Carleton University
 Department of Mechanical and Aerospace Engineering

MECH 4101: Mechanics of Deformable Solids

Lectures: $\mathbf{3}$ hours per week
Instructor: Professor C.L. Tan

Winter Term

Course Outline

1. Review of Elementary Stress Analysis: Failure modes in mechanical design. Governing equations in elementary theory of elasticity; general methods of solution.
2. Axisymmetric Elastic Deformations: Review of Lame=s solutions for pressurised thick-walled cylinders and rotating discs. Thermal stresses in thick-walled cylinders and thin discs.
3. Stress Functions: Airy=s stress functions and the biharmonic equation; solution by polynomials. Use of polar coordinates; practical applications; stress concentrations.
4. Shock or Impact Loading: Energy method for 1-D systems; impact factor; effects of geometry and yielding. Stress wave propagation. Changes in material properties under impact loads.
5. Elasto-Plastic Analysis: Review of yield criteria; idealisation of material yield behaviour. Elasto-plastic bending of beams; residual stresses and spring-back analysis; strain-hardening. Elasto-plastic deformation of pressurised thick-walled cylinders; residual stresses and autofrettage.
6. Creep Analysis: Bailey-Norton law; creep relaxation; creep in uniaxial and multiaxial stress systems. Larson-Miller parameter; reference stress technique. Cumulative creep concepts; time-hardening, strain-hardeing and life fraction rules.

Assessment

Mid-Term Examination		20%
Final Examination		80%
	Total	100%

References

1. A.C. Ugural and S.K. Fenster, Advanced Strength and Applied Elasticity, $5^{\text {th }}$ Edition, PTR Prentice Hall, 2011.
2. E. Volterra and J.H. Gaines, Advanced Strength of Materials, Prentice Hall, 1971.
3. S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw Hill, 1970
4. J.H. Faupel and F.E. Fisher, Engineering Design, John Wiley, 1981.
5. R.K. Penny and D.L. Marriot, Design for Creep, McGraw Hill, 1971
