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Abstract 
 

An inescapable conclusion to be drawn from the literature on the measurement of 

welfare is that the use of consumer’s surplus is a bad idea. This is especially true in the 

light of the fact that modern computing power facilitates the straightforward calculation 

of equivalent variation, the operational welfare indicator that is most strongly justified by 

economic theory. Consequently, a correct welfare analysis of a price-wealth change of 

the sort discussed in virtually every cost-benefit text should be principally in terms of 

Hicksian demand curves, not ordinary (Marshallian) ones. The present paper explains 

how to construct a graphical depiction of such an analysis, in partial equilibrium, which 

may be adopted in teaching the principles of cost-benefit analysis to graduate and 

advanced undergraduate students. This is done by way of several detailed examples 

covering the scope of applicability of the technique. In addition, a new formula for 

approximating equivalent variation is developed and analyzed. 

 

 

JEL Classification Numbers: A23, D61, H43. 

 

Key Words: partial-equilibrium welfare analysis; cost-benefit analysis; equivalent 
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1. Introduction 

More than two decades have now passed since the lack of validity of consumer’s 

surplus as a welfare measure was demonstrated rigorously and reasonable alternatives 

were proposed. Chipman and Moore (1976, 1980) showed that restrictive and empirically 

untenable assumptions on preferences are necessary in order to make consumer’s surplus 

a valid measure. McKenzie and Pearce (1976) and Vartia (1983) provided procedures that 

facilitate the calculation of a generalized version of Hick’s (1942) equivalent variation—

an operational welfare indicator that “resolves the conceptual problem of [individual] 

welfare measurement” (Slesnick, 1998, p. 2112)—without the imposition of restrictions 

on the form of the ordinary demand function other than the standard integrability 

conditions. Despite these advances, and despite the fact that modern computational power 

is more than up to the task of handling their inherent complexity, consumer’s surplus 

continues to be “the overwhelming choice as a welfare indicator [in] empirical cost-

benefit analyses” (Slesnick, 1998, p. 2110). 

Part of the responsibility for this state of affairs must be assigned to the texts used 

to teach cost-benefit analysis (CBA). While most of these texts acknowledge the 

problems with using consumer’s surplus as a welfare measure, they go ahead and do so 

anyway after either minimizing the attendant problems or claiming that appropriate 

adjustments can be made when necessary. For example, Boardman et al. (2001, p. 64) 

states that  

the biased estimate of [equivalent variation] that results from using 
Marshallian rather than Hicksian demand schedules to measure [welfare 
change] depends on the size of the income effect associated with a price 
change. Usually this income effect and, hence, the bias are small and can 
be safely ignored in CBA. [Emphasis in the original.] 

Gramlich (1990, p. 57), on the other hand, asserts that 

when measuring the utility gain to consumers from [a] price reduction … 
the income effect must be excluded. … To measure the utility gain 
exactly, an experimenter might ask the consumer [how much 
compensation he would be willing to accept in lieu of] the price change. 

While most texts discuss the concept of equivalent variation, none to my 

knowledge actually use it as the basis for welfare analysis. In some cases, the stated 

rationale for this omission is that a full understanding of equivalent variation requires 
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“significant prerequisites in microeconomic theory [beyond the level that most potential 

practitioners and decision-makers] can grasp given their limited exposure to economics” 

(Townley, 1998, p. xiii). While such a justification may be fine for a text that “has been 

written in such a way that only an introductory-level course in microeconomics is 

required as a prerequisite” (Townley, 1998, p. iv), it is clearly not appropriate for a text 

aimed at graduate and advanced undergraduate students. 

A useful first step towards updating the analytical basis of CBA texts might be the 

facility to construct a graphical depiction of a welfare analysis of a price-wealth change 

that is principally in terms of Hicksian demand curves as opposed to ordinary 

(Marshallian) ones. In the present paper, I provide such a facility in the context of a two-

good partial-equilibrium framework. I do so by way of several detailed examples, 

beginning with a “base case” example in Section 2, and then proceeding to modifications 

of that example along particular qualitative dimensions in Section 3. The resulting cases 

cover the scope of applicability of the technique. 

In Section 4, I develop a new formula for approximating aggregate equivalent 

variation in the maintained two-good framework, and then provide an analysis of this 

formula in relation to its Marshallian counterpart. Concluding remarks are provided in 

Section 5. 

 
2. An Example 

Following Sugden and Williams (1978, pp. 137–42), consider a government-

operated rail service between a city and one of its suburbs together with a competitive 

market for suburban rental housing. For the sake of simplicity, assume that the total 

demands for these goods are generated by a representative (utility-maximizing) 

consumer.1 A project is proposed that would reduce the price of rail trips by some 

amount. Assuming that rail trips and housing are normal goods and complements in 

consumption,2 such a price reduction would shift the ordinary demand curve for housing 

to the right. This would induce an increase in the price of housing that would, in turn, 

                                                 
1 As will be made clear below, the need for the existence of a representative consumer is easily 
expunged. 
2 And therefore, by the Slutsky equation, gross complements as well. 
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cause the ordinary demand curve for rail trips to shift to the left. Sugden and 

Williams (1978) argue that the consumer’s surplus in the rail market should be calculated 

as the area between the initial and final rail prices and to the left of the “observed” 

demand curve obtained by considering a price path that keeps the housing market in 

equilibrium as the price of rail trips is reduced in a monotonic sequence of very small 

steps. Since the consumer’s and producers’ surpluses in the housing market offset one 

another exactly along this price path, the overall (Marshallian) welfare measure is simply 

the consumer’s surplus in the rail market. 

A correct welfare analysis of the rail-price-reduction project would be in terms of 

equivalent variation—areas to the left of Hicksian (or compensated) demand curves for 

rail trips and housing at the after-project utility level. Since compensated price effects are 

symmetric, the line integral that defines such a Hicksian surplus measure is path 

independent. This means that the analyst is free to choose any price path connecting the 

initial and final prices of the two goods as the basis for determining the overall welfare 

effect. The simplest choices involve changing one price completely and then the other. 

In order to depict an equivalent variation analysis in graphical terms, it is 

necessary to be able to show the positions of particular Hicksian demand curves in price-

quantity space. Since such curves are not directly observable, this requirement boils down 

to showing how the Hicksian demand curves are related to their ordinary counterparts, 

which are observable in principle. Critical means to this end are provided by the Slutsky 

equation. 

Mas-Colell et al. (1995, p. 71) states the Slutsky equation in relation to “a 

continuous utility function representing a locally nonsatiated and strictly convex 

preference relation defined on the [m-dimensional Euclidean space]” as, for all 

commodity-price vectors p and total expenditures (or wealth levels) w, 
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where u = v(p, w), v(•) denotes the associated indirect utility function, and hℓ (•) and xℓ (•) 

denote the associated Hicksian and ordinary demand functions for commodity ℓ. Since 

both housing and rail trips are normal goods, this equation (with m = 2) tells us that, at 
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the point of intersection between the ordinary and Hicksian demand curves for one of the 

goods, holding the price of the other good fixed, the latter curve is steeper than the 

former.3 Since utility is a decreasing function of price along any ordinary demand curve, 

other things being equal, the corresponding family of Hicksian demand curves for a 

normal good is such that utility decreases from right to left in the relevant graph. 

If the chosen price path moves the price of housing from its initial value to its 

final value after the price of rail trips has been so moved, then the correct welfare 

analysis of the Sugden and Williams (1978, pp. 137–42) example is illustrated by 

Figure 1.4 Respectively, subscripts 1 and 2 denote rail trips and housing, and superscripts 

0 and 1 denote before- and after-project values. On the price path that moves p1
0 to 

p1
1 (< p1

0) and then p2
0 to p2

1 (> p2
0), the aggregate (consumer’s plus producers’) 

equivalent variation with respect to the housing market is the negative of the triangular 

area BCH bounded by the supply curve y2(p2), the Hicksian demand curve h2(p1
1, p2, u1) 

that passes through the after-project equilibrium point (given by the intersection of the 

supply curve and the shifted ordinary demand curve x2(p1
1, p2; w)), and a horizontal line 

drawn at the level of the initial housing price p2
0. 

 The relevant Hicksian demand curve in the market for rail trips is the one given 

by the initial price of housing and the after-project utility level. This curve must lie to 

right of the one given by the final price of housing and the after-project utility level since 

housing and rail trips are complements, and to the left of the one given by the initial price 

of housing and the (indirect) utility level at that price and the final price of rail trips since 

this utility level must be higher than the after-project utility level (on account of the fact 

that indirect utility functions are non-increasing in each commodity price). In algebraic 

terms, h1(p1, p2
0, u1) must lie to the right of h1(p1, p2

1, u1) and to the left of h1(p1, p2
0, u*), 

where u* := v(p1
1, p2

0) > v(p1
1, p2

1) =: u1. Both of these “reference” Hicksian demand 

curves are easy to locate in the graph of the market for rail trips: the former passes 

                                                 
3 This result is at least noted, if not explained intuitively, in several current intermediate-level 
microeconomics texts. See, for example, Frank and Parker (2004, pp. 599–600) and Nicholson 
(2002, pp. 128–30). 
4 This diagram extends Sudgen and Williams (1978, p. 139, Fig. 10) by incorporating Hicksian 
demand curves à la standard one-good partial-equilibrium welfare analyses such as Nicholson 
(2002, p. 142, Fig. 5.10), Varian (1992, p. 168, Fig. 10.2), and Mas-Colell et al. (1995, Figs. 3.I.3, 
3.I.4, 3.I.6 and 3.I.8). 
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through the after-project equilibrium point (D); the latter intersects the initial demand 

curve at the final price of rail trips (point E). The equivalent variation with respect to the 

market for rail trips is the area p1
0FG p1

1 to the left of the relevant Hicksian demand curve 

between the initial and final prices of rail trips. Note that because this curve lies to the 

right of Sugden and Williams’ (1978) observed demand curve (through points A and D), 

it is unclear from a qualitative graphical illustration such as Figure 1 whether the overall 

aggregate equivalent variation p1
0FG p1

1 – BCH is larger or smaller than its Marshallian 

counterpart (p1
0AD p1

1). 

If, instead of being competitive, the supply of housing were controlled by a single 

producer with a constant marginal cost of production c2, the equivalent variation with 

respect to the market for rail trips would be (qualitatively) the same, but the aggregate 

equivalent variation with respect to the housing market would be the rectangular area 

BIJK bounded by the marginal cost curve, a horizontal line drawn at the level of the 

initial housing price, and vertical lines drawn at the levels of the before- and after-project 

quantities of housing exchanged (x2
0 and x 2

1), less the triangular area CHI bounded by 

the Hicksian demand curve h2(p1
1, p2, u1) that passes through the after-project equilibrium 

point (given by the intersection of the monopoly expansion path y2*(p2) and the shifted 

ordinary demand curve x2(p1
1, p2; w)), the horizontal line drawn at the level of the initial 

housing price, and the vertical line drawn at the level of the after-project quantity of 

housing exchanged. This variant of the Sugden and Williams (1978, pp. 137–42) example 

is illustrated by Figure 2. 

The monopoly expansion path y2*(p2) is the locus of output-price combinations 

chosen by the housing producer as the ordinary demand for housing varies due to changes 

in the price of rail trips. The relationship between the price of rail trips and the 

monopoly’s output, p1 = φ(x2), is given by the solution to the first-order necessary 

condition for profit maximization 
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where P2(x2, p1) denotes the inverse ordinary demand for housing. Inverting P2(x2, p1) 

after substituting φ(x2) for p1 yields y2*(p2). Clearly, this approach can be generalized to 
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accommodate more complex market structures; e.g., Cournot competition among m firms 

with possibly different, possibly non-constant, cost functions. 

The maintained assumption that the total demands for the two goods are generated 

by a representative consumer can be relaxed at the cost of a minor reinterpretation of the 

supply curve y2(p2). To see that this is so, suppose there are n consumers with possibly 

different ordinary demand functions. The total demand for either commodity is the sum 

of the corresponding individual demands. In particular, the total demand for housing is 

.),(:),( 21)(2212 ∑=
i

i ppxppX  

Letting Y2(p2) denote the total supply of housing, the market clearing condition 

)(),( 22212 pYppX =  

yields p1 = ψ(p2), the relationship between the price of rail trips and the equilibrium price 

of housing. Substituting ψ(p2) for p1 in x2(i)(p1, p2) yields the consumer expansion path 

y2(i)(p2). Thus, under the interpretation of hℓ (p1, p2, u) and xℓ (p1, p2) as the Hicksian and 

ordinary demands for commodity ℓ of an individual consumer and y2(p2) as the expansion 

path along which he adjusts his quantity demanded of housing in response to variations in 

p1, the expression ∆µΣEV(i) := p1
0FG p1

1 – BCH is the aggregate equivalent variation with 

respect to that consumer; i.e., the consumer’s equivalent variation ∆µEV(i) := p1
0FG p1

1 – 

p2
1CH p2

0 plus the portion of the producers’ equivalent variation due to that consumer 

∆π(i) := p2
1CB p2

0. 

Now assume that the n consumers can be partitioned into two groups: one in 

which each individual owns a share of the housing industry θi > 0 and has zero demands 

for rail trips and housing, and one in which θi ≡ 0. Assume further that Σiθi = 1. Hence, 

the equivalent variation of individual i in the shareholding group is ∆µEV,i = ∆wi ≡ 

θiΣj∆π(j) (since ∆µEV(i) ≡ 0), and that of individual i in the non-shareholding group is 

∆µEV,i = ∆µEV(i) (since ∆wi ≡ 0).5

                                                 
5 In general, ∆µEV,i = ∆wi + ∆µEV(i) , where ∆wi := wi

1 – wi
0 and 

.),(:
1

0
1
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Simply summing the aggregate equivalent variations with respect to each 

consumer or, equivalently, summing the individual equivalent variations,6 “as is 

common, embodies a version of utilitarianism [and thereby] ignores distributional 

concerns” (Slesnick, p. 2141). Moreover, Blackorby and Donaldson (1990, Sections III 

and IV) have shown that the sum of equivalent variations in general equilibrium contexts 

must be non-positive for any move away from a Walrasian equilibrium and, if 

preferences and technologies are convex, for any move away from an efficient allocation.  

The implication of this result for the present context is that Σi∆µEV,i might exhibit a 

downward bias relative to a hypothetical, ideal efficiency measure. 

Note that the ∆µEV,is, treated as functions of (p1, wi
1), are (indirect) money metrics 

with reference prices p0. Money metrics can be aggregated using a social-welfare-type 

function Γ(•), which can then be used to compare alternative price-wealth situations in 

relation to the status quo. According to Donaldson (1992, p. 92), the social binary relation 

R defined implicitly by Γ(•) 

is always an ordering. There are never problems of preference reversals, 
even with [consumer]-specific prices. Further, the function Γ(•) may 
exhibit inequality aversion, and different degrees of inequality aversion 
can be incorporated by employing a single-parameter family of functions 
such as the S-Ginis. … The ordering R, in general, does depend on p0, of 
course …. 

In order for social decision rules based on Γ(•) to be “consistent with usual distributional 

judgments,” the ∆µEV,is must be concave in wealth for all price vectors. Otherwise, such 

rules “may recommend that a fixed total [wealth] should be given entirely to one person, 

even when Γ(•) … is quasiconcave.” The ∆µEV,is are concave in wealth for all price 

vectors if and only if each individual’s preferences are quasihomothetic7 (Blackorby and 

Donaldson, 1988, Theorem 2), a property that does not characterize the preferences of 

real consumers. 

One possible choice for Γ(•) is a weighted sum. Following Pearce and Nash 

(1981, pp. 32–3), the weights could be chosen to be 

                                                 
6 Σi∆µΣEV(i) ≡ Σi∆µEV,i . 
7 Note that this property holds (trivially) for each individual in the shareholding group of the 
present example. 
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Thus, the wider is the gap between the rich and the poor (wR / wP), ceteris paribus, the 

heavier is the weight placed on the net benefits accruing to the latter group (∆µEV) 

relative to those accruing to the former (∆π). Furthermore, the higher is the fraction of 

poor individuals (nP / n), ceteris paribus, the lower is the weight placed on the overall net 

benefit. Note that both of these effects vary directly with the magnitude of the γ 

parameter, the degree of inequality aversion.8

While problematic with respect to the construction of a social ordering, especially 

in general equilibrium contexts, a social decision rule based on some Γ(•) is arguably 

sufficient for the purposes of CBA. The usual objective of a CBA is to provide an 

assessment of the social desirability of one or more alternative projects in relation to one 

another and the status quo. The projects under consideration are usually variations on a 

fairly narrowly defined proposal such as, for example, the construction of a highway 

between locations A and B. Alternative routes or the possibility of levying a toll may be 

considered, but 

[r]arely does the analyst compare a highway project more broadly to 
completely different types of projects, such as health care, antipoverty, or 
national defense projects. As a practical matter, full optimization is 
impossible (Boardman et al., 2001, p. 9). 

                                                 
8 Note also that if γ = 0, then Γ(•) reduces to the overall aggregate equivalent variation. 
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Cognitive capacity limitations, budgetary and/or political constraints, and limited data 

availability are the major factors that work against welfare measurement in practice. 

Incremental improvements to social welfare sanctioned by generalized-aggregate-

equivalent-variation-based cost-benefit analyses is most probably the best that can be 

hoped for. 

 
3. Modifications 

The two-good partial-equilibrium model analyzed above can be modified to some 

extent with respect to the qualitative characteristics of the goods without changing its 

essential structure. The Slutsky equation provides four rules that govern the relationships 

among these characteristics: a good that is both a complement and normal must also be a 

gross complement (C ∧ N ⇒ GC); a good that is both a gross complement and inferior 

must also be a complement (GC ∧ I ⇒ C); a good that is both a substitute and inferior 

must also be a gross substitute (S ∧ I ⇒ GS); and a good that is both a gross substitute 

and normal must also be a substitute (GS ∧ N ⇒ S). The symmetry property of 

compensated price effects provides a fifth rule: the two goods are either both substitutes 

or both complements. These five rules imply eighteen distinct cases: 

(i) C ∧ (N, N) ⇒ (GC, GC) 

(ii), (iii) C ∧ (N, I) ⇒ (GC, GC) ∨ (GC, GS) 

(iv), (v) C ∧ (I, N) ⇒ (GC, GC) ∨ (GS, GC) 

(vi)–(ix) C ∧ (I, I) ⇒ (GC, GC) ∨ (GC, GS) ∨ (GS, GC) ∨ (GS, GS) 

(x) S ∧ (I, I) ⇒ (GS, GS) 

(xi), (xii) S ∧ (I, N) ⇒ (GS, GS) ∨ (GS, GC) 

(xiii), (xiv) S ∧ (N, I) ⇒ (GS, GS) ∨ (GC, GS) 

(xv)–(xviii) S ∧ (N, N) ⇒ (GS, GS) ∨ (GS, GC) ∨ (GC, GS) ∨ (GC, GC) 

Each of these cases can be characterized by a combination of one of eight possible 

graphs for the first good (“rail trips”) together with one of four possible graphs for the 

second good (“housing”). The eight possible graphs for the first good differ with respect 
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to the direction of the shift of the initial ordinary demand curve (L or R), whether the 

ordinary demand curves are flatter than their Hicksian counterparts (F) or vice versa (V), 

and the position of the relevant Hicksian demand curve (either to the left or to the right of 

one of the two reference Hicksian demand curves—hereinafter called D and E after the 

names of the critical points they pass through). The four possible graphs for the second 

good differ with respect to the direction of the shift of the initial ordinary demand curve 

and whether or not the ordinary demand curves are flatter than their Hicksian 

counterparts. More specifically, the twelve graphs and the cases they help to characterize 

are summarized as follows: 

L-F-LE  →  (i), (ii) 

L-F-RE  →  (xiii), (xv), (xviii) 

L-V-LE  →  (x), (xi) 

L-V-RE  →  (iv), (vi), (ix) 

R-F-LD  →  (iii) 

R-F-RD  →  (xiv), (xvi), (xvii) 

R-V-LD  →  (xii) 

R-V-RD  →  (v), (vii), (viii) 

R-F  →  (i), (iv), (v), (xii), (xvi), (xviii) 

R-V  →  (ii), (vi), (viii) 

L-F  →  (xi), (xv), (xvii) 

L-V  →  (iii), (vii), (ix), (x), (xiii), (xiv) 

In the preceding list, the notation that the relevant Hicksian demand curve lies to the left 

of one of the reference curves (LD or LE) means that it also lies to the right of the other 

(RE or RD), and the notation that it lies to the right of D or E means that it is situated 

even further to the right of E or D. 

The twelve graphs are shown in Figures 1 and 3 through 11 and are ordered by the 

cases they characterize: Figure 1 shows the two case-(i) graphs (discussed in the 

preceding section); Figure 3 shows the graph of good 2 required to characterize case (ii) 
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(along with the graph of good 1 in Figure 1); Figure 4 shows the two case-(iii) graphs; 

Figure 5 shows the graph of good 1 required to characterize case (iv) (along with the 

graph of good 2 in Figure 1); etc. 

 
4. Approximations 

It is common practice in standard CBA to obtain rough estimates of Marshallian 

surpluses by assuming that the relevant demand and supply curves are locally linear. In 

the Sugden and Williams (1978, pp. 137–42) example, the assumption that the observed 

demand curve for rail service is linear on the subdomain [p1
1,  p1

0] allows the associated 

Marshallian surplus p1
0AD p1

1 to be calculated using the mathematical formula for the 

area of a trapezoid as 
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where ∆p1 := p1
1 – p1

0 and ε11* denotes the price elasticity of observed demand (at 

point D). Similar assumptions with respect to the relevant Hicksian demand curves enable 

the calculation of an approximation to the aggregate equivalent variation. The present 

section develops a formula along these lines that is applicable in the context of the 

maintained two-good partial equilibrium model. 

The slope of the relevant Hicksian demand curve in the housing market at point C 

can be written as 

( )
,,,

1
2

1
21

22
2

11
2

1
12

p
x

p
upph

ξ=
∂

∂
 

where ξ22
1 denotes the price elasticity of compensated demand for housing. Assuming 

that h2(p1
1, p2, u1) is linear on the subdomain [min{p2

0,  p2
1}, max{p2

0,  p2
1}], the x2-

coordinate of point H is given by the straight-line equation 

1
21

2

2
1
21

222 1 x
p

ppx ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−= ξ  

and the area of the triangle BCH may be calculated as 

,1
21

2

21
22222

1 ⎥
⎦

⎤
⎢
⎣

⎡ ∆
−∆∆ x

p
p

xp ξ  

 12



where ∆p2 := p2
1 – p2

0 and ∆x2 := x2
1 – x2

0. 

The rate of change of the compensated demand for rail service at point D with 

respect to a change in the price of housing is 
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where ξ12
1 denotes the housing-price elasticity of compensated demand for rail service. 

Assuming that h1(p1
1, p2, u1) is linear on the subdomain [min{p2

0,  p2
1}, max{p2

0,  p2
1}], 

the x1-coordinate of point G is given by the straight-line equation 
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Also, the slope of the relevant Hicksian demand curve for rail service at point G can be 

written as 
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where ξ11* denotes the price elasticity of compensated demand for rail service. Now, 

assuming that h1(p1, p2
0, u1) is linear on the subdomain [p1

1,  p1
0], the x1-coordinate of 

point F is given by the straight-line equation 
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and the area of the trapezoid p1
0FG p1

1 may be calculated as 
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Thus, the aggregate equivalent variation (p1
0FG p1

1 – BCH) may be estimated as 

.12 1
21

2

21
22222

11
11

2

21
121

1

1*
1112

1 ⎥
⎦

⎤
⎢
⎣

⎡ ∆
−∆∆−⎥

⎦

⎤
⎢
⎣

⎡ ∆
−⎥

⎦

⎤
⎢
⎣

⎡ ∆
−∆−=∆ Σ x

p
p

xpx
p
p

p
p

pEV ξξξµ  

The apparent difficulty of the compensated demand elasticities in this formula not being 

directly observable is easily dealt with by means of the elasticity form of the Slutsky 

equation: 

{ },,,1, mkkkk Kllll ∈∀+= αηεξ  
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where ξℓk := ∂ln hℓ (p, u) / ∂ln pk and εℓk := ∂ln xℓ (p, w) / ∂ln pk are the price elasticities of 

compensated and ordinary demand, respectively, ηℓ := ∂ln xℓ (p, w) / ∂ln w is the wealth 

elasticity of demand, and αk := pk xk (p, w) / w is the expenditure share of good k. 

The area BCH is zero if and only if either the housing supply is perfectly elastic 

(so that ∆p2 = 0) or both the supply and the compensated demand for housing are 

perfectly inelastic and coincident (so that ∆x2 = ξ22
1 = 0). Otherwise, this area offsets, to 

some extent, the welfare gain measured by the area p1
0FG p1

1 in the determination of 

∆µΣEV (since ∆p2∆x2 > 0 and ξ22
1 < 0). 

Under the assumption that η1α1 = 0 at point G, ξ11* = ε 11*. The areas p1
0FG p1

1 

and p1
0AD p1

1 are then equal if and only if ξ12
1∆p2 = 0; i.e., if and only if the Hicksian 

demands h1(p1, p2
0, u1) and h1(p1, p2

1, u1) are both equal to the observed demand x1*(p1) 

on the subdomain [p1
1,  p1

0] so that point F coincides with point A and point G coincides 

with point D.9

Inspection of Figures 4, 5, 6 and 7 reveals the possibility of several different 

situations in which the equivalent variation p1
0FG p1

1 is equal to the Marshallian surplus 

p1
0AD p1

1. The prevalence of such situations—and close approximations to them—in 

relevant applied contexts is an empirical question that is beyond the scope of this paper. It 

would seem reasonable to claim, however, that such situations are comparatively rare. 

A simple numerical example may be a useful means of consolidating the 

foregoing analysis. Following Sugden and Williams (1978, pp. 141–2) once more, 

suppose that (p1
0, x1

0) = (1.2, 9000), (p1
1, x1

1) = (1, 10000), (p2
0, x2

0) = (9.5, 950), and 

(p2
1, x2

1) = (10, 1000). Then ∆p1 = –.2, ∆x1 = 1000, ∆p2 = .5, ∆x2 = 50 and 

,5.
10000

1
2.

1000
1
1

1
1

1

1*
11 −=

−
=

∆
∆

=
x
p

p
x

ε  

which implies that 

( ) ( ) ( ) .190010000
1
2.5.22.2

1 =⎥⎦
⎤

⎢⎣
⎡ −

−−−−=∆ Ms  

                                                 
9 If ∆p2 = 0, then point E coincides with point D as well. 
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Suppose further that ε11 = –.6, ε12 = –.9, ε22 = –.4, η1 = η2 = .8, and α1 = α2 = .25.10 Then 

( )( ) ,4.25.8.6.11 −=+−=ξ  

( )( ) ,7.25.8.9.12 −=+−=ξ  

( )( ) ,2.25.8.4.22 −=+−=ξ  

and 

( ) ( ) ( ) ( ) ( ) ( )

.2.1972
152.1987

1000
10
5.2.505.10000

10
5.7.1

1
2.4.22. 2

1
2
1

=
−=

⎥⎦
⎤

⎢⎣
⎡ −−−⎥⎦

⎤
⎢⎣
⎡ −−⎥⎦

⎤
⎢⎣
⎡ −

−−−−=∆ ΣEVµ

 

The percentage difference between ∆µΣEV and ∆sM is 3.8. 

 
5. Concluding Remarks 

The figures included in this paper provide a basis for a wide range of 

straightforward examples of correct welfare analyses of price-income changes. While the 

microeconomic theory underpinning these figures is certainly beyond that of a standard 

introductory-level course, it is assuredly not beyond that of relatively non-technical 

intermediate-level microeconomics texts. For example, Hicksian demand and equivalent 

variation are both discussed intuitively and fairly thoroughly in Eaton et al. (2005, 

pp. 122–24, 133–38) and Varian (2003, pp. 140–56, 254–58).11 Since any such discussion 

can serve as an adequate prelude to the understanding of the figures herein, most of the 

associated analysis should be accessible to advanced undergraduates. 

The approximation formula for aggregate equivalent variation developed in the 

preceding section should be of some assistance in easing practitioners of CBA out of their 

reliance on consumer surplus measures. Ultimately, of course, it is to be hoped that the 

use of distributionally sensitive equivalent-variation aggregates will become the norm in 

cases where sufficient data are available.

                                                 
10 Note that the chosen expenditure-share values are consistent with the fact that p1

1
 x1

1 = p2
1
 x2

1 = 
10000. 
11 Note that neither of these texts, unlike those mentioned above (in fn. 3), discusses explicitly the 
relationship between ordinary and Hicksian demand curves. 
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Figure 4. Case (iii)  C ∧ (Ν, Ι) ∧ (GC, GS)  [Graphs R-F-LD and L-V] 
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