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Abstract. The workspace of planar three-legged platforms with holonomic
higher pairs is examined. Kinematic mapping is used to represent distinct
displacements of the end-effector as points in a three-dimensional projec-
tive image space. The kinematic image of the workspace is shown to be
the intersection of solid regions bounded by the envelopes of three families
of hyperboloids. The hyperboloids of each family are identical but their
axes lie in a ruled surface. The pre-image of the envelopes bounding each
solid region consists of pairs of parallel transcendental curves which corre-
spond to the reachable workspace boundary of each leg for one end-effector
reference point. An example is given, showing that such platforms can be
designed with a large, hole-free dextrous workspace. In this case, the dex-
trous workspace is on the order of one-third of the reachable workspace.

1. Introduction

Research interest in parallel manipulators has grown steadily over the last
twenty-five years. This is partly due to their inherent advantages over se-
rial manipulators where accuracy, stiffness, load-to-weight-ratio and op-
erating speeds are concerned (Merlet, 1999). One major disadvantage of
parallel manipulators in general, compared to serial ones, is that their
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reachable workspace is small and may contain a high density of interior
singularities (Sefrioui and Gosselin, 1992; Collins and McCarthy, 1998;
Husty et al., 1999). Although the workspace analysis of planar three-legged
manipulators is well established, see Gosselin (1988), Merlet (1990), Husty
(1996), for example, work on those containing holonomic higher pairs is
rare. In fact, only one paper on this subject was found in the literature,
Agrawal and Pandravada (1993), and this offering seems to be incomplete.
It has been stated in Hayes et al. (1999b) that these manipulators have
interesting geometric properties that lead to useful applications. This gives
the motivation to carefully study the workspace of these manipulators.

This paper uses kinematic mapping for the purpose of workspace analy-
sis. The method employed is based on that found in Husty (1996), wherein
platforms consisting of three revolute-prismatic-revolute (RPR) legs are an-
alyzed. The results presented in this paper can also be applied to a broad
sub-class of lower pair three-legged platforms as described in Merlet (1996),
Husty et al. (1999), Hayes (1999). Because of the illustrative description of
all possible positions of the end-effector system as a surface-bound solid re-
gion in an image space, it is believed that this is a useful tool for designers.
Moreover, it facilitates computations when the reachable workspace of more
than one reference point in the end-effector system has to be determined.

2. Manipulator Description

The planar manipulator, shown in
Fig. 1, consists of three closed kinematic
chains. The circular disk, modelled as a
pinion, rolls without slip on each of the
three racks tangent to it. We call the
kinematic connection between the rack
and pinion a gear (G) pair. It is a higher
kinematic pair because of the line con-
tact between the two links. Moreover, the
rolling constraints are holonomic due to
the pure rolling and because the motion
is planar. Hence, the constraint equations
can be expressed in terms of displace-
ment. Each of the three legs connect a
rack to a base point via two revolute (R)
pairs. Each closed chain in the manipula-
tor is an RRGGRR chain. Figure 1. Planar platform.

The leg links are rigid and a rack is rigidly attached to the disk end
of each second link. The R-pairs connecting two links in a leg shall be
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referred to as knee joints KA, KB, KC , and are constrained to move on
circles centred on the three points FA, FB, FC , which are grounded to a
fixed rigid base. The position and orientation of the pinion end-effector are
described by reference frame E, which has its origin on the disk centre and
moves with it. Frame Σ has its origin at the base of leg A and is fixed.

The kinematics of these platforms, unlike those of lower-pair jointed
three-legged ones, are dependent on the initial assembly configuration (IAC),
due to the roll-without-slip condition, see Agrawal and Pandravada (1993),
Hayes et al. (1999a). This means that changing the IAC will change the
workspace. For kinematics computations one reference position can be used
as the IAC. We have used the position shown in Fig. 1.

3. A Kinematic Mapping of Planar Displacements

It is convenient to think of the relative planar motion between two rigid
bodies as the motion of a Cartesian reference coordinate system E, attached
to one of the bodies, with respect to the Cartesian coordinate system Σ,
attached to the other. The position of a point in E relative to Σ can be
given by the homogeneous linear transformation

⎡
⎣ X

Y
Z

⎤
⎦ =

⎡
⎣ cos ϕ − sinϕ a

sin ϕ cos ϕ b
0 0 1

⎤
⎦

⎡
⎣ x

y
z

⎤
⎦ , (1)

where (x/z, y/z) are the Cartesian coordinates of a point in E, (X/Z, Y/Z)
are those of the same point in Σ. The Cartesian coordinates of the origin of
E measured in Σ are (a, b). The rotation angle measured from the X-axis
to the x-axis is ϕ, the positive sense being counter-clockwise.

The kinematic mapping used here is discussed in detail by Bottema and
Roth (1979), De Sa and Roth (1981) and by Ravani and Roth (1983). The
image of the displacement parameters (a, b, ϕ) under the kinematic mapping
is called the image point. Distinct displacements have unique image points,
given by

(X1 : X2 : X3 : X4) = [a sin (ϕ/2) − b cos (ϕ/2) :
a cos (ϕ/2) + b sin (ϕ/2) :
2 sin (ϕ/2) : 2 cos (ϕ/2)]. (2)

By virtue of the relationships expressed in Eq. (2), the transformation
matrix from Eq. (1) may be expressed in terms of the homogeneous coor-
dinates of the image space. This yields a linear transformation to express
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a displacement of E with respect to Σ in terms of the image point:
⎡
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Y
Z

⎤
⎦ =

⎡
⎣ (X2

4 − X2
3 ) −2X3X4 2(X1X3 + X2X4)

2X3X4 (X2
4 − X2

3 ) 2(X2X3 − X1X4)
0 0 (X2
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3 )

⎤
⎦

⎡
⎣ x

y
z

⎤
⎦ .(3)

The ungrounded R-pair in a 2R mechanism is constrained to move on a
circle with a fixed centre. The image points that correspond to all possible
displacements of the ungrounded link with respect to a fixed reference frame
constitute a quadric hyper-surface. If the circle centre has fixed homoge-
neous coordinates (Xc : Yc : Z) and radius �1, the constraint hyperboloid in
the image space has an equation of the form (Bottema and Roth, 1979):

0 = K0(X2
1 + X2

2 )z2 + (1/4)[K0(x2 + y2) − 2K1xz − 2K2yz + K3z
2]X2

3+
(1/4)[K0(x2 + y2) + 2K1xz + 2K2yz + K3z

2]X2
4 + (K1z −K0x)zX1X3+

(K2z −K0y)zX2X3 − (K0y + K2z)zX1X4 + (K1z + K0x)zX2X4+
(K2x −K1y)zX3X4, (4)

where K0 = arbitrary homogenizing constant, K1 = −Xc, K2 = −Yc and
K3 = (X2

c + Y 2
c − �2

1).

4. Virtual Platform and Involute Inputs

The three joint input variables are selected to be the change in arclength
along the rack due to the change in contact point, given by ∆di (this choice
was made to better suit computations). They are given by the three num-
bers ∆di = r∆τi, i ∈ {A, B, C}. The ∆τi are the change between the initial
and final rack angles and the pinion radius is r. Because the bases are or-
thogonal, the change in tangent angle is the same as the change in normal
angle: ∆τi = ∆ηi.

To effectively apply the kinematic mapping to workspace analysis, fixed
points in E which move on fixed circles in Σ are required. These are supplied
naturally when the concept of the virtual platform (VP) is employed, see
Hayes et al. (1998; 1999b). The VP is formed by the triangle whose vertices
are the three knee joints expressed relative to the disk frame E: KA/E ,
KB/E , KC/E (see Fig. 1). For a given assembly configuration, these virtual
platform points (VPP) are fixed relative to each other, but change from pose
to pose. Next, we require expressions for the VPP in terms of the joint input
variables, ∆τi. Consider, for now, only leg A in Fig. 2 and observe that the
knee joint KA, which has a fixed position in the reference frame attached
to the rack, RA, moves on a circle in the fixed frame Σ. But, it also has a
relative motion in the moving disk frame E: fix the disk and observe that
the relative motion of the rack with respect to E is pure rolling with the
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original contact point moving on an involute of the pinion. This gives a
complete description (in terms of the change in rack tangent angle) of the
motion of the knee joints with respect to both the moving frame, E, and
the fixed frame, Σ. Due to their positional dependence on an involute, we
call these one parameter sets of knee joint positions involute inputs.

The motion of the knee joints of the remaining two legs must be the
same type as that of leg A relative to E, but the starting points of the
involutes are different. Thus, for every set of three joint input parameters
one obtains a set of three VPP expressed in E. With the VPP transformed
to involute inputs the kinematic mapping can be used.

The involute inputs were
derived in detail in Hayes
et al. (1999b), but the main
steps are described below.
Fig. 2 shows the reference
coordinate systems used to
transform the position of the
knee joint from the moving
rack reference frame, RA, to
the relatively fixed pinion ref-
erence frame, E. The origin of
RA moves along its involute
and R′

A gives the new position
of RA after a rotation ∆τA.
The intermediate system, E′

A,
is fixed relative to E. For each Figure 2. Leg A reference frames.

leg, E′
i is rotated from E through θi = (5π/4), (7π/4), (π/2) for i ∈ {A, B, C}.

Examining Fig. 2, it is easy to see that for each leg the required transfor-
mations to take the coordinates of the knee joint Ki from frame R′

i to frame
E are (where c = cos, and s = sin)

TR′
i/E = TE′

i/ETR′
i/E′

i

=

⎡
⎣ cθi −sθi 0

sθi cθi 0
0 0 1

⎤
⎦

⎡
⎣ −s∆τi −c∆τi r(c∆τi + ∆τis∆τi)

c∆τi −s∆τi r(s∆τi − ∆τic∆τi)
0 0 1

⎤
⎦ .

The knee joints, shown in Fig. 1, all have the same coordinates in their
respective Ri and R′

i frames:

ki/R′
i

=

⎡
⎢⎣

xki/R′
i

yki/R′
i

z

⎤
⎥⎦ =

⎡
⎣ 0

−�2i

1

⎤
⎦ .
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Once the arclength parameters (joint inputs), ∆τi, are given, the coor-
dinates of the knee joints (involute inputs) in frame E, ki/E , are easily
determined by left multiplying the ki/R′

i
with the appropriate TR′

i/E ,

ki/E = TR′
i/Eki/R′

i
. (5)

5. Workspace Analysis

For the kinematic analysis it is useful to consider the three sub-chains
consisting of a 2R serial leg together with the pinion when the connections
to the other two legs have been severed. This means that for a set of joint
inputs, ∆τi, one for each leg, substituting the IAC and the input data from
Eq. (5) into Eq. (4) gives three constraint hyperboloids in the image space.
Note that Eq. (4) covers the case of a point moving on a line (K0 = 0) which,
while of interest for a sub-set of lower-pair jointed planar platforms, is of no
interest here. The constraint equation can be simplified by setting K0 = 1.
Also, no platform point should be at infinity, so we can set z = 1. Then,
cautiously setting X4 = 1, we can rearrange the constraint hyperboloid
equation, Eq. (4) (the subscript ki/E is abbreviated as k):

(
X1− 1

2(yk + K2 + (xk −K1)X3)
)2

+
(
X2− 1

2((yk −K2)X3 − xk −K1)
)2

− �21
4 (1 + X2

3 ) = 0. (6)

In planes where X3 is a constant, Eq. (6) represents a circle with centre
coordinates

[
1
2
(yk + K2 + (xk −K1)X3) :

1
2
((yk −K2)X3 − xk −K1) : X3

]
, (7)

and radius

RX3 =
�1

2

√
(1 + X2

3 ). (8)

The following is a summary of some interesting properties of these image
space hyperboloids:

1. The constraint surfaces are skew hyperboloids.
2. The intersection curves with planes X3 = const. are circles. Points in

these planes correspond to positions with fixed orientation.
3. The hyperboloid axes are independent of �1i . They depend on the

relative locations of the fixed base points and of the moving VPP.
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By virtue of point 2 above, it is simple to parametrize the constraint
hyperboloid by stacking circles, parametrized with the angle ζ, in planes
parallel to X3 = t = a constant. With −∞ ≤ t ≤ ∞ and 0 ≤ ζ ≤ 2π, we
obtain (note, the axis equations are determined by setting �1 = 0):

⎡
⎣ X1

X2

X3

⎤
⎦ =

1
2

⎡
⎢⎣

[(xk −K1)t + K2 + yk] + (�1

√
t2 + 1) cos ζ

[(yk −K2)t −K1 − xk] + (�1

√
t2 + 1) sin ζ

2t

⎤
⎥⎦ . (9)

When the knee joint positions for all pos-
sible changes in rack tangent angle from
Eq. (5) are substituted into Eq. (9), we
obtain the family of constraint hyper-
boloids for a given leg. The solid bounded
by the envelope of these hyperboloids is
the image of the workspace for that leg
when the other two have been discon-
nected from the pinion. Fig. 3 shows a
portion of the solid region for leg A of
the platform shown in Fig. 1. There is
one envelope corresponding to each leg.
The image of the workspace of the entire
platform is the solid region bounded by
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Figure 3. Portion of hyperboloid family.

the intersection of these three envelopes. Substituting Eq. (9) into Eq. (3)
yields the pre-image of the constraint solid region, i.e., the Cartesian reach-
able workspace. The pre-image is dependent on the platform reference point
(x, y), which we are free to choose. This makes it easy to compute the dif-
ferent Cartesian reachable workspaces of different end-effector reference
points. The smallest set of equations is obtained by selecting the origin of
E as the reference point.

To obtain the image of the workspace we consider all positions of the
end-effector reference point for fixed pinion orientations for each leg. This
involves intersecting the envelopes of constraint solids with the planes X3 =
constant. The corresponding curves are envelopes of circles whose radii are
given by Eq. (8). We obtain the envelopes for particular values of X3 by first
determining the locus of circle centres. Each envelope is characterized by
major and minor parallel offset curves at a distance from the centre locus
equal to the hyperboloid circle radius. The respective pre-image is obtained
by choosing a platform reference point (x, y, 1) then substituting the ex-
pressions for the three envelopes in terms of the ki/E and (X1, X2, X3, X4)
into Eq. (3). The reachable positions of the pinion reference point for the
particular orientation are bounded by the intersections of these six curves.
The entire reachable workspace is the union of pre-images of each layer.
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6. Example

Table 1 gives the IAC for a manipulator similar to the one shown in Fig. 1,
only the link lengths are different, the relative link angles are the same. The
XFi/Σ and YFi/Σ are the coordinates of the base of each leg expressed in
the fixed frame, Σ. The initial rack normal angles in the moving frame, E,
are ηi/E . The relative angles between the first link and base, and between
the second and first links are θi1/0 and θi2/1, respectively. The location of
the contact point along a rack measured in the corresponding rack frame,
Ri, is di3/Ri

. The link lengths, in generic units, are: r = 2; �i1 = 6; �i2 = 12.

TABLE 1. Initial assembly configuration (IAC).

i XFi/Σ YFi/Σ ηi/E ϑi1/0 ϑi2/1 di3/Ri

A 0 0 225◦ 90◦ 315◦ 0

B 14
√

2 0 315◦ 90◦ 45◦ 0

C 7
√

2 + 6 7
√

2 + 20 90◦ 180◦ 90◦ 0

Fig. 4 shows the intersections of the three constraint solid envelopes,
obtained after substituting Eq. (5) into Eq. (9), with the plane X3 = 0. Each
envelope is pair of parallel transcendental curves, whose characteristics are
determined by the corresponding involute. All points bounded by the six
curves in this plane, the shaded region in Fig. 4, represent the possible
positions of the pinion when it has an absolute orientation of ϕ = 0. The
pre-image of these curves, obtained after substituting Eq. (9) into Eq. (3), is
shown in Fig. 5. The reachable Cartesian workspace of the entire platform
for this orientation and reference point is the region bound by all six curves,
shown as the shaded area in Fig. 5.

Figure 4. Workspace image for ϕ = 0. Figure 5. Cartesian Workspace for ϕ = 0.



WORKSPACE CHARACTERIZATION 9

Fig. 6 shows different layers of the reachable Cartesian workspace. There
are 13 layers, each representing a 30◦ increment in the orientation of the
pinion. In Fig. 7, the different layers are given different elevations according
to the pinion orientation. The top layer is the reachable workspace for a
pinion orientation of 180◦ while the second layer from the bottom is that
of −180◦ orientation. The bottom is the union of all the layers.

The dextrous workspace of a manipulator is usually defined as the
set of all points within the reachable workspace that the end-effector can
reach with any orientation. Examining Fig. 6 the boundary of the dex-
trous workspace is seen to be the shaded region that is common to all lay-
ers. An area computation reveals that the dextrous workspace comprises
31.71% of the reachable workspace. Moreover, the reachable and dextrous
workspace contain no holes; a remarkable result when compared with lower
pair jointed three-legged platforms, see Sefrioui and Gosselin (1992; 1995),
or Husty (1996), for example.

Figure 6. Overlay of workspace layers. Figure 7. 3D view of workspace layers.

7. Conclusions

In this paper kinematic mapping was used to analyze the workspace of
a parallel manipulator. The image of the reachable workspace is a solid
region bound by three envelopes of hyperboloids. The pre-image of this
solid region, depending on the end-effector reference point, is found by the
inverse mapping. The workspace depends on the choice of IAC and reference
point. The example shows that these types of platforms can be designed to
have a relatively large, hole-free dextrous workspace that is on the order of
one-third of the reachable workspace.
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