The Peregrine

Blended Wing Body UAV
Department of Mechanical and Aerospace Engineering

The Peregrine is a clean sheet UAV with *BWB* configuration, designed and optimized utilizing *multiscale hierarchical* approach employing functionally graded micro-structured *lattice materials* manufactured by the state of the art *additive manufacturing* technology. BWB designates an alternative configuration where the wing and the fuselage are integrated resulting in a hybrid flying wing. Compared to traditional aircraft, BWB configuration is an *eco-efficient* design that offers increased *efficiency* and *payload capacity* as well as decreased *acoustic* and *environmental* footprint.

Aerodynamic Analysis
High Fidelity 3D CFD analysis is conducted to determine aerodynamic characteristics of the UAV including conceptual aerodynamic loads, stability margins and performance metrics.

Dynamic Analysis
Modal and flutter analyses are performed to validate, respectively, the structural integrity and flutter free design.

Power plant
The Power Plant system is sized to provide up to 90 N of thrust at a speed of 140 km/h.

Loads Analysis
Incremental dynamic and static maneuver loads analyses are performed to determine critical design loads used for sizing and optimization of the airframe.

Internal Layout
Multi-spar configuration is adopted which with minimal number of ribs provides the main support for the wings and the centre fuselage.

Lattice Optimization
Multiscale design optimization is performed at two length scales, first on a macroscale in the form of topology optimization and then on a mesoscale in the form of lattice size optimization.

Stress Analysis
Linear static analysis supported by experimental material testing data is conducted to size different parts of the airframe.