Aerospace Stream Selection: Streams A, B, C

Daniel Feszty, PhD, PEng
Associate Professor
Department of Mechanical & Aerospace Engineering
Carleton University
Ottawa, ON
Canadian Aerospace
Important Facts and Figures

• Key early milestones
 • First powered flight in the Commonwealth – Baddeck, 23 Feb 1909, AES *Silver Dart*
 • Canada was third nation to have its own satellite built and launched – 1962, *Alouette*

• Aerospace is a national industry with regional clusters
 • 2/3rd of economic activity in Quebec (45%) and Ontario (25%)
 • Montreal region has third largest concentration of aircraft manufacturing activity in World [1st: Seattle (Boeing). 2nd: Toulouse (Airbus)]
Canadian Aerospace
Important Facts and Figures

- **Canada is a Global leader in:**
 - Civil helicopters
 - Small gas turbines
 - Simulators
 - Regional aircraft, business jets
 - Avionics
 - Landing gear systems,
 - Small and microsatellites
 - Maintenance

- **Economic impact (Ref AIAC Aerospace Economic Impact, 2010)**
 - ~85k employees, $23B in revenue (~80% from exports)
 - Employment normalized to population – 2nd versus all other nations (France is 1st)
 - Revenue normalized to GDP - 2nd versus all other nations (U.S. is 1st)
Aerospace at Carleton

- First BEng program in Canada (1988) and largest by enrolment
 (160 in 2016 vs. 30 in 1992)

- Four streams
 A - Aerodynamics, Propulsion and Vehicle Performance
 B - Aerospace Structures, Systems and Vehicle Design
 C - Aerospace Electronics and Systems
 D - Space Systems Design

- Originally only Stream A and B
 - Stream C added in the early 1990’s
 - Stream D added in 2007-08
Engineering Education

1st year:
common core: math, science, basic engineering, complementary studies

2nd year:
math, engineering science (solids, fluids, thermo, materials)

3rd year:
engineering specialization

4th year:
4th year project engineering electives

also:
• co-op
• economics
• professional practice
• communication skills
• minor (math, business, etc.)
Aerospace Streams
Overview of Bachelor Programs

Stream C is offered in cooperation with Electrical Engineering
Core Aerospace Courses

- Most or all AERO students take
 - AERO 3002 Design and Practice (A, B, C, D)
 - AERO 4003 Systems Design (A, B, C)
 - AERO 4907 (Capstone Design Project)
 - AERO 3700 Aerospace Materials (A, B, D-elect.)

- There are many stream-specific courses
 - Can be taken as electives (space permitting)
Jobs in Aerospace Engineering

Overview of Bachelor Programs

- Satellite & Space
- Robotic Design
- Aircraft Design
- Rotorcraft Design
- Simulators
- Aerospace Systems
- Gas Turbine Engines
- Maintenance, Repair, & Overhaul
Stream A
Aerodynamics, Propulsion & Vehicle Performance

- Sample stream-specific courses
 - Aerodynamics and heat transfer
 - Aerospace vehicle performance
 - Aircraft stability and control
- Typical electives
 - Computational Fluid Dynamics (CFD)
 - Rotorcraft Aerodynamics and Performance
 - Aerelasticity
 - Aeroacustics

- Example Careers
 - Aerodynamicist
 - Computational Fluid Dynamics engineer
 - Aircraft Conceptual Design
 - Aeroelastic analysis engineer
 - Aeroacoustics engineer
 - Flight test engineer
 - Stability and handling prediction
 - Performance prediction engineer
 - Jet engine aerodynamic designer
 - Launch vehicle aerodynamicist
 - Other:
 - wind energy
 - ground vehicle aerodynamics
 - building aerodynamics, etc.
Aerospace Engineering: Stream A

http://www.carleton.ca/engineering-design/current-students/undergrad-academic-support/prerequisites/
How to read the Engineering “Tree”

Beware of Pre-requisites!

Engineering Electives

Two Complementary Studies Electives

Final Year Project

Basic Science Elective
Key Industry and Research Opportunities
Stream B
Aerospace Structures, Systems and Vehicle Design

- Sample stream-specific courses
 - Aerospace Materials
 - Lightweight structures
 - Composite materials
 - Aeroelasticity
 - Strength and fracture

- Typical electives
 - Finite Element Methods
 - Rotorcraft Aerodynamics and Performance
 - Rocket design

- Example careers
 - Airframe structural engineer
 - Computational Structural Dynamicist
 - Conceptual design
 - Aeroelastics engineer
 - Aircraft mechanical systems
 - Landing gear
 - Engine structural design
 - Manufacturing engineer
 - Spacecraft structural design
 - Other:
 - Wind turbine structural design
 - Transportation structures
Key Industry and Research Opportunities
Stream C
Aerospace Electronics and Systems

- **Sample stream-specific courses**
 - Communication theory
 - Electromagnetic waves
 - Digital electronics
 - Power engineering

 Typical Electives:
 - Any from Electronics or MAE

- **Example careers**
 - Avionics engineer
 - Systems engineering
 - Fly-by-wire flight controls
 - Unmanned aerial systems
 - Airborne remote sensing
 - Engine controls
 - Spacecraft communications
 - Terrestrial telecommunications
 - Power generation
Engineering Education

http://www.carleton.ca/engineering-design/current-students/undergrad-academic-support/prerequisites/
Key Industry and Research Opportunities
Questions?
What is Our Makeup?

Department of Mechanical & Aerospace Engineering

- Single, integrated department (not two separate parts)
- Approximately 1300 undergraduate students
 - 2014 first year admissions (total 418)
- Entering minimum averages: 83% Aerospace, 76% Mechanical
- 36 full-time Professors + 19 Adjunct Professors + 5 Emeritus Professors
Engineering Co-op Program
Department of Mechanical & Aerospace Engineering

- Co-op option available for all programs
- 30% of students in co-op
- 4, 8, 12, and 16 month placement options
- Placement options after 2nd year
- 12 or 16 month placement after 3rd year most popular

<table>
<thead>
<tr>
<th>Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Study 1</td>
<td>Study 2</td>
<td>Optional Work</td>
</tr>
<tr>
<td>2</td>
<td>Study 3</td>
<td>Study 4</td>
<td>Optional Work</td>
</tr>
<tr>
<td>3</td>
<td>Study 5</td>
<td>Study 6</td>
<td>Work</td>
</tr>
<tr>
<td>4</td>
<td>Work</td>
<td>Work</td>
<td>Work</td>
</tr>
<tr>
<td>5</td>
<td>Study 7</td>
<td>Study 8</td>
<td></td>
</tr>
</tbody>
</table>
Currently 9 Capstone Design Projects

Learning & Teaching Philosophy

Simulator Project

Spacecraft Project

Fixed-Wing UAV

Rotorcraft UAV
Currently 8 Capstone Design Projects

Learning & Teaching Philosophy

- Formula SAE Hybrid Race Car
- Crash Test Dummy
- High Performance Housing
- Zero-Emissions Gas Turbine Generator