

CARLETON UNIVERSITY

SCHOOL OF

MATHEMATICS AND STATISTICS

HONOURS PROJECT

 TITLE: Approximation of Queueing Models

 AUTHOR: Lucas Pellegroms

 SUPERVISOR: Dr. Gennady Shaikhet

 DATE: April 25th , 2019

Fr!q# Carleton
UNIYERSITY

CONSENT FOR DISCLOSURE OF FOUR YEAR HONOURS PROJECT

I authorize

To use my Four Year Honours Project

Su on

For the of,ga PvJr

Education
State specific purpose of information release

In the

Signature

School of Mathematics and Statistics
Off ice/ Prog ra m/ Ind ivid ua !

April 25th ,zotg
Date submitted to Honours Coordinator

fndefinite
State date ra4ge for which permission will exist

Full Name: lqcas Pellegroms
Student I.D. #: 100982087
Date: April 25th, 2019

Protection of Privacy
The personal information requested on this form is collected under the

1990, c. F.31) of the Freedom of Informatian and Protection of
under rt3of It will be used for the purpose of

and

1 Introduction

To begin, I would first like to cover all necessary background knowledge that
will be helpful in understanding our queueing networks later on. Firstly, I
will introduce the concept of Brownian Motion Processes that will be helpful
in understanding the behaviour of our systems and random walks in general.

Definition 1.1 (Standard Brownian Motion Process). .
A process W (t), t ≥ 0 is said to be a Standard Brownian Motion process
if;

1.W (0) = 0

2.W (t) is continuous.

3.W (t) has independent and stationary increments.

4.W (t) ∼ N(0, t), ∀ t > 0.

This gives us that for each independent interval [t, t+ s] we have

W (t+ s)−W (s) = Ws ∼ N(0, s).

A standard Brownian Motion can also be generalized to a Brownian Motion
process.

Definition 1.2 (Brownian Motion Process). .
A process B = {B(t), t ≥ 0} is said to be a Brownian Motion process
(sometimes called a BM) if

B(t) = B(0) + θt+ σW (t)

Where W (t) is a standard Brownian Motion, θ is our drift coefficient and σ
is our variance.
Here, If we let B(0) = 0, θ = 0 and σ = 1 then we recover our standard
Brownian Motion.

3

(See codes ’BrownianMotion.m’ and ’PlotBrownianMotion.m’ in appendix)

Hopefully with these notions defined and the graphs above depicting their
behaviour it is now easier to see that a Brownian motion is actually just a
random walk with

B(t) =
t∑
i=1

Xi

where Xi’s are independent Normal random variables. In order to extend
this to the continuous case all we do is choose our intervals to be (∆t,∆s)
and define the continuous process

X(t) = ∆s(X1 + ...+Xb t
∆tc)

with ∆s = σ
√

∆t in order to assure convergence to a continuous process.

4

Definition 1.3 (Almost Surely convergence). .
We say that Xn converges almost surely (or with probability one) to X as
n→∞ if P (lim

n→∞
||Xn −X|| = 0) = 1, and denote it by Xn

a.s.−−→ X.

Next, I will go over a few useful definitions and theorems that will be
useful in analysing the behaviour of our queues.

Definition 1.4 (Uniform convergence on all compact sets). .
If for each ω ∈ Ω we have that Xn(ω) converges to X(ω) uniformly in [0, T]
as n→∞ then Xn converges uniformly on all compact sets (u.o.c) to X as
n→∞ and denote it by Xn → X, u.o.c.

Definition 1.5 (Convergence in distribution). .
If G is a proper cdf and lim

n→∞
FXn(x) = FZ(x) is a function that matches G

at all points of continuity then Xn converges in distribution to G denoted by

Xn
d−→ G.

We will next introduce Donsker’s theorem which is a functional extension
of the central limit theorem and will help us relate the limit of a scaled i.i.d.
summation to a standard Brownian motion.

Theorem 1.1 (Donsker’s Theorem). .
Let X1, X2, ... be a sequence of i.i.d. random variables with mean µ and
variance σ2 such that µ, σ2 <∞. Then for each n ≥ 1, we define

Xn(t) =
1√
nσ2

bntc∑
i=1

[Xi − µ]

where
∑bntc

i=1 [Xi − µ] = 0 for nt < 1. Now,

X
d−→ W, as n→∞

such that W is a standard Brownian motion as we wanted.

Example 1.1.
Define Xi, i = 1, ..., n to be a sequence of independent, identically distributed
exponential random variables (i.e. Xi ∼ expo(λ)). We can then define
a process X(t) to be the sum of our exponential r.v.s up to time t (i.e.

X(t) =
t∑
i=1

Xi). In this case, by the previous theorem the inverse process

Y (t) actually turns out to be a poisson process with rate λ!

5

For the context of the following Lemma which we will state without proof,
define X to be a non-decreasing process, and denote Y to be it’s inverse such
that

Y (t) = sup{s ≥ 0 : X(s) ≤ t}, 0 ≤ t ≤ ∞

Lemma 1.1. .
Consider the pair (X, Y) as defined above and suppose

X(t)

t

a.s.−−→ m, as t→∞

for some m > 0 and set µ = 1
m

.

⇒ Y (t)

t

a.s.−−→ µ, as t→∞

As n→∞
X̄n(t) =

1

n
X(nt)

a.s.−−→ mt, u.o.c.,

Ȳ n(t) =
1

n
Y (nt)

a.s.−−→ µt, u.o.c.

This lemma shows us that X̄n(t) and Ȳ n(t) are processes that use time
scaling (multiplying by n) and space scaling (dividing by n).
We will next introduce some notation for similar processes that involve the
same time scaling but instead use

√
n as a space scale.

X̂n(t) =
√
n[X̄n(t)− X̄(t)], and

Ŷ n(t) =
√
n[Ȳ n(t)− Ȳ (t)]

6

(See code ’RandomWalk.m’ in appendix)

Note here that as we increase n our ”Random Walk” just turns into a straight
line (uninteresting) and we a large range of data modelled over a prolonged
period of time (not super useful).

(See code ’ScaledRandomWalk.m’ in appendix)

Now that we have scaled our Random Walk we now have just as much data

7

but modelled over a much smaller range and within a shorter time period!
(Still looks uninteresting but an improvement none the less)

(See code ’CenteredScaledRandomWalk.m’ in appendix)

Wow! Now that we have centred our data we finally have something that is
starting to look interesting (sort of looks like Brownian motion) and have it
nicely plotted over a reasonable range within a short time period!

Theorem 1.2 (Functional Strong Law of Large Numbers). (FSLLN).
Assuming that Xi has mean m > 0. Then as n→∞

(X̄n, Ȳ n)
a.s.−−→ (X̄, Ȳ), u.o.c.

Theorem 1.3 (Functional Central Limit Theorem). (FCLT).
Assuming that Xi has variance σ2 ≤ ∞. Then,

(X̂n, Ŷ n)
d−→ (X̂, Ŷ),

Where X̂(t) = σW (t), Ŷ (t) = −µX̂(µt), and W is a standard Brownian
motion.

Proof.
From Theorem 1.1 (Donsker’s Theorem) we have that

X̂n =
√
n[X̄n − X̄]

d−→ X̂

8

as n→∞. Now by applying the Theorem 1.2 (FSLLN) gives us that

(X̄n, Ȳ n)
a.s.−−→ (X̄, Ȳ), u.o.c.

as n→∞. The random time-change theorem also tells us that under certain
conditions if (Xn, Yn) → (X, Y) then Xn(Yn) → X(Y) where X(Y) is X
evaluated at Y . It can be shown that in our current situation, said conditions
have been met and therefore,

X̂n(Ŷ n)
d−→ X̂(Ȳ)

Next, recall from Lemma 1.2 that

X̄(t) = mt

⇒ Ȳ n d−→ Ŷ

if,
√
n[X̄n(Ȳ n(t))− t] a.s.−−→ 0

where the last line follows from |X̄n(Ȳ n(t))− t| ≤ 1
n
, ∀ t ≥ 0.

2 G/G/1 Queueing

Throughout this section we will explore some interesting facts and conse-
quences of single stage queueing with generally distributed arrival rates and
generally distributed service rates; without hesitation let us begin with in-
troducing some helpful notation

Define the sequence {ui, i = 1, 2, ...} to be the inter-arrival times and
{vi, i = 1, 2, ...} to be the length of the job requirements such that

U(0) = 0 , V (0) = 0

U(k) =
k∑
i=1

ui , V (k) =
k∑
i=1

vi, k ≥ 1.

Definition 2.1 (Arrival Process). .
We define,

A(t) = sup{k;U(k) ≤ t}

to be the number of arrivals up up to time t.

9

Definition 2.2 (Service Process). .
We define,

S(t) = sup{k;V (k) ≤ t}

to be the number of jobs that can potentially be completed during the first
t units of service time.

Now that we have defined our Arrival and Service processes we can in-
troduce Q(t); the number of jobs currently in the system at time t as

Q(t) = Q(0) + A(t)− S(B(t))

where B(t) =
∫ t
0
I{Q(s)>0}ds is the busy time process (throws away idle time).

Now define,

X(t) = Q(0) + A(t)− S(B(t)) + µ[B(t)− t]
Y (t) = µ[t−B(t)]

such that Y (t) is the cumulative idle time which satisfies Q(t)dY (t) = 0 and
notice that we can rewrite Q(t) as

Q(t) = Q(0) + A(t)− S(B(t))

= Q(0) + A(t)− S(B(t)) + µ[B(t)− t]− µ[B(t)− t]
= Q(0) + A(t)− S(B(t)) + µ[B(t)− t] + µ[t−B(t)]

= X(t) + Y (t)

and let us examine these forms further in attempts to be able to better
understand them, and help with modelling.

Q(0) : is our initial state space (amount of people in the system at time 0)

A(t) : is our arrival process as defined previously

S(t) : is our service process as defined previously, however we are not taking

S(t) here, instead we are taking S(B(t))

B(t) : is our busy time process which is the integral of the indicator function

for when our queue is non-zero

10

Which means that S(B(t)) is the number of jobs that can potentially be
completed during the first t units of time for which the queue is non-zero

i.e. S(B(t)) = sup{k;V (k) ≤ B(t)}

= sup{k;V (k) ≤
∫ t

0

I{Q(s)>0}ds}

In order to properly model our queue we will be required to model S(B(t))
which seems to be quite nasty. In the following sections we will further
examine the G/G/1 queueing system in hopes of coming up with intuitive
approaches to better understanding and modelling it.

2.1 Approximating the G/G/1 Queue

For the purposes of this queueing system we shall rewrite the queueing pro-
cess as

Q(t) = Q(0) + A(t)− S(B(t))

= X(t) + Y (t)

such that,

X(t) = Q(0) + [A(t)− λt]− [S(B(t))− µB(t)] + (λ− µ)t

Y (t) = µ[t−B(t)]

Where once again, B is the busy time process and Y/µ is the cumulative idle
time, and so we have that Q(t)dY (t) = 0.

To help motivate the following section, consider our system to be a tub
that is filled by a tap and empties out a drain. In this case our arrival rate
will be the rate at which liquid comes from the tap into the tub; and our
departure rate is the rate at which the liquid leaves the tub through the
drain. Here we will have a very fluid cycle of system states, liquid constantly
entering and leaving with an excess of liquid pooling in the tub. This type
of system is precisely what fluid limits is used for to help analyse.

11

2.1.1 G/G/1 - Fluid Limits

With this simple diagram we can see that when the arrival rate (λ) exceeds
the service(or departure) rate (µ) that the system will be overloaded and
our tub will overflow.
Or, when our service rate exceeds the arrival rate our system will be under-
loaded and the tub will consistently be empty.
And lastly, when both rates are equal we will have a critical system and the
total amount of fluid in the system will remain roughly constant.
In this simple example we are observing a small tub over a short amount of
time to see what will happen which is rather trivial and quite frankly unim-
portant. So suppose that we are interested analysing the long term behaviour
of a more complex system Q(nt), and consider scaling time as in Lemma
1.1 such that

Q̄n(t) =
Q(nt)

n

where we know that

Ān(t) =
A(nt)

n
→ λt, S̄n(t) =

S(nt)

n
→ µt

from the FSLLN(Theorem 1.2). Which leads us to suspect that

Q̄n(t)→ (Q̄(0) + (λ− µ)t)+ (How?)

12

Now instead of trying to better understand the long term behaviour by
scaling time, let’s try scaling our rates as in Lemma 1.1 such that

λn = nλ, µn = nµ

however, it’s still not completely clear why

Q̄n(t)→ (Q̄(0) + (λ− µ)t)+

To help better understand this let’s break it down piece by piece. Logically,
over time we would expect our system to have what we started with (Q̄n(0))
plus all of our arrivals up to time t (Ān(t)) and then minus all of our depar-
tures up to time t (S̄n(t)), giving us Q̄n(t) = Q̄n(0) + Ān(t)− S̄n(t). But we
know from the FSLLN and Lemma 1.1 that

Ān(t) =
A(t)

n
→ λt, S̄n(t) =

S(t)

n
→ µt

and so

Q̄n(t) = Q̄n(0) + Ān(t)− S̄n(t)

→ Q̄(0) + λt− µt
= Q̄(0) + (λ− µ)t

But this is still missing the (...)+, so why is it there?
Well, if we are in the case of where λ < µ then then quantity (λ − µ) can
be negative and while generally (λ − µ) is OK to be negative (it’s to be
expected that we will sometimes be decreasing) what happens to our system
when (λ−µ) is negative and (λ−µ) > Q̄(0)? This would mean that Q̄n(t) < 0
(i.e. our system would have less than zero occupancy) which obviously cannot
happen and so we define Q̄n(t) to only be the positive part of Q̄(0)+(λ−µ)t
such that when Q̄(0) + (λ−µ)t < 0 our system defaults to 0, finally yielding

Q̄n(t)→ (Q̄(0) + (λ− µ)t)+

Next, consider applying our space/rate scaling to the way in which we have
defined our system at the beginning of G/G/1 queueing to get

Q̄n(t) = X̄n(t) + Ȳ n(t)

13

s.t.

X̄n(t) = Q̄n(0) + [Ān(t)− λt]− [S̄n(B̄n(t))− µB̄n(t)] + (λ− µ)t

Ȳ n(t) = µ[t− B̄n(t)]

and, Q(t)dY (t) = 0 (2.1.1)

The next theorem that we introduce will play a vital role in approximating
our queue and effectively modelling S(B(t)).

Theorem 2.1. (One-Dimension Skorokhod Mapping).
Suppose x ∈ D such that D is a right continuous function. Then there exits
a unique pair of y ∈ D and z ∈ D such that the following hold for all t.
1. z(t) = x(t) + y(t) ≥ 0;
2. y(t) is non-decreasing in t with y(0) = 0;
3.
∫∞
0
z(t)dy(t) = 0;

In fact, the unique pair can be re-written as

y(t) = sup
0≤s≤t

[−x(s)]+

z(t) = x(t) + sup
0≤s≤t

[−x(s)]+

Proof
It is clear from how z and y are defined in the last two lines that z is non-
negative and that y is strictly increasing and starting at 0, thus 1. and 2.
are satisfied. Note that for any t > 0 we have that dy(t) > 0
⇒ sup

0≤s≤t
[−x(s)]+ is atteined at s = t

⇒ z(t) = 0.
and thus 3. is satisfied as well.
To show the uniqueness, consider y′ and z′ to be another pair satisfying the
theorem and take z − z′ = y − y′ to be the difference between two non-

14

decreasing functions and that z(0)− z′(0) = 0. So,

1

2
(z(t)− z′(t))2 =

∫ t

0

(z(u)− z′(u)) d(z(u)− z′(u))

=

∫ t

0

(z(u)− z′(u)) d(y(u)− y′(u))

= −
∫ t

0

(z′(u) dy(u) + z(u) dy′(u))

≤ 0,

since z dy = 0 and z′ dy′ = 0, and z, z′, dy, dy′ ≥ 0

⇒ z ≡ z′ and y ≡ y′

Hence, the uniqueness of z and y.

Definition 2.3 (Reflected Process). .
In the theorem above we call z the reflected process of x and denote it by

z = Φ(x)

Definition 2.4 (Regulator). .
In the theorem above if we let x be a Brownian motion, then we call y the
regulator of x and denote it by

y = Ψ(x)

Intuitively, y is meant to be able to provide enough of an add on to ensure
that the modified process z = x + y remains ≥ 0, given that the process x
isn’t guaranteed to be non-negative.

Now, thinking back to how we defined our queue and it’s properties from
line (2.1.1), they in fact satisfy all three conditions required for Skorokhod
mapping and so we can apply it to get,

X̄n(t)→ x(t)

⇒ Ȳ n(t) = Ψ(X̄n(t))→ Ψ(x(t)) = sup
0≤s≤t

[−x(s)]+

⇒ Q̄n(t) = Φ(X̄n(t))→ Φ(x(t)) = x(t) + sup
0≤s≤t

[−x(s)]+

15

And so
Ȳ n(t) = Ψ(X̄n(t))→ Ψ(X̄(t))

is our associated regulator, and

Q̄n(t) = Φ(X̄n(t))→ Φ(X̄(t)) = (Q̄(0) + (λ− µ)t)+

is our reflected affine function.

2.1.2 G/G/1 - Diffusion Approximation

Definition 2.5 (Reflected Brownian Motion). (RBM).
In the one-dimensional Skorokhod mapping theorem, if we let the input pro-
cess (X) be a Brownian motion X(t), X(t) > 0. Then we call Z = Φ(X) the
one-dimensional reflected Brownian motion. When X has drift θ and
variance σ2 we write Z = RMB(θ, σ2).

16

Theorem 2.2. .
A RBM Z(t) = RBM(θ, σ2), converges in distribution to some limiting vari-
able Z ⇐⇒ θ < 0. In this case Z is exponentially distributed with parameter
−2θ
σ2 .

Recall the simple diagram of the tub from the beginning of section 2.1.1
- Fluid Limits that illustrates a tub filled with liquid that arrives with rate
λ and departs with rate µ with three possibilities; under loaded, critical, or
overloaded. Next, we will demonstrate what our system looks like under each
of those cases and what we want to understand is the fluctuations around
those linear (affine) fluid approximations.

17

underloaded: λ = 3, µ = 5
critical: λ = 5, µ = 5

overloaded: λ = 5.30, µ = 5

We can see that when T is ’small’ that in all three cases there does not
seem to be much going on or of interest.
As T increases, in the case of an under loaded or critical system there seems
to be a bit more of interest happening, but the overloaded system has already
began exploding and there does not seem to much to analyse.
Then, by increasing T even more we can truly start to get an idea for the long
term behaviour of each system. Our under loaded system is heavily centred
about 0 (a lot of idle time); in our critical system we start to see something a
bit more interesting (kind of looks like Brownian Motion!) that varies from
bursts of busy to a bit of idle time; and as suspected, our overloaded system
explodes even more following what seems to be a linear trend upwards.
(Note the range of our data! in the underloaded system we only see a max of
5 people in the system, in critical we reach 15 and in overloaded we explode to
150 (and still increasing) Now that we have a bit better of an understanding
of the long term behaviour that some of these systems can have, it seems
like an under loaded system could be useful in attempting to model some
kind of rare event scenario, critical systems seem to be the most generally
applicable, and overloaded systems seeming useless as they strictly explode
to (λ− µ)t (in our case we can see it converge to (5.3− 5)(500) = 150).

18

Now, let us focus our attention to the case where λ ≈ µ (critical system) and
to do this we will consider the system

Q̂n(t) =
1√
n
Q(nt)

X̂n(t) =
1√
n
X(nt)

Ŷ n(t) =
1√
n
Y (nt) (2.1.2)

under the assumption that

√
n(λn − µn) = θn → θ ∈ <.

with,
Q̂n(t) = X̂n(t) + Ŷ n(t), (as in 2.1.1)

and,

X̂n(t) = Q̂n(0) +
A(nt)− nλt√

n
− S(B(nt))− µB(nt)√

n
+
√
n(λ− µ)t

Ŷ n(t) = µ
nt−B(nt)√

n
(from Lemma 1.1)

where the term
√
n(λ − µ)t = θ is o(1) (order 1) since we are in the case

λ ≈ µ and

√
n(λ− µ)t = θ

⇒ λ = µ+
θ√
n

19

i.e.
λn
µn

=
µ+ θ√

n

µ

= 1 +
θ

µ
√
n

∴
λn
µn
→ 1 ∵

(θ
µ

)(1√
n

)
→ 0 as n→∞

and θn =
√
n[λn − µn]

=
√
n[µn +

θ√
n
− µn]

=
√
n[

θ√
n

]

∴ θn → θ

Once again, all three conditions of Skorokhod Mapping are satisfied and so
we can apply it to get the reflection mapping

Q̂n(t) = Φ(X̂n(t)) | Ŷ n(t) = Ψ(X̂n(t))

Which can be simplified to

X̂n(t) = Q̂n(0) + Ân(t)− Ŝn(B̄n(t)) + θnt

Ŷ n(t) =
√
nµ[t− B̄n(t)]

where by the FCLT

Ân(t)→ Â

B̂n(t)→ t

and as a result, Ŝn(t)→ Ŝ

Now because our system is critical, it is consistently busy and

X̂n(t) = Q̂n(0) + Ân(t)− Ŝn(B̄n(t)) + θnt

⇒ X̂n(t)→ Q̂(0) + Â(t)− Ŝ(t) + θt

Thus, X̂n(t) is the difference of two independent Brownian motion pro-
cesses (arrival and service) and in such is a Brownian motion itself with drift

20

θ = 0 (as shown above) and variance λc2a + µc2s = λ(c2a + c2s); satisfying re-
quired conditions for Skorokhod mapping!
Hence,

X̂n(t)→ W̃ (t);

Ŷ n(t) = Ψ(X̂n(t))→ Ψ(W̃ (t))

Q̂n(t) = Φ(X̂n(t))→ Φ(W̃ (t))

where W̃ (t) is a Brownian motion, and Ŷ n(t) and Q̂n(t) are the associated
regulator and reflection (respectively) which can now be leveraged and uti-
lized using what we have learned about Skorokhod mapping!

To do so, we will take a step back and begin to look at our system from a
Workload perspective, that is instead of viewing our system as the amount
of people in the system, we will view it as the amount of work in the system
(that is brought by all those in queue). In order to be able to model our
queue using a series of primitive equations.

2.1.3 Diffusion (Workload)

Define a process Z(t) =
∑A(t)

i=1 vi −B(t) that we can rewrite as

Z(t) =

A(t)∑
i=1

vi −B(t)

=

A(t)∑
i=1

vi − t+ t−B(t)

=
(A(t)∑
i=1

vi − t
)

+
(
t−B(t)

)
= P (t) + Y (t) (2.1.3)

21

where,

P (t) =

A(t)∑
i=1

vi − t,

is the potential outflow,

and,
Y (t) = t−B(t)

is the cumulative idle time.

Note that from how these are defined, they satisfy all conditions for Sko-
rokhod mapping where P (t) is a right continuous function, thus we can sim-
plify Y (t) to

Y (t) = sup
0≤s≤t

[−P (s)]+

as Y (t) is the regulator (definition 2.4) of P (t) and Z(t) is the reflected
process (definition 2.3) of P (t)

⇒ Z(t) = P (t) + Y (t)

=

A(t)∑
i=1

vi − t+ sup
0≤s≤t

[−P (s)]+

Which are precisely the types of relationships we wish to further examine
and utilize in our fluid and diffusion approximations.

22

Take Q(t) as stated at the beginning of section 2.1 to be the total num-
ber of jobs in the system at time t, A(t) to be the number of arrivals by
time t and lastly vi to be the service time required for the i′th job. Now
in the context of a single server system and using the workload, poten-
tial outflow and cumulative idle time as described in our motivation for
workload approximations, we have seen that Z = Φ(P) and Y = Ψ(P) are
indeed reflections and regulators (respectively) of X from the uniqueness of
Skorokhod mapping.
From this, we now we focus our attention onto

Z(t) = V (Q(0) + A(t))−B(t) (i.e. the workload)

(still in the case of λ ≈ µ)
Where,

A(t) is our arrival process,

B(t) is our busy time process,

Z(t) is the total amount of work remaining in the system at time t,

and V (k) is the cumulative sum of the first k job requirements.

Which makes sense as our definition of workload says that the total amount
of work left over is the sum of the job requirements that started in the
system plus all the jobs that arrived minus the total amount of time the
system was busy (working on job requirements). And using our knowledge
of the Skorokhod mapping, FCLT,FSLLN, and space/rate scaling we can see,
In order to better understand the behaviour of Z(t) in the context of fluid
approximations, we first need to better understand the behaviour of P (t).

Denote
Q(0)∑
j=1

vj to be the amount of work brought by our initial condition (i.e.

23

amount of work that the system has from the initial Q(0) people)

P (t) =

Q(0)∑
j=1

vj +

A(t)∑
i=1

vi − t

⇒ P̄ n(t) =
P (nt)

n

=
Q(0)

n

1

Q(0)

Q(0)∑
j=1

vj +
A(nt)

n

1

A(nt)

A(nt)∑
i=1

vi − t

where,

1

Q(0)

Q(0)∑
j=1

vj → E(vj) =
1

µ
= m

1

A(nt)

A(nt)∑
i=1

vi → E(vi) =
1

µ
= m

⇒ P̄ n(t)→ Q̄(0)m+mλt− t

= m(Q̄(0) + λt− 1

m
t)

= m(Q̄(0) + (λ− µ)t)

thus,

P̄ n(t)→ (Q̄(0) + (λ− µ)t)+ = P̄ (t)

⇒ Z̄n(t) = Φ(P̄ n(t))→ Φ(P̄ (t)) = mP̄ (t)

Where it can be shown similarly for diffusion that,

⇒ Ẑn(t) = Φ(P̂ n(t))→ Φ(P̂ (t)) = mP̂ (t)

using (2.1.2)

24

(see code
’WorkloadDiffusion.m’ in appendix)

Where we are able to easily get P (t) using just our arrival and service times.
From here we were able to easily model Y (t) from P (t) using Skorokhod
mapping (i.e. Y (t) = sup

0≤s≤t
[−P (s)]+).

Now Z(t) = P (t) +Y (t) follows swiftly as it is just the sum of P (t) and Y (t)
(which we already have).
And now as we have P (t),Y (t) and Z(t) we can leverage this to get B(t)
since

Y (t) = t−B(t) as seen in (2.1.3)

⇒ B(t) = t− Y (t)

which makes evaluating S(B(t)) simple.
And lastly, putting it all together we are now able to get Q(t) as Q(t) =
A(t)− S(B(t))!!
Thus taking a series of simple, intuitive steps we were able to utilize many
different aspects of our system in order to effectively model and approximate
our queue while avoiding some of the elements that can be a bit more difficult

25

to deal with!

To help motivate the following section on multi-class networks, recall that
so far we have been working in the case of G/G/1 which represents a sys-
tem with Generally distributed arrivals, Generally distributed departures(or
services), and 1 server. Since both our arrivals and departures are generally
distributed let’s consider a case where our arrivals come from distribution
A(x) s.t.

A(x) =
K∑
i=1

piFx(x)(i);
K∑
i=1

pi = 1 and Fx(x)(i) are i proper cdfs

that is, A(x) is a composition of distributions with associated probabilities pi
of coming from each. WLOG assume that our departures also come from a
distribution that is a composition of other distributions each with their own
associated weights (arrivals and departures both being compositions of the
same number of distributions)
For what may be starting to seem like a complex model of a rare case from our
G/G/1 system, this scenario is actually very useful and much more common
than one may think as it represents a single server, multi-class model.

2.1.4 Multi-class Model

For a multi-class model as above where there are K classes each with re-
spective queues (Qi) and arrival/service rates λi, and µi i = 1, ..., K. In

26

the diagram above, each ni will arrive based on their associated rates (λi =
E[Fx(x)(i)]) with probability pi of occurring. In the diagram it may not be
clear what our pi’s are however they are nothing more than pi = P (ni <
nj) ∀j 6= i (i.e. the probability that ni occurred before any other arrival).
It is worth noting that using the same intuition that lead us to discover the
idea of a multi-class model we can work backwards to show that a multi-class
model can be represented as a G/G/1 system where we already know a lot
about them and how to deal with them! In such, define the workload

Z(t) =
K∑
i=1

Vi(Ai(t))− t+ Y (t)

Where Y (t) is the cumulative idle time as before, then consider a state-space
collapse.
Using the fact that,

Ẑn(t)→ Z̃(t) - our R.B.M.

K∑
i=1

(
1

µi
Q̂n
i)→ Z̃ - our state space collapse

(i.e. condensing our system back to G/G/1)

27

Here we see that regardless of routing policy that the total system behaves
very similarly, demonstrating the independence of routing policy from the

state space collapse

It should also be noted that when in a multi-class scenario that our system

28

will be critically loaded when
K∑
i=1

λi
µi

= 1 because,

pi =
λi
K∑
i=1

λi

λ =
K∑
i=1

λi

µ =
1

K∑
i=1

pi
µi

=
1

K∑
i=1

λi

µi
K∑
i=1

λ

=

K∑
i=1

λi

K∑
i=1

λi
µi

⇒ λ

µ
=

K∑
i=1

λi

K∑
i=1

λi

K∑
i=1

λi
µi

=
K∑
i=1

λi
µi

Hence,

λ

µ
= 1⇒

K∑
i=1

λi
µi

= 1

Multi-class models are particularly useful as they allow us to define our
system in a more detailed way allowing us to examine them further and
help optimize their performance based on a variety of different conditions.
One example could be if we had 2 classes, one of VIPs and one of regular
customers and we want to try and optimize our system such that VIPs spend

29

as little time in the system as possible.
If we consider our system to be M/G/1 (that is, exponential services with
general arrivals) then one way we can do this is by prioritizing the classes
to make asymptotic control easy for any work-conserving control discipline
using the Cµ− rule.
To help motivate and set up for the Cµ−rule we shall first begin to examine
some of the underlying foundations of single server queues working with
priorities.
To do so, define

ρi = λiE[Xi] ∵ Little’s Law

Lk ≡ number of customers in queue from class k

Wk ≡ waiting time for class k

Rk ≡ residual service time for class k

And

E[R] =
K∑
k=1

ρkE[Rk]

=
1

2

K∑
k=1

ρkE[X2
k]

E[Xk]

=
1

2

K∑
k=1

λkE[X2
k]

30

then also from Little’s Law we have that E[Li] = λiE[Wi] so,

E[W1] = E[L1]E[X1] + E[R]

= λiE[Wi]E[X1] + E[R]

= ρ1E[W1] + E[R]

=
E[R]

1− ρ1
E[W2] = E[L1]E[X1] + E[L2]E[X2] + λ1E[W2]E[X1] + E[R]

= ρ1E[W1] + ρ2E[W2] + ρ1E[W2] + E[R]

=
ρ1

E[R]
1−ρ1

+ E[R]

1− ρ1 − ρ2

=
E[R]

(1− ρ1)(1− ρ1 − ρ2)
and similarly,

E[W3] =
E[R]

(1− ρ1 − ρ2)(1− ρ1 − ρ2 − ρ3)

Using this recursive relation we can see that

E[Wk] =
E[R]

(1− ρ1 − ...− ρk−1)(1− ρ1 − ...− ρk)
And now, assuming that class i has an associated cost Ci of being in the
system then the total cost becomes

K∑
i=1

CiE[Ni] =
K∑
i=1

CiλiE[Wi]

=
K∑
i=1

Ci
E[Xi]

ρiE[Wi]

=
K∑
i=1

(Ciµi)ρiE[Wi], µi =
1

E[Xi]

Lemma 2.1 (Cµ - Rule).
The Cµ−rule states to assign priorities based on C1µ1 ≥ C2µ2 ≥ ... ≥ Cnµn
where Ci is the associated costs to class i, and µi = 1

E[Xi]
.

31

Why?
Well,

K∑
i=1

ρiE[Wi] =
K∑
i=1

ρi
E[R]

(1− ρ1 − ...− ρk−1)(1− ρ1 − ...− ρk)

= E[R]
K∑
i=1

(1

(1− ρ1 − ...− ρk)
− 1

(1− ρ1 − ...− ρk−1)

)
= E[R]

(1

(1− ρ1 − ...− ρk)
− 1
)

=
ρ

1− ρ
E[R]

Which is constant, and so minimizing total cost
K∑
i=1

(Ciµi)ρiE[Wi] subject

to
K∑
i=1

ρiE[Wi] ≡ constant is solved by assigning priorities based on C1µ1 ≥

C2µ2 ≥ ... ≥ Ckµk

Example 2.1. For purposes of this example suppose we have a G/G/1
queueing system with 3 independent classes, class 1 having inter-arrival
times distributed as exp(3) random variables (r.v.’s) with exp(1) service re-
quirements. Suppose further that class 2 has arrival times distributed as
Beta(6, 2) r.v.’s with exp(0.5) and queue 3 has inter-arrival times distributed
as Gamma(2, 0.5) with exp(1) service requirements. Denote E[ui] = λi and
E[vi] = µi such that

λ1 = 3, µ1 = 1

λ2 = 0.75, µ2 = 0.5

λ3 = 1, µ3 = 1

and note that our system will be overloaded loaded, and so for the first 15
units of time we accept new customers into our queues and then after that
we close our doors and complete all remaining work in the system. Suppose
also that customers from classes 1, 2, 3 have associated costs C = {3, 1, 2} of
being in the system and our goal is to minimize the total cost of our system.

32

Thus, based on how we defined our costs and how we want to optimize our
system (minimize total cost) we are able to assign priorities based on

C1µ1 > C3µ3 > C2µ2

and so whenever there is someone from class 1 is in the queue we will serve
them above any others to get them out as soon as possible (working non pre-
emptively, meaning if serving someone from a lower priority we will finish
serving them and then take on those from other classes) .

(see code ’MulticlassGG1Queue.m’ in appendix)

In the above graph the red line represents the amount of people from class
1, the yellow line represents those from class 3 and the green line class 2.

33

Intuitively the goal is to minimize the area under the graph where the red
area is multiplied by a factor of 3, yellow by a factor of 2 and green a factor
of 1 (refer back to stated costs) which in this cases produces a total system
cost of $885.92.
The code was run using seed (123) for reproducibility of similar outcomes if
using sub-optimal prioritizing.

(slightly modified code from before using 3,1,2 as priority)

As we can see, using the same seed (same inter-arrival times and service
requirements) it produces a drastically different outcome really outlining the
effects that sub optimal prioritizing can have on a system. In this case

34

our total system cost is $1024.29 which is considerably higher than optimal
routing!

3 Appendix

35

C:\Users\lucas\Documents\MATLAB\BrownianMotion.m 1 of 1

function [X] = BrownianMotion(X0,theta,sigma,N,T)
%This function simulates a brownian motion path taking values;
% X0, the starting point of the path
% Theta, the drift
% Sigma, the standard deviation
% N, the total number of steps
% T, the total space (range)

% the length of each interval
dt=N/T;
%creating a vector from 1->T with equal spacing
t=[0:dt:T];
%W~N(0,dt), thus W=sqrt(dt)*Z where Z~N(0,1)
W=cumsum(sqrt(dt)*normrnd(0,1,1,N));
X=X0+theta*t+sigma*W;
end

C:\Users\lucas\Documents\MATLAB\PlotBrownianMotions.m 1 of 1

function [] = PlotBrownianMotion(numpaths,X0,theta,sigma,N,T)
% this functions plots npaths # of independent brownian motion simulations
% for BMs with inputted variables

%pre-allocating storage
x=zeros(N,numpaths);
for i = 1:numpaths
 x(:,i)=BrownianMotion(X0,theta,sigma,N,T);
end
for i = 1:numpaths
 plot(x(:,i))
 hold on
end
hold off

C:\Users\lucas\Documents\MATLAB\RandomWalk.m 1 of 2

function [] = RandomWalk(X0,n,p)
% plots random walk with mulitples of n steps, prob p of increasing and
% starting at X0

% intialize path X
X=zeros(1,n);
% set X(0) to X0
X=[X0 X];
for i = 2:n+1
 u=rand(1);
 if u < p
 X(i)=X(i-1)+1;
 else
 X(i)=X(i-1);
 end
end
subplot(2,2,1)
xx=0:1:n;
plot(xx,X,'.')
title(['Random Walk with n = ',num2str(n),' and p = ',num2str(p)])

% intialize path X and increase n
n=1e01*n;
X=zeros(1,n);
% set X(0) to X0
X=[X0 X];
for i = 2:n+1
 u=rand(1);
 if u < p
 X(i)=X(i-1)+1;
 else
 X(i)=X(i-1);
 end
end
subplot(2,2,2)
xx=0:1:n;
plot(xx,X,'.')
title(['Random Walk with n = ',num2str(n),' and p = ',num2str(p)])

% intialize path X and increase n
n=1e01*n;
X=zeros(1,n);
% set X(0) to X0
X=[X0 X];
for i = 2:n+1
 u=rand(1);
 if u < p
 X(i)=X(i-1)+1;
 else
 X(i)=X(i-1);

C:\Users\lucas\Documents\MATLAB\RandomWalk.m 2 of 2

 end
end
subplot(2,2,3)
xx=0:1:n;
plot(xx,X,'.')
title(['Random Walk with n = ',num2str(n),' and p = ',num2str(p)])
% intialize path X and increase n more
n=1e02*n;
X=zeros(1,n);
% set X(0) to X0
X=[X0 X];
for i = 2:n+1
 u=rand(1);
 if u < p
 X(i)=X(i-1)+1;
 else
 X(i)=X(i-1);
 end
end
subplot(2,2,4)
xx=0:1:n;
plot(xx,X,'.')
title(['Random Walk with n = ',num2str(n),' and p = ',num2str(p)])

end

C:\Users\lucas\Documents\MATLAB\ScaledRandomWalk.m 1 of 2

function [] = ScaledRandomWalk(X0,n,p)
% plots random walk with mulitples of n steps, prob p of increasing and
% starting at X0

% intialize path X
X=zeros(1,n);
% set X(0) to X0
X=[X0 X];
for i = 2:n+1
 u=rand(1);
 if u < p
 X(i)=X(i-1)+1;
 else
 X(i)=X(i-1);
 end
end
subplot(2,2,1)
t=0:1:n;
Xbar=(1/n)*X;
t=(1/n)*t;
plot(t,Xbar,'.')
title(['Scaled Random Walk with n = ',num2str(n),' and p = ',num2str(p)])

% intialize path X and increase n
n=1e01*n;
X=zeros(1,n);
% set X(0) to X0
X=[X0 X];
for i = 2:n+1
 u=rand(1);
 if u < p
 X(i)=X(i-1)+1;
 else
 X(i)=X(i-1);
 end
end
subplot(2,2,2)
t=0:1:n;
Xbar=(1/n)*X;
t=(1/n)*t;
plot(t,Xbar,'.')
title(['Scaled Random Walk with n = ',num2str(n),' and p = ',num2str(p)])

% intialize path X and increase n
n=1e01*n;
X=zeros(1,n);
% set X(0) to X0
X=[X0 X];
for i = 2:n+1
 u=rand(1);

C:\Users\lucas\Documents\MATLAB\ScaledRandomWalk.m 2 of 2

 if u < p
 X(i)=X(i-1)+1;
 else
 X(i)=X(i-1);
 end
end
subplot(2,2,3)
t=0:1:n;
Xbar=(1/n)*X;
t=(1/n)*t;
plot(t,Xbar,'.')
title(['Scaled Random Walk with n = ',num2str(n),' and p = ',num2str(p)])

% intialize path X and increase n more
n=1e02*n;
X=zeros(1,n);
% set X(0) to X0
X=[X0 X];
for i = 2:n+1
 u=rand(1);
 if u < p
 X(i)=X(i-1)+1;
 else
 X(i)=X(i-1);
 end
end
subplot(2,2,4)
t=0:1:n;
Xbar=(1/n)*X;
t=(1/n)*t;
plot(t,Xbar,'.')
title(['Scaled Random Walk with n = ',num2str(n),' and p = ',num2str(p)])

end

C:\Users\lucas\Documents\M...\CenteredScaledRandomWalk.m 1 of 2

function [] = CenteredScaledRandomWalk(X0,n,p)
% plots random walk with mulitples of n steps, prob p of increasing and
% starting at X0

% intialize path X of length n-1
X=zeros(1,n-1);
S=zeros(1,n);
% set X(0) to X0 to make X of length n
X=[X0 X];
for i = 2:n
 u=rand(1);
 if u < p
 X(i)=X(i-1)+1;
 else
 X(i)=X(i-1);
 end
 S(i)=(p*i);
end
subplot(2,2,1)
t=0:1:n-1;
t=(1/n)*t;
Xhat = (1/sqrt(n))*(X-S);
plot(t,Xhat,'.')
title(['Centered/Scaled Random Walk with n = ',num2str(n),' and p = ',num2str(p)])

% intialize path X and increase n
n=1e01*n;
X=zeros(1,n-1);
S=zeros(1,n);
% set X(0) to X0 to make X of length n
X=[X0 X];
for i = 2:n
 u=rand(1);
 if u < p
 X(i)=X(i-1)+1;
 else
 X(i)=X(i-1);
 end
 S(i)=(p*i);
end
subplot(2,2,2)
t=0:1:n-1;
t=(1/n)*t;
Xhat = (1/sqrt(n))*(X-S);
plot(t,Xhat,'.')
title(['Centered/Scaled Random Walk with n = ',num2str(n),' and p = ',num2str(p)])

% intialize path X and increase n
n=1e02*n;

C:\Users\lucas\Documents\M...\CenteredScaledRandomWalk.m 2 of 2

X=zeros(1,n-1);
S=zeros(1,n);
% set X(0) to X0 to make X of length n
X=[X0 X];
for i = 2:n
 u=rand(1);
 if u < p
 X(i)=X(i-1)+1;
 else
 X(i)=X(i-1);
 end
 S(i)=(p*i);
end
subplot(2,2,3)
t=0:1:n-1;
t=(1/n)*t;
Xhat = (1/sqrt(n))*(X-S);
plot(t,Xhat,'.')
title(['Centered/Scaled Random Walk with n = ',num2str(n),' and p = ',num2str(p)])

X=zeros(1,n-1);
S=zeros(1,n);
% set X(0) to X0 to make X of length n
X=[X0 X];
for i = 2:n
 u=rand(1);
 if u < p
 X(i)=X(i-1)+1;
 else
 X(i)=X(i-1);
 end
 S(i) = (p*i);
end
subplot(2,2,4)
t=0:1:n-1;
t=(1/n)*t;
Xhat = (1/sqrt(n))*(X-S);
plot(t,Xhat,'.')
title(['Centered/Scaled Random Walk with n = ',num2str(n),' and p = ',num2str(p)])

end

C:\Users\lucas\Documents\MATLAB\WorkloadDiffusion.m 1 of 3

function [t Q Z] = WorkloadDiffusion(lambda,mu,T)
%This function simulates a Workload diffusion process for expo(lambda)
%arrivals and expo(mu) service rates and returns X,Y,Z for lambda approx mu
% Note that this code works for a G/G/1 System and so
% exprnd() may be replaced by other distributions so long as service rate
% is approx arrival rate.

%generate first arrival time to initialize u
u=exprnd(lambda);
%generate arrival times in [0,T]
while cumsum(u) < T
 u=[u,exprnd(lambda)];
end

%Generate the cumulative arrival times
U=cumsum(u);

% Note the last arrival occurs after time T and will be removed
U(end)=[];

% now to generate service requirements for each counted arrival
v=exprnd(mu,1,length(U));

%Create a copy of cumulative idle times and service rates for later use
U2=U;
V2=cumsum(v);
test=V2;
% We will first model our system in time [0,T]
% to make it as smooth as possible we will evaluate the system at intervals
% equal to a fraction of the minimum time between two consequtive arrivals

% extract the minimum inter-arrival time and make the spacing less
dt1=min(u)/100;
dt2=min(v)/100;
dt=min(dt1,dt2);

% evaluate on intervals less than minimum inter-arrival time
t=0:(dt):T;

% initialize:

% X (potential outflow)
X=zeros(1,length(t));

% Y (Cumulative idle time)
Y=zeros(1,length(t));

% A (Arrival Process)
A=zeros(1,length(t));

C:\Users\lucas\Documents\MATLAB\WorkloadDiffusion.m 2 of 3

for i = 2:length(t)
 % if length(U) = 0 then there are going to be no more arrivals so the
 % system is just equal to
 if length(U) == 0 || t(i)<U(1)
 X(i) = X(i-1)-dt;
 A(i) = A(i-1);
 elseif U(1) <= t(i)
 % update potential outflow
 X(i) = X(i-1) + v(1) - dt;
 % increase total number of arrivals
 A(i) = A(i-1) + 1;
 % now that we have added our first service time at the time of
 % our first arrival they will no longer be needed for future
 % use and can be removed
 U(1)=[];
 v(1)=[];
 end
 % initialize Y(i) to be the previous value (no change)
 Y(i)=Y(i-1);

 % First check if X(i) is negative to consider increasing idle time
 % i.e. checks [x(s)]^+
 if X(i) < 0

 % if X(i) was negative check to see if the sum of X and Y is
 % negative, if yes then increase by dt
 % i.e. checks sup and increases idle time
 if X(i) + Y(i) < 0
 Y(i) = Y(i-1)+dt;
 end
 end
end

% we can now define the workload (incomplete work in system at time t)
Z = X + Y;

% and then use Z to find the busy time process B
B = (X + t) - Z;

% and now that we have our busy time process we can use it to generate S(B)
% SB = S(B(t)) (Service Process at time B(t))
SB=zeros(1,length(t));

for i = 2:length(B)
 % if length(U) = 0 then there are going to be no more arrivals so the
 % system is just equal to
 if length(V2) == 0
 SB(i) = SB(i-1);
 elseif round(V2(1),4) <= (round(B(i),4)+0.01)

C:\Users\lucas\Documents\MATLAB\WorkloadDiffusion.m 3 of 3

 % increase total number of arrivals
 SB(i) = SB(i-1) + 1;
 % now that we have added our first service time at the time of
 % our first arrival they will no longer be needed for future
 % use and can be removed
 V2(1)=[];
 elseif B(i)<V2(1)
 SB(i) = SB(i-1);
 end
end

Q = A - SB;

subplot(4,2,1)
plot(t,X)
title('X(t)')
hold on
xx=zeros(1,length(t));
plot(t,xx,'Black')
hold off
subplot(4,2,3)
plot(t,Y)
title('Y(t)')
subplot(4,2,5)
plot(t,Z)
title('Z(t)')

subplot(4,2,7)
plot(t,B)
title('B(t)')
subplot(4,2,8)
plot(t,B)
title('B(t)')

subplot(4,2,2)
plot(t,A)
title('A(t)')

subplot(4,2,4)
plot(t,SB)
title('S(B(t))')

subplot(4,2,6)
plot(t,Q)
title('Q(t)')
end

C:\Users\lucas\Documents\MATLAB\MulticlassGG1Queue.m 1 of 4

function [TOTAL_COST,Q1,Q2,Q3] = MulticlassGG1Queue(T,C1,C2,C3)
% This function takes a time T as well as other associated costs and
% accepts arrivals up to time T at which it closes its doors and just
% finishes remaining work in the Queue
% Note that this was designed for a G/G/1 system and so any of the
% arrival or service rates may be replaced by other distributions,
% please define your queues such that the priority list is Q1>Q2>Q3.

% It returns the total cost associated to the system as well as the paths
% for the different ques

% generate first arrival times of each que to initialize u

%--can replace all arrival distributions with ones of users choice here---%
%-(make sure to also replace where filling other inter-arrival times below)

% Exp(2) => E[X] = 3
u1 = exprnd(3);
% Gamma(2,0.5) => E[X] = 2*.5 = 1
u2 = gamrnd(2,0.5);
% Beta(2,) => E[X] = 6/(6+2) = 0.75
u3 = betarnd(6,2);

%-----------------FILLING INTER ARRIVAL TIMES OF FIRST QUE----------------%
 % while cumsum of interarrivals of first que is less than T, expand
 % total system size by 1 (new interarrival time) and creates zeros in
 % all newly unfilled places
 while cumsum(u1) < T
 u1 = [u1 exprnd(3)];
 end
 while cumsum(u2) < T
 u2 = [u2 gamrnd(2,0.5)];
 end
 while cumsum(u3) < T
 u3 = [u3, betarnd(6,2)];
 end
u1(end)=[];
u2(end)=[];
u3(end)=[];
% Generate the cumulative arrival times
U1 = cumsum(u1);
U2 = cumsum(u2);
U3 = cumsum(u3);
% Creating an indicator of all arrivals
U = [U1 U2 U3];
% Sorting to have linear timeline
U = sort(U);

C:\Users\lucas\Documents\MATLAB\MulticlassGG1Queue.m 2 of 4

% now simulating service requirements for each arrival (note that
% exponential can be replaced for any other distribution)

%-------can also replace service rates for each queue here as well--------%

v1 = exprnd(1,1,length(u1));
v2 = exprnd(1,1,length(u2));
v3 = exprnd(0.5,1,length(u3));

% We will first model our system in time [0,T]
% to make it as smooth as possible we will evaluate the system at intervals
% equal to a fraction of the minimum time between two consequtive arrivals

% extract the minimum inter-arrival time and make the spacing less
dt1=min(diff(U)/100);
dt2=min([v1 v2 v3])/100;
dt=min(dt1,dt2);

% evaluate on intervals less than minimum inter-arrival time
t=0:(dt):(2*T);
Q1=zeros(1,length(t));
Q2=zeros(1,length(t));
Q3=zeros(1,length(t));

S=0;W=0;

for i = 2:length(t)
 % i.e. no more arrivals or no arrival occured yet
 if length(U) == 0 || t(i) < U(1)
 Q1(i) = Q1(i-1);
 Q2(i) = Q2(i-1);
 Q3(i) = Q3(i-1);
 elseif U(1) < t(i)
 % i.e. is non zero and is the minimum of all other pending arrivals
 if length(U1) ~= 0 && ...
 (length(U2) == 0 || U1(1) < U2(1)) && ...
 (length(U3) == 0 || U1(1) < U3(1))
 % then increase que by 1 and remove the current arrival from
 % pending arrivals leaving both other ques as is
 Q1(i) = Q1(i-1) + 1;
 Q2(i) = Q2(i-1);
 Q3(i) = Q3(i-1);
 U1(1) = [];
 U(1) = [];
 elseif length(U2) ~= 0 && ...

C:\Users\lucas\Documents\MATLAB\MulticlassGG1Queue.m 3 of 4

 (length(U1) == 0 || U2(1) < U1(1)) && ...
 (length(U3) == 0 || U2(1) < U3(1))
 % then increase que by 1
 Q1(i) = Q1(i-1);
 Q2(i) = Q2(i-1) + 1;
 Q3(i) = Q3(i-1);
 U2(1) = [];
 U(1) = [];
 elseif length(U3) ~= 0 && ...
 (length(U2) == 0 || U3(1) < U2(1)) && ...
 (length(U1) == 0 || U3(1) < U1(1))
 % then increase que by 1
 Q1(i) = Q1(i-1);
 Q2(i) = Q2(i-1);
 Q3(i) = Q3(i-1) + 1;
 U3(1) = [];
 U(1) = [];
 end
 end

 % now to deal with potential departures

 if S == 1 && W == 0
 % i.e. there was someone in service from Que 1 and they have no
 % work remaining
 S = 0; % take them out of service
 Q1(i) = Q1(i) - 1; % remove one person from class 1 from system
 elseif S == 2 && W == 0
 S = 0; % take them out of service
 Q2(i) = Q2(i) - 1; % remove one person from class 2 from system
 elseif S == 3 && W == 0
 S = 0; % take them out of service
 Q3(i) = Q3(i) - 1; % remove one person from class 3 from system
 end
 if S == 0 && W == 0
 % now to check if someone is available for service and to add their
 % work requirement, checking in order of priority
 if Q1(i) > 0 && length(v1) > 0
 S = 1;
 W = v1(1);
 v1(1) = [];
 elseif Q2(i) > 0 && length(v2) > 0
 S = 2;
 W = v2(1);
 v2(1) = [];
 elseif Q3(i) > 0 && length(v3) > 0
 S = 3;

C:\Users\lucas\Documents\MATLAB\MulticlassGG1Queue.m 4 of 4

 W = v3(1);
 v3(1) = [];
 end
 end

 W = max(W-dt,0);
end
TOTAL_COST= C1*trapz(t,Q1) + C2*trapz(t,Q2) + C3*trapz(t,Q3);

system_total = Q1+Q2+Q3; %i.e. total number of people in system

plot(t,system_total,'black','linewidth',1.5); hold on;
plot(t,Q1,'red'); hold on;
plot(t,Q2,'yellow'); hold on;
plot(t,Q3,'green'); hold off;
legend({'SystemTotal','Priority 1','Priority 2','Priority 3'})
title(['System Cost: $', num2str(TOTAL_COST)])

end

4 References

Chen, H., & Yao, D. D. (2001). Ch.5 Technical Desiderata. In Fundamen-
tals of queuing networks: Performance, asymptotics, and optimization (pp.
97-112). New York, NY: Springer.

Chen, H., & Yao, D. D. (2001). Ch.6 Single-Station Queues. In Fundamen-
tals of queuing networks: Performance, asymptotics, and optimization (pp.
125-144). New York, NY: Springer.

Shaikhet, G. (2019). Personal Communications. Ottawa, ON: Carleton Uni-
versity

51

