CU on Orbit Capstone Satellite Design Project

Capstone Satellite Design Project

 The 2025-2026 Satellite Design Project will run in concert with CUonOrbit, jointly working on the mission currently being pursued by CUonOrbit

 The tasks will be performed in a cooperative manner, meeting the objectives of both groups

Club/Capstone Collaboration

- Joint collaboration for CSDC competition
- Capstone will mainly focus on Mission Analysis, ADCS and Payload subsystems
 - Still collaborative with club members
- Focused on developing prototypes in-house for components that are usually bought
 - Student led design teams often don't have the expertise and resources to develop in house components such as reaction wheels
- Club goal is to design and build the satellite within the timeline provided by CSDC-7
 - Two-year long initiative (Sept. 2024 to May 2026)
 - 1st year (2025) focuses on design of the satellite (Phase 0, A, B)
 - 2nd year (2026) focuses on assembly, integration and testing (Phase D)

Capstone Objectives (2025-26)

- Collaborative mission analysis for concept development and feasibility
- Design and development of an in-house SRAD* Attitude Determination and Control (ADCS) system for the satellite
 - Design + Prototype
- Development and integration of payload spectrometer on the satellite
 - Experiment design
 - In-house or COTS?
- Successfully build and implement design to CSDC-7 for simulated launch in June 2026
 - Min. functional engineering model/prototype

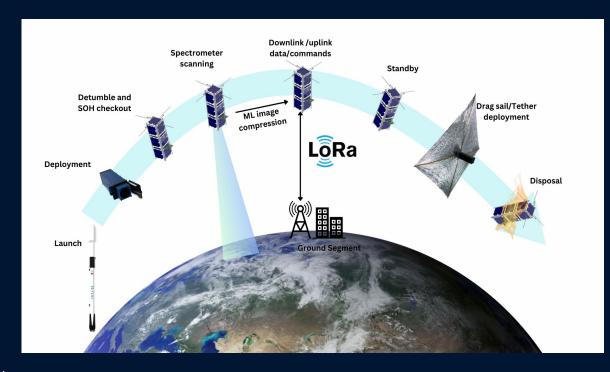
Capstone Objectives (2026-27)

- Collaborative mission analysis for concept development and feasibility
- Design and development of an in-house SRAD Attitude Determination and Control (ADCS) system for the satellite.
 - Flight model + testing
- Future project collaboration

Future timeline (2026-27)

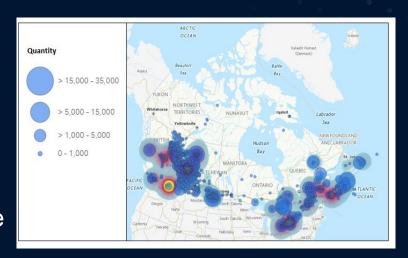
- Acceptance to CSA CUBICS program.
 - Collaboration on CUBICS mission payload
- If not accepted into CUBICS:
- Compete in CSDC-8
- Other CSA funding grants

CUonOrbit


- Carleton University's satellite design club
- Founded in 2023
- Members: 53 (engineering, sciences, public affairs & policy)
 - o Active: 25-30
- What we do:
 - Satellite design
 - CSDC-7
 - High Altitude Balloon (HAB) launches
 - Conferences & networking events
 - Workshops

Our Satellite

- 3U (Unit) Cube Satellite
- 1 year mission + deorbit
- Anticipated launch in May, 2026
- 7 subsystems
 - Computation and Data Handling (CDH)
 - Communications (COMMs)
 - Attitude Determination and Control System (ADCS)
 - **Payload**
 - Mechanical (Structures and Thermal)
 - Electrical Power System (EPS)
 - **Systems**

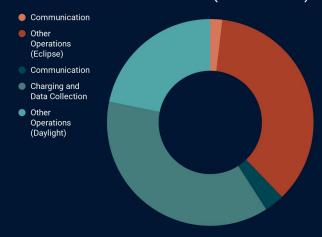


Our Mission

- Detect precursor chemicals to acid rain
 - Measuring SO₂ concentration
 - Create heat map of Canada
 - Targeted at industrial plants
- Compare to preexisting data
 - Satellite and ground data
 - Verify air quality regulation compliance

Canada, Environment and Climate Change. "Data Integration: Sulphur Dioxide." Canada.ca, 18 Sept. 2024,

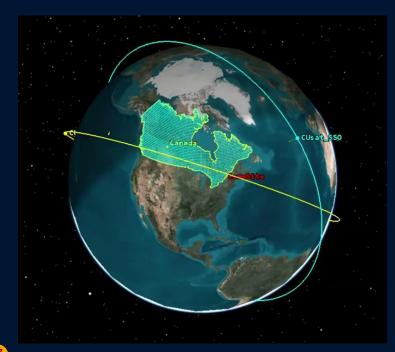
www.canada.ca/en/environment-climate-change/services/national-poll utant-release-inventory/tools-resources-data/sulphur-dioxide.html.



Mission Analysis

- Combination of STK and MATLAB-Simulink models used to simulate the spacecraft in orbit.
- Both orbit configurations simulated in STK to obtain data for the following:
 - Link Budget
 - Power Generation
 - Ground Coverage of mainland Canada
- Simulink modelled magnetic field variations and orbit dynamics of the spacecraft with reaction wheels.
 - World Magnetic Model (WMM) used to quantify magnetic field variation.

	SSO	LEO
Altitude	500-600 km	380-460 km
Coverage*	71.95%	23.75%
Inclination	9797.8 deg	51.6
Period	94.6-96.7 mins	91.9-93.8 mins
Eclipse Time**	35.5-35.8 mins	35.9-36.2 mins


Orbit Period Breakdown (Estimation)

Mission Analysis

LEO and SSO Orbit Simulation

Ground Station @ Mackenzie Building Access

SSO Coverage over Canada for 1 Year Period

Payload

Requirements:

- Shall be able to observe wavelengths between 250-400 nm
- Satellite shall be capable of imaging an area of 2500 km²
- Diffraction grating must have
 1200 lines/mm
- Survival temperature shall be between -40°C and 80°C
- Operating temperature shall be between -20°C to 40°C
- Satellite shall maintain slew of 15° while collecting data

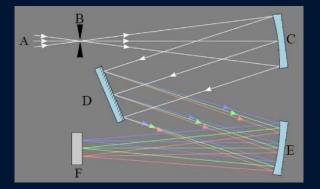
Diffraction grating spectrometer

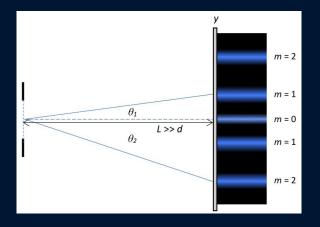
- Separate UV light
- Sensor
- Analyze spectral composition

Grating

- 1200 lines/nm
- Better then prism
- Higher spectral resolution
- Narrow range of wavelengths

Layout

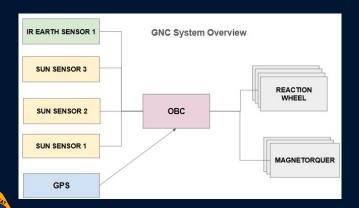

- Czerny-turner spectrometer
- Two mirrors
- Slit (~320 μm)
- Compact setup
- Reduces chromatic aberration

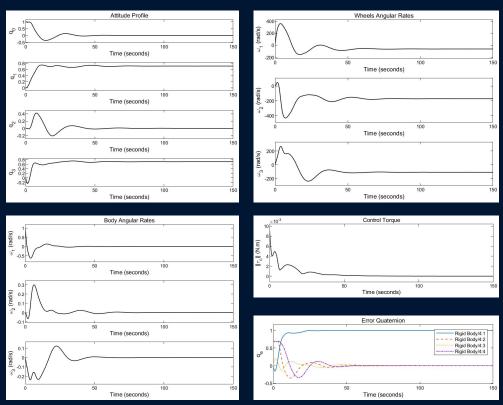

UV CMOS

- Further isolate wavelengths

Mirror reflectivity

Aluminum coating





ADCS

Nonlinear Spacecraft Model with Reaction Wheels |

- Demonstrated nonlinear spacecraft model to calculate control torque required to maintain pointing requirements
- Model integrates 3 reaction wheels along with a controller to simulate attitude correction

System Response for Attitude Control

ADCS

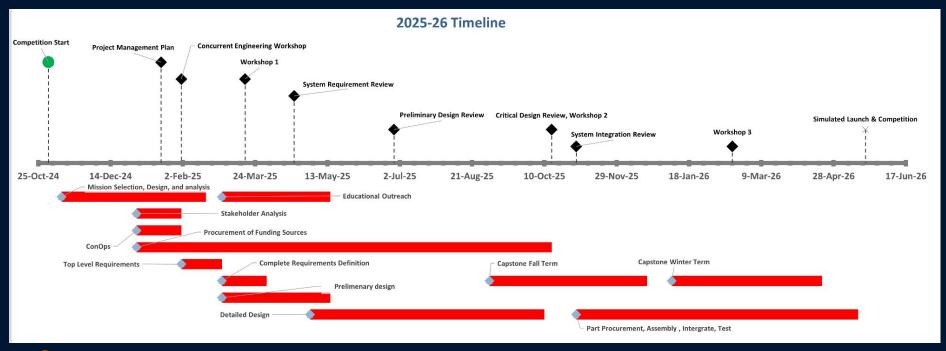
Design Requirements

- Low Earth Orbit
- Nadir Pointing Requirement
- High Pointing Accuracy
- Max LEO Perturbation torque (1.87 × 10^-5 Nm)

System Components

- Sensors
 - o Sun Sensors
 - IR Earth-Horizon sensors
 - Gyroscope (needed?)
 - Magnetometer (integrated ADCS)
- Actuators
 - Reaction Wheels
 - Magnetorquers

REACTION WHEEL TRADE-OFF					
Regular	CubeSpace Cube Wheel CW0017	Rocket-Lab - RW-0.003	Weight Factor		
Torque (mNm)	0.23	1	1		
Angular Momentum (Nms)	1.77	0.005 peak	0.2		
Dimensions (mm)	28x26x28	33.5 <i>x</i> 33.5 <i>x</i> 17	0.2		
Mass (g)	60	50	0.3		
Cost (\$USD)	Request	15,000	0.2		
Power consumption	850 mW peak 336 mW	4.5 V avg. 9.0V peak	0.3		
Total score	1.4	0.8			


Horizon Sensor Trade-Off				
Regular	CubeSense Sensor	TensorFS S-15 - Fine Sun Sensor	Weight Factor	
Pointing Accuracy (deg)	1	< 1	0.4	
FOV (deg)	90 <i>x</i> 80	128	0.2	
Dimensions (mm)	35x24x20	90 <i>x</i> 92 <i>x</i> 50	0.15	
Mass (g)	18	120	0.1	
Cost (\$USD)	Request	Request	0	
Power consumption	280 mW peak 200 mW avg.	Up to 30 mA and 5V	0.15	
Total score	0.25	0.75		

Sun Sensor Trade-Off					
Regular	CubeSense Sensor	TensorFSS- 15 - Fine Sun Sensor	Weight Factor		
Pointing Accuracy (deg)	0.2	0.1	0.4		
FOV (deg)	166	120	0.2		
Dimensions (mm)	35 <i>x</i> 22 <i>x</i> 24	22 <i>x</i> 15 <i>x</i> 5.3	0.15		
Mass (g)	15	4	0.1		
Cost (\$USD)	Request	1800	0		
Power consumption	174 mW	< 2 mA	0.1		
Total score	0.2	0.75			

Trade-Offs

2025-26 Schedule

