

∙ The degree [64, p. 3] of a vertex is the number of edges incident to this vertex.

∙ A path [64, p. 12] is a sequence of vertices such that each pair of consecutive vertices

is connected by an edge.

∙ G is connected [64, p. 12] if there is a path connecting each pair of vertices.

∙ A cycle [64, p. 12] is a path whose initial and terminal vertices coincide.

∙ An Eulerian cycle is a cycle traversing each edge only once.

∙ An Eulerian graph is a connected graph for which all vertices have even degrees. It

can be shown that a graph has an Eulerian cycle if and only if it is Eulerian [64, p.

312]. An Eulerian cycle can be determined very efficiently [64, p. 313].

6.4 An Approximation Algorithm Based on the Res-

olution of a Rural Postman Problem

From a given grid survey experiment, build the following undirected graph G = (V,E).

∙ A vertex is defined for each position Ai and each angle of attack �j ∈ ℬ. Therefore,

V = {Ni,j, i = 1, . . . , I, j = 1, . . . , J}, and ∣V ∣ = IJ .

∙ An edge connects two vertices Ni,j and Ni′,j′ if and only if the subtask (i, j, i′, j′)

belongs to S ∪ S1 ∪ S2. Therefore, E = {(Ni,j, Ni′,j′), (i, j, i′, j′) ∈ S ∪ S1 ∪ S2}, and

∣E∣ = ∣S ∪ S1 ∪ S2∣. The cost for an edge is the duration ts of the corresponding

subtask.



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 184

Using subtasks from S, S1, and S2, it is always possible to move the store from a position

Ai′ with angle of attack �j to the position Ai with angle of attack �j′ . Therefore, the

graph G is connected. From the graph G, the undirected graph G0 = (V0, E0) is defined

by adding the safe position A0 and the subtasks in S0. Therefore:

∙ Let N0,0 be the node corresponding to the safe position, then V0 = V ∪ {N0,0} and

∣V0∣ = ∣V ∣+ 1 = IJ + 1.

∙ From the definition of S0, an edge connects N0,0 with each node of the graph G.

Therefore, E0 = E∪{(N0,0, Ni,j), i = 1, . . . , I, j = 1, . . . , J}, and ∣E0∣ = ∣E∣+∣S0∣ =

∣S∪S1∪S2∣+IJ. The cost for an edge is the duration ts of the corresponding subtask.

Hence, the graph G0 is such that to any path starting at N0,0 corresponds a possible store

trajectory, and conversely, to any store trajectory corresponds a path starting at N0,0.

Assume for now that the store trajectories pn(⋅), n = 1, . . . , N are known. Remove

the first subtask (which is in S0) for each store trajectory pn(⋅) and call the resulting tra-

jectories p′n(⋅). To each p′n(⋅) corresponds a path in G. Consider two such paths, assume

that the terminal vertex of the first path is Ni,j, and that the initial vertex of the second

path is Ni′,j′ . Knowing that G is connected, there exists a path connecting Ni,j to Ni′,j′ .

Therefore, by combining these three paths together, a single path in G can be built. If

this operation is repeated for each pair (p′n(⋅),p′n+1(⋅)), n = 1, . . . , N − 1 and the pair

(p′N(⋅),p′1(⋅)), a cycle in G can be built. Because the store trajectories pn(⋅), n = 1, . . . , N

complete all the subtasks in S, it follows that this cycle necessarily traverses every edge

in G corresponding to the subtasks in S. Note that the cycle could traverse some of

these edges more than once. Therefore, to the store trajectories pn(⋅), n = 1, . . . , N ,

corresponds a cycle in G traversing every edge in G corresponding to the subtasks in S.

The idea behind the proposed approximation algorithm to solve PCTS1 follows from this



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 185

observation. It is first proposed to find the minimum-time cycle in G that traverses every

edge in G corresponding to the subtasks in S, and second, to build the minimum number

of store trajectories from this cycle such that all the subtasks in S are completed and the

duration of each store trajectory is less than Ttunnel.

For an undirected graph G = (V,E) and a subset R of E, assuming that each edge in

E is given a cost, the problem of finding the minimum-cost cycle traversing at least once

each edge in R is known in the literature as the rural postman problem [37, 64]. Therefore,

the proposed approximation algorithm to solve PCTS1 can be described as follows:

STEP 1: Solve the rural postman problem for the graph G built from a grid survey exper-

iment as described above. The set R is the set of edges corresponding to the subtasks in S.

STEP 2: From the cycle obtained in STEP 1, build the minimum number of paths in

G0 starting at A0 with cost less than Ttunnel such all the subtasks in S are completed. To

each of these paths corresponds a store trajectory with duration less than Ttunnel, thereby

solving PCTS1.

The number of paths obtained from this approximation algorithm gives an upper bound

Nupper on the number of store trajectories required to complete S:

Nlower ≤ N ≤ Nupper.

If Nupper = Nlower, then it is possible to conclude that the approximation algorithm has

provided the optimal solution, and N = Nlower = Nupper. Otherwise, nothing can be

concluded and N can assume any integer value between Nlower and Nupper.



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 186

6.4.1 The Rural Postman Problem

The rural postman problem is a difficult problem to solve, which has been shown to be

NP-complete [37]. Let VR be the sets of vertices incident to an edge in R, and denote

GR = (VR, R) the resulting graph. There exists an exact recursive algorithm that is expo-

nential in the number of disconnected components in GR [37]. However, for the graphs GR

built from grid survey experiments, the number of disconnected components is not known

in advance and depends entirely on the choice of the subtasks in S. For example, for the

grid survey experiment presented in Section 2.1.2, the number of disconnected components

is seven. Therefore, to obtain fast resolution times, it is preferred to use the approxima-

tion algorithm proposed in [37] that is polynomial in the size of the graph. If GR happens

to be connected, then the solution provided by the approximation algorithm is in fact

optimal [37]. On the other hand, if GR is not connected, but the costs for G satisfy the

triangular inequality, which is the case for the graphs built from grid survey experiments

as described above, then the approximation algorithm provides a 3/2-approximation [37].

The idea behind the approximation algorithm is to build an Eulerian graph from GR. The

cycle obtained from the resulting graph will traverse, in particular, every edge in R.

STEP 1.1: Find the disconnected components in GR [64, p. 17]. Build the graph H

as follows. Each disconnected component in GR defines a vertex for H. The cost between

two vertices x and y in H is given by the shortest path between x and y in G. The mini-

mum cost path between every two pairs of vertices in G can be efficiently determined [64,

p. 52].

STEP 1.2: Find the minimum spanning tree for H [64, p. 126]. Let A be the subset

of edges in G corresponding to this minimum spanning tree.



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 187

STEP 1.3: Consider the graph G′ = (V,R ∪ A). The cost between two vertices x and

y in G′ is given by the shortest path between x and y in G. Find the minimum weight

matching [64, p. 289] for the graph composed of the vertices of G′ that have odd degree.

Let M be the subset of edges corresponding to this matching.

STEP 1.4: Find an Eulerian cycle in the graph G′ = (V,R ∪ A ∪M).

6.4.2 Generating Paths from the Solution to the Rural Postman

Problem

From the Eulerian cycle obtained from STEP 1, we propose a greedy algorithm to generate

paths starting from N0,0 such that the set of all paths traverses R, and the duration of

each path is less than Ttunnel. The idea behind this algorithm is to cut the cycle into paths

such that, for each path, the duration of the path plus the duration of the subtask between

N0,0 and the first node of the path is less than Ttunnel. The proposed algorithm is greedy

because all the different ways of cutting the cycle as just described are investigated, and

the one providing the best solution in terms of number of paths is retained. Let

Ni1,j1 , Ni2,j2 , . . . , Nil,jl , . . . , Ni1,j1

be the Eulerian cycle obtained from STEP 1. Assume that this cycle contains L =

∣R∪A∪M ∣ edges, and let vl, l = 1, . . . , L− 1, be the edge connecting Nil,jl and Nil+1,jl+1
,

and vL be the last edge connecting NiL,jL and Ni1,j1 . By construction, R ⊂ C, where

C = {vl, l = 1, . . . , L}. However, note that some edges in V and therefore in particular in

R might be present more than once in C, which means that some subtasks in S might be

completed twice. For the presentation of the greedy algorithm, it is convenient to associate

a flag fl to each edge vl ∈ C, which is set to one if the edge belongs to R, and zero otherwise.



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 188

STEP 2.1: Start at index i1. Find the first index il in C such that fl = 1. Create

the path {N0,0, Nil,jl}. Add vertices from C to the path until the duration of the path

exceeds Ttunnel, or all the edges in C have been considered. Let il′ be the index of the last

added vertex. Note that each time an edge vl with a flag equal to one is added to the path,

then the flag for all the edges in C corresponding to the same subtask as vl is changed to

zero. This is to avoid completing a subtask in S more than once if possible.

STEP 2.2: If all the edges in C have been considered, then we have obtained Ni1 paths

starting from N0,0 such that the set of all paths traverses R, and the duration of each path

is less than Ttunnel. Go to STEP 2.3. Otherwise, repeat STEP 2.1 starting at index il′ .

STEP 2.3: Repeat STEP 2.1 for all indices il, i = 2, . . . , L. Finally,

Nupper = min{Nil , l = 1, . . . , L}.

For a path generated in STEP 2.1, it is possible that the last edge has a flag equal to zero. In

such a case, this edge can be removed from the path. This operation can be repeated until

an edge with a flag equal to one is encountered (note that this will always happen). This

“cleaning” procedure does not change the value of Nil , but avoids performing unnecessary

subtasks. Finally, to each of the Nupper paths corresponds a store trajectory that can be

built as discussed in Section 2.3.2.

6.5 Numerical Experiments

For the first set of numerical experiments, the approximation algorithm is applied to

six grid survey experiments derived from the grid survey experiment presented in Sec-



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 189

tion 2.1.2. First, only two angles of attack: ℬi,i′ = {0∘,−3∘} are considered; then three:

ℬi,i′ = {0∘,−3∘,−6∘}; and so on until ℬi,i′ = {0∘,−3∘,−6∘,−9∘,−12∘,−15∘,−18∘}; which

corresponds to the grid survey experiment presented in Section 2.1.2. The run time of the

wind tunnel Ttunnel is assumed to be 30 s. Tables 6.1, 6.2, and 6.3 contain the durations for

the subtasks in S, S1, S2, and S0, which have been obtained as discussed in Section 2.3.2.

Table 6.1: Duration for the subtasks in S and in S1. The duration is the same
regardless the store angle of attack.

N1,1 N2,1 N3,1 N4,1

N1,1 - 7.11 7.11 7.11
N2,1 7.11 - 2.85 2.10
N3,1 7.11 2.85 - 3.84
N4,1 7.11 2.10 3.84 -

Table 6.2: Duration for the subtasks in S2. The duration is independent from the
position, and only depends on the difference ∣Δ�∣ between the two store angles of

attack.

∣Δ�∣ (deg) 3 6 9 12 15 18
Duration (s) 2.61 4.11 5.61 7.11 8.61 10.11

Table 6.3: Duration for the subtasks in S0.

0∘ −3∘ −6∘ −9∘ −12∘ −15∘ −18∘

1 3.91 3.91 4.11 5.61 7.11 8.61 10.11
2 4.30 4.30 4.30 5.61 7.11 8.61 10.11
3 4.30 4.30 4.30 5.61 7.11 8.61 10.11
4 4.30 4.30 4.30 5.61 7.11 8.61 10.11



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 190

Table 6.4: Comparing the lower bound on the number of paths with the number of
paths provided by the approximation algorithm.

∣ℬi,i′∣ Tlower (s) Nlower Tupper (s) Nupper Computation time (s)
2 50.49 2 55.09 2 2.71
3 75.74 3 85.15 4 3.18
4 100.99 4 111.68 4 3.12
5 126.24 5 148.61 6 3.99
6 147.58 5 183.99 7 3.93
7 172.83 6 221.35 9 5.89

The results for each of the six grid survey experiments are presented in Table 6.4.

This table provides the total duration Tlower needed to complete S, the lower bound Nlower

on the number of paths, the number of paths Nupper provided by the approximation al-

gorithm, the total duration for these paths, denoted Tupper, and finally the computation

time for the approximation algorithm. As explained in Section 6.4, if Nupper = Nlower,

then it is possible to conclude that the approximation algorithm has provided the optimal

solution, and N = Nlower = Nupper. Otherwise, nothing can be concluded and N can

assume any integer value between Nlower and Nupper. Note that as the number ∣ℬi,i′ ∣ of

possible store angles of attack increases, the difference between Nupper and Nlower increases.

This can be explained as follows. As ∣ℬi,i′∣ increases, Nlower tends to underestimate the

minimum number of required store trajectories. Indeed, for the calculation of Nlower, it

is supposed that all the store trajectories start with the minimum-duration subtask t0 in

S0, which is 3.91 s from Table 6.3. However, in practice, the store trajectories might start

with other subtasks in S0, whose duration could be much larger, as illustrated in Table 6.3.

For the second set of numerical experiments, Nupper as obtained with the approximation

algorithm is compared with the minimum number of store trajectories N ′upper required to

complete S with the articulated sting. As it is not possible to change the store angle



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 191

Table 6.5: Comparing the two upper bounds.

∣ℬi,i′ ∣ T ′upper (s) N ′upper Tupper (s) Nupper

2 54.70 2 55.09 2
3 82.24 3 85.15 4
4 111.29 4 111.68 4
5 146.85 6 148.61 6
6 185.40 8 183.99 7
7 226.96 10 221.35 9

of attack during a wind-tunnel run with the articulated sting, N ′upper also constitutes an

upper bound for N . However, for the sake of comparison, it will be assumed that, with the

articulated sting, the angle of attack can change from the safe position to the first position

of the store trajectory. With this assumption, N ′upper is straightforward to obtain. Indeed,

from Tables 6.1 and 6.3, for each store angle of attack, the shortest-duration path is

N0,0, N1,j, N4,j, N2,j, N1,j, N3,j.

This follows from the facts that, from Table 6.3, the position 1 is always the closest in

terms of duration from N0,0, and that, from Table 6.1, the duration between N2,j and N4,j

is less than between N2,j and N3,j. However, the duration of the shortest-duration path

might be greater than Ttunnel, which happens when �j ≤ −12∘. In such a case, the two

paths

N0,0, N2,j, N1,j, N4,j and N0,0, N1,j, N3,j

represent the best alternative. The total duration for the N ′upper paths is denoted T ′upper.

N ′upper and T ′upper are provided for each of the six grid survey experiments in Table 6.5.

Two conclusions can be drawn from Table 6.5. First, for grid survey experiments with a

large number of subtasks in S, i.e., ∣ℬi,i′∣ large, Nupper is lower than N ′upper, which indicates

that the proposed approximation algorithm provides a better solution. Second, for such



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 192

experiments, as N ≤ Nupper, it follows that N < N ′upper, which means that adding the

possibility for the CTS system to change the angle of attack during a wind-tunnel run can

allow, among other benefits, reducing the number of wind-tunnel runs needed to complete

a grid survey experiment.

6.6 An Example of a Complete Resolution of PCTS

For clarity, the grid survey experiment presented in Section 2.1.2 is reproduced in Fig-

ure 6.1. However, for the grid survey experiment considered in this section, it will

only be required to move the store along each segment (1,2), (1,3), and (1,4) with the

store angles of attack {0∘,−3∘,−6∘,−9∘,−12∘}. Therefore, S consists of the subtasks

{(1, j, 2, j), (1, j, 3, j), (1, j, 4, j), �j ∈ ℬ}, where ℬ = {0∘,−3∘,−6∘,−9∘,−12∘}. The run

time of the wind tunnel Ttunnel is assumed to be 30 s.

Figure 6.1: An example of a grid survey experiment.

The resolution of PCTS for the grid survey experiment considered above consists of

solving sequentially the task space CTS trajectory planning problem PCTS1 followed by



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 193

the joint space CTS trajectory planning problem PCTS2. The problem PCTS1 for this

grid survey experiment has already been solved in Section 6.5. From Table 6.4, it can be

seen that, from the approximation algorithm described in Section 6.4, six store trajectories

are needed to complete S. In the graph G0 as built in Section 6.4 from the grid survey

experiment, the corresponding store paths are described as follows. For clarity, the index

j for the store angle of attack is replaced by the actual absolute value of the angle.

∙ Store path 1:

N0,0, N1,0∘ , N2,0∘ , N3,0∘ , N1,0∘ , N4,0∘ ,

∙ Store path 2:

N0,0, N4,3∘ , N1,3∘ , N2,3∘ ,

∙ Store path 3:

N0,0, N1,3∘ , N3,3∘ , N3,6∘ , N1,6∘ , N2,6∘ ,

∙ Store path 4:

N0,0, N4,6∘ , N1,6∘ , N1,9∘ , N2,9∘ ,

∙ Store path 5:

N0,0, N4,9∘ , N1,9∘ , N3,9∘ , N3,12∘ , N1,12∘ ,

∙ Store path 6:

N0,0, N1,12∘ , N2,12∘ , N4,12∘ , N1,12∘ .

The trajectory along each of these paths can then be determined as described in Sec-

tion 2.3.2. The resulting duration for these trajectories, provided in Table 6.6, can be

easily retrieved from Tables 6.1, 6.2, and 6.3 and the description of the store paths given

above. It can also be verified that the sum of these durations is 148.61 s, which corresponds



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 194

Table 6.6: The store trajectory durations.

Store path # 1 2 3 4 5 6
Duration (s) 28.10 18.52 27.86 21.13 29.55 23.43

Table 6.7: List of subtasks completed by the store trajectories.

Store path # 1 2 3
S (1, 0∘, 2, 0∘) (1, 3∘, 2, 3∘) (1, 3∘, 3, 3∘)

(1, 0∘, 3, 0∘) (1, 3∘, 4, 3∘) (1, 6∘, 2, 6∘)
(1, 0∘, 4, 0∘) (1, 6∘, 3, 6∘)

S1 (2, 0∘, 3, 0∘) - -
S2 - - (3, 3∘, 3, 6∘)

Store path # 4 5 6
S (1, 6∘, 4, 6∘) (1, 9∘, 4, 9∘) (1, 12∘, 2, 12∘)

(1, 9∘, 2, 9∘) (1, 9∘, 3, 9∘) (1, 12∘, 4, 12∘)
(1, 12∘, 3, 12∘)

S1 - - (2, 12∘, 4, 12∘)
S2 (1, 6∘, 1, 9∘) (3, 9∘, 3, 12∘) -

to Tupper in Table 6.4. Note that each duration is less than Ttunnel.

The subtasks completed by the store trajectories are detailed in Table 6.7. It can be

verified that all the subtasks in S are completed. It can also be noted that, to build the

store paths, two subtasks from S1 and three subtasks from S2 have to be added.

Once the store trajectories are determined, the problem PCTS2 can be solved for each

of these trajectories. Consider for example the store path 3. This is an interesting ex-

ample, because the duration of the corresponding trajectory is large, i.e., very close to

Ttunnel, and this path involves a change in orientation through the subtask (3, 3∘, 3, 6∘).

For this example, the values for NT and NX are set to 56 and 290 respectively, which

yields a grid size of 5463 nodes. The clustering method chosen is M7 with NC = 20.



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 195

Finally, the maximum number of modes is set to two. First, the grid resulting from the

discretization in the time and redundancy parameter variables is represented in Figure 6.2.

0 5 10 15 20 25 30
−60

−40

−20

0

20

40

60

80

t (s)

v
(d

eg
)

Figure 6.2: The grid resulting from the discretization.

Figure 6.3 confirms the fact, already noted in Section 3.3.3, that the approximate

Pareto objective vectors tend to be evenly distributed. It also interesting to observe from

Figure 6.4 that the optimal discrete trajectories are also distributed in the configuration

space. For clarity, only the boundary of the grid is represented in this figure. Note that,

in Figure 6.3, the number of approximate Pareto optimal objective vectors is 18, whereas

NC was set to 20. This difference can be explained by the fact that two optimal discrete

trajectories were eliminated by the checking process, as discussed in Section 5.3. Finally,

the optimal discrete trajectories and their corresponding continuous joint trajectories ob-

tained as described in Section 5.3 are represented in Figure 6.5.

The resolution time for PCTS2 is 523 s, which added to the 4 s needed to solve PCTS1



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 196

as indicated in Table 6.4, yields a total resolution time of 527 s for PCTS. This resolution

time satisfies to a large extent the requirement to solve PCTS in less time than the time

between two consecutive wind-tunnel runs, which, as discussed in Section 2.1, is typically

30 min.

As mentioned above, the approximate Pareto objective vectors obtained from the res-

olution of PCTS2, represented in Figure 6.3, are well distributed and cover a wide range

of values for the two objective functions. This is very useful for the application. Indeed,

if the store trajectory for PCTS2 has to be performed at large Mach numbers, then it is

desirable to have a joint trajectory with low joint speeds. Therefore, a joint trajectory

corresponding to an approximate Pareto objective vector with a low value for F1 can be

chosen for the final joint trajectory. On the other hand, if the store trajectory for PCTS2

has to be performed at low Mach numbers, then having low joint speeds for the joint

trajectory is less critical. Therefore, a joint trajectory corresponding to an approximate

Pareto objective vector with a low value for F2 can be chosen for the final joint trajectory,

which will increase the reliability of the measurement of the aerodynamic loads acting on

the store model.



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 197

55 60 65 70 75 80
0

0.1

0.2

0.3

0.4

0.5

F1

F
2

Figure 6.3: Approximate Pareto objective vectors obtained from the resolution of the
approximate dynamic programming equation with the clustering method M7 and

NC = 20, and the maximum number of modes m = 2.

0 5 10 15 20 25 30
−60

−40

−20

0

20

40

60

80

t (s)

v
(d

eg
)

Figure 6.4: The optimal discrete trajectories (plain lines) corresponding to the
approximate Pareto objective vectors from Figure 6.3 and the boundary of the grid

(dots).



CHAPTER 6. RESOLUTION OF THE PROBLEM IN THE TASK SPACE 198

0 5 10 15 20 25 30
−30

−20

−10

0

10

20

30

t (s)

v
(d

eg
)

Figure 6.5: The optimal discrete trajectories (plus signs) and the interpolated
continuous joint trajectories (plain lines) corresponding to the approximate Pareto

objective vectors from Figure 6.3.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, a new DDP approximation method for the resolution of a general class of

multiobjective optimal control problems where the objective space is partially ordered by

a closed cone was proposed. The partial convergence results that were obtained using

set convergence in the sense of Hausdorff show that this method provides a convergent

approximate minimal element set. Therefore, by reducing both the discretization step in

the time and the state space variables, a better approximation of the minimal element set

of the original problem can always be obtained.

The joint space CTS trajectory planning problem, which is a typical multiobjective tra-

jectory planning problem, was identified as a particular case of this class of multiobjective

optimal control problems. The most common approach to solve multiobjective trajectory

planning problems is the weighting method. Therefore, the joint space CTS trajectory

planning problem was solved with the weighting method and the results were compared to

the results obtained with the DDP approximation method. It was shown, using a measure

199



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 200

derived from the Hausdorff distance, that the approximate Pareto optimal set provided a

superior representation of the Pareto optimal set than the set of Pareto objective vectors

obtained with the weighting method. The results obtained with the weighting method also

illustrated the well-known weaknesses of this method.

The main weakness associated with the proposed DDP approximation method is its ex-

ponential algorithmic complexity, which is a limiting factor for its applicability. To address

this issue, the idea of clustering was therefore introduced. With clustering, the algorithmic

complexity of the DDP approximation method was shown to reduce to polynomial, and

more importantly, without an excessive deterioration of the quality of the approximation.

Again, using the measure derived from the Hausdorff distance, it was shown that the

approximate Pareto optimal set obtained with clustering provided a superior representa-

tion of the Pareto optimal set than the set of Pareto objective vectors obtained with the

weighting method.

The trajectory planning problem arising from a grid survey experiment in a CTS system

was identified and formulated. For the operation of the CTS system, it is crucial to be

able to solve this problem in less than the time between two consecutive wind-tunnel

runs, i.e., 30 min. A two-step sequential resolution approach was therefore proposed. The

first step consists of the resolution of the task space CTS trajectory planning problem.

For this problem, an algorithm based on the resolution of a rural postman problem was

developed. The resolution time for this algorithm was shown to be very fast, i.e., 3 s. The

second step consists of the resolution of the joint space CTS trajectory planning problem,

which takes the store trajectories obtained from the resolution of the task space CTS

trajectory planning problem as inputs. As discussed above, with clustering, fast resolution

time can also be obtained for the resolution of the joint space CTS trajectory planning



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 201

problem. Therefore, the requirement to solve the CTS trajectory planning problem in

less time than the time between two consecutive wind-tunnel runs was largely satisfied.

Finally, the resolution of the CTS trajectory planning problem for a typical grid survey

experiment confirmed, as expected, that the upgrade from an articulated sting to an 8-

DOF manipulator allowed for a reduction in the number of wind-tunnel runs needed to

complete a grid survey experiment, and therefore, in the operating cost of a grid survey

experiment.

7.2 Future Work

7.2.1 The Trajectory Planning Problem for a Captive Load Ex-

periment

As mentioned in Section 2.1.2, a captive load experiment is another type of experiment

that can be performed with a CTS system. The constraints and the objective functions

for this problem are the same as for the trajectory planning problem arising in a grid

survey experiment. However, the fundamental difference is that the task, i.e., the store

trajectory to be followed, is not known in advance, but is built as the task progresses.

Therefore, the trajectory planning problem arising in a captive load experiment is a local

trajectory planning problem [65, 66], whose resolution produces a sequence of local joint

motions. Local multiobjective trajectory planning problems [67, 68] have received much

more attention than global multiobjective local trajectory planning problems as discussed

in this thesis. However, the main difficulty for local trajectory planning problems remains

properly handling the constraints, particularly the constraints depending only on the joint

configuration such as the joint mechanical limits and the obstacles. This is very critical for

the CTS manipulator as, as illustrated in Figure 6.2, these constraints impose severe re-



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 202

strictions on the allowable values for the redundancy parameter. For example, if the store

trajectory yielding Figure 6.2 were to be followed, the resolution of the local trajectory

planning problem could yield a constant value for the redundancy parameter, say 40 deg.

With this value, locally, all the constraints would be satisfied. However, at approximately

t = 10 s, it would become impossible to satisfy either the joint mechanical limit or the

obstacle constraints, and the CTS system would have to be stopped. This is very unde-

sirable considering the operating cost of the wind tunnel, and knowing that there exists a

choice of the redundancy parameter that would have allowed following the store trajectory.

Various generic approaches [69, 70, 71] have been proposed in the literature to address

the difficulty of handling the joint mechanical limits or the obstacle constraints in the

context of local trajectory planning problems. However, because of the local nature of

these problems, none of these approaches can completely remedy this difficulty. The

most promising approach seems to be a manipulator dependent approach that uses the

knowledge of the topology of the joint configuration space [42, 72]. One might object that

the determination of the topology of the joint configuration space, even for a simple 3-DOF

planar redundant manipulator, is in general a formidable task. However, this approach can

be reasonably conceived for the CTS manipulator because of the existence of a closed-form

solution to the inverse kinematics.

7.2.2 Completing the Convergence Proof for the DDP Approx-

imation Method

In Chapter 4, only partial convergence results of the approximate minimal element set

towards the original minimal element set were obtained. It would be interesting to extend

the convergence proof for the case of a single-valued objective function [22]. For this

proof, first, the HJB equation was derived. Second, the return function was shown to



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 203

be the unique viscosity solution of the HJB equation. Finally, the approximate return

function was shown to converge towards a viscosity solution of the HJB equation, and

therefore by uniqueness towards the return function.

7.2.3 Extension to the DDP Approximation Method

In Chapter 4, it was mentioned that the proposed DDP approximation could readily be

extended to take into account terminal constraints, terminal costs, and nonautonomous

systems. However, for the DDP approximation method to be suitable to a wide range of

engineering problems, more complex constraints than just simple control constraints must

be considered, e.g., state-dependent control constraints which are constraints where the

control depends on the state. A nice way to express state-dependent control constraints

is through the use of differential inclusions [14, pp. 37–38]:

ẋ(t) ∈ F (t,x(t)),

where F (⋅, ⋅) is a set-valued function. The difficulty then becomes carrying the discretiza-

tion both in the time and state space variables in this context.

Two other important extensions could also be considered. The first extension would

be to consider variable final time. This extension would allow using the final time of

the joint trajectory as an objective function, which is very common in trajectory planning

problems [13]. The second extension would be to consider infinite horizon problems. Here,

the major difficulty would be to solve the multiobjective dynamic programming equation.



Bibliography

[1] F. Hausdorff. Set Theory. New York, Chelsea Pub. Co., 1962.

[2] J. J. Craig. Introduction to Robotics, Mechanics and Control. 3rd ed., Pearson Prentice

Hall, Upper Saddle River, NJ, 2005.

[3] E. S. Conkur and R. Buckingham. Clarifying the definition of redundancy as used in

robotics. Robotica, 15:583–586, 1997.

[4] M. Ahmadi, M. Jaber, and F. C. Tang. Real-time multi-body collision detection for a

captive trajectory simulation system. Mechatronics and Robotics Conference, Aachen,

Germany, pages 720–725, September 2004.

[5] M. Van der Steen, D. M. Orchard, and F. C. Tang. The application of semi-empirical

store release simulation for the optimization of grid survey wind tunnel testing. In-

ternational Congress of the Aeronautical Sciences, pages 1–8, 2008.

[6] M. Ahmadi, A. Guigue, M. Gibeault, and F. C. Tang. Mechatronic design of re-

dundant robotic systems for captive trajectory trajectory simulation applications.

IASTED Conference on Control Applications, Quebec City, Canada, pages 24–29,

May 2008.

204



BIBLIOGRAPHY 205

[7] A. Guigue, M. Ahmadi, M. J. D. Hayes, R. G. Langlois, and F. C. Tang. A dy-

namic programming approach to redundancy resolution with multiple criteria. IEEE

International Conference on Robotics and Automation, pages 1375–1380, 2007.

[8] L.-Y. Jiang. Advances in aircraft/store separation methodologies, LTR-A-001. Tech-

nical report, Institute for Aerospace Research, National Research Council Canada,

October 1995.

[9] M. Zefran. Continuous Methods for Motion Planning. PhD thesis, University of

Pennsylvania, 1996.

[10] Y. Shen and K. Huper. Optimal trajectory planning of manipulators subject to motion

constraints. International Conference on Advanced Robotics, pages 9–16, 2005.

[11] M. Galicki. The planning of robotic optimal motions in the presence of obstacles. The

International Journal of Robotics Research, 17(3):248–259, 1998.

[12] K. Cleary and D. Tesar. Incorporating multiple criteria in the operation of redundant

manipulators. IEEE International Conference on Robotics and Automation, pages

618–624, 1990.

[13] A. J. Cahill, M. R. James, J. C. Kieffer, and D. Williamson. Remarks on the appli-

cation of dynamic programming to the optimal path timing of robot manipulators.

Internat. J. Robust Nonlinear Control, 8:463–482, 1998.

[14] R. Vinter. Optimal Control. Birkauser, Boston, 2000.

[15] W. H. Fleming and H. Mete Soner. Controlled Markov Processes and Viscosity Solu-

tions. 2nd ed., Springer-Verlag, New York, 2006.

[16] B. Dacorogna. Introduction to the Calculus of Variations. Imperial College Press,

London, 2004.



BIBLIOGRAPHY 206

[17] Y. Nakamura and H. Hanafusa. Optimal redundancy control of redundant manipu-

lators. The International Journal of Robotics Research, 6(1):32–42, 1987.

[18] D. P. Martin, J. Baillieul, and J. M. Hollerbach. Resolution of kinematic redun-

dancy using optimization techniques. IEEE Transactions on Robotics and Automa-

tion, 5(4):529–533, August 1989.

[19] K. G. Shin and N. D. McKay. A dynamic programming approach to trajectory

planning of robotic manipulators. IEEE Transactions on Automatic Control, AC-

31(6):491–500, June 1986.

[20] J. Gregory and C. Lin. Constrained optimization in the calculus of variations and

optimal control theory. Van Nostrand Reinhold, New York, 1992.

[21] H. J. Kushner and P. G. Dupuis. Numerical Methods for Stochastic Control Problems

in Continuous Time. Springer-Verlag, New York, 1992.

[22] M. Bardi and I. Capuzzo-Dolcetta. Optimal Control and Viscosity Solutions of

Hamilton-Jacobi-Bellman Equations. Birkhauser, Boston, 1997.

[23] K. D. Malanowski. Convergence of the lagrange-newton method for optimal control

problems. Int. J. Appl. Math. Comput. Sci., 14(4):531–540, 2004.

[24] R. Pytlak. Numerical Methods for Optimal Control Problems with State Constraints.

Springer-Verlag, Berlin, 1999.

[25] K. M. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publish-

ers, Boston, 1999.

[26] Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of Multiobjective Optimization.

Academic Press, Inc., Orlando, FL, 1985.



BIBLIOGRAPHY 207

[27] D. T. Luc. Theory of Vector Optimization. Springer-Verlag, New York, 1989.

[28] I. Das and J. E. Dennis. A closer look at drawbacks of minimizing weighted sums of

objectives for pareto set generation in multicriteria optimization problems. Structural

Optimization, 14:63–69, September 1997.

[29] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

[30] A. E. Bryson and Y.-C. Ho. Applied Optimal Control: optimization, estimation and

control. Taylor & Francis, Levittown, PA, 1975.

[31] A. Guigue, M. Ahmadi, M. J. D. Hayes, and R. G. Langlois. A discrete dynamic

programming approximation to the multiobjective deterministic finite horizon optimal

control problem. SIAM J. Control Optim., 48:2581–2599, 2009.

[32] D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the k-center problem.

Math. Oper. Res., 10(2):180–184, May 1985.

[33] T. Feder and D. H. Greene. Optimal algorithms for approximate clustering. Twentieth

Annual ACM Symposium on the Theory of Computation, pages 434–444, 1988.

[34] D. S. Hochbaum. Approximation algorithms for NP-hard problems. PWS Publishing

Co., Boston, 1997.

[35] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John

Wiley & Sons, Inc., New York, 1988.

[36] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoret.

Comput. Sci., 38:293–306, 1985.

[37] G. N. Frederickson. Approximation algorithms for some postman problems. J. ACM,

26:538–554, 1979.



BIBLIOGRAPHY 208

[38] National Research Council Canada. NRC Aerospace: 1.5 m Trisonic Blowdown Wind

Tunnel, http://iar-ira.nrc-cnrc.gc.ca.

[39] A. Guigue, M. Ahmadi, and F. C. Tang. On the kinematic analysis and design

of a redundant manipulator for a captive trajectory simulation system (CTS). IEEE

Canadian Conference on Electrical and Computer Engineering, pages 1513–1516, May

2006.

[40] L. Sciavicco and B. Siciliano. Modeling and Control of Robot Manipulators. McGraw-

Hill, New York, 1996.

[41] Bombardier Aerospace. Aircraft/Store Separation Course, 1998.

[42] J. W. Burdick. Kinematic Analysis and Design of Redundant Robot Manipulators.

PhD thesis, Stanford University, 1988.

[43] D. R. Baker and C. W. Wampler. On the inverse kinematics of redundant manipula-

tors. The International Journal of Robotic Research, 7(2):3–21, March/April 1988.

[44] Waterloo Maple Inc. Maple User Manual, 1996-2009.

[45] P. L. Yu. Cone convexity, cone extreme points, and nondominated solutions in decision

problems with multiobjectives. J. Optim. Theory Appl., 14(3):319–377, 1974.

[46] W. Cheney. Analysis for Applied Mathematics. Springer-Verlag, New York, 2001.

[47] H. W. Corley. An existence result for maximizations with respect to cones. J. Optim.

Theory Appl., 31(2):277–281, June 1980.

[48] R. Hartley. On cone-efficiency, cone-convexity and cone-compactness. SIAM J. Appl.

Math., 34(2):211–222, March 1978.



BIBLIOGRAPHY 209

[49] S. Singh and M. Leu. Manipulator motion planning in the presence of obstacles and

dynamic constraints. The International Journal of Robotics Research, 10(2):171–187,

1991.

[50] A. Guigue, M. Ahmadi, R. G. Langlois, and M. J. D. Hayes. Generating the pareto

optimal set for multiobjective trajectory planning problems using dynamic program-

ming. Submitted to IEEE Transactions on Robotics, 2009.

[51] L. F. Shampine, M. W. Reichelt, and J. Kierzenka. Solving Boundary Value Problems

for Ordinary Differential Equations in MATLAB with bvp4c.

[52] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, Inc., New

York, 1983.

[53] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming: theory and

algorithms. 2nd ed., John Wiley & Sons, Inc., New York, 1993.

[54] W. H. Fleming and R. W. Rishel. Deterministic and Stochastic Optimal Control.

Springer-Verlag, New York, 1975.

[55] J.-P. Aubin and H. Frankowska. Set-Valued Analysis. Birkhauser, Boston, 1990.

[56] R. Bellman. Functional equations in the theory of dynamic programming-IV, a direct

convergence proof. Annals of Mathematics, 65(2):215–223, March 1957.

[57] G. S. Jones. Fundamental inequalities for discrete and discontinuous functional equa-

tions. J. Soc. Indust. Appl. Math., 12(1):215–223, March 1964.

[58] R. Gonzalez and E. Rofman. On deterministic control problems: An approximation

procedure for the optimal cost II the nonstationary case. SIAM J. Control Optim.,

23(2):264–285, March 1985.



BIBLIOGRAPHY 210

[59] N. D. McKay. Minimum-cost control of robotic manipulators with geometric path

constraints, robot syst. division tech. rep. RSD-TR-16-85. Technical report, Center

for Research on Integrated Manufacturing, Univ. Michigan, October 1985.

[60] P. K. Agarwal and C. M. Procopiuc. Exact and approximation algorithms for clus-

tering. Algorithmica, 33:201–226, 2002.

[61] I. Das and J. E. Dennis. Normal-boundary intersection: A new method for generating

the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim.,

8:631–657, 1998.

[62] Y. Collette and P. Siarry. Optimisation Multiobjectif. Eyrolles, 2002.

[63] R. H. Bartels, J. C. Beatty, and B. A. Barsky. An Introduction to Splines for Use

in Computer Graphics and Geometric Modelling. Morgan Kaufmann, San Francisco,

1998.

[64] M. Gonfran and M. Minoux. Graphes et algorithmes. 3e éd., Eyrolles, 1995.

[65] D. N. Nenchev. Redundancy resolution through local optimization: A review. Journal

of Robotic Systems, 6(6):769–798, 1989.

[66] B. Siciliano. Kinematic control of redundant robot manipulators: A tutorial. Journal

of Intelligent and Robotic Systems, 3:201–212, 1990.

[67] F.-T. Cheng, M.-S. Shih, F.-C. Kung, and Y.-Y. Sun. The improved parallel scheme

for multiple-goal priority considerations of redundant manipulators. IEEE Interna-

tional Conference on Robotics and Automation, pages 2409–2414, April 1997.

[68] C. Pholsiri, C. Kapoor, and D. Tesar. Manipulator task-based performance optimiza-

tion. ASME Design Engineering Technical Conferences and Computers and Informa-

tion in Engineering Conference, September 2004.



BIBLIOGRAPHY 211

[69] T. F. Chan and R. V. Dubey. A weighted least-norm solution based scheme for

avoiding joint limits for redundant joint manipulators. IEEE Transactions on Robotics

and Automation, 11(2):286–292, April 1995.

[70] B. Allotta, V. Colla, and G. Bioli. Kinematic control of robots with joint constraints.

Journal of Dynamic Systems, Measurement and Control, 121:433–442, 1999.

[71] L. Zlajpah and B. Nemec. Kinematic control algorithms for on-line obstacle avoid-

ance for redundant manipulators. IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 1898–1903, October 2002.

[72] C. L. Luck and S. Lee. Global path planning of redundant manipulators based on

self-motion topology. IEEE International Conference on Robotics and Automation,

pages 372–377, 1994.



Appendix A

DH Parameters

Table A.1: Set of DH parameters for the 8-DOF CTS manipulator.

Joint �i (deg) ai (inch) �i (deg) di (inch)
1 0 0 0 q1

2 -90 0 q2 0
3 0 0 0 q3 + q3,0

4 90 0 0 q4 + q4,0

5 90 0 q5 l45
6 -90 0 q6 + 90 ℎ56
7 90 ℎ67 q7 + 90 0
8 0 0 q8 l78

212



APPENDIX A. DH PARAMETERS 213

Figure A.1: The frames obtained from the DH convention.



APPENDIX A. DH PARAMETERS 214

Figure A.2: The frames obtained from the DH convention without the CTS
manipulator.



Appendix B

Inverse Kinematics

At the design stage, the joint arrangement of the 8-DOF CTS manipulator was chosen

such that a closed-form solution to the inverse kinematics problem inW could be derived.

The inverse kinematics equation at the position level (2.6) details as follows.

Let Aj
j+1(qj), j = 0, . . . , 7 be the transformation matrices representing the position

and orientation of the DH frame j+1 relative to the DH frame j, as provided in Figure 2.8,

and let the position and orientation of the end-effector P be

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We have:

P = A0
1(q1)A

1
2(q2)A

2
3(q3)A

3
4(q4)A

4
5(q5)A

5
6(q6)A

6
7(q7)A

7
8(q8). (B.1)

215



APPENDIX B. INVERSE KINEMATICS 216

Denote ci = cos(qi), si = sin(qi), q25 = q2 + q5, and q34 = q3 + q4. It is proposed to

derive the solution to the inverse kinematics problem as a function of P, q25 and q3.

Rearranging (B.1) yields

A7
8(q8)

−1
A6

7(q7)
−1

A5
6(q6)

−1
= P−1A0

1(q1)A
1
2(q2)A

2
3(q3)A

3
4(q4)A

4
5(q5). (B.2)

The third column in (B.2) gives the following equations:

⎧⎨⎩
−c7c8 = r11s25 − r21c25

c7s8 = r12s25 − r22c25

−s7 = r13s25 − r23c25

. (B.3)

Rearranging (B.1) yields

PA7
8(q8)

−1
A6

7(q7)
−1

= A0
1(q1)A

1
2(q2)A

2
3(q3)A

3
4(q4)A

4
5(q5)A

5
6(q6). (B.4)

The third row in (B.4) gives the following equations:

⎧⎨⎩ c6 = −r31s7c8 + r32s7s8 + r33c7

−s6 = r31s8 + r32c8

. (B.5)

The fourth column in (B.4) gives the following equations:

⎧⎨⎩
−s2(q34 + q34,0) = −r11c8ℎ67 + r12s8ℎ67 − r13l78 + tx − s25ℎ56

c2(q34 + q34,0) = −r21c8ℎ67 + r22s8ℎ67 − r23l78 + ty + c25ℎ56

q1 = −r31c8ℎ67 + r32s8ℎ67 − r33l78 + tz − l45

, (B.6)

where q34,0 = q3,0 + q4,0. Given (B.3), (B.5), and (B.6), it is possible to calculate the joint



APPENDIX B. INVERSE KINEMATICS 217

configuration q, solution to the inverse kinematics problem, as a function of P, q25 and

q3 as follows. The value of joints 7 and 8 can be obtained from (B.3):

⎧⎨⎩ q8 = arctan((r12s25 − r22c25)/(−r11s25 + r21c25))

q7 = arctan 2(−r13s25 + r23c25, (−r11s25 + r21c25)/c8)
.

Knowing q7 and q8, the value of joint 6 can be obtained from (B.5):

q6 = arctan 2(−r31s8 − r32c8,−r31s7c8 + r32s7s8 + r33c7).

Knowing q8, q34 can be calculated using the first two equations in (B.6):

q34 =

((
− r11c8ℎ67 + r12s8ℎ67 − r13l78 + tx − s25ℎ56

)2
+(

− r21c8ℎ67 + r22s8ℎ67 − r23l78 + ty + c25ℎ56
)2)1/2

− q34,0.

From there, the value q2 of joint 2 follows:

q2 = arctan 2
(
(r11c8ℎ67 − r12s8ℎ67 + r13l78 − tx + s25ℎ56)/(q34 + q34,0),

(−r21c8ℎ67 + r22s8ℎ67 − r23l78 + ty + c25ℎ56)/(q34 + q34,0)
)
.

The value q1 of joint 1 is obtained from the third equation in (B.6):

q1 = −r31c8ℎ67 + r32s8ℎ67 − r33l78 + tz − l45.

Finally, the value q4 and q5 of joints 4 and 5 are simply:

⎧⎨⎩ q4 = q34 − q3

q5 = q25 − q2

.



APPENDIX B. INVERSE KINEMATICS 218

To be complete, it should be noted that there are in fact three more solutions to the

inverse kinematics problem. From (B.3) and (B.5), it can be observed that, if (q6,q7,q8)

is a solution, then so is (q6 +�,−q7 +�,q8 +�). Moreover, from (B.6), it can be observed

that, if (q2,q34) is a solution, then so is (q2+�,−q34−2q34,0). Therefore, the four possible

solutions q0, q1, q2, and q3 to the inverse kinematics problem are:

⎧⎨⎩

q0 = (q0
1, q0

2 ,q0
3 ,q0

4 ,q0
5 , q06 , q07 , q08 )

q1 = (q1
1, q1

2 ,q0
3 ,q1

4 ,q1
5 , q06 + � , � − q07 , q08 + � )

q2 = (q0
1, q0

2 + � ,q0
3 ,−2q0

3 − q0
4 − 2q34,0 ,q0

5 − � , q06 , q07 , q08 )

q3 = (q1
1, q1

2 + � ,q0
3 ,−2q0

3 − q1
4 − 2q34,0 ,q1

5 − � , q06 + � , � − q07 , q08 + � )

.

However, only one of these four solutions is within the joint mechanical limits. In partic-

ular, the range for joints 6 and 7 is less that 90 deg and the range for the prismatic joints

is nonnegative. Finally, the inverse kinematics equation at the position level (2.6) writes:

g(p, v) = q0,

where v = q25 is the redundancy parameter. Recall that, in this thesis, it is assumed

that the two prismatic joints 3 and 4 form a single prismatic joint, therefore, q3 does not

appear as another redundancy parameter in the inverse kinematics equation.



Appendix C

Building Subtask Trajectories

C.1 Problem Definition

Formally, a subtask consists of moving the store from an initial position and orientation

p0 at t0 to a final position and orientation pf at the constant velocity ṗmax. As mentioned

in Section 2.3.2, it is desired that the acceleration along the trajectory is continuous and

that the initial and final velocity and the initial and final acceleration are zero. How to

build a one-dimensional trajectory with such requirements is detailed in Section C.2. This

approach is then generalized to n-dimensional trajectories in Section C.3. As explained

in Section C.4, the subtask trajectories are just a particular case of these n-dimensional

trajectories when n = 6.

C.2 One-Dimensional Trajectory

The problem stated in Section C.1 can be formulated as follows: Find a C2 function x(⋅)

such that

x(t0) = x0, ẋ(t0) = 0, ẍ(t0) = 0,

219



APPENDIX C. BUILDING SUBTASK TRAJECTORIES 220

x(tf ) = xf , ẋ(tf ) = 0, ẍ(tf ) = 0,

where tf > 0 is the final time (not given). The absolute value of the first derivative ẋ(⋅)

cannot exceed vmax. It is also assumed that the absolute value of the second derivative

ẍ(⋅) cannot exceed amax. For simplicity, let xf > x0.

The traditional approach in robotics to address such a problem is to use linear functions

with parabolic blends [2, p. 210]. However, these functions are not C2 and the second

derivative at t0 and tf is not zero. It is therefore proposed to blend the first derivative.

Many different ways to blend exist. It is chosen to use a 4th symmetric blend which

makes the second derivative not only continuous but also C1. The second derivative ẍ(⋅)

is therefore as illustrated in Figure C.1. The intervals [t0, tc], [tc, tf − tc] and [tf − tc, tf ]

corresponds to the acceleration phase, the constant velocity phase, and the deceleration

phase respectively. The parameter � ∈ [0, 1] corresponds to the percentage of the interval

[t0, tc] where the maximum value of the second derivative amax is reached. When � = 0,

the maximum value of the second derivative amax is only reached at the time (tc − t0)/2.

When � = 1, the linear function with parabolic blends discussed above is retrieved as a

special case.



APPENDIX C. BUILDING SUBTASK TRAJECTORIES 221

0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

t (s)

ẍ

tftc tf − tct0

α(tc − t0)

t1

Figure C.1: A C1 profile for the second derivative

More precisely, the second derivative ẍ(⋅) can be described as follows, defining t1 =

tc(1− �)/2:

∙ in [t0, t1], ẍ(⋅) is a 3rd order polynomial,

∙ ∀t ∈ [t1, tc − t1], ẍ(t) = amax,

∙ in [tc − t1, tc], ẍ(⋅) is a 3rd order polynomial,

∙ ∀t ∈ [tc, tf − tc], ẍ(t) = 0,

∙ in [tf − tc, tf − tc + t1], ẍ(⋅) is a 3rd order polynomial,

∙ ∀t ∈ [tf − tc + t1, tf − t1], ẍ(t) = −amax,

∙ in [tf − t1, tf ], ẍ(⋅) is a 3rd order polynomial.



APPENDIX C. BUILDING SUBTASK TRAJECTORIES 222

The function x(⋅) must satisfy the continuity conditions for its second and third derivative:

∙ ẍ(t0) = 0, d
dt
ẍ(t0) = 0,

∙ ẍ(t1) = amax,
d
dt
ẍ(t1) = 0,

∙ ẍ(tc − t1) = amax,
d
dt
ẍ(tc − t1) = 0,

∙ ẍ(tc) = 0, d
dt
ẍ(tc) = 0,

∙ ẍ(tf − tc) = 0, d
dt
ẍ(tf − tc) = 0,

∙ ẍ(tf − tc + t1) = −amax,
d
dt
ẍ(tf − tc + t1) = 0,

∙ ẍ(tf − t1) = −amax,
d
dt
ẍ(tf − t1) = 0,

∙ ẍ(tf ) = 0, d
dt
ẍ(tf ) = 0.

With the above conditions and the parameter � being set, it can easily be shown that the

only unknowns remaining to fully determine the function x(⋅) are tc and tf . First, we have

ẋ(tc) =
(1 + �)

2
amaxtc, (C.1)

that must satisfy the constraint

ẋ(tc) ≤ vmax.

It is possible that the maximum first derivative vmax is reached or not. Therefore,

∙ Assume that the maximum first derivative vmax is reached, i.e., ẋ(tc) = vmax. Hence,

from (C.1),

tc =
2vmax

(1 + �)amax

. (C.2)

We have

xf = x0 + ẋ(tc)(tf − tc).



APPENDIX C. BUILDING SUBTASK TRAJECTORIES 223

Hence,

tf = tc +
xf − x0
vmax

. (C.3)

We need to check that

tf − 2tc ≥ 0,

which corresponds to the condition

1 + �

2
amax(xf − x0) ≥ v2max. (C.4)

∙ Assume that the maximum first derivative vmax is not reached. Therefore, there is

no constant velocity phase, i.e.,

tf = 2tc. (C.5)

We have

xf = x0 + ẋ(tc)tc. (C.6)

Substituting (C.1) in (C.6) yields

tc =

√
2(xf − x0)
(1 + �)amax

, (C.7)

which corresponds obviously to the opposite condition to (C.4)

1 + �

2
amax(xf − x0) < v2max. (C.8)

Finally, given x0, xf , vmax, amax, and �, the values of tc and tf can be calculated

either by (C.2) and (C.3) or (C.5) and (C.7) depending on the sign of the quantity

v2max − amax(xf − x0)(1 + �)/2. Knowing tf and tc, the function x(⋅) can be fully de-

termined. For brevity, the detailed analytical expression for x(⋅) is not provided.



APPENDIX C. BUILDING SUBTASK TRAJECTORIES 224

The function x(⋅) as determined above is now illustrated. First, let x0 = 0, xf = 10,

vmax = 4, amax = 5, and � = 0, then v2max − 1+�
2
amax(xf − x0) = 16 − 25 = −9 < 0.

tc = 1.6 and tf = 4.1 are given by (C.2) and (C.3). The second derivative ẍ(⋅) and the

first derivative ẋ(⋅) are illustrated in Figures C.2(a) and C.2(b).

0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

t (s)

ẍ

(a) The second derivative.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

t (s)

ẋ

(b) The first derivative.

Figure C.2: The case v2max − 1+�
2 amax(xf − x0) < 0.

0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

t (s)

ẍ

(a) The second derivative.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t (s)

ẋ

(b) The first derivative.

Figure C.3: The case v2max − 1+�
2 amax(xf − x0) = 0.

For this example, vmax = 5 is the limiting case in the sense that the maximum first

derivative vmax is only reached at the single instant tc = 2. In such a case, the second



APPENDIX C. BUILDING SUBTASK TRAJECTORIES 225

derivative ẍ(⋅) and the first derivative ẋ(⋅) are illustrated in Figures C.3(a) and C.3(b).

Finally, when vmax > 5, the maximum first derivative vmax is never reached. In such a case,

the second derivative ẍ(⋅) and the first derivative ẋ(⋅) are also illustrated in Figures C.3(a)

and C.3(b).

C.3 n-Dimensional Trajectory

The same problem as the one stated in Section C.2 is considered in this section but x is

assumed to be a n-dimensional vector. A simple approach to solve this problem would be

to decouple the n dimensions and build for every component a function as in Section C.2.

However, with this simple approach, it is not guaranteed that the final time tf for all the

components are the same. Therefore, the problem in this section can be stated as follows:

Find a n-dimensional C2 function x(⋅) such that

x(t0) = x0, ẋ(t0) = 0, ẍ(t0) = 0,

x(tf ) = xf , ẋ(tf ) = 0, ẍ(tf ) = 0,

where tf > 0 is the final time (not given). The absolute value of the first derivative for

each component ẋi(⋅), i = 1, . . . , n cannot exceed vmaxi, i = 1, . . . , n. It is also assumed

that the absolute value of the second derivative for each component ẍi(.) cannot exceed

amaxi, i = 1, . . . , n. For simplicity, let xf ∕= x0.

Let s(⋅) be a function built as in Section C.2:

s(t0) = 0, ṡ(t0) = 0, s̈(t0) = 0,

s(tf ) = 1, ṡ(tf ) = 0, s̈(tf ) = 0,



APPENDIX C. BUILDING SUBTASK TRAJECTORIES 226

and define the n-dimensional function x(⋅) as follows:

x(t) = (xf − x0)s(t) + x0. (C.9)

It is easy to see that the resulting n-dimensional function x(.) is C2 and that the initial

and final conditions for x(.) are satisfied. The conditions relative to the maximum first

derivative and the maximum second derivative for x(.) translate into conditions for the

maximum first derivative and the maximum second derivative for s(.) as follows. We have

∣(xf i − x0i)ṡ(t)∣ ≤ vmaxi, ∣(xf i − x0i)s̈(t)∣ ≤ amaxi, i = 1, . . . , n.

Therefore, the maximum value of the first derivative vmax for s(.) is defined by

vmax = min
i=1,...,n

{
vmaxi

∣xf i − x0i∣

}
, (C.10)

and the maximum value of the second derivative amax for s(.) is defined by

amax = min
i=1,...,n

{
amaxi

∣xf i − x0i∣

}
, (C.11)

With (C.10)-(C.11), the function s(.) can be determined as in Section C.2. The n-

dimensional function x(.) then follows from (C.9).

C.4 Application to the Subtask Trajectories

The problem of generating the subtask trajectory is just a particular case of Section C.3,

where

∙ n = 6 and x = p,



APPENDIX C. BUILDING SUBTASK TRAJECTORIES 227

∙ x0 = p0 and xf = pf ,

∙ vmax = ṗmax where ṗmax is provided in Table 2.1.

In PCTS, the maximum end-effector acceleration p̈max, corresponding to amax, is not pro-

vided. An admissible value for p̈max must respect the constraint mentioned in Section 2.2

that the end-effector must be able to reach any position and orientation within W in less

time than the run time of the wind tunnel.


