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Abstract: This paper presents the kinematics of an Atlas
platform actuated via redundant actuation contact points,
such as those associated with three-race omnidirectional
wheels. The six degree of freedom (DOF) Atlas motion
platform architecture comprises a three DOF spherical ori-
enting platform, which is a sphere actuated by three om-
nidirectional wheels, affixed to an x − y − z linear plat-
form. The kinematics for the three DOF spherical ori-
enting platform are introduced in their most general form
for n actuation contact points. The conditions for no-slip
are presented, and lead to the conclusion that a three-
race solution cannot accomplish a combination of both
slip-free and singularity-free conditions simultaneously.
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1 Introduction

The Atlas platform [1] illustrated in Figure 1 consists of
a spherical platform, which is a sphere actuated by three
omnidirectional wheels, affixed to an x−y−z linear plat-
form. For a set of idealized (perfectly round) omnidirec-
tional wheels, there exist designs such that it is possible to
obtain slip-free and singularity-free conditions [2]. How-
ever, in reality it is impossible to have a perfectly round
omnidirectional wheel due to its very nature, as illustrated
in Figure 2. Still, it is common in the mobile robotics lit-
erature to model omnidirectional wheels as ideal [3], or
try to add slip factors to compensate for the resulting er-
ror [4]. Solutions to the discontinuity problem caused by
the basic design of omnidirectional wheels are proposed in
[5] by means of minimizing the gaps between the rollers
in. While an intermediate sphere is added between the
omnidirectional wheel and the actuated surface in [6]. An
alternative approach [7] is to use a dual-race omnidirec-
tional wheel as illustrated in Figure 3. This solves the

problem of obtaining continuous contact with the sphere;
however, it introduces a shift in the location of the contact
points on the sphere, thereby inducing significant unde-
sired vibrations, and associated control issues [8].

Figure 1: The Atlas table-top 6-DOF demonstrator high-
lighting the omnidirectional wheel actuation concept.

An attempt to combine the benefits of the two de-
signs (single-race, dual-race) driven by intuition, is to
have triple-race omnidirectional wheels as illustreted in
Figure 4. The two external races touch the sphere at
the same time, alternating with the centre race, yielding
an equivalent or effective contact point that is exactly in
between them. This generates continuous contact with a
continuous effective contact point, thereby eliminating the
step function induced vibration associates with dual-race
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Figure 2: A single-race omnidirectional wheel.

omnidirectional wheels.
This paper generalizes the kinematics for n contact

points, develops the kinematics of the suggested solution,
and establishes conditions on the design to attain the de-
sired slip-free and singularity-free traits. The kinematics
presented herein are completely general, and are valid for
any over-constrained case, i.e. where n > 3.

2 Kinematics

To develop the kinematics of the platform, a general con-
figuration is assumed, and an inertial coordinate frame is
positioned at the geometric centre of the sphere as illus-
trated in Figure 5.

The kinematics for the ideal case have been developed
in [2]. The underlying concept there was to obtain a re-
lationship between ~Ω, the angular velocity vector of the
sphere, and ωi, the angular speeds of the three omnidirec-

Figure 3: A dual-race omnidirectional wheel.

Figure 4: A triple-race omnidirectional wheel.

tional wheels, that would account for zero kinematic slip
between the sphere and the omnidirectional wheels. The
no-slip condition for a single contact point i is for the ve-
locity of the omnidirectional wheel at the contact point,
in the actuation direction, to be the same as the veloc-
ity component in the same direction at the same contact
point on the sphere. That is, we require:(

~Ω× ~Ri

)
· (~ωi × ~ri) = (ωiri)

2 (1)

where ~Ri is the relative position vector directed from the
sphere centre of rotation to the sphere contact point with
omnidirectional wheel i and ~ri is the relative position vec-
tor directed from the omnidirectional wheel centre of ro-
tation to the sphere contact point with omnidirectional
wheel i.

The same approach presented in [2] will be used, but
instead of having three contact points, we now have n

Figure 5: Inertial coordinate frame with origin at the ge-
ometric centre of the sphere.
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contact points. For the no-slip condition we require:

(R̂i × v̂i) · ~Ω =
ri
R
ωi i = 1, 2, ..., n (2)

where R is the radius of the sphere, R̂i is a unit vector in
the direction of the contact point from the sphere centre,
v̂i is a unit vector in the actuation direction of omnidi-
rectional wheel i, and ri is its radius. Defining the unit
induced angular velocities, Ω̂i as

Ω̂i = R̂i × v̂i (3)

yields

Ω̂i · ~Ω =
ri
R
ωi. (4)

In the case where n = 3, this results in a set of three equa-
tions with three unknowns, yielding slip-free singularity-
free conditions, presented in [2].

A The Overdetermined Equation Ap-
proach

In the case of n > 3, the result is an overdetermined set
of equations:

Ω̂T
1

Ω̂T
2

Ω̂T
3

.

.

Ω̂T
n

 ~Ω =
1
R


r1 0 0 . . .
0 r2 0 . . .
0 0 r3 . . .
. . . . . .
. . . . . .
. . . . . rn





ω1

ω2

ω3

.

.
ωn


. (5)

This case usually calls for an approximate solution, typi-
cally a least squares approach.

3 Application to Triple-Race Om-
nidirectional Wheels

In the specific case of a sphere actuated by three triple-
race omnidirectional wheels, there are up to six contact
points. To illustrate the difference between triple-race om-
nidirectional wheels and single or dual race wheels, the
extreme case of six contact points will be used. In the
triple-race case, there are additional constraints, since for
each pair of contact points on the two outer races that
belong to the same omnidirectional wheel, r, ω, and v̂

are the same. This allows for the simplification of the

equations:

Ω̂T
11

Ω̂T
12

Ω̂T
21

Ω̂T
22

Ω̂T
31

Ω̂T
32


~Ω =

1
R


r1 0 0 0 0 0
0 r1 0 0 0 0
0 0 r2 0 0 0
0 0 0 r2 0 0
0 0 0 0 r3 0
0 0 0 0 0 r3





ω1

ω1

ω2

ω2

ω3

ω3


(6)

where

Ω̂ij = R̂ij × v̂i (7)

and R̂ij is a unit vector in the direction of the contact
point j of omnidirectional wheel i.

As mentioned above, this kind of over-determined set
of equations is usually solved using an approximation
method. However, using such an approach leads to a so-
lution that is missing the point of the design. The aim
of the design is to achieve motion that is equivalent to
that induced by the contact point of the centre race; i.e.,
one should expect any set of two equations belonging to
the same omnidirectional wheel to yield a result in the
same direction as the equivalent result for the single-race
case. While this may be accomplished using the results
from the single-race analysis, this assumption, as well as
any other approximation technique, would still yield an
approximation, which implies that the slip-free condition
is compromised. Thus, without being able to accomplish
the slip-free conditions, the kinetics of the system must
be taken into consideration, and the true motion cannot
be determined using kinematics alone.

A Revisiting the No-Slip Condition

Rearranging the terms in Equation (6) yields another way
to look at the problem:

Ω̂T
11 − r1

R 0 0
Ω̂T

12 − r1
R 0 0

Ω̂T
21 0 − r2

R 0
Ω̂T

22 0 − r2
R 0

Ω̂T
31 0 0 − r3

R

Ω̂T
32 0 0 − r3

R





Ωx

Ωy

Ωz

ω1

ω2

ω3


= ~0. (8)

This representation enables examination of a given de-
sign. In order for one to obtain a nontrivial solution, it is
required that the determinant of the matrix in Equation
(8) be zero. Once this is established, then sets of allow-
able solutions {~Ω, ~ω} that yield slip-free conditions would
exist.
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A closer look at the equation leads to even more sim-
plifications. Gaussian elimination yields the following:

Ω̂T
11 − r1

R 0 0
Ω̂T

12 − Ω̂T
11 0 0 0

Ω̂T
21 0 − r2

R 0
Ω̂T

22 − Ω̂T
21 0 0 0

Ω̂T
31 0 0 − r3

R

Ω̂T
32 − Ω̂T

31 0 0 0





Ωx

Ωy

Ωz

ω1

ω2

ω3


= ~0. (9)

Rows 1, 3, and 5 of the coefficient matrix of Equation
(9) are clearly linearly independent with respect to each
other, and with respect to rows 2, 4, and 6. Thus, all that
remains is to assure that the determinant of the smaller
3× 3 matrix  Ω̂T

12 − Ω̂T
11

Ω̂T
22 − Ω̂T

21

Ω̂T
32 − Ω̂T

31

 (10)

is zero. Remembering that Ω̂ij = R̂ij× v̂i, the rows of the
matrix above may be rewritten as:

Ω̂i2 − Ω̂i1 = (R̂i2 − R̂i1)× v̂i. (11)

Figure 6: Contact point geometry when two races touch
the sphere simultaneously.

From the geometry of the problem, as illustrated in
Figure 6, we conclude that the result is a vector in the
direction of R̂i. Hence, we may rewrite the matrix above
as:  R̂T

1

R̂T
2

R̂T
3

 . (12)

The no-slip condition now becomes a requirement on the
position vectors of the effective contact points to be lin-
early dependent. Finally, combining this requirement

with the no-slip requirement on the centre row combi-
nation, which was shown in [2] to be that the matrix Ω̂T

1

Ω̂T
2

Ω̂T
3

 (13)

be non-singular, we need R̂i to be linearly dependent,
while the Ω̂i are linearly independent.

4 Examples

The following examples re-examine two architectures that
complied with the conditions for the single-row and dual-
row omnidirectional wheels for the added criterion posed
by the triple-race analysis. A third architecture that
emerges from the analysis is then presented. For all the
examples, the sphere has a radius R and each of the om-
nidirectional wheels has a radius r.

A The orthogonal case

This example considers the architecture illustrated in Fig-
ure 7.

Figure 7: Kinematic architecture for the orthogonal case.

The position vectors of the three contact points are:

~R1 = Rî; ~R2 = Rĵ; ~R3 = Rk̂. (14)

The unit induced angular velocities are:

Ω̂1 = î× k̂ = −ĵ; Ω̂2 = ĵ × î = −k̂; Ω̂3 = k̂ × ĵ = −î. (15)

It is clear that these are mutually orthogonal, since:

Ω̂i · Ω̂j = 0...i 6= j. (16)
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It is also clear that the position vectors ~Ri are mutually or-
thogonal, thus the added condition for the triple-race case
is not satisfied. Hence this architecture, that was shown
to be slip-free for the single-race and dual-race cases, fails
in the triple-race case.

B The Atlas Sphere

The current configuration of the Atlas motion platform
has the three omnidirectional wheels arranged on the
edges of an equilateral triangle with an elevation angle
of 40◦. The reason for the equilateral configuration is to
accomplish as even force and torque distribution on the
omnidirectional wheels as possible. However, the eleva-
tion angle of 40◦ was chosen for the demonstrator solely
due to ease of manufacturing and assembly. To generalize
the equilateral configuration an arbitrary elevation angle
θ will be used. The configuration is presented in Figure
8.

Figure 8: Kinematic architecture for the Atlas sphere case
[2].

In this case, the position vectors of the three contact
points are:

~R1 = R(cos θî− sin θk̂),

~R2 = R(−1
2

cos θî+
√

3
2

cos θĵ − sin θk̂),

~R3 = R(−1
2

cos θî−
√

3
2

cos θĵ − sin θk̂), (17)

and the unit induced angular velocities, in matrix form,

are: Ω̂T
1

Ω̂T
2

Ω̂T
3

 =

 sin θ 0 cos θ
− 1

2 sin θ
√

3
2 sin θ cos θ

− 1
2 sin θ −

√
3

2 sin θ cos θ

 . (18)

The determinant of this matrix will be zero for:

3
√

3
2

sin2 θ cos θ = 0 (19)

thus, with the exception of θ = 0 and θ = ±90◦, this
matrix is non-singular. Applying the same process to the
position vector, we have the matrix: R̂T

1

R̂T
2

R̂T
3

 =

 cos θ 0 − sin θ
− 1

2 cos θ
√

3
2 cos θ − sin θ

− 1
2 cos θ −

√
3

2 cos θ − sin θ

 . (20)

The determinant of this matrix will be zero for:

3
√

3
2

cos2 θ sin θ = 0. (21)

With the same exceptions as the last case, this matrix is
also non-singular. Thus this architecture, like the previous
one, fails for the triple-race case.

C The Collinear Case

An example that conforms to both conditions could easily
be constructed.

Figure 9: A configuration that allows for slip-free condi-
tions.

In the configuration shown in Figure 9 we have:

R̂1 = î; R̂2 =
√

2
2
î+
√

2
2
ĵ; R̂3 = ĵ

Ω̂1 = ĵ; Ω̂2 = k̂; Ω̂3 = î (22)
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and it is clear that the three induced angular velocities are
linearly independent, while all three position unit vectors
lay in the XY plane, thus being linearly dependent, as
any three vectors contained in a plane.

Two main examples have been demonstrated so far in
previous papers [2, 8]. Both have been shown to con-
form with the latter condition (Ω̂i are linearly indepen-
dent). However, both fail to conform with the new re-
quirement that R̂i be linearly dependent. On the other
hand, the third collinear case presented above, conforms
to our added requirement. However, the result is that
the determinant of the coefficient matrix in Equation (9)
vanishes, implying that there are sets of combinations of
allowable solutions {~Ω, ~ω} that yield slip-free conditions.
That, in turn, means that not any set of input angular
speeds ~ω yields slip free conditions, thereby compromis-
ing the singularity-free workspace.

5 Conclusion

Although designs that meet the no-slip conditions ex-
ist, as presented above, clearly none of them could be
singularity-free while maintaining the no-slip conditions.
Any three-race omnidirectional wheel solution would be
kinematically inferior to single-race [2] and double-race [8]
solutions, that were shown to have Jacobians that repre-
sent one-to-one mappings from the input angular speeds of
the omnidirectional wheels to the output angular velocity
of the sphere. It seems that while intuition suggests that
the triple-race omnidirectional wheels may give us the best
of both worlds, this simple analysis suggests otherwise.
This deception of intuition may be easily explained by
exploring the single degree-of-freedom case, where a sin-
gle omnidirectional wheel would drive a sphere or a cylin-
der. In this simple case the desired effect is accomplished,
however, once more degrees of freedom are introduced,
kinematic slip is imminent.
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