CARLETON UNIVERSITY

SCHOOL OF
MATHEMATICS AND STATISTICS

HONOURS PROJECT
I
I

TITLE: Resampling Diagnostics: Bootstrap,
Shiny, and Democratizing Data Science
AUTHOR: Alexander Lehmann

SUPERVISOR: Dr. Dave Campbell

DATE: August 20, 2021

Resampling Diagnostics
Bootstrap, Shiny, and Democratizing Data Science

Alexander Lehmann

August 20, 2021

Preface

In the summer of 2015, I spent an enlightening period employed as a mechani-
cal engineering intern at a scientific instrument manufacturing company in the
forests of my native New Hampshire. Early in my term I was made responsible
for maintaining and operating the company’s 3D printer, a venerable machine
which demanded constant monitoring as it ran and a quasi-religious ritual of
maintenance procedures and occasional cusswords between printing runs. Op-
erating this abomination of poorly-molded plastic soon consumed a significant
portion of my time, as the demand for its product quickly outstripped the
man-hours available for the machine’s maintenance, setup, and monitoring. My
other tasks, much more aligned with the role of a mechanical engineer, fell by
the wayside as nearly every working hour was consumed by this device.

Eventually, though, the company decided that an upgrade was required and
my mechanical nemesis was replaced by a gleaming new Ultimaker 2 professional-
grade 3D printer. The machine took what was previously a task defined by
careful attention and finger-crossing and turned it into a fire-and-forget opera-
tion requiring no real intervention. The formerly-laborious setup and tweaking
process was replaced by automated software tools handling the minutiae of the
printing parameters. Producing a part changed from a painstaking process only
I could undertake to one that any other employee could complete, even without
the dedicated schooling and 3D printer experience that the older machine had
demanded.

As the burden of the 3D printing tasks were taken off of my shoulders and
distributed across the entire company, I was suddenly able to devote my time
to my other work. With the 3D printing problems out of the way, I was able to
complete other projects that doubled production capacity for a popular product,
provided diagnostic tools for new designs, and identified manufacturing defects
in outsourced parts. The provision of a single tool allowed advancements in
many areas unrelated at once, purely by making what was previously a task
requiring specific, expert knowledge accessible to those without it.

Around the same time, the company’s marketing department was shifting
to a data-driven approach to their work. Data was collected, reports tabulated,

and analysis conducted. However, the marketing department were not the ones
conducting these analyses; while motivated and hardworking, they simply lacked
the specific expertise to accomplish the task. Instead, the analytical work was
shifted to the software engineering staff as the closest employees to data scien-
tists at the company. This, naturally, took away time from software engineering
work and led to inefficiencies much as 3D printing tasks had led to inefficiencies
for me.

As T approach the end of my undergraduate study in statistics, I wonder
if well-designed tools could have resolved this inefficiency in the way a well-
designed tool resolved my own. Could a carefully-crafted software suite have
allowed the marketers to complete their analyses internally, sparing the con-
sumption of engineering resources? Could such software tools provide an ad-
vantage over simply hiring a statistician or data scientist? Might the deep do-
main knowledge of the marketing team lead to better insights than the greater
technical skills of the engineers, given the right tools?

These questions are the foundation of what is being called the democra-
tization of data science [3]; the concept that tools which are user-friendly and
methodologically robust can allow even people without specific training in statis-
tics to ask questions of data and obtain reliable answers. Surely it is better for
a company’s staff to each be able to complete the basic analyses required for
their functions while the more knowledgeable statisticians and data scientists are
freed to engage with more complex and difficult problems. We already see some
of these tools available: consider Google Analytics, which automatically collects
and visualizes web traffic data, or the plethora of COVID-19 dashboards pub-
lished throughout 2020, some of which integrate regression modeling and other
such tools.

With this concept in mind, I set out to develop a tool to expand the acces-
sibility of the bootstrap with democratic data principles. The bootstrap is a
widely-applicable and tremendously useful tool which unlocks analysis of many
models, such as nonparametric and nonlinear models, where traditional statisti-
cal inference is difficult. While this project was initially supposed to be a simple
exploration of diagnostic methods for the bootstrap, it quickly expanded into
a study of nonparametric modeling, robust statistics, various other resampling
methods, and software engineering. It is my hope that the product of my labors
can serve as an example of the feasibility and utility of democratic principles as
the data science field continues to evolve.

1 An Overview of Bootstrap Methods

The bootstrap is a resampling method whereby we approximate the distribu-
tion of a statistic by computing it many times on data sets resampled with
replacement from some population sample. While computationally intensive, it
requires little in the way of complicated formulae and generally does not rely
on any assumptions about the distribution of a statistic. These advantages al-
low the bootstrap to estimate distributions of and assign measures of accuracy
to statistics for which closed-form solutions are difficult to compute or do not
exist at all. Common applications of the bootstrap include estimating standard
error, bias, confidence intervals, and distribution features such as skewness and
kurtosis.

1.1 Case Resampling

We begin with the simplest version of the bootstrap, the one-sample nonpara-
metric situation. This situation frequently arises with inference for simple statis-
tics such as the sample median. Let X = (X3, Xa, ..., X,,) be a random sample
drawn from some distribution F' and let the random variable R(X, F') be some
statistic of interest whose distribution we wish to know. The simplest boot-
strap procedure for this situation is the case-resampling procedure, for which
we present Efron’s [1] original description:

1. Construct the sample probability distribution a , putting mass 1/n at each
point x1,xo,23,...,%y,.

2. With F fixed, draw a random sample of size n from F, say

Xr=ar % Fi=12..n (1)
Call this the bootstrap sample, X* = (X7, X5,..., X)),

x* = (z%,z5,...,z}). Notice that we are not getting a permutation dis-
tribution since the values of X* are selected with replacement from the

set {z1,Za,...,Tpn}.

3. Approximate the sampling distribution of R(X, F) by the bootstrap dis-
tribution of R
R* = R(X*, F) (
i.e., the distribution of R* induced by the random mechanism (1), with
held fixed at its observed value.

2)
P

Essentially, this procedure in the one-sample nonparametric situation ap-
proximates the distribution of the population with empirical distribution of the
random sample X and uses this empirical distribution as the probability model
from which the bootstrap samples are drawn. This substitution allows the sim-
ulation of synthetic datasets on which to compute R(X*, F) as in (2).

Example 1. The Motor Trend Car Road Tests data set [10], ‘mtcars’ in
the R language, contains design and performance details for 32 vehicles from

the 1973-1974 model year. Suppose we are interested in the standard error of
the correlation between vehicle weight (‘wt’ in R) and fuel efficiency (‘mpg’).
We compute the correlation coefficient of the two features and obtain a point
estimate of -0.8677. Since we are not assured of the features’ distributions we
cannot estimate its distribution by traditional methods; instead, we turn to the
bootstrap.

Figure 1: Histogram of bootstrap replications for Corr(wt, mpg)

2500 - !
2000 -
-0.70
+= 1500 - 0.75
= -0.80
O 1000- 085
-0.90
5|:||:|' _0_95
EI_ 1 ! 1 1
04 08 07
RE

We draw B = 20,000 bootstrap samples from the data with replacement
and compute the correlation coefficient for vehicle weight and fuel efficiency in
each. The standard error of these bootstrap estimates is 0.0345, which serves
as a reasonable approximation for the standard error of the statistic itself.

1.2 Semi-Parametric Bootstrap

There are certain models which lend themselves to alternate probability models
for resampling. Consider the problem of estimating the distribution of param-
eters for a given regression model. In this situation, we assume that the data
follows some specified data-generating process with some amount of random
noise. This regression assumption provides for an alternate (and often more
accurate) resampling model by which we resample from the model residuals
and use these to generate our bootstrap data, rather than resampling from the
original sample itself. We call this method the semi-parametric, or residual,
bootstrap.

The procedure begins with the correct specification of some regression model,
which may be parametric or nonparametric. We the proceed as follows:

1. Fit the regression model to the sample data X and y.

2. Compute the model’s predicted responses

g={gli=12,...,n} (3)
at each x; in the sample and the residuals

3. Construct the sample residual probability distribution F, putting mass
1/n at each residual €1, €q, ..., €p.

4. With F fixed, draw a random sample of size n from F, say

E=¢“Fi=12.n (5)

7

Calculate the bootstrap responses
yi =9, +e,i=1,2,...,n. (6)

5. Calculate the regression parameters for covariates X and responses g;.

6. Approximate the sampling distributions of the parameters in the same
manner as in the nonparametric case-resampling scheme.

By including the residuals and predicted responses in the probability model,
we achieve a resampling scheme that more closely mirrors the assumed data-
generating process for the data. This allows more accurate inference using the
bootstrap and improves estimates.

Example 2.

The cell survival data [7] contains the results of an experiment in which
a radiologist exposed 14 bacterial plates to different doses of radiation and
recorded the proportion surviving the bombardment (Figure 2). Suppose we
wish to construct a 95 percent confidence interval for the slope of the regression
line using the bootstrap. We first fit a linear regression model to the data, seen
in Figure 2. This regression fit appears to model the data-generating process
well, so we may use the semi-parametric bootstrap to construct a confidence
interval for the slope.

We begin by computing the predicted survival times at each radiation dosage
using the fitted model. We next draw B = 1000 samples with replacement from
the residual values of the model fit and add these residuals to the predicted
values in a component-wise fashion to produce our 1000 bootstrap data sets.
For each of these data sets, we fit a new linear regression model and record the
slope.

From these bootstrap replications, we construct the confidence interval using
the percentile method, where the 1 — 2a confidence interval is calculated as

{é%,loaé%,hi} ~ {é*B(a)aé*B(a)} . (7)

Figure 2: Plot of log(survival time) vs radiation dose with OLS line

log{Survival Time)

10.0- ,

m -
-
=

Dose

This produces the interval (—0.7739, —0.5578) (Figure 3). The result is compa-
rable to the interval (—0.7870, —0.5397) computed by traditional methods, but
required no distributional assumptions on the residuals.

Remark. Other methods of calculating bootstrap confidence intervals exist
(BCa, ABC,...), which may give more accurate confidence bounds or be more
efficient estimators. We chose to use the percentile method for its simplicity
and ease of use, which we felt appropriate given our focus on democratizing
data science.

1.3 Stratified Resampling

Recall that the bootstrap proceeds by analogy; the bootstrap replication is to
the original estimate as the original sample is to the population. This anal-
ogy relies upon the assumption that the bootstrap samples are similar to and
representative of sampling from the original distribution. This ”resample like
sample” principle can easily break down when data is not completely homoge-
neous, such as when the data include samples from multiple populations, such
as different species or other categorical variations.

Example 3. The ‘iris‘ data set [8] contains 150 observations of morphological
features of iris flowers belonging to three species: iris setosa, iris versicolor, and
wris virginica. The data set contains 50 observations for each species, propor-
tionally {%, %, % of the total data.

Suppose we use the case-resampling bootstrap to generate B = 5 bootstrap
samples (this is an extremely small number of bootstrap samples for any prac-

tical purpose, but suffices to illustrate the principle at work here). We see

Figure 3: Histogram of bootstrap replications for OLS line slope

2000 -
1500 - 0.5
g 06
&3 1000- 07
c00- 0.8

D_

-0.8 0.7 -0.6 -0.5 -04
Dose Coefficient

that each of the bootstrap samples has a different distribution of species within
it, which may lead to unrepresentative bootstrap replications of a statistic or
model. These unrepresentative replications can lead to inconsistency in the
bootstrap and misleading approximations of statistic distributions, impeding
robust methodology.

In a situation such as this, alternative sampling schemes may be used to
rectify the class imbalance in the bootstrap samples and generate better re-
sampling models. One such scheme is the stratified resampling scheme for the
bootstrap. In this scheme, we ensure that each bootstrap sample contains the
same balance of class labels as the original by sampling from within each class,
then aggregating these subsamples to form the bootstrap samples. One method
for stratified resampling is seen below.

1. Select a categorical stratifying variable S in the data. For each of the
levels of S, say the ith, count the number of cases in the sample with class
label S;. Call the count of cases b;.

2. For each level of S, say the ith, resample b; times with replacement from
the subset of sample observations with class label S;. Combine each of
these subsamples to form the bootstrap sample.

3. Proceed with inference using the bootstrap samples as normal.

2 The Jackknife and Jackknife-After-Bootstrap

The bootstrap methods discussed thus far provide a variety of ways to select
a bootstrap sample, though none of them include any form of diagnostics to

Figure 4: Plot of Cases by Species in Bootstrap Samples from ‘iris’ Data

60 -
Species
40 -
S
=
= . Setosa
o .
Q Versicolor
ZI:I N . . .
Virginica
I:I -
1 1 1 1 1 1
m m m m m —
o (] (] L] (] =
=4 = = =4 =4 @
a o o o o
o o o o o
—] el = o
Sample

check if the bootstrap samples are representative of a population sample. The
jackknife-after-bootstrap technique provides a method for checking the influence
of points in the bootstrap sample on the approximated sampling distribution
and for detecting outliers that may require further examination.

2.1 The Jackknife

The jackknife [12] is an alternative resampling scheme to the bootstrap for
estimating variance and bias of a statistic. While the bootstrap is built upon
random sampling with replacement, the jackknife systematically leaves out one
of the n observations in the data set to obtain n subsamples of size n — 1.
Formulae exist to estimate the statistic, its standard error, and its variance
from these subsamples.

As with the bootstrap, the jackknife does not require parametric assumptions
regarding the distribution of the statistic of interest nor of the distribution
of the sample (i.e. we do not have to assume either follow some parametric
distribution). However, it can still require significant computational resources
for large data sets and provides only an approximation of the statistic and its
distributional properties.

A standard procedure for jackknife estimation of a summary statistic s(X)
proceeds as follows:

1. Collect a sample x = (x1, 22, ...,zy) of size n from a chosen population.
2. Generate n subsamples x(;),7 = 1,...,n of x where
X(z) = (a:l,xg,...,xi_l,xi+1,...,x,,b) (8)

is the subsample with case i deleted.

3. Calculate s(;)(x) = s(x(;)), the ith case-deletion estimate of s(X), for each
subsample generated.

4. The jackknife estimate of the statistic is the mean of the case-deletion
estimates, that is,
1 n
= Z s(iy(x (9)
=1

5. The jackknife estimate of the variance of the statistic is the variance of
the case-deletion estimates, that is,

Var(s(x)) = =1 Z (51 (x) — 8(x))%. (10)

6. The jackknife estimate of bias of the statistic is the difference between the
jackknife estimate and the full-data estimate scaled for the sample size,

that is, -
Bias(s(x)) = (n — 1)(8(x) — s(x)). (11)

Example 1. We again consider the Motor Trend Car Road Tests data set of
Section 1.1. Suppose we are interested in the correlation between the vehicles’
motor power, measured in horsepower (hp), and fuel economy measured in miles
per gallon (mpg). We will use the jackknife to find an estimate of the correlation
and estimates of its variance and bias.

There are n = 32 cars in the data set, so we create 32 case-deletion subsam-
ples. For illustration, consider the subsample created by deleting the ¢ = 23rd
car,

X(gg) :(12175627...,$227JU24,...,ZIJ32). (12)

We compute the correlation between the motor power and fuel economy within
this subset, obtaining a case-deletion estimate of Corr(y3)(hp, mpg) ~ —0.7835.

We repeat this process for each of the 31 other cases, obtaining 32 case-
deletion estimates Corrg;(hp, mpg),i = 1,...,32. The jackknife estimate of
the correlation between motor power and fuel economy is the mean of these
case-deletion estimates,

32
1
Corr(hp, mpg) =3 Z Corr(;y (hp, mpg) ~ —0.7766. (13)

We can now calculate the jackknife estimate of the variance:

32
— -1
Var(Corr(hp, mpg)) = nT (Corr;) (hp, mpg) + 0.7766)2 ~ 0.0010. (14)

i=1

To calculate the jackknife estimate of the bias, we use the full data set to
compute an estimate for the correlation between motor power and fuel economy,
r(hp, mpg) ~ —0.7762. The jackknife estimate of the bias is then

Bias(Corr(hp, mpg)) = (31)(—0.7766 -+ 0.7762) = —0.0124. (15)

2.2 Jackknife Influence Functions

A key use of the jackknife is to identify those data which have a significant
disruptive effect on the statistic of interest. The jackknife’s leave-one-out sub-
sampling creates a convenient environment within which to assess the impact
of each individual datum.

The primary tool used to assess such impacts in the jackknife world is the
jackknife influence function, defined below.

Definition. Suppose that s(x) is a real-valued statistic of interested. Let x(;
indicate the data set remaining after deletion of the ith point,

X(i) = (T1,%2, o, T 1, Tig 15+ Tn), (16)

and let s;) = s5(x(;)), the corresponding deleted point value of the statistic of
interest. The jackknife influence function for s is defined to be

ui(s) = (n = 1)(5(= s(3)) (17)

where 50y = Y7 | s;)/n.

The jackknife influence function quantifies the effect a given datum has on
the estimate of the statistic of interest. The scaling factor accounts for the size
of the data set; for a fixed estimate difference 5y — s(;), a large data set size
n will result in a greater influence function value since the deleted case must
compete with more data.

Example 2.

In this example, we return to the cell survival data from Section 1.2. Note
that one particular observation, case 13 which is highlighted in red, appears to
lie far from the regression line. This case may have a disruptive effect on the
regression slope, which we would like to quantify by computing the jackknife
influence value for this case.

We jackknife the OLS linear regression slope, obtaining n = 14 case-deletion
estimates of the slope. The mean of these case deletion estimates is

Bo =Y _Bu/n~ —0.6643. (18)
=1

10

Figure 5: Plot of log(survival time) vs radiation dose with OLS line; case 13
highlighted

log(Survival Time)

-10.0 - :

[) P
—
=

Dose

The case-deletion estimate computed from the subsample leaving out case 13 is
B3y ~ —0.7596, so the jackknife influence value for case 13 is

u13(B) = (13)(—0.6643 + 0.7596) = 1.2389. (19)

Compare the case 13 influence value to the influence values for some other cases,
such as uz(8) ~ —0.0088 and us(3) = —0.0196.

Clearly, the jackknife influence function’s value is directly affected by the
dispersion of the data; in order to account for this, we often prefer to consider
an adjusted form.

Definition. Let u;(s) be the jackknife influence function for a given case i and
statistic s(X). The relative jackknife influence function is

1/2

U;(s 2
e =uts) | [Z U (20)

The relative jackknife influence function prevents the dispersion of the data
from affecting the dispersion of the jackknife influence, simplifying the assess-
ment of individual cases’ impacts on the estimated value. The relative influence
value provides an objective measurement, independent of features of distribu-
tional assumptions, of the impact each datum has on the estimated value of
the statistic of interest and thus serves as an indication of the robustness of the
estimator.

11

2.3 The Jackknife-After-Bootstrap Sampling Lemma

The jackknife procedure described so far requires modification to be practically
useful for diagnostic purposes in the bootstrap. If s(X) above is taken to be
some bootstrap statistic, then each case-deletion estimate s(;)(X) will require a
new set of B bootstrap samples to be drawn. For large data set sizes and/or
values of B, this can quickly become computationally prohibitive and prevent
jackknife-after-bootstrap from being conducted.

This problem may be circumvented via the jackknife-after-bootstrap sampling
lemma [7]:

Lemma 2.1. A bootstrap sample drawn with replacement from
T1,22, .- Tie1,Tit1,- - Ty has the same distribution as a bootstrap sample drawn
from x1,x9,...x, in which none of the bootstrap values equals x;.

The jackknife-after-bootstrap sampling lemma allows the analyst to create
jackknife subsamples of the bootstrap replications by simply including all of the
bootstrap replications calculated from bootstrap samples in which a particular
case does not appear. The lemma assures us that the distribution of these
selected bootstrap replications is the same as it would be if we calculated a
new set of replications from x(;). This shortcut makes jackknife-after-bootstrap
analysis feasible with limited computational resources and enables its use in
practice, as it requires no further computation at all after the initial set of
bootstrap samples have been drawn.

2.4 Qutlier Detection

Naturally, the investigation of individual cases’ influence on the estimates of a
statistic of interest lead to questions about outliers in the data. Comparison
between cases’ disruptive effects on statistic estimation and sampling distribu-
tion approximation may highlight those cases which may be removed for better
bootstrap results. Canty, Davison, Hinkley & Ventura [1] describe a graphical
method by which the analyst may highlight the disruptive effect that an outlier
may have on bootstrap calculations.

Their method uses the jackknife-after-bootstrap plot, constructed by plotting

chosen quantiles of case-deletion estimates s(;(X) against the case’s relative

influence value uj (s); that is, we plot the case’s disruptive effect on the bootstrap

distribution against its disruptive effect on the estimate. The points for each
quantile are commonly connected for clarity. It is also common to include
horizontal dashed lines corresponding to the same quantiles of the full-data
bootstrap replications. Their described addition to the traditional plot is an
uncertainty band around each of these full-data quantile lines where the width of
the band is 2 x z times the standard deviation estimate based on the interquartile
range of the case-deletion quantiles and z = 1.96 based on normal theory (Canty,
Davison, Hinkley & Ventura 2006). Case-deletion quantiles lying outside of this
band may be considered outliers and investigated, modified, or deleted as the

12

analyst deems appropriate.

Example 3.

Figure 6: Jackknife-after-bootstrap plot for cell survival data; 0.05, 0.50, and
0.95 quantiles plotted

Slope Quantiles

Relative Influence

Suppose that we now wish to search for outliers affecting the estimate of OLS
regression slope for the cell survival data. We use the semi-parametric bootstrap
to produce B = 20,000 bootstrap samples and fit the regression model as in
Example 2.

We next use the jackknife-after-bootstrap method to obtain n = 14 case-
deletion estimates for the regression slope. From these case-deletion estimates
we calculate the jackknife influences as in Example 2. Then we find the 5%, 50%),
and 95% percentiles for the full-data bootstrap replications and the jackknife-
after-bootstrap data sets, and compute the uncertainty bands for each quantile.

The jackknife-after-bootstrap plot is constructed by plotting the case-deletion
estimate quantiles for the slope against the relative influence of each point. The
horizontal broken lines correspond to the full-data bootstrap quantiles and the
shaded area corresponds to each quantile’s calculated uncertainty band as de-
scribed by Canty et al. We see that on the right, case 13’s quantiles lie far outside
each uncertainty band. This indicates that case 13 has a severe disruptive effect
on the bootstrap calculations, suggesting that the analyst should review this
case. We also see two other cases that may warrant additional review, although
their effects do not appear to be as severe as case 13.

2.5 Extension to Multivariate Statistics

One shortcoming of the outlier detection mechanism already described is its
incapacity to directly handle vector statistics. For some models such as multi-

13

ple linear regression, this shortcoming precludes using jackknife-after-bootstrap
plots for outlier detection without modification to the procedure. We propose
an extension by which the difference calculations in the formulae are instead re-
placed by the Ls, or Euclidean, norm of the difference between the two vectors.
This replacement allows the calculation of jackknife influence values and outlier
detection in spaces with more than a single dimension.

Definition. Suppose that s(X) = (s1,S2,...,8p), 51, 52,...,Sp € Ris a statistic
of interest. Let z(;) indicate the data set remaining after deletion of the ith
point,

X(i):(581,1‘2,...,,:E,L'_hl‘i_i_l,...,din), (21)

and let s(;) = s(x(;)), the corresponding deleted point value of the statistic of
interest. The multivariate jackknife influence function for s is defined to be

vi(s) = (n = 1[5 = s(3)ll2 (22)

where 57 = (32711 81, /7 211 S20) /M- -3 Doty Speiy /T s the vector of jack-
knife estimates for each component of s.

Remark. Note that for I1-dimensional statistics of interest s(X), the multi-
variate jackknife influence function is equivalent to the absolute value of the
single-dimensional jackknife influence function.

As in the unmodified procedure, it is often useful to have a relative measure of
influence; the calculation of relative multivariate jackknife influence is identical
to the relative jackknife influence.

Definition. Let v;(s) be the multivariate jackknife influence function for a given
case i and statistic s(X). The relative multivariate jackknife influence function
is 1o

vl(s) = vi(s) / Z% : (23)

We additionally need a method by which to assess bootstrap distribution
disruption.

Definition. Suppose we have used the bootstrap to estimate the distribution

of some vector statistic s(X) = (s1, $2,. .., $p), obtained bootstrap replications
sf = (s1,,85,,---,5p,),i=1,..., B, and used jackknife-after-bootstrap to obtain
case-deletion estimates s(;),4 = 1,...,n for each case. Let

Ji = {si(l),sim,...,si(n)} (24)

be the set of case-deletion estimates of the ith component of statistic s and

Ki ={s] ,s5,,-..,5; (25)

i2) iB

14

be the set of bootstrap replications of the ith component of statistic s. Let
Qx(q) be the sample quantile function for x and let

0s(q) = (Q1,(q9) — Qr,(9), Q1 () — Qr,(0),---,Qs,(¢) — Qx,(q)) (26)

be the vector of differences between the gth sample quantiles of J and K for each
component, i.e. the vector of differences between the gth quantile of the case-
deletion estimates and the gth quantile of the full-data bootstrap replications.
Then we define the bootstrap disruption distance for quantile ¢ as the sum of
squares of the components of ds(q),

P

=1

While similar to the modification made for the jackknife influence, we use
the sum of squares of the differences rather than the Lo norm. This is to
allow a natural extension of the normal theory-based uncertainty bands in the
single-variable situation to the multivariate case here. Since the procedure for
each component individually is the same as in the single-variable situation,
an appropriate uncertainty band for the individual components would be the
0.95 quantile of the standard normal distribution. Accordingly, the appropriate
uncertainty band width for the sum of squares of these components is the 0.95
quantile of the chi-square distribution with p degrees of freedom, where p is the
dimension of the vector statistic.

Remark. Distributions exist for the use of the Lo norm in this case (namely
the chi distribution), but they are quite obscure compared to the chi-square dis-
tribution’s relative ubiquity. As such, we have opted to use the sum of squares
and chi-square distribution.

15

3 Turner

With our foundational discussion of the bootstrap and jackknife-after-bootstrap
complete, we turn our attention to the software we have developed to implement
these techniques. Turner is a web app built on the R Shiny platform to ”black
box” bootstrap procedures and jackknife-after-bootstrap, automating resam-
pling model selection and diagnostics. Several models are supported and more
can easily be added thanks to a modular design, and additional diagnostics are
also possible. The extant version of Turner (at time of writing) is merely a pro-
totype for possible future development, intended to serve as a proof-of-concept
for such software and evince its usefulness in industry and academia.

The current release of Turner may be accessed online through any major
browser. Full source code may be found on GitHub.

3.1 A Brief Overview of R Shiny

The R language [13] is a domain-specific programming language for statistical
computing and data analysis. Its open-source licensing strategy allows users
to develop and share packages to extend the language’s functionality; some
examples include the glmnet package to add LASSO and elastic-net regression
models, R Markdown for generating reproducible reports, and parallel to enable
parallel processing.

One of these packages is Shiny [2], developed and maintained by RStudio.
Shiny extends R’s functionality to include developing web apps running R code,
allowing R programmers to easily create GUIs for users to interact with data and
analyses. The purposes of these apps vary from interactive data visualization
to modeling to diagnostic and IT support functions. Some examples of Shiny
apps include RStudio’s movie explorer, California’s COVID Assessment Tool,
and a simulation of COVID-19 vaccination strategies in Ontario.

A Shiny app has two parts: the Ul and the server. The UI defines the
controls displayed to and interacted with by the user, which can be divided into
input controls and output controls. Input controls are parts of the Ul which
allow the user to modify the processes running within the app. These could
be fields to change numeric values, sliders to change the value of a variable, or
upload fields for data files. Output controls are parts of the Ul which return
data to the user, such as plots or download buttons.

The link between the inputs and outputs of a Shiny app is the server, which
tends to be the more complex part of the app. The server is the part of the web
app that actually performs the computations specified by the programmer and
provides outputs to the Ul to display to the user. A key feature of Shiny app
servers is the reactive programming model, which only performs computations
for parts of the app affected by the user’s recent input. This model minimizes
the amount of computation the app performs at any given time, making Shiny
apps fast and efficient.

16

http://rshiny.math.carleton.ca:3838/student-apps/alexlehmann/Turner/
http://rshiny.math.carleton.ca:3838/student-apps/alexlehmann/Turner/
https://github.com/Alex-Lehmann/Turner
https://shiny.rstudio.com/gallery/movie-explorer.html
https://calcat.covid19.ca.gov/cacovidmodels/
http://rshiny.math.carleton.ca:3838/student-apps/alexlehmann/Immunization-Strategy-Simulation/

3.2 Bootstrap Automation

Turner uses R and Shiny to automate bootstrapping procedures by selecting the
model, resampling, and performing diagnostics without requiring any particular
expertise in these areas from the user. This automation is the key feature of
Turner, allowing even users without training in bootstrap methods per se to
employ these tools to produce usable results.

Model selection is performed by a combination of designer specification and
statistical hypothesis testing, blending foreknowledge of the app’s supported
models with analysis of provided data. Turner is designed with modularity
in mind, which applies in this instance by encapsulating each model’s boot-
strapping procedure(s) and evaluation procedure in its own file. For many of
the statistics and models supported at time of writing, only a single bootstrap
procedure is necessary. For those where multiple models may be sensible, it is
trivial (from a programming standpoint) to add logic for selecting the procedure
to be used. Stratification is dependent on the data provided and user’s intent,
so stratified resampling procedures are activated by user election through the
UI. See Section 3.3 - Supported Models and Statistics for details.

The bootstrap procedures are executed using the rsample package [14], pub-
lished as part of RStudio’s tidymodels [11]. It provides a lightweight interface
through which bootstrap resampling may be performed, reducing memory over-
head and improving performance. This also has the benefit of standardizing
the interface between the model-specific bootstrap procedures and the actual
bootstrapping, simplifying the programmer’s workflow to add new models and
statistics. However, rsample does not support resampling models beyond case
resampling with stratification; as a result, we must program our own methods
for evaluating more complex schemes such as the semi-parametric bootstrap.

Fortunately, jackknife-after-bootstrap computations do not require consider-
ation of alternate schemes or other complicating factors. This procedure may be
applied without consideration to any factors apart from the bootstrap samples
and replications, and thus required only that we program the jackknife-after-
bootstrap procedure into the app. The results of this procedure are displayed
as an interactive jackknife-after-bootstrap plot, along with a list of cases which
lie outside the uncertainty bands computed using our modified procedure; this
list serves to highlight cases which the analyst may wish to review for correction
or removal, depending on circumstances external to Turner’s purpose.

3.3 Supported Models and Statistics

At time of writing, Turner supports six models and statistics: the mean, median,
correlation, linear regression, smoothing splines, and LOESS. Together, these
serve as examples of the capabilities of Turner, and by extension the bootstrap,
applied to several statistics and regression models both parametric and nonpara-
metric. We note that some of these, particularly the mean and linear regression,
do not necessarily require the bootstrap to estimate measures of spread or bias.
These were included as validation for the various procedures and to demonstrate

17

the reliability of Turner for statistical inference.
We now present a very brief overview of each statistic and model with details
regarding their corresponding bootstrap procedures in Turner.

3.3.1 Mean

For a random sample X = (X7, Xo, ... , X») of size n drawn from a probability
distribution F', the sample mean X serves as an estimate of central tendency
for the probability distribution F'. The common arithmetic mean is computed

as
— X
X = —. 28
;n (28)

The mean is a simple statistic without residual concerns or other compli-
cating matters for bootstrap inference, so we use the case-resampling bootstrap
for bootstrapping the mean. Depending on the data from which the sample is
drawn, the user may wish to modify the bootstrap procedure by introducing
stratified resampling.

3.3.2 Median

The median is an alternative measure of central tendency, using the "middle”
value of a set of numbers as an estimate of the center of the population. For-
mally, we define median(X) to be the value of the set X such that no more than
half of the other observations are above or below median(X).

The median, like the mean, is a simple statistic and requires no special
accommodations to perform bootstrapping. As such, we use case resampling
with the potential for a stratified sampling modification as required.

3.3.3 Correlation

The correlation (or dependence) p(X,Y") is a common measure of the relation-
ship between two random variables X and Y. In particular, a large correlation
indicates a strong linear predictive relationship between the two variables. For a
random sample draw from a bivariate population (X1, Y1), (X2,Y2),..., (Xn, Ya),
we use the sample correlation coefficient

_ i (@ = T)(yi —)
Vi (@i =72 0 (i — 7)?
The Turner bootstrap procedure for the correlation is, again, the case-

resampling method. However, in this instance we resample paired observations
rather than single observations, adjusting for stratifying variables as required.

(29)

Txy

18

3.3.4 Linear Regression

Regression modeling is a set of techniques for explaining and/or predicting the
behaviour of one or more response variables as a function of one or more co-
variate variables. Linear regression is a subset of these techniques in which the
statistician assumes that the relationship between the response and predictors
is of the form

y=XB+¢ (30)

where y is a vector of observed values of the response, X is a matrix of row
vectors encoding the corresponding observations of the covariates, 8 is a vec-
tor of regression coefficients in the model, and € is a vector of random errors,
also termed the residuals. Linear regression models typically require several
assumptions, such as the model errors be uncorrelated.

Once we have specified a linear model for some data, we must fit the model
to the data. This involves using some method to estimate the regression coeffi-
cients § in the true data-generating process by using the observed data. Turner
currently supports two methods of linear model fitting: ordinary least squares
(OLS) and iteratively re-weighted least squares (IRWLS) using an M-estimator.
OLS fits assume that the model errors have independent and identical normal
distributions with mean y = 0 and variance 02 < oo and attempt to minimize
the mean squared error between the model and the observed data. IRWLS
fits do not require such assumptions and is more robust, but requires greater
computational resources to complete.

Bootstrapping linear regression models ordinarily that the analyst select be-
tween the case-resampling bootstrap and the semi-parametric bootstrap based
on their own judgement and expertise. However, Turner automates this proce-
dure by considering the distribution of the residuals to select the most appro-
priate resampling model, particularly whether or not they are identically dis-
tributed. When the user selects a linear model in the procedure setup, Turner
performs a White test of heteroskedasticity on the data. If the residuals are
homoskedastic, residual resampling is appropriate and this method is used. If
not, the case-resampling method is used.

3.3.5 Smoothing Splines

Cubic splines are a method of approximating a function by using a piecewise
function of cubic functions connected at a number of knots. In particular, a
cubic spline requires that

1. The component cubic functions of the spline have equal value, first deriva-
tive, and second derivative at each knot;

2. The second derivative of the spline is zero at the endpoints.

This guarantees that the spline is a smooth interpolation of the data, but the
statistician still must solve the problem of determining the number and location
of the knots.

19

One solution to this problem is to sidestep it entirely by selecting a maximal
set of knots; in particular, we designate each of the cases in the observed sample
to be a knot. In this case, the complexity of the spline is handled by the use of
a smoothing parameter A € (0, 00) which penalizes the residual sum of squares

RSS(£,\) = > i — F(m)}? + A / (" ())2dt. (31)
=1

A more curved spline will incur a larger penalty term, regularizing the fit to pre-
vent overfitting. A cubic spline specified in this manner is known as a smoothing
spline. The smoothing parameter can be determined automatically and is the
only parameter to the model, so A is the statistic of interest for bootstrapping
purposes.

While smoothing splines may share some superficial similarities to regres-
sion modeling by interpolating observations based on observed relationships,
there are no residuals or other similar components to employ semi-parametric
bootstrapping. Accordingly, we approximate the sampling distribution of the
estimated smoothing parameter by case resampling.

3.3.6 LOESS

Local regression is class of nonparametric regression methods which use a smooth
distance-based weight function, called a kernel, to assign weights to the observed
data. These weights are then used to fit a regression model for a given locale in
the data before moving along and repeating the procedure. These local regres-
sion models’ estimates then form the overall regression model for the data.
LOESS is one of the most common methods of local regression. It uses a
quadratic least-squares regression model to construct local estimates based on

the tri-cube kernel .
1—1d®¥)”, d<A
K = (’ - 32
A(@) {07 P (32)

where d is the distance between the currently-estimated part of the curve and
the point x and A is a smoothing parameter that specifies the width of the
window under consideration. Conveniently, the LOESS fit requires only the
specification of the smoothing parameter A; in a sense, the supplied data is the
model.

Unlike interpolating splines, LOESS does have residuals that could be re-
sampled from to derive bootstrap approximations for the curve. However, we
could not find an example in literature of semi-parametric bootstrap applied
to LOESS fits and felt that (potentially) pioneering such an employment was
beyond the scope of this paper. For this reason and in accordance with Turner’s
emphasis on simplicity, we opted to use the case-resampling bootstrap for the
LOESS model.

20

3.3.7 Additional Models

Turner’s modular design also makes it easy to implement additional models and
statistics. New definitions require only an estimation and a bootstrap evaluation
method and allow additional internal methods as desired. For example, consider
the definition for the mean:

FEstimation
estimate _mean <— function(df, spec){
mean(pull (df, as.name(spec8$var)))

}

Bootstrap evaluation
eval _mean <— function (df, spec) {

mutate (
df,
replication = map_dbl(
sample,
estimate _mean,
spec = spec

)
)
}

The estimation function provides the method to calculate the mean from the full
data. The bootstrap evaluation function provides the method for calculating the
bootstrap representations; this is necessary due to the data structure in which
rsample returns bootstrap samples.

Implementing a new model or statistic merely requires the developer to write
these two functions and merge them into Turner’s code base. This means that
new features can be added very quickly and easily, providing myriad opportunity
to extend Turner’s usefulness. The source code for Turner is, furthermore,
hosted online within a GitHub repository allowing for easy collaboration and
updates as necessary.

3.4 User Experience Design

Turner was developed to make bootstrap procedures more accessible to lay peo-
ple untrained in statistical methods, which necessitated special attention given
to the UI, controls, and other elements of the user experience. The goal was to
develop an app which could be understood and utilized easily by someone with-
out other experience with the procedures while still providing useful insights
into their model.

3.4.1 Diane from Marketing

During development, we considered a theoretical user we called ”Diane from
Marketing” - a white-collar professional with her own domain expertise, but

21

without particular experience working with advanced statistical methods. Per-
haps Diane took a basic statistics course in the past where she learned about
such basics as means, standard errors, linear regression, etc., but she has not
come across the bootstrap, jackknife, outlier detection, or other topics.

Despite this limited (but nonzero) extent of her knowledge, Diane has some
statistic or model for which she needs to approximate a distribution; perhaps
she is performing linear regression in the presence of outliers and must use a
robust fit, or she needs a confidence interval for a median of some parameter
of a market survey before moving forward with a new initiative. These very
possible business requirements can be solved by using the bootstrap, but Diane
will need an app like Turner to make such tools accessible.

3.4.2 Black Box Design

Since Turner was designed for users without detailed knowledge of the inner
workings of the bootstrap we decided to encapsulate the ”working parts” of
the procedure and shield the user from them; essentially, we put our bootstrap
implementation in a black box. As far as the end user is concerned, Turner is
simply an app into which they put a data set into and out of which come results.
The details of how such results are irrelevant to that end user, beyond knowing
that bootstrapping was used on a given model.

This, of course, denies the user insight into exactly how the bootstrap
achieved its goal, but the idea of Turner is to automatically run the diagnos-
tic procedures internally so that the user does not need to have these insights.
When the bootstrap results can be checked solely based on the app’s provided
outputs, the user’s knowledge of exactly what occurred internally is irrelevant.

3.4.3 Workflow

The Turner workflow is very straightforward since Turner encapsulates the com-
plicated parts of the procedure and shields the user. Before consulting Turner,
users must collect data and decide on a model to fit or statistic to calculate;
these tasks are external to Turner’s purpose. Once the user has selected their
model or statistic, they load their data into Turner as a comma-separated val-
ues (CSV) file using the online interface; example data sets are also included by
default.

After data has been provided, the user specifies their selected model or
statistic. The model or statistic is chosen through a drop-down menu, compactly
displaying the available options to eliminate any need for the user to memorize
the possibilities or refer to external documentation. Each option then has its
own set of parameters, such as the variable for which to compute a mean or the
fitting method for a linear regression; the parameters vary from model to model
and statistic to statistic, so the controls for specifying them vary as well.

The user then indicates to the app that they are ready to proceed by clicking
the appropriate button, and Turner goes to work. It displays an animated busy
message as it carries out the bootstrap procedure and jackknife-after-bootstrap

22

diagnostics, then shows the results once the computations are complete. There
are two parts to the results display: the approximated distribution(s) from the
bootstrap procedure itself and the jackknife-after-bootstrap results with outlier
identification. Each model parameter estimator has its own results module with:

1. A histogram of the bootstrap replications of the parameter obtained dur-
ing the procedure, with estimated density curve;

2. Point estimates of the estimator’s standard error and bias;
3. Estimates of the distribution’s skewness and kurtosis;

4. A bootstrap confidence interval, computed via the percentile method, with
a slider control which allows the user to specify the desired value of « for
calculating the confidence level of the (1 — a)100% interval.

These results displays give the user a good picture of the approximated distri-
bution(s) obtained by bootstrapping in a clear, simple manner.

The jackknife-after-bootstrap results display page is shown after the boot-
strap results. This page displays two elements: the jackknife-after-bootstrap
plot (detailed in Section 2) and a list of cases which are observed to lie outside
the jackknife-after-bootstrap uncertainty bands and are suspected to be outliers.
The jackknife-after-bootstrap plot is interactive, meaning users can zoom and
scroll for clarity as well as hover over points on the plot to view details of the
case deleted at that point. The plot also includes a slider control for selecting
the quantile for which to calculate the points on the plot. The list of outliers
is simply displayed as a table where each row is a case and each column is a
variable of that case.

3.5 Limitations and Future Developments

Naturally, Turner is not a do-it-all app; given the breadth and diversity of
bootstrap methods and statistical models and the pace at which new ones are
developed, attempting to develop such an app is a Sisyphean task. Given the
extremely brief period of time allotted for app development we opted to design a
very simple, polished prototype to showcase the feasibility of statistical software
for bootstrapping and democratizing data science.

Possibly the greatest limitation of Turner is the small set of supported models
and statistics. This, obviously, limits the utility of the app and the number of
problems it can be used to solve. However, the modular design of the app makes
it trivial to add support for a new model or statistic, provided that the developer
is already able to build an R implementation of their model. Furthermore, the
open-source nature of the R language lends itself to modular designs such as
Turner’s by encouraging the sharing of code such as Turner models; widespread
adoption of an open-source data science tool such as Turner could give rise
to communities sharing and collaborating to expand functionality even in the
absence of the original developers.

23

Another limitation lies with the ways in which Turner automates the boot-
strap process and its diagnostics. The bootstrap is a widely-used tool and,
naturally, has many different versions working in many different ways. Turner
currently supports only a very small subset, again due to development con-
straints. As with the supported models and statistics, the open-source platform
and modular design is a saving grace as implementing and sharing new boot-
strap methods is a trivial affair. Adding additional diagnostics, however, is less
trivial. Future development plans for Turner include adding assessments of the
impact of parameter nonpivotality on the calculations as well as corrections for
internal error.

Further development on Turner need not be restricted to fixing shortcom-
ings, however. Additional features can be added to increase Turner’s utility in
use such as APIs for interoperability with other statistical software, automatic
report generation detailing the bootstrapping process and its results, parallel
computing capability, and other enhancements. The exact nature of these fu-
ture enhancements is, obviously, dependent on factors such as UX testing and
end-user feedback.

4 Conclusion

Bootstrap methods provide a simple and widely-applicable way to assign mea-
sures of uncertainty such as standard error, bias, and confidence intervals to
statistics for which they would otherwise be difficult or impossible to calculate.
There are many variations of the bootstrap for varied situations in which it
may be employed as well as different diagnostic procedures for assessing the
results. However, the selection and employment of these various methods may
be difficult for people without considerable training.

In this paper, we introduced a prototype of a novel web app called Turner
which provides a simple interface for bootstrap methods and automates diag-
nostic analysis of the results. This app, when given a user specification for a
model or statistic of interest, selects the appropriate bootstrap method through
a combination of model foreknowledge and statistical testing before running
the procedure within a ”black box”, automatically diagnosing problems, and
displaying results to the user. This allows users without significant statistics
training to perform bootstrapping to solve problems without consuming other
data science resources in their organizations.

Turner demonstrates the utility of statistics and data science software de-
veloped for and targeted at a lay audience. While the skills needed to carry
out such analyses are rare in the workplace, the problems requiring them are
not; one solution to this problem is enhancing the capabilities of non-experts
in statistical and data science methodology using software solutions. Naturally,
these software solutions require integrated diagnostics and will carry some lim-
itations, but it is possible to develop apps and programs to bring data science
capabilities to the masses in their own fields of expertise.

24

References

[1]

2]

A. J. Canty, A. C. Davison, D. V. Hinkley, and V. Ventura. Bootstrap
diagnostics and remedies. Canadian Journal of Statistics, 34(2):5-27, 2006.

Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie, and Jonathan McPher-
son. shiny: Web Application Framework for R, 2020. R package version
1.5.0.

J. Cornelissen. The democratization of data science. Harvard Business
Review, 2018.

B. Efron. Bootstrap methods: Another look at the jackknife. The Annals
of Statistics, 7(1):1-26, 1979.

B. Efron. Jackknife-after-bootstrap standard errors and influence func-
tions. Journal of the Royal Statistical Society: Series B (Methodological),
54(1):83-111, 1992.

B. Efron and R. Tibshirani. Bootstrap methods for standard errors, con-
fidence intervals, and other measures of statistical accuracy. Statistical
Science, 1(1):54-77, 1986.

B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman
and Hall, 1993.

R. A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7(2):179-188, 1936.

T. Hastie, J. Friedman, and R. Tibshirani. The FElements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2 edition,
2017.

H. V. Henderson and P. F. Velleman. Building multiple regression models
interactively. Biometrics, 37(2):391-411, 1981.

Max Kuhn and Hadley Wickham. Tidymodels: a collection of packages for
modeling and machine learning using tidyverse principles., 2020.

M. H. Quenouille. Notes on bias in estimation. Biometrika, 43(3/4):353—
360, 1956.

R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2021.

Julia Silge, Fanny Chow, Max Kuhn, and Hadley Wickham. rsample: Gen-
eral Resampling Infrastructure, 2021. R package version 0.0.9.

H. White. A heteroskedasticity-consistent covariance matrix estimator and
a direct test for heteroskedasticity. Fconometrica, 48(4):817-838, 1980.

25

	An Overview of Bootstrap Methods
	Case Resampling
	Semi-Parametric Bootstrap
	Stratified Resampling

	The Jackknife and Jackknife-After-Bootstrap
	The Jackknife
	Jackknife Influence Functions
	The Jackknife-After-Bootstrap Sampling Lemma
	Outlier Detection
	Extension to Multivariate Statistics

	Turner
	A Brief Overview of R Shiny
	Bootstrap Automation
	Supported Models and Statistics
	Mean
	Median
	Correlation
	Linear Regression
	Smoothing Splines
	LOESS
	Additional Models

	User Experience Design
	Diane from Marketing
	Black Box Design
	Workflow

	Limitations and Future Developments

	Conclusion

