



# AERO 4402 - Aerospace Propulsion

# Fall 2022

## Department of Mechanical and Aerospace Engineering Faculty of Engineering

0.5 credit ONLINE SYNCHRONOUS Lectures will be recorded and made available for students 1/week, 3hr/lecture

## **Professor / Contract Instructor**

### Name John Kidikian, PhD., Eng.

| Telephone      | 514-945-8246              |
|----------------|---------------------------|
| e-mail         | John.Kidikian@carleton.ca |
| (send to both) | John.Kidikian@polymtl.ca  |
|                |                           |

(emergencies only) (will check during day – response during evening) (will check during day – response during evening)

## **Course Schedule**

| Туре  | Time                         | Days | Where                                                                    | Date Range |
|-------|------------------------------|------|--------------------------------------------------------------------------|------------|
| Class | 6:05pm – 8:55pm <b>Monda</b> |      | 5pm – 8:55pm <b>Monday</b> On-Line Brightspace<br>( <b>Zoom</b> Invites) |            |

## **Academic Accommodations**

Carleton University is committed to providing access to the educational experience in order to promote academic accessibility for all individuals.

Academic accommodation refers to educational practices, systems and support mechanisms designed to accommodate diversity and difference. The purpose of accommodation is to enable students to perform the essential requirements of their academic programs. At no time does academic accommodation undermine or compromise the learning objectives that are established by the academic authorities of the University.

If you need special arrangements to meet your academic obligations during the term, please follow the accommodation request process found at <u>https://students.carleton.ca/course-outline/</u>

**SPECIAL NOTE:** The on-line live lectures will be recorded for students to refer to during the semester.





### **Course Description and Objectives**

The objective of this course is to give an in-depth view of the design and analysis of **gas turbine based engines for aerospace propulsion**, rocket propulsion topics are excluded. The main emphasis will be on air breathing units for civil aviation applications. Topics to be covered, but no limited to, will be:

- Engine performance cycle calculations
- Classification of gas turbine engine types
- Axial Compressor and Axial Turbine 1D mean-line design and analysis
- Design Point and Off-Design loss modelling theory
- Preliminary airfoil and disk design
- Computational Fluid Dynamics (CFD) analysis

This course will allow the participant to apply the various concepts of thermodynamics, fluid dynamics, and stress analysis to a gas turbine design. The participant will be tasked to solve engineering problems related to the design and analysis of a turbofan engine using a specialized engineering software called **MDIDS-GT**, the **M**ulti-**D**isciplinary Integrated **D**esign **S**ystem for **G**as **T**urbines, and 3D CFD using ANSYS TurboGrid and CFX.

| Pre-requisites                           | Co-requisites        |  |
|------------------------------------------|----------------------|--|
| MAAE 2400 Thermodynamics & Heat Transfer | Enthusiasm           |  |
| MAAE 3300 Fluid Mechanics II             | Curiosity            |  |
|                                          | Active participation |  |

#### **Evaluation for Bachelor Students**

| Туре                                                                                            | Number | Value | Date(s)                                               |  |
|-------------------------------------------------------------------------------------------------|--------|-------|-------------------------------------------------------|--|
| Group Project*                                                                                  | 1      | 50%   | To be submitted at end of semester                    |  |
| Individual Assignment<br>CFD ANSYS TurboGrid and CFX                                            | 1      | 25%   | To be submitted 2 weeks before the end o the semester |  |
| Final Exam                                                                                      | 1      | 25%   | TBD, Scheduled by Carleton University                 |  |
| Practice assignments will be given<br>throughout the session to reinforce<br>important concepts | 2      | 0%    |                                                       |  |

\* for the project teams, 3 to 5 max students

#### Evaluation for Special Students\* (non-credit / professional hours)

| Туре                        | Number | Value | Date(s)                             |
|-----------------------------|--------|-------|-------------------------------------|
| Option 1:                   | 1      | 100%  | To be submitted at end of semester  |
| Group Project**             |        |       |                                     |
| Option 2:                   | 1+1    | 50%   | Project: To be submitted at end of  |
| Group Project**             |        | 50%   | semester                            |
| + Individual Assignment     |        |       | Assignment: To be submitted 2 weeks |
| CFD ANSYS TurboGrid and CFX |        |       | before the end of the semester      |

\* Special students shall decide which option they will pursue before the third week of the semester

\*\* for the project teams, special students may participate with bachelor students





#### Important NOTE for final exams

For distance exam services, for students who are unable to come to campus to write in person because they are studying remotely, they can apply to write at a distance by <u>September 22</u> (https://carleton.ca/ses/distance-exams/).

#### **Required Software**

#### **IMPORTANT for ANSYS:**

- Download the free student trial version of ANSYS, verify that it includes TurboGrid and CFX
- **Or** access ANSYS by connecting to the University computer lab(s)

Contact Carleton University for more details for computer lab access

For MDIDS-GT, links are provided in Brightspace

#### **Documentation**

- Brightspace for AERO 4402 course lectures and recordings
- Google Sites for course modules: <u>https://sites.google.com/site/mdidsgt/</u>
- YouTube for software videos, type MDIDS-GT in search bar

NOTE: Only OER (Open Educational Resources) will be used for this course.

#### **Reference material**

- "Gas Turbine Theory", 7th Edition, Saravanamuttoo, Rogers, Cohen, Straznicky, Nix
  - (Pearson 2017)
  - Note: always look for the latest edition of this textbook, great to have in your library collection
- The library section devoted to gas turbines, there is lots there
- Google, a whole lot more here
- ASME digital collection, great to dig deeper and see the "latest" research
- NASA reports, classic and important



|      |              |                    | Lecture Schedule - Fall 2022 - Carleton University       |                                               |                                                             |  |  |
|------|--------------|--------------------|----------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|--|--|
| week | month        | day                | Module                                                   | Project Assignment start                      | Additional Objectives                                       |  |  |
|      | Sept<br>Sept | 7 (wed)<br>7 (wed) | Fall Session Starts - no scheduled lecture for AERO 4402 |                                               |                                                             |  |  |
| 1    | Sept         | 12                 | 00 - Introduction                                        | Part 1 - Google internet search               | hello - expectations - objectives                           |  |  |
|      | Sept         | 12                 | 00 A - The gas turbine industry                          | access to labs or download ANSYS              | create project groups                                       |  |  |
| 2    | Sept         | 19                 | MDIDS introduction and overview                          | familiarize with MDIDS and ANSYS              | Q&A                                                         |  |  |
|      | Sept         | 19                 | ANSYS introduction and overview                          |                                               | execute ANSYS with demo file                                |  |  |
| 3    | Sept         | 26                 | 03 - Engine Performance                                  | Part 2 - performance MDIDS-GT                 | Q&A                                                         |  |  |
|      | Sept         | 26                 | 03 - Engine Performance                                  | Part 2 - performance Hand-Calc                | submit project <b>Part 1</b> for review                     |  |  |
| 4    | Oct          | 3                  | 04 - Axial compressors                                   | Part 3 - compressor                           | Q&A                                                         |  |  |
|      | Oct          | 3                  | 04 - Axial compressors                                   | CFD assignment                                |                                                             |  |  |
| 5    | Oct          | 10                 | Ch-tu-t                                                  |                                               | 20 4402                                                     |  |  |
|      | Oct          | 10                 | Statut                                                   | ory holiday - no scheduled lecture for AEF    | <b>{U 44U2</b>                                              |  |  |
| 6    | Oct          | 17                 | 01 - Thrust & configurations                             |                                               | submit portions of your ANSYS                               |  |  |
|      | Oct          | 17                 | 01 - Thrust & configurations                             |                                               | submit project <b>Part 2</b> for review                     |  |  |
| 7    | Oct          | 24                 |                                                          |                                               |                                                             |  |  |
|      | Oct          | 24                 | Ollive                                                   | rsity break - no scheduled lecture for AER    | 0 4402                                                      |  |  |
| 8    | Oct          | 31                 | 03 A - Turbofan design charts                            |                                               | Q&A                                                         |  |  |
|      | Oct          | 31                 | 02 - Fundamentals review                                 |                                               | suggested - finish comp mean-line                           |  |  |
| 9    | Nov          | 7                  | 06 - Axial turbines                                      | Part 3 & 4 - turbine                          | Q&A                                                         |  |  |
|      | Nov          | 7                  | 06 - Axial turbines                                      |                                               |                                                             |  |  |
| 10   | Nov          | 14                 | 07 - Stress analysis                                     | Part 5 - stress                               | Q&A                                                         |  |  |
|      | Nov          | 14                 | 07 - Stress analysis                                     |                                               | suggested - finish turb mean-line                           |  |  |
| 11   | Nov          | 21                 | 08 - Internal Air systems                                | All other project parts                       | Q&A                                                         |  |  |
|      | Nov          | 21                 | 09 A - Turbine Cooling                                   |                                               |                                                             |  |  |
| 12   | Nov          | 28                 | 10 & 10 A - Combustion & Hot streaks                     |                                               | Q&A                                                         |  |  |
|      | Nov          | 28                 | 04 A - Transonic axial compressors                       |                                               | suggested - finish all                                      |  |  |
| 13   | Dec          | 5                  | 15 - Certification                                       |                                               |                                                             |  |  |
|      | Dec          | 5                  | Q&A                                                      |                                               |                                                             |  |  |
| 14   | Dec          | 9 (Fri)            | Q&A                                                      |                                               |                                                             |  |  |
|      | Dec          | 9 (Fri)            | Q&A                                                      | Last day of Fall Session - Cla                | Last day of Fall Session - Classes follow a Monday schedule |  |  |
|      | Dec          | 9 (Fri)            | final                                                    |                                               |                                                             |  |  |
|      | Dec          | 9 (Fri)            | inal P                                                   | oject Report and CrD assignment are submitted |                                                             |  |  |