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This paper provides a generalization of the profit function by relaxing the

assumption of price-taking behaviour. The resulting profit-maximization problem is

analyzed, and forms of a generalized profit function together with the corresponding

generalized cost function and their properties are established under alternative

assumptions about the functional form of the (inverse) output demands and input

supplies faced by the firm.
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1. Introduction

As is well known by economists, the profit function is defined as the maximum profit that

can be made by a firm that is a price-taker in all relevant markets as a function of the prices

of the inputs it demands from and the outputs it supplies to those markets. This function has

a number of important, somewhat intuitive properties that are artifacts of the assumption of

profit maximization only: convexity, homogeneity of degree one, and continuity in all relevant

prices, non-increasingness in input prices, non-decreasingness in output prices, and its derivatives

being equal to the firm’s associated net output supply functions. The latter property is known as

Hotelling’s lemma on account of the fact that Hotelling (1932, p. 594) was the first to articulate

it.1 The homogeneity, continuity, and monotonicity properties were first stated by Samuelson

(1953–1954, p. 20)2 and the convexity property by Gorman (1968, §3). Further historical notes on

0 The research leading to this paper has benefitted from financial support by the Social Science Research Council of

Canada.

1 “Just as we have a utility (or profit) function  of the quantities consumed whose derivatives are the prices, there is,

dually, a function of the prices whose derivatives are the quantities consumed.”

2 “For any set of ’s being given and quantities of the remaining variables being given, there will be a maximum value

for Σ, where the summation is over the prescribed ’s. This maximum value can be written as  (;) where it

is understood that no good ever has both its  and specified.  is a continuous and homogeneous function of the first

order in the  variables alone . . . . The vector  is proportional to the ’s . . . ,” which implies that  gets smaller

as  rises for any   0 and larger as  rises for any   0. Note that “inputs [are treated] as if they were

negative outputs” (ibid., p. 17).
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the study of the profit function, including related duality theorems and suitable functional forms,

are presented by Diewert (1974, p. 141). More recent developments are discussed in Pastor et al.

(2016) and Aparicio et al. (2016).

In all such studies it is taken as axiomatic that the underlying firm is a price-taker. Debreu

(1959, p. 43) provides one of the more fulsome justifications for this assumption in asserting

that “each producer considers prices as given because, for example, his output or input of any

commodity is relatively small and he thinks his action cannot influence prices.” In the real world,

of course, this is very often not the situation faced by firms in one or more relevant markets.

Non-price-taking behaviour in an output market requires modelling the demand side of that

market along with the supplies by all firms in the industry in question; non-price-taking behaviour

in an input market requires modelling the supply side of that market along with the demands by all

firms, including those outside the industry in question. As market prices are no longer parametric

to the firm, the resulting generalized profit function will not depend on them, but rather on the

parameters of the functional form used to specify output demands and input supplies. Certain

functional forms yield generalized profit functions with properties similar to those of the profit

function (stated above).

The decision problem of a profit-maximizing firm that exhibits non-price-taking behaviour

in all markets in which it is either a seller or a buyer is analyzed in Section 2 The associated (form

of) generalized profit function and properties thereof are established for each of three different

functional forms for (inverse) output demands and input supplies in Sections 3 and 4. Section 5

concludes.
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2. Theoretical Model

Suppose there are  ≥ 2 commodity types. Starting from the “shut down” point 0 , with

no inputs demanded and no outputs supplied, production by the firm entails using up certain

amounts of some types of commodities and generating certain amounts of others. Since amounts

used up are draw-downs of existing stocks, they can be thought of as negative numbers; since

amounts generated are additions to existing stocks, they can be thought of as positive numbers

(any commodities neither used up nor generated are zeros). Reckoned in this way, a production

plan y ∈ R is simply a discrete change from 0 with negative components corresponding to

input quantities and positive components corresponding to output quantities.

The state of technology at the time of production determines which production plans are

feasible. The set of all feasible production plans from which the firm can choose is the production

possibilities set Y ⊆ R. The impossibility of getting something for nothing or “no free lunch”

implies that R
+\ {0} Ã Y . The possibility of unbounded waste of acquired quantities at no cost

or “free disposal” implies that R
− ⊆ Y . If Y is closed and satisfies free disposal, then there exists

a transformation function  : R → R such that  (y) ≤ 0 if and only if y ∈ Y .3 The equation

 (y) = 0 describes the transformation frontier since  (y0)  0 for all y0 ∈ R such that y0  y

and since, by free disposal,  (y0)  0 for all y0 ∈ R such that y0  y. The transformation

frontier is therefore a monotonic function.

Assuming that  (·) is differentiable, we can totally differentiate the associated frontier to

3 Or, equivalently,  (y)  0 if and only if y ∈ Y .
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get
X
=1

(y) = 0 .

For  6= 0 6=  and  = 0 ∀ :  6=  6= , we have

(y) + (y) = 0 ,

which implies the marginal rate of transformation of  from :

(y) := −


¯̄̄̄
 (y)=0

=
(y)

(y)
.

Other things being equal, (y) is the opportunity cost of the production of  in terms of

 if both commodities are outputs, the marginal rate of technical substitution of  for  if both

commodities are inputs, and the marginal product of  in the production of  if the former is an

input and the latter is an output.

The price of commodity  is given as (), where  : R−+ → R++ is the associated

decreasing, twice-continuously differentiable, inverse total-market input-supply (if the domain of

 is R−) or output-demand (if the domain of  is R+) function, and  −  0
 ≡ 1 · (:  :) is

either the negative of the quantity of input demanded, in which case   0 and  0
 ≤ 0, or the

quantity of output supplied, in which case   0 and  0
 ≡ 0, by the  firms in the industry.4

Since each price is a function of the unweighted sum of quantities demanded or supplied of the

associated commodity, the conjectural variation in cases where  is a finite integer greater than

one is that each firm treats the inputs and outputs of the other firms as given when it chooses its

own inputs and outputs. Since all these firms are identical by assumption, their choices are the

same and we can focus on just one of them.

4 Notation: (:  :) ∈ R denotes the vector of individual net outputs of commodity  associated with the  firms.
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The firm’s profit-maximization problem is

max
y

(
X
=1

() :  (y) = 0

)
. (1)

The first-order (necessary) conditions for an interior solution y∗ to this decision problem implyh
1 + 1

∗


∗


 ∗


i
(

∗
 )h

1 + 1
∗


∗


 ∗


i
(

∗
 )
=

(y
∗)

(y∗)
,  6= ,

where ∗ :=
(

∗
 )

 0 (
∗
 )

∗

∈ (−1 0] is the elasticity of the input supply (if  ∗  0) or output demand

(if  ∗  0) for commodity  = 1     . Note that the left-hand side of this expression reduces to

the ratio of the prices of commodities  and  in the perfectly competitive case.5

The Hessian of the Lagrange function evaluated at the aforementioned interior optimum is

the  by  matrix of second-order partial derivatives defined by

2L∗
 2

=  00
 (

∗
 )

∗
 + 2

0
 (

∗
 )− ∗(y

∗)

and

2L∗


= −∗(y∗) ,

where

∗ =
 0
 (

∗
 )

∗
 + (

∗
 )

(y∗)
∀

is the Lagrange multiplier. The second-order sufficient conditions for (y∗ ∗) are

(−1)

¯̄̄̄
¯̄̄̄ 0  ∗1 · · ·  ∗
 ∗1 L∗11 · · · L∗1
...

...
. . .

...
 ∗ L∗1 · · · L∗

¯̄̄̄
¯̄̄̄  0 ,  = 2     .

Since the objective function of the firm’s decision problem (1) is continuous when

the constituent (·) functions are continuous and since the associated constraint set given

by  (y) = 0 is a non-empty, compact-valued, continuous correspondence, the associated

5 Since ∗ → +∞ if  ∗  0 and ∗ → −∞ if  ∗  0.
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optimum ∗(ab) is a continuous function and the associated optimal choice set given as y∗ is

an upper-hemicontinuous correspondence (which, if single-valued, is a continuous function).

The proof of this assertion follows directly from the Theorem of the Maximum (Berge, 1963,

pp. 115–17).

Let  := {1     } denote the set of commodity types. This set can be partitioned between

the non-empty (sub)set of commodities used − and the non-empty (sub)set of commodities

produced + in relation to any interior solution y∗ to the firm’s profit maximization problem

so that y∗− ∈ R|−|− is the associated vector of inputs and y∗+ ∈ R|+|+ is the associated vector

of outputs. Since the roles of different commodity types in different production plans are

not necessarily pre-determined, {− +} is in general a flexible partition of  . Using this

conceptualization, we can re-write the firm’s profit maximization problem equivalently as

max
y+

⎧⎨⎩X
∈+

() − ∗(a−b−y+) :  (y
∗
−y+ ) = 0

⎫⎬⎭ ,

where

∗(a−b−y+) := min
y−

⎧⎨⎩−X
∈−

() :  (y−;y+) = 0

⎫⎬⎭
denotes the generalized cost function and y+− := y−(a−b−y+) denotes the solution to the

defining cost minimization problem for the given vector of outputs y+ corresponding to some

partition {− +} of  such that there exists at least one y− ∈ R|−|− which, together with

y+ ∈ R|+|+ , satisfies  (y−y+) = 0.

Note that y+− ≡ y∗− at y+ = y∗+. Note also that ∗ : R−\{}
+ × R−\{}

+ × R\{} → R

is a variadic function—i.e., one that accepts a variable number of arguments.6 The domain of the

6 Variadic functions are a common feature of modern computer programming languages. See, for example, the pages
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y+ argument is any vector of real numbers of dimension 1 through − 1; the domain of each of

the a− and b− arguments is any vector of non-negative real numbers of dimension  minus the

dimension of the associated y+.

In order to derive more-precise profit- and cost-function analogues and establish their

properties, it is necessary to specify the other side of each of the markets in which our -firm

industry participates. Towards this end, the following two sections employ, in turn, three simple

functional forms used frequently in applied market analysis.

3. Log-Linearity

Assuming that the inverse total-market input-supply and output-demand functions are

log-linear, we have

(;  ) =

½
 (−) if  ≤ 0


−
 if  ≥ 0

or, equivalently,

(;  ) =  [ sgn]
− sgn ,

where   0 and 1   ≥ 0 for all  ∈ {1     }.7 These functions are isoelastic since

 :=
()

 0
 ()

=
 [ sgn]

− sgn

− (sgn)  [ sgn]− sgn−1 (sgn)
=

−1
 sgn

at https://www.gnu.org/savannah-checkouts/gnu/libc/manual/html_node/Variadic-Functions.html

of the GNU C Library (glibc) manual.

7 The sign or signum function of a real number  is defined as

sgn =

⎧⎨⎩ −1 if   0
0 if  = 0
1 if   0

.
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does not depend on the magnitude of . The associated generalized profit function is

∗(ab) ≡
X
=1

Φ(
∗
 ; )

∗
 ,

where

Φ(
∗
 ; ) :=

£¡
∗ +  0



¢
(sgn ∗ )

¤− sgn ∗ ,

and the associated generalized cost function is

∗(a−b−y+) ≡
X
∈−

Φ(
+
 ; )

¡−+ ¢ ,

where

Φ(
+
 ; ) :=

£

¡−+ ¢+ ¡− 0



¢¤ .

By the envelope theorem,

∗(ab)


= Φ(
∗
 ; )

∗
 ,

which is equal to ∗ if  = 0, the case of perfectly elastic input supply or output demand. Other

properties of ∗(ab) are convexity in the scale parameters b, non-increasingness in the scale

parameters associated with inputs, and non-decreasingness in the scale parameters associated with

outputs. Thus, for fixed a, ∗(ab) exhibits a modified version of Hotelling’s lemma as well as

all other properties of the profit function with the exception of homogeneity. Precise statements

and proofs of these properties can be found in the appendix.

Similarly,

∗(a−b−y+)


= Φ(
+
 ; )

¡−+ ¢ ,

which is equal to−+  0 if  = 0, the case of perfectly elastic input supply, and ∗(a−b−y+)

is concave and non-decreasing in the scale parameters b− since ∗(a ·) is a sum of  functions

that are necessarily convex and −∗(a− ·y+) is a sum of |−|   of those functions. Thus,
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for fixed a− and y+, ∗(a−b−y+) exhibits a modified version of Shephard’s lemma as well as

all other properties of the cost function with the exception of homogeneity (of degree one).

4. Linearity or Semi-Log-Linearity

Assuming instead that the inverse total-market input-supply and output-demand functions

are linear or semi-log-linear, we have, respectively,

(;  ) =

½
 −  if  




0 if  ≥ 


or

(;  ) =

½
 − (sgn)  ln( sgn) if   0 or 0    exp




0 if  ≥ exp 


,

where  ≥ 0 and  ≥ 0 for all  ∈ {1     }. These functions have non-constant elasticities

given as

 :=
()

 0
 ()

=
 − 

− = 1− 



in the former case and

 :=
()

 0
 ()

=
 − (sgn)  ln( sgn)

−(sgn)
 sgn

(sgn)
= ln( sgn)− 


sgn

in the latter. The associated generalized profit function is

∗(ab) ≡
X
=1

[ − (
∗
 )] 

∗
 ,

where

(
∗
 ) := ∗ +  0



in the case of linearity or

(
∗
 ) := (sgn 

∗
 ) ln

¡£
∗ +  0



¤
sgn ∗

¢
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in the case of semi-log-linearity. The associated generalized cost function is

∗(a−b−y+) ≡
X
∈−

£
 − (

+
 )
¤ ¡−+ ¢ ,

where

(
+
 ) := + +  0



in the case of linearity or

(
+
 ) := − ln

¡

£−+ ¤+ £− 0



¤¢
in the case of semi-log-linearity.

By the envelope theorem,

∗(ab)


= ∗ .

Other properties of ∗(ab) are convexity and homogeneity of degree one in the slope and

scale parameters (ab), non-increasingness in the scale parameters associated with inputs, non-

decreasingness in the scale parameters associated with outputs, non-decreasingness in the slope

parameters associated with inputs, and non-increasingness in the slope parameters associated with

outputs. Thus, for fixed a, ∗(ab) exhibits Hotelling’s lemma and the monotonicity properties

of the profit function; it also exhibits the opposite monotonicity properties for fixed b and the

convexity and homogeneity properties in relation to both sets of parameters together. Precise

statements and proofs of these properties can be found in the appendix.

Similarly,

∗(a−b−y+)


= −+

and ∗(a−b−y+) is concave and homogeneous of degree one in the slope and scale parameters

(a−b−), non-decreasing in b−, and non-increasing in a−.8 Thus, for fixed a− and y+,

8 Like the case of ∗(·), the properties of ∗(·) hold because the associated profit function is a sum of  functions
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∗(a−b−y+) exhibits Shephard’s lemma and the monotonicity properties of the cost function; it

also exhibits the opposite monotonicity properties for fixed b− and the concavity and homogeneity

properties in relation to both sets of parameters together.

5. Conclusion

For a = 0(), the inverse total-market input-supply and output-demand functions for all

three cases discussed in the preceding two sections reduce to (;  ) = , which corresponds

to perfectly elastic supply/demand ( = ±∞) for each commodity  ∈ {1     } used/produced

(bought/sold) by our -firm industry. Consequently,

∗(0b) ≡ ∗(0b) ≡ (b) ,

where (·) is the profit function and b is the vector of competitive prices taken as given by each

firm, which shows that ∗(·) and ∗(·) are consistent generalizations. In addition,

∗(0b−y+) ≡ ∗(0b−y+) ≡ (b−y+) ,

where (·) is the cost function and b− is the vector of competitive input prices taken as given by

each firm, which shows that ∗(·) and ∗(·) are consistent generalizations.

The properties of these generalizations for a 6= 0 differ somewhat from each other as

well as from those of the profit/cost function, however. For a fixed, the isoelastic, log-linear

form exhibits a modified version of Hotelling’s/Shephard’s lemma and the monotonicity and

convexity/concavity properties of the profit/cost function, but not homogeneity of degree one,

whereas the non-constant-elasticity, linear or semi-log-linear forms exhibit Hotelling’s/Shephard’s

that are necessarily convex and homogeneous of degree one and −∗(·) is a sum of |−|   of those functions.
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lemma and the monotonicity properties of the profit/cost function, but neither convexity/concavity

nor homogeneity (in b). Although there are undoubtedly other forms that are consistent

generalizations of the profit/cost function—including some based on different conjecture

variations from the one assumed herein—none are likely to exhibit all of their properties. The

choice of functional form for possible empirical purposes therefore boils down to data issues

concerning the estimability of the supply and demand sides of the markets in which the industry

under examination demands and supplies, respectively.
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Appendix

Properties of ∗(ab): (i) Non-decreasing/increasing in the scale parameters associated with

outputs/inputs. If 0 ≥  for all outputs and 0 ≤  for all inputs, then ∗(ab
0) ≥ ∗(ab).

Proof: Let y∗ and y0 be profit-maximizing at b and b0, respectively, so that ∗(ab) ≡P

=1 Φ(
∗
 ; )

∗
 and ∗(ab

0) ≡ P

=1 
0
Φ(

0
; )

0
. Since  (y∗) =  (y0) = 0, y∗ is

feasible but not necessarily optimal at b0 so that

X
=1

0Φ(
0
; )

0
 ≥

X
=1

0Φ(
∗
 ; )

∗
 .

Since 0 ≥  for all  for which  ≥ 0 and 0 ≤  for all  for which  ≤ 0,
X
=1

0Φ(
∗
 ; )

∗
 ≥

X
=1

Φ(
∗
 ; )

∗
 . Q.E.D.

(ii) Convex in b. Let b00 := b + (1− )b0 for some  ∈ [0 1]. Then ∗(ab
00) ≤

∗(ab) + (1− )∗(ab
0). Proof: Let y∗, y0, and y00 be profit-maximizing at b, b0, and b00,

respectively, so that

∗(ab
00) ≡

X
=1

00Φ(
00
 ; )

00


=

X
=1

[ + (1− ) 0]Φ(
00
 ; )

00


= 

X
=1

Φ(
00
 ; )

00
 + (1− )

X
=1

0Φ(
00
 ; )

00


≤ 

X
=1

Φ(
∗
 ; )

∗
 + (1− )

X
=1

0Φ(
0
; )

0


since y00 is feasible but not necessarily optimal at either b or b0. Q.E.D.
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Properties of ∗(ab): (i) Non-decreasing/increasing in the scale parameters associated with

outputs/inputs. If 0 ≥  for all outputs and 0 ≤  for all inputs, then ∗(ab
0) ≥ ∗(ab).

Proof: Let y∗ and y0 be profit-maximizing at b and b0, respectively, so that ∗(ab) ≡P

=1 [ − (
∗
 )] 

∗
 and ∗(ab

0) ≡P

=1 [
0
 − (

0
)] 

0
. Since  (y∗) =  (y0) = 0, y∗ is

feasible but not necessarily optimal at b0 so that

X
=1

[0 − (
0
)] 

0
 ≥

X
=1

[0 − (
∗
 )] 

∗
 .

Since 0 ≥  for all  for which  ≥ 0 and 0 ≤  for all  for which  ≤ 0,
X
=1

[0 − (
∗
 )] 

∗
 ≥

X
=1

[ − (
∗
 )] 

∗
 . Q.E.D.

(ii) Non-increasing/decreasing in the slope parameters associated with outputs/inputs. If 0 ≥ 

for all outputs and 0 ≤  for all inputs, then ∗(a
0b) ≤ ∗(ab). Proof: Let y∗ and y0

be profit-maximizing at a and a0, respectively, so that ∗(ab) ≡
P

=1 [ − (
∗
 )] 

∗
 and

∗(a
0b) ≡P

=1 [ − 0(
0
)] 

0
. Since 0 ≥  for all  for which  ≥ 0 and 0 ≤  for all 

for which  ≤ 0,
X
=1

[ − 0(
0
)] 

0
 ≤

X
=1

[ − (
0
)] 

0
 .

Since  (y∗) =  (y0) = 0, y0 is feasible but not necessarily optimal at a so that

X
=1

[ − (
0
)] 

0
 ≤

X
=1

[ − (
∗
 )] 

∗
 . Q.E.D.

(iii) Convex in (ab). Let (a00b00) :=  (ab) + (1− ) (a0b0) for some  ∈ [0 1]. Then

∗(a
00b00) ≤ ∗(ab) + (1− )∗(a

0b0). Proof: Let y∗, y0, and y00 be profit-maximizing at
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(ab), (a0b0), and (a00b00), respectively, so that

∗(a
00b00) ≡

X
=1

[00 − 00 (
00
 )] 

00


=

X
=1

{[ + (1− ) 0]− [ + (1− ) 0](
00
 )} 00

= 

X
=1

[ − (
00
 )] 

00
 + (1− )

X
=1

[0 − 0(
00
 )] 

00


≤ 

X
=1

[ − (
00
 )] 

∗
 + (1− )

X
=1

[0 − 0(
00
 )] 

0


since y00 is feasible but not necessarily optimal at either (ab) or (a0b0). Q.E.D. (iv) Homogenous

of degree one in (ab). ∗(a b) = ∗(ab) ∀ ≥ 0. Proof:

∗(a b) ≡
X
=1

[ − (
∗
 )] 

∗
 = 

X
=1

[ − (
∗
 )] 

∗
 = ∗(ab) . Q.E.D.
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