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Abstract 

 

The focus of this project lies in estimating the relative difference between proportions of 

a population using a logistic regression model. To do so, we use a multiple logistic regression 

model to gage the relationship between a set of independent explanatory variables and an 

indicator response variable, assuming the values 1 or 0 to represent a “success” or a “failure” 

respectively. A brief introduction to logistic regression will illustrate how we may study the 

contribution of a factor to the difference in proportions of a successful response variable by 

representing that factor as one of the explanatory variables in the regression model. Given values 

for this factor that may influence the response variable, we will manipulate the multiple logistic 

regression model to derive an expression for a relative difference in proportions that depends on 

the unknown parameters of the regression model. More specifically, we will consider how the 

exposure to some factor, measured as being absent or present, effects the response variable of 

interest and build a model for the relative difference between the proportion of the response that 

is a success given that the factor is present and the proportion of the response that is a success 

given that the factor is absent. Furthermore, we will fit the model for a relative difference in 

proportions so that it can be estimated. An expression for the bias of the estimate as well as an 

appropriate confidence interval for the true relative difference in proportions will be constructed 

and finally, we will generate data to test the suitability and limits of the model for a relative 

difference in proportions. 
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CHAPTER 1: Logistic Regression 
 

1.1 Introduction to Simple Logistic Regression 
 

Regression methods are often used to analyze the relationship between some response 

variable and one or more independent explanatory variables. In the event where the response 

variable of interest is discrete, assuming at least two possible values, logistic regression is 

particularly useful due to the mathematical advantages of the logistic distribution in terms of 

flexibility and easy implementation. Since the interest of this project lies in a dichotomous 

response, we will explore the case where the response variable has exactly two possible 

outcomes. Therefore, this can be represented as an indicator random variable taking on values 0 

or 1. 

 

First, consider the simple linear regression model: 

𝑌𝑖 = β0 + β1𝑋𝑖 + 𝜀𝑖          𝑌𝑖 = 0,1 

where the response variable 𝑌𝑖 assumes the value either 0 or 1. Here, expected response 𝐸(𝑌𝑖) is 

very intuitive for our application of logistic regression. Since 𝐸(𝜀𝑖) = 0, we have: 

𝐸(𝑌𝑖) =  β0 + β1𝑋𝑖     (1.1) 

Furthermore, we can assume 𝑌𝑖 is a Bernoulli distributed random variable such that: 

𝑃(𝑌𝑖 = 1) = 𝜋𝑖     (1.2) 

𝑃(𝑌𝑖 = 0) = 1 − 𝜋𝑖   

Then, by the definition of the expected value of a random variable, we can derive: 

𝐸(𝑌𝑖) = 1(𝜋𝑖) + 0(1 − 𝜋𝑖) = 𝜋𝑖    (1.3) 

It follows from (1.1) and (1.3) that: 

𝐸(𝑌𝑖) =  β0 + β1𝑋𝑖 = 𝜋𝑖   

Therefore, when the response variable, 𝑌𝑖 , is an indicator variable that can assume exactly two 

values (0 or 1), the mean response is equivalent to the probability that 𝑌𝑖 = 1. It is easily shown 

that under these conditions, the error terms 𝜀𝑖, have unequal variances and are not normally 

distributed since they only take on two possible values – for 𝑌𝑖 = 0,1. In addition, the mean 

response of 𝑌𝑖 is bounded between 0 and 1. As a result, a simple linear regression model is not 

feasible under these conditions since it does not respect these bounds and requires the 

assumptions of normality and constant variance. Rather, a model such as the logistic regression 
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model in which the S-shaped distribution curve approaches the probabilities 0 and 1 

asymptotically is more appropriate. 

  

 We can now consider the simple logistic regression model for a Bernoulli response 

variable 𝑌𝑖 with parameter 𝐸(𝑌𝑖) =  𝜋𝑖 which is given by: 

𝑌𝑖 = E(𝑌𝑖) + 𝜀𝑖 

Indeed, 𝜀𝑖 may assume one of two possible values as previously mentioned. If 𝑌𝑖 = 1, we have 

𝜀𝑖 = 1 − 𝜋𝑖  with probability 𝜋𝑖  and if 𝑌𝑖 = 0 then 𝜀𝑖 = −𝜋𝑖  with probability 1 − 𝜋𝑖. Therefore, 

𝜀𝑖 is a binomial distributed random variable with parameter 𝜋𝑖 . Note that the error term 𝜀𝑖 

depends on the Bernoulli distributed response variable 𝑌𝑖 and so, the simple logistic regression 

model may be rewritten as: 

E(𝑌𝑖) = 𝜋𝑖 = 𝜋𝑖(𝑥𝑖) =
𝑒β0+β1𝑥𝑖

1+ 𝑒β0+β1𝑥𝑖
    (1.4) 

where 𝑌𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑖) are independent and the observations 𝑥𝑖 are given constants. 

 

It is also worth recognizing the logit transformation of 𝜋𝑖  which represents the log odds 

that the response variable 𝑌𝑖 is equal to 1 given some value 𝑥𝑖. Observe that for some event that 

occurs with probability p, the odds of this event occurring is defined as the probability of success 

divided by the probability of failure. That is: 

𝑜𝑑𝑑𝑠 𝑜𝑓 𝑎𝑛 𝑒𝑣𝑒𝑛𝑡 =
𝑝

1−𝑝
  

From equation (1.2), we know that 𝑌𝑖 is equal to 1 with probability 𝜋𝑖  and so it follows that the 

odds that 𝑌𝑖 is equal to 1 given some value 𝑥𝑖 is given by: 

𝜋𝑖

1−𝜋𝑖
=

𝑒β0+β1𝑥𝑖

1+ 𝑒β0+β1𝑥𝑖
(1 + 𝑒β0+β1𝑥𝑖) = 𝑒β0+β1𝑥𝑖  

where 1 − 𝜋𝑖 =
1

1+ 𝑒β0+β1𝑥𝑖
. Thus, the logit transformation may be written as: 

logit(𝑥𝑖) = ln (
𝜋𝑖

1−𝜋𝑖
) = ln(𝑒β0+β1𝑥𝑖) = β0 + β1𝑥𝑖   (1.5) 

This transformation is a value that will be useful for finding appropriate estimators when fitting 

the simple logistic regression model. 
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1.2 Fitting the Simple Logistic Regression Model 
 

Suppose we have a sample of 𝑛 independent observations (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,… , 𝑛 where 𝑦𝑖 

denotes the value of a Bernoulli response variable and 𝑥𝑖 denotes the value of the explanatory 

variable for the 𝑖𝑡ℎ observation. For application purposes, we may assume the values of the 

outcome variable, 0 and 1, represent the absence or presence of some characteristic, respectively. 

As with any regression model, the unknown parameters must be estimated in order to fit the 

model to a set of data. To fit the logistic regression model in (1.4), we estimate the values for β0 

and β1 using the maximum likelihood method of estimation. This method effectively manages 

the restrictions we encountered in Section 1.1 that arise when the response variable is an 

indicator whereas a method of estimation such as ordinary least squares, used for simple linear 

regression models, does not account for these conditions. The application of maximum 

likelihood begins with the construction of the likelihood function. 

 

Using that each 𝑌𝑖 is a Bernoulli distributed random variable that assumes the values 0 and 1 

with probabilities derived in (1.2), the probability mass function for 𝑌𝑖 is given by: 

𝑝𝑖(𝑌𝑖 = 𝑦𝑖) = 𝜋𝑖
𝑦𝑖(1 − 𝜋𝑖)

1−𝑦𝑖        i = 1, … , n  

This can be interpreted as the contribution of the pair (𝑥𝑖 , 𝑦𝑖) to the likelihood function and so, it 

follows that the likelihood function is given by their joint probability function. By independence, 

this is equivalent to the product of the individual contribution of the n observed pairs given by: 

𝑙(β) = ∏ 𝑝𝑖(𝑦𝑖)
𝑛
𝑖=1 = ∏ 𝜋𝑖

𝑦𝑖(1 − 𝜋𝑖)
1−𝑦𝑖𝑛

𝑖=1    (1.6) 

where β′ = (β0, β1). The estimate of β is the value which maximizes the likelihood function in 

equation (1.6). However, it is mathematically simpler to evaluate the natural log of the likelihood 

function which yields the log-likelihood function defined as: 

L(β) = ln[𝑙(β)] = ∑ [𝑛
𝑖=1 𝑦𝑖 ln(𝜋𝑖) + (1 − 𝑦𝑖)ln (1 − 𝜋𝑖)]  

  = ∑ 𝑦𝑖 ln (
𝜋𝑖

1−𝜋𝑖
) + ∑ ln (1 − 𝜋𝑖)

𝑛
𝑖=1

𝑛
𝑖=1   

Using the logit transformation defined in equation (1.5) and the simplification  

1 − 𝜋𝑖 = (1 + 𝑒β0+β1𝑥𝑖)−1, we can rewrite the above log-likelihood as: 

L(β) = ∑ 𝑦𝑖 (β0 + β1𝑥𝑖)−∑ ln (1 + 𝑒β0+β1𝑥𝑖)𝑛
𝑖=1

𝑛
𝑖=1   (1.7) 
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To find the maximum likelihood estimates β̂0 and β̂1, we differentiate equation (1.7) with respect 

to β𝑗 for 𝑗 = 1,2 as follows: 

𝜕L(β)

𝜕β𝑗
= ∑ 𝑦𝑖

𝑛
𝑖=1

∂(β0+β1𝑥𝑖)

∂β𝑗
− ∑

∂ln (1+ 𝑒β0+β1𝑥𝑖)

∂β𝑗
 𝑛

𝑖=1   

The values of  β0 and β1 which maximize the two resulting expressions after differentiation with 

respect to both parameters are the maximum likelihood estimates β̂0 and β̂1. Therefore, after 

differentiating, we set both expressions equal to zero which yields the equations known as the 

likelihood equations: 

𝜕L(β)

𝜕β0
= ∑ [𝑛

𝑖=1 𝑦𝑖 −
𝑒β0+β1𝑥𝑖

1+ 𝑒β0+β1𝑥𝑖
] = ∑ [𝑛

𝑖=1 𝑦𝑖 − 𝜋𝑖(𝑥𝑖)] = 0   (1.8) 

and 

𝜕L(β)

𝜕β1
= ∑ [𝑛

𝑖=1 𝑦𝑖𝑥𝑖 −
𝑒β0+β1𝑥𝑖

1+ 𝑒β0+β1𝑥𝑖
𝑥𝑖] = ∑ 𝑥𝑖[

𝑛
𝑖=1 𝑦𝑖 − 𝜋𝑖(𝑥𝑖)] = 0  (1.9) 

Since equations (1.8) and (1.9) are nonlinear in the parameters β0 and β1, iterative methods are 

required to obtain the maximum likelihood estimates β′̂ = (β̂0, β̂1) which are included in most 

statistical software packages. One method to do so is the Newton-Raphson algorithm. To begin, 

this method uses the likelihood equations (1.8) and (1.9) to define: 

q′ = (
𝜕L(β)

𝜕β0
,
𝜕L(β)

𝜕β1
) = (∑ (𝑦𝑖 − 𝜋𝑖)

𝑛
𝑖=1 , ∑ 𝑥𝑖(

𝑛
𝑖=1 𝑦𝑖 − 𝜋𝑖))  

and 

H =

[
 
 
 
 
𝜕2L(β)

𝜕β0
2

𝜕2L(β)

𝜕β0𝜕β1

𝜕2L(β)

𝜕β0𝜕β1

𝜕2L(β)

𝜕β1
2 ]

 
 
 
 

=

[
 
 
 
 
 − ∑𝜋𝑖(1 − 𝜋𝑖)

𝑛

𝑖=1

−∑𝑥𝑖𝜋𝑖(1 − 𝜋𝑖)

𝑛

𝑖=1

−∑𝑥𝑖𝜋𝑖(1 − 𝜋𝑖)

𝑛

𝑖=1

−∑𝑥𝑖
2𝜋𝑖(1 − 𝜋𝑖)

𝑛

𝑖=1 ]
 
 
 
 
 

 

To estimate β an initial estimate is made, say β(0) and an iterative procedure commences. At the 

jth iteration of the procedure, we obtain  β(𝑗+1) using: 

β(𝑗+1) = β(𝑗) − (H(𝑗))−1q(𝑗)  

where q(𝑗) and H(𝑗) are the values of q and H evaluated at β(𝑗), the jth approximation for β. When 

successive estimates of β converge, the algorithm terminates. If the termination occurs at 

iteration J, then β̂ = β(𝐽) is the maximum likelihood estimate for β. 

Thus, now we can obtain the fitted value for 𝜋𝑖  using β̂ given by: 

𝜋̂𝑖 = 𝜋̂𝑖(𝑥𝑖) =
𝑒β̂0+β̂1𝑥𝑖

1+ 𝑒β̂0+β̂1𝑥𝑖
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It is also important to note that −H−1 evaluated at β̂ will be an estimated asymptotic variance-

covariance matrix that will be useful in later applications. 

 

1.3 Multiple Logistic Regression 
 

Now that we have a foundation in simple logistic regression, the case for more than one 

predictor variable is a simple extension. Indeed, several predictor variables are often needed in 

logistic regression to obtain intuitive predictions as there are usually many factors that influence 

our response of interest. When using a multiple logistic regression model, these predictor 

variables are flexible in terms of the characteristics they represent. For example, they might 

represent curvature or interaction effects and may be quantitative or qualitative indicator 

variables.  

 

Let us consider a set of p independent predictor variables appended by a constant 1, denoted 

by the vector 𝑋𝑖
′ = (1,𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑝). Then, we can improve the Bernoulli distributed random 

variable with parameter 𝜋𝑖 , which motivated the model for simple logistic regression, as follows: 

𝑌𝑖 = X′β = β0 + β1𝑋𝑖1 + ⋯+ β𝑝𝑋𝑖𝑝 + 𝜀𝑖             𝑌𝑖 = 0,1 

where β′ = (β0, β1, β2, … , β𝑝) is a vector of p+1 unknowns. 

Note that 𝑃(𝑌𝑖 = 1) = 𝐸(𝑌𝑖) = 𝜋𝑖 still holds and so the simple logistic regression model in 

expression (1.4) may be extended to a multiple logistic regression model as follows: 

𝑃(𝑌𝑖 = 1) = 𝜋𝑖(𝑥𝑖) =
𝑒

β0+β1𝑥𝑖1+⋯+β𝑝𝑥𝑖𝑝

1+ 𝑒
β0+β1𝑥𝑖1+⋯+β𝑝𝑥𝑖𝑝

    (1.10) 

where 𝑌𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑖) are independent and the observations 𝑥𝑖
′ = (1, 𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑝) are 

known constants by assumption. Similarly, the logit transformation in expression (1.5) can be 

easily extended to this (p+1)-variate model and is given by: 

logit(𝑥𝑖) = β0 + β1𝑥𝑖1 + ⋯+ β𝑝𝑥𝑖𝑝  

 

 Just as in simple logistic regression, we will utilize the maximum likelihood method of 

estimation to find appropriate estimates for the unknown p+1 parameters β0, β1, β2, … , β𝑝.  

The log-likelihood function given in expression (1.7) can be broadened in multiple logistic 

regression to obtain: 
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L(β) = ∑ 𝑦𝑖 (β0 + β1𝑥𝑖1 + ⋯+ β𝑝𝑥𝑖𝑝)−∑ ln (1 +  𝑒β0+β1𝑥𝑖1+⋯+β𝑝𝑥𝑖𝑝)𝑛
𝑖=1

𝑛
𝑖=1   

where 𝑦𝑖 and 𝑥𝑖
′ = (1, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) are given and β′ = (β0, β1, β2, … , β𝑝). 

Thus, the maximum likelihood estimates of the unknown parameters are obtained by 

differentiating the above log-likelihood function with respect to each parameter and solving the 

resulting p+1 expressions after they are set equal to 0. In doing so, we solve the following 

likelihood equations: 

∑ [𝑛
𝑖=1 𝑦𝑖 − 𝜋𝑖(𝑥𝑖)] = 0  

∑ 𝑥𝑖𝑗[
𝑛
𝑖=1 𝑦𝑖 − 𝜋𝑖(𝑥𝑖)] = 0  

for 𝑗 = 1,… , 𝑝. 

As in the univariate case, at this point it becomes difficult to manually calculate the estimated 

coefficients due to the likelihood equations being nonlinear in the unknown parameters. Thus, 

we revisit the Newton-Raphson algorithm to find the maximum likelihood estimate for β. Just as 

the method for finding estimates for the simple logistic regression model, we use the likelihood 

equations to define: 

q′ = (
𝜕L(β)

𝜕β0
,
𝜕L(β)

𝜕β1
, … ,

𝜕L(β)

𝜕β𝑝
) = (∑ (𝑦𝑖 − 𝜋𝑖)

𝑛
𝑖=1 , ∑ 𝑥𝑖1(

𝑛
𝑖=1 𝑦𝑖 − 𝜋𝑖), … , ∑ 𝑥𝑖𝑝(𝑦𝑖 − 𝜋𝑖)

𝑛
𝑖=1 )  

and 

H =

[
 
 
 
 
 
 
 
𝜕2L(β)

𝜕β0
2

𝜕2L(β)

𝜕β0𝜕β1
⋯

𝜕2L(β)

𝜕β0𝜕β𝑝

𝜕2L(β)

𝜕β0𝜕β1

𝜕2L(β)

𝜕β1
2 ⋯

𝜕2L(β)

𝜕β1𝜕β𝑝

⋮ ⋮ ⋱ ⋮
𝜕2L(β)

𝜕β0𝜕β𝑝

𝜕2L(β)

𝜕β1𝜕β1
⋯

𝜕2L(β)

𝜕β𝑝
2

]
 
 
 
 
 
 
 

 

 

After simplifying each entry of H, we have: 

H =

[
 
 
 
 
 
 
 
 
 − ∑𝜋𝑖(1 − 𝜋𝑖)

𝑛

𝑖=1

− ∑ 𝑥𝑖1𝜋𝑖(1 − 𝜋𝑖)

𝑛

𝑖=1

⋯ − ∑𝑥𝑖𝑝𝜋𝑖(1 − 𝜋𝑖)

𝑛

𝑖=1

− ∑𝑥𝑖1𝜋𝑖(1 − 𝜋𝑖)

𝑛

𝑖=1

− ∑ 𝑥𝑖1
2𝜋𝑖(1 − 𝜋𝑖)

𝑛

𝑖=1

⋯ −∑𝑥𝑖1𝑥𝑖𝑝𝜋𝑖(1 − 𝜋𝑖)

𝑛

𝑖=1

⋮ ⋮ ⋱ ⋮

− ∑𝑥𝑖𝑝𝜋𝑖(1 − 𝜋𝑖)

𝑛

𝑖=1

− ∑𝑥𝑖1𝑥𝑖𝑝𝜋𝑖(1 − 𝜋𝑖)

𝑛

𝑖=1

⋯ − ∑𝑥𝑖𝑝
2𝜋𝑖(1 − 𝜋𝑖)

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 
 

 

  (1.11) 
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The iterative procedure that follows is parallel to that of the univariate case. After making an 

initial guess for β, say β(0), the jth iteration of the algorithm computes: 

β(𝑗+1) = β(𝑗) − (H(𝑗))−1q(𝑗) 

where q(𝑗) and H(𝑗) are the values of q and H evaluated at β(𝑗), the jth approximation for β. The 

algorithm continues this calculation in each iteration until successive estimates of β converge, 

say at iteration J, at which point we have the maximum likelihood estimate β̂ = β(𝐽). Using this 

estimate, we can estimate 𝜋𝑖  as follows: 

𝜋̂𝑖 = 𝜋̂𝑖(𝑥𝑖) =
𝑒

β̂0+β̂1𝑥𝑖1+⋯+β̂𝑝𝑥𝑖𝑝

1+ 𝑒
β̂0+β̂1𝑥𝑖1+⋯+β̂𝑝𝑥𝑖𝑝

=
𝑒𝑥𝑖

′β̂

1+ 𝑒𝑥𝑖
′β̂

  

 

As mentioned in the univariate case, a transformation of the matrix H evaluated at β̂ will 

be a useful estimated asymptotic variance-covariance matrix. We will now elaborate on this idea 

as the multivariate case will be useful when estimating a relative difference in proportions. 

Consider the (𝑝 + 1) × (𝑝 + 1) matrix obtained from negating every entry of H. This matrix is 

called the observed information matrix, denoted I = −H. Indeed, the entries of this matrix are 

functions of β and it is well-known that taking the inverse of this information matrix yields the 

covariance matrix of the maximum likelihood estimates β̂′ = (β̂0, β̂1, β̂2, … , β̂𝑝). Therefore, 

evaluating I−1 at β̂ provides an estimated covariance matrix for the maximum likelihood 

estimates given by: 

I−1(β̂) = −H−1(β̂) =

[
 
 
 
 

𝑉̂(β̂0) 𝑐𝑜𝑣̂(β̂0, β̂1) ⋯ 𝑐𝑜𝑣̂(β̂0, β̂𝑝)

𝑐𝑜𝑣̂(β̂1, β̂0) 𝑉̂(β̂1) ⋯ 𝑐𝑜𝑣̂(β̂1, β̂𝑝)

⋮ ⋮ ⋱ ⋮
𝑐𝑜𝑣̂(β̂𝑝, β̂0) 𝑐𝑜𝑣̂(β̂𝑝, β̂1) ⋯ 𝑉̂(β̂𝑝) ]

 
 
 
 

  

where the 𝑖𝑡ℎ diagonal entry holds an estimate for the variance of β̂𝑖−1, 𝑖 = 1, … , 𝑝 + 1, and the 

off-diagonal (𝑖, 𝑗)𝑡ℎ entry is the covariance of β̂𝑖−1 and β̂𝑗−1 for 𝑖, 𝑗 = 1,… , 𝑝 + 1, 𝑖 ≠ 𝑗. 
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CHAPTER 2: Estimating a Relative Difference in Proportions 

 

2.1 Modelling a Relative Difference in Proportions 
 

As seen in the previous chapter, a logistic regression model holds many properties that are 

desirable when studying the relationship between a dichotomous response variable, which 

assumes two possible outcomes, and a set of p independent explanatory variables. Thus, such a 

model will be appropriate for our analysis of the relationship between a categorical response 

variable, specified by presence or absence of some characteristic, and p independent factors that 

may influence the presence of such a characteristic. Furthermore, the multiple logistic regression 

model will allow us to study the case when a discrete explanatory variable is considered and we 

wish to investigate the relative difference between proportions of the response variable that are 

present given various values of the discrete explanatory variable. That is, we will be able to 

model the difference between the proportion of the response variable that is present given that an 

explanatory variable assumes some value and the proportion of the response variable that is 

present given that the explanatory variable assumes some other value, all taken relative to one of 

the previously mentioned proportions. 

 

To see this, consider the Bernoulli distributed response variable 𝑌𝑖 and p independent 

explanatory variables augmented by a constant 1, 𝑋𝑖
′ = (1,𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑝), as defined in 

Section 1.3. When the values 𝑋𝑖𝑗 = 𝑥𝑖𝑗 are given constants, the relationship between the 

Bernoulli response and the explanatory variables can be shown using the multiple logistic 

regression model 𝜋𝑖  defined in equation (1.10). In addition, assume one of the explanatory 

variables, 𝑋𝑖𝑗 for 1 ≤ 𝑗 ≤ 𝑝, is discrete and assumes two possible values. Then, 𝑋𝑖𝑗 can be 

represented as an indicator variable which takes on the values 1 or 0, representing “success” or 

“failure” of some event, respectively. Let us define 𝜋0 to be the probability that 𝑌𝑖 = 1 when 

𝑋𝑖𝑗 = 0 given by: 

 𝜋0(𝑥𝑖) =
𝑒

β0+β1𝑥𝑖1+⋯+β𝑗−1𝑥𝑖(𝑗−1)+β𝑗+1𝑥𝑖(𝑗+1)+⋯+β𝑝𝑥𝑖𝑝

1+ 𝑒
β0+β1𝑥𝑖1+⋯+β𝑗−1𝑥𝑖(𝑗−1)+β𝑗+1𝑥𝑖(𝑗+1)+⋯+β𝑝𝑥𝑖𝑝

  (2.1) 

We can also define 𝜋1 to be the probability that 𝑌𝑖 = 1 when 𝑋𝑖𝑗 = 1 given by: 

𝜋1(𝑥𝑖) =
𝑒

β0+β1𝑥𝑖1+⋯+β𝑗−1𝑥𝑖(𝑗−1)+β𝑗+β𝑗+1𝑥𝑖(𝑗+1)+⋯+β𝑝𝑥𝑖𝑝

1+ 𝑒
β0+β1𝑥𝑖1+⋯+β𝑗−1𝑥𝑖(𝑗−1)+β𝑗+β𝑗+1𝑥𝑖(𝑗+1)+⋯+β𝑝𝑥𝑖𝑝

  (2.2) 
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Notice that 𝜋0 and 𝜋1 only differ by a single term, the 𝑗𝑡ℎ power of the exponential. Both 

expressions will be useful in implementation when there is an interest in the relative difference 

between the probability that 𝑌𝑖 = 1 given that 𝑋𝑖𝑗 = 1 and the probability that  

𝑌𝑖 = 1 given that 𝑋𝑖𝑗 = 0. Going forward, we will denote this relative difference by 𝜂. In 

practice, the final expression for 𝜂 will depend on which proportion, 𝜋0 or 𝜋1, serves as a useful 

comparison relative to the difference being modelled. That is, if we wish to take 𝜂 relative to the 

probability that 𝑌𝑖 = 1 given that 𝑋𝑖𝑗 = 0, it can be expressed as: 

𝜂(𝑥𝑖) =
𝜋1(𝑥𝑖)−𝜋0(𝑥𝑖) 

𝜋0(𝑥𝑖)
  

Similarly, if the informative comparison is with the probability that 𝑌𝑖 = 1 given that 𝑋𝑖𝑗 = 1, 

we can express 𝜂 as done above, with the exception that the denominator is replaced by 𝜋1(𝑥𝑖). 

This expression for 𝜂 can be expanded and simplified as follows: 

𝜂(𝑥𝑖) = 

𝑒
β0+β1𝑥𝑖1+⋯+β𝑗−1𝑥𝑖(𝑗−1)+β𝑗+β𝑗+1𝑥𝑖(𝑗+1)+⋯+β𝑝𝑥𝑖𝑝

1+ 𝑒
β0+β1𝑥𝑖1+⋯+β𝑗−1𝑥𝑖(𝑗−1)+β𝑗+β𝑗+1𝑥𝑖(𝑗+1)+⋯+β𝑝𝑥𝑖𝑝

−
𝑒
β0+β1𝑥𝑖1+⋯+β𝑗−1𝑥𝑖(𝑗−1)+β𝑗+1𝑥𝑖(𝑗+1)+⋯+β𝑝𝑥𝑖𝑝

1+ 𝑒
β0+β1𝑥𝑖1+⋯+β𝑗−1𝑥𝑖(𝑗−1)+β𝑗+1𝑥𝑖(𝑗+1)+⋯+β𝑝𝑥𝑖𝑝

𝑒
β0+β1𝑥𝑖1+⋯+β𝑗−1𝑥𝑖(𝑗−1)+β𝑗+1𝑥𝑖(𝑗+1)+⋯+β𝑝𝑥𝑖𝑝

1+ 𝑒
β0+β1𝑥𝑖1+⋯+β𝑗−1𝑥𝑖(𝑗−1)+β𝑗+1𝑥𝑖(𝑗+1)+⋯+β𝑝𝑥𝑖𝑝

 

=
𝑒

β𝑗+ 𝑒
β0+β1𝑥𝑖1+⋯+β𝑗−1𝑥𝑖(𝑗−1)+β𝑗+β𝑗+1𝑥𝑖(𝑗+1)+⋯+β𝑝𝑥𝑖𝑝

1+ 𝑒
β0+β1𝑥𝑖1+⋯+β𝑗−1𝑥𝑖(𝑗−1)+β𝑗+β𝑗+1𝑥𝑖(𝑗+1)+⋯+β𝑝𝑥𝑖𝑝

− 1  (2.3) 

Thus, the multiple logistic regression model 𝜋𝑖  evaluated at two values of a discrete explanatory 

variable of interest allows us to model the relative difference between the probability that a 

dichotomous response variable is present given that the explanatory variable is a “success” and 

the probability that the response is present given that the explanatory variable is a “failure”.  

 

As a motivating example, let us consider the relationship between lung cancer, measured as 

being present or absent, and two independent health factors, smoking and age. More specifically, 

we study the proportion of individuals from a particular age group that have lung cancer given 

that they are a smoker in comparison to the proportion of individuals from the same age group 

that have lung cancer given that they do not smoke. Observe that for each individual, smoking is 

measured as a discrete variable assuming two possible values, smoker or non-smoker, while age 

is a continuous variable, on some specified interval, that is independent of smoking habits. 

Furthermore, we can assume that the explanatory variable which represents smoking habits is 

represented as an indicator variable that assumes the value 1 when an individual is a smoker or 

smoking is a “success” and assumes the value 0 when an individual is a non-smoker or smoking 
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is a “failure”. Indeed, we are interested in the difference in the probability of an individual 

having lung cancer when exposure to a risk factor, smoking, is either present or absent, and the 

age of the individual is also taken into consideration. For an analysis such as this, the relative 

difference in probability will be an informative value to compare these probabilities. Thus, we 

will derive an expression using multiple logistic regression that is parallel to equation (2.3) 

which will model the relative difference between the proportion of individuals who have lung 

cancer given that they are smokers and the proportion of individuals who have lung cancer given 

that they are non-smokers. 

 

Let us assume a sample size of 𝑛. Then, for 𝑖 = 1,2,… , 𝑛 we define: 

𝑌𝑖 = {
1, if individual 𝑖 has lung cancer
0, otherwise

  

and 

𝑋𝑖1 = {
1, if individual 𝑖 is a smoker
0, otherwise

  

where 𝑌𝑖 and 𝑋𝑖1 are indicator variables for which the value 1 represents presence and the value 0 

represents absence of their corresponding characteristic. In addition, let 𝑋𝑖2 represent the age of 

the 𝑖th individual. We may consider 𝑌𝑖 to be independent Bernoulli distributed random variables 

with expected values 𝐸(𝑌𝑖) = 𝑃(𝑌𝑖 = 1) = 𝜋𝑖 . Thus, given a set of 𝑛 observations 𝑥𝑖
′ =

(1, 𝑥𝑖1, 𝑥𝑖2) we can model this relationship using the multiple logistic regression model in 

equation (1.10) to obtain: 

P(𝑌𝑖 = 1) = 𝜋𝑖(𝑥𝑖) =  
𝑒β0+β1𝑥𝑖1+β2𝑥𝑖2  

1+ 𝑒β0+β1𝑥𝑖1+β2𝑥𝑖2    

for 𝑖 = 1,2,… , 𝑛. 

Under this model, we may use equation (2.1) to define the probability that a non-smoker of age 

𝑥𝑖2 has lung cancer to be 𝜋0(𝑥𝑖2) given by: 

𝜋0(𝑥𝑖2) =
𝑒β0+β2𝑥𝑖2  

1+ 𝑒β0+β2𝑥𝑖2    

Similarly, we use equation (2.2) to define the probability that a smoker of age 𝑥𝑖2 has lung cancer 

to be 𝜋1(𝑥𝑖2) given by: 

𝜋1(𝑥𝑖2) =
𝑒β0+β1+β2𝑥𝑖2  

1+ 𝑒β0+β1+β2𝑥𝑖2    
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Therefore, we may represent the relative difference between the proportion of individuals who 

have lung cancer given that they are smokers and the proportion of individuals who have lung 

cancer given that they are non-smokers as: 

𝜂(𝑥𝑖2) =
𝜋1(𝑥𝑖2)−𝜋0(𝑥𝑖2) 

𝜋0(𝑥𝑖2)
  

Notice that we represent this difference in probability relative to the probability of having lung 

cancer for non-smokers, 𝜋0(𝑥𝑖2), since this is the interesting comparison when considering a 

difference in smoking habits. Therefore, using this model we will eventually be able to estimate 

the difference in the probability of having lung cancer between smokers and non-smoker relative 

to the probability of having lung cancer for a non-smoker. The above expression for 𝜂 can be 

expanded and simplified as done in equation (2.3), to find an expression that will be simpler to 

estimate. Doing so yields: 

𝜂(𝑥𝑖2) =
𝜋1(𝑥𝑖2)−𝜋0(𝑥𝑖2) 

𝜋0(𝑥𝑖2)
  

=

𝑒β0+β1+β2𝑥𝑖2  

1+ 𝑒β0+β1+β2𝑥𝑖2  −
𝑒β0+β2𝑥𝑖2  

1+ 𝑒β0+β2𝑥𝑖2  

𝑒β0+β2𝑥𝑖2  

1+ 𝑒β0+β2𝑥𝑖2  

  

= (
𝑒β0+β1+β2𝑥𝑖2  

1+ 𝑒β0+β1+β2𝑥𝑖2  −
𝑒β0+β2𝑥𝑖2  

1+ 𝑒β0+β2𝑥𝑖2  ) (
1+ 𝑒β0+β2𝑥𝑖2  

𝑒β0+β2𝑥𝑖2  )  

=
𝑒β0+β1+β2𝑥𝑖2  +𝑒β0+β1+β2𝑥𝑖2  𝑒β0+β2𝑥𝑖2  

(1+ 𝑒β0+β1+β2𝑥𝑖2  )𝑒β0+β2𝑥𝑖2  − 1  

=
𝑒β0+β2𝑥𝑖2  (𝑒β1 +𝑒β0+β1+β2𝑥𝑖2  )

(1+ 𝑒β0+β1+β2𝑥𝑖2  )𝑒β0+β2𝑥𝑖2  − 1  

=
𝑒β1 +𝑒β0+β1+β2𝑥𝑖2  

1+ 𝑒β0+β1+β2𝑥𝑖2  − 1      (2.4) 

 

Using multiple logistic regression, a similar approach can be taken to represent the 

relationship between any dichotomous response variable of interest and some set of independent 

explanatory variables that have a relevant influence on the response. More importantly, when 

interest lies in the relative difference in the probability of the response variable being “present” 

or equivalently, assuming the value 1 when exposed to certain factors that are represented as 

explanatory variables, an expression parallel to the value we derived for 𝜂 in equation (2.3) may 

be useful and can be found using the multiple logistic regression model. Thus, this model allows 

us to study how exposure to some explanatory variable, possibly a risk factor with regards to the 
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response variable of interest, effects the probability of the response being present relative to the 

probability of the response being present when there is no risk or exposure. A similar study can 

be carried out where the effects of the explanatory variable on the probability of the response 

being present is taken relative to the probability of the response being present when there is an 

exposure to, or risk caused by, the explanatory variable. Although we explore the simple case 

where an indicator explanatory variable is used, minor adjustments can be made to extend this 

idea to include a discrete explanatory variable assuming any number of values, two of which we 

wish to analyze their effect on the response variable and the relative difference in the success of 

the response variable given those two values of the explanatory variable.  

 

2.2 Fitting the Model and Constructing Confidence Intervals 
 

In the previous section, we derived an expression, 𝜂, to model the relative difference in the 

probability of an indicator random variable assuming the value 1 when some influential factor is 

either present or absent. Since this model is a function of the multiple logistic regression model 

𝜋𝑖  evaluated at specific values of an explanatory variable, the unknown parameters of 𝜂 are 

simply the unknown parameters of 𝜋𝑖 . As seen in Section 1.3, these parameters can be estimated 

using the Newton-Raphson algorithm which finds the maximum likelihood estimate for β′ =

(β0, β1, β2, … , β𝑝). To see this, we propose the following estimate for 𝜂: 

𝜂̂(𝑥𝑖) =
𝜋1̂(𝑥𝑖)−𝜋0̂(𝑥𝑖) 

𝜋0̂(𝑥𝑖)
  

Indeed, 𝜋0 and 𝜋1 were defined using the multiple logistic regression model evaluated at some 

value of an indicator explanatory variable and so, they may be estimated using the maximum 

likelihood estimates from 𝜋𝑖 . Using the simplified expression (2.3) that was derived for 𝜂, we 

have the following estimate for the relative difference between two proportions: 

𝜂̂(𝑥𝑖) =
𝑒

β̂𝑗+ 𝑒
β̂0+β̂1𝑥𝑖1+⋯+β̂𝑗−1𝑥𝑖(𝑗−1)+β̂𝑗+β̂𝑗+1𝑥𝑖(𝑗+1)+⋯+β̂𝑝𝑥𝑖𝑝

1+ 𝑒
β̂0+β̂1𝑥𝑖1+⋯+β̂𝑗−1𝑥𝑖(𝑗−1)+β̂𝑗+β̂𝑗+1𝑥𝑖(𝑗+1)+⋯+β̂𝑝𝑥𝑖𝑝

− 1   (2.5)  

where β̂0, β̂1, β̂2, … , β̂𝑝 are the maximum likelihood estimates for the model 𝜋𝑖 . With that said, 

the work to fit this model is done since we have already discussed how to find these parameter 

estimates and the values 𝑥𝑖𝑗 , 𝑖 = 1,2, . . , 𝑛, 𝑗 = 1,2,… , 𝑝, are known constants. 
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Although we have an estimate, 𝜂̂, for a relative difference in proportions based on a 

sample of 𝑛 observations, it is unlikely that the sample estimate will be exactly equal to the true 

population value 𝜂. Thus, we are also interested in constructing a confidence interval for the true 

difference in proportions. In particular, we will construct a 95% Wald interval for 𝜂 which leans 

on the central limit theorem to justify the use of Gaussian quantiles. Recall that the multiple 

logistic regression model that we used to define a relative difference in probability is given in 

expression (1.10) as follows: 

𝑃(𝑌𝑖 = 1) = 𝜋𝑖(𝑥𝑖) =
𝑒

β0+β1𝑥𝑖1+⋯+β𝑝𝑥𝑖𝑝

1+ 𝑒
β0+β1𝑥𝑖1+⋯+β𝑝𝑥𝑖𝑝

  

By the central limit theorem, we have that for a large sample size 𝑛, the maximum likelihood 

estimate 𝜋̂𝑖  tends to a normal distribution with mean 𝜋𝑖 = 𝐸(𝑌𝑖) and variance 
𝜋𝑖(1−𝜋𝑖)

𝑛
. Therefore, 

using the linear properties of independent normal random variables as well as that our estimate 

for a relative difference in proportions 𝜂̂ depends on the maximum likelihood estimate 𝜋̂𝑖, it is 

easy to show that as the sample size 𝑛 approaches infinity, the estimate 𝜂̂ tends to a normal 

distribution with mean 𝜂. It follows that: 

𝜂̂−𝜂

√𝑉𝑎𝑟(𝜂̂)
~𝑁(0,1)  

where 𝑁(0,1) denotes the standard normal distribution. This is the result of the central limit 

theorem that warrants the use of a Wald confidence interval. That is, given a significance level 𝛼, 

we can construct the following (1 − 𝛼)% Wald interval for 𝜂: 

𝜂̂ ± 𝑧𝛼/2 √𝑉𝑎𝑟(𝜂̂)     (2.6) 

where 𝑧𝛼/2 is the (
𝛼

2
) 𝑡ℎ quantile of the standard normal distribution. Therefore, when we specify 

the significance level 𝛼 = 0.05 we have our desired 95% Wald interval for a relative difference 

in proportions.  

 

Prior to computing this confidence interval, we must be able to find the variance of the 

estimate 𝜂̂. It will also be useful to derive the expected value of 𝜂̂ since these two values will be 

intuitive for studying our model for a relative difference in proportions as well as the accuracy of 

the estimate for the model. That is, the variance of 𝜂̂ will provide a confidence interval for the 

relative difference in proportions while an expression for the expected value of 𝜂̂ will allow us to 

measure the bias of our estimate of the relative difference in proportions as follows: 
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𝐸(𝜂̂) − 𝜂 

Indeed, if our estimate 𝜂̂ were to be unbiased, the above expression would equate to zero. This 

would tell us that for a large sample size, we can expect the estimate for a relative difference in 

proportions, 𝜂̂, to be equal to the true population proportion 𝜂 and have no bias. That is, we 

would have 𝐸(𝜂̂) =  𝜂 and so, our measure for the bias of the estimate becomes 𝐸(𝜂̂) − 𝜂 = 0. 

However, it may be that our estimate is biased, in which case we will want this bias to be small. 

Otherwise, when the bias is large this tells us that the expected value of our estimate 𝜂̂ greatly 

differs from the true relative difference in proportions, invalidating the estimate. With the 

complexity of the expression we have for 𝜂̂ given in equation (2.5), it will be difficult to directly 

compute its mean and variance. Since 𝜂̂ is nonlinear in its parameters it will be more convenient 

to linearize the expression before performing any further computations. We will do so using the 

delta method for a function of a random vector. 

 

 Let us first derive the delta method in general terms so that we may easily apply its result 

to the model for a relative difference in proportions. We denote the statistic of interest by 𝑇𝑛, 

where the subscript expresses a dependence on the sample size 𝑛. Suppose that for a large 

sample size 𝑛, 𝑇𝑛 converges in distribution to a normal distribution with mean 𝜇 and standard 

error 𝜎/√𝑛. This limiting distribution can alternatively be expressed as: 

√𝑛(𝑇𝑛 −  𝜇)
𝑑
→ 𝑁(0, 𝜎2) 

Thus, for a function 𝑔 we can derive the limiting distribution of 𝑔(𝑇𝑛) using a second order 

Taylor series expansion of 𝑔(𝑡) in a neighbourhood 𝜇, for some 𝜇∗ between 𝑡 and 𝜇. Assuming 𝑔 

can be differentiated at least twice at 𝜇, we have: 

𝑔(𝑡) = 𝑔(𝜇) + (𝑡 − 𝜇)𝑔′(𝜇) +
1

2
(𝑡 − 𝜇)2𝑔′′(𝜇∗) 

= 𝑔(𝜇) + (𝑡 − 𝜇)𝑔′(𝜇) + 𝑂(|𝑡 − 𝜇|2) 

Substituting the random variable 𝑇𝑛 for 𝑡 yields: 

√𝑛[𝑔(𝑇𝑛) −  𝑔(𝜇)] = √𝑛(𝑇𝑛 −  𝜇)𝑔′(𝜇) + 𝑂𝑝(𝑛−
1

2)  

However, as 𝑛 approaches infinity, the additive term 𝑂𝑝(𝑛−
1

2) is asymptotically negligible and 

so, √𝑛[𝑔(𝑇𝑛) −  𝑔(𝜇)] has the same limiting distribution as √𝑛(𝑇𝑛 −  𝜇)𝑔′(𝜇). Therefore, we 

have that: 
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√𝑛[𝑔(𝑇𝑛) −  𝑔(𝜇)]
𝑑
→ 𝑁(0, 𝜎2[𝑔′(𝜇)]2) 

Since 𝜎2 = 𝜎2(𝜇) and 𝑔′(𝜇) depend on 𝜇, the asymptotic variance is unknown. However, when 

𝜎 = 𝜎(∙) and 𝑔′(∙) are continuous at 𝜇 then 𝜎(𝑇𝑛)𝑔′(𝑇𝑛) is a consistent estimator of 𝜎(∙)𝑔′(∙).  

 

 Since the estimate for a relative difference in proportions depends on the maximum 

likelihood estimates β̂ = (β̂0, β̂1, β̂2, … , β̂𝑝), we will be interested in deriving a Taylor series 

expansion of 𝜂̂ about β̂ = β. The ideas of the delta method for a function of a random variable 

translate to a function of a random vector without much additional effort and so I will omit the 

full derivation. Essentially, we suppose that 𝑇𝑛 is asymptotically multivariate normal with mean 

𝜇 and covariance matrix Σ/𝑛 and that 𝑔(𝑡1, … , 𝑡𝑁) has a nonzero differential 𝜙 = (𝜙1, … ,𝜙𝑁)𝑇 

at 𝜇 where: 

𝜙𝑖 =
𝜕𝑔

𝜕𝑡𝑖
|𝑡=𝜇  

A second order Taylor series expansion about 𝜇 yields the following expression: 

𝑔(𝑇𝑛) −  𝑔(𝜇) = (𝑇𝑛 − 𝜇)𝑇𝜙 + 𝑜(‖𝑇𝑛 − 𝜇‖) 

Therefore, for a large sample size 𝑛, 𝑔(𝑇𝑛) is multivariate normal with mean 𝑔(𝜇) and variance 

𝜙𝑇Σ𝜙/𝑛. Again, the little-o term in the expansion is asymptotically insignificant and can be 

ignored for a large sample size. Clearly, the Taylor series expansion of 𝑔(𝑇𝑛) is linear in its 

parameters which is what we aimed to accomplish for our estimate of a relative difference in 

proportions. Thus, taking 𝑔(𝑇𝑛) to be our estimate 𝜂̂ as a function of the maximum likelihood 

estimates β′̂ = (β̂0, β̂1, β̂2, … , β̂𝑝) will allow us to use the delta method to linearize 𝜂̂ without 

losing its properties. Indeed, the delta method is valid for an expansion about the maximum 

likelihood estimators β̂ since they follow a large-sample normal distribution with covariance 

matrix given by the inverse of the information matrix that was discussed in Section 1.3. 

 

 The first step in finding the mean and variance of the estimated relative difference in 

proportions will be to linearize 𝜂̂ using a second order Taylor series expansion about β̂ = β that 

is parallel to the expansion derived in the delta method for a function of a random vector. Recall 

that the maximum likelihood estimate β̂ was obtained using the Newton-Raphson method of 

estimation in which the matrix H in equation (1.11) contained the second partial derivatives, with 

respect to β, of expressions that were dependent on 𝜋𝑖 . Therefore, we know that 𝜂̂, which is also 
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dependent on 𝜋𝑖 , is at least twice differentiable at β. Furthermore, the second derivatives of 𝜂̂ 

will be continuous and so 
𝜕2𝜂̂

𝜕β̂𝑗𝜕β̂𝑘
|β̂= β =

𝜕2𝜂̂

𝜕β̂𝑗𝜕β̂𝑘
|β̂= β. For this reason, we can sum the mixed 

partial derivatives in the Taylor series expansion of 𝜂̂, leaving them with a coefficient of 1 rather 

than 
1

2
 as follows:  

𝜂̂(𝑥𝑖) ≈ 𝜂̂(𝑥𝑖)|β̂= β +
𝜕𝜂̂

𝜕β̂0
|β̂= β(β̂0 − β0) +

𝜕𝜂̂

𝜕β̂1
|β̂= β(β̂1 − β1) + ⋯+

𝜕𝜂̂

𝜕β̂𝑝
|β̂= β(β̂𝑝 − β𝑝) +

1

2
[

𝜕2𝜂̂

𝜕β̂0
2 |β̂= β(β̂0 − β0)

2
+

𝜕2𝜂̂

𝜕β̂1
2 |β̂= β(β̂1 − β1)

2
+ ⋯+

𝜕2𝜂̂

𝜕β̂𝑝
2 |β̂= β(β̂𝑝 − β𝑝)

2
] +

𝜕2𝜂̂

𝜕β̂0𝜕β̂1
|β̂= β(β̂0 − β0)(β̂1 − β1) + ⋯+

𝜕2𝜂̂

𝜕β̂0𝜕β̂𝑝
|β̂= β(β̂0 − β0)(β̂𝑝 − β𝑝) +

𝜕2𝜂̂

𝜕β̂1𝜕β̂2
|β̂= β(β̂1 − β1)(β̂2 − β2) + ⋯+

𝜕2𝜂̂

𝜕β̂1𝜕β̂𝑝
|β̂= β(β̂1 − β1)(β̂𝑝 − β𝑝) + ⋯+

𝜕2𝜂̂

𝜕β̂𝑝−1𝜕β̂𝑝
|β̂= β(β̂𝑝−1 − β𝑝−1)(β̂𝑝 − β𝑝)  

Since this expression for 𝜂̂(𝑥𝑖) is linear in its parameters, it will be much easier to find its 

expected value and variance. Taking the expected value of both sides of this Taylor series 

expansion will yield the expected value of 𝜂̂(𝑥𝑖). By linearity of expectation, the right-hand side 

of this expression becomes a sum of the expected value of each term. Furthermore, the partial 

derivatives of 𝜂̂ evaluated at β̂ =  β are constants and can be factored out of the expected value 

for each term. Using these properties, we have the following expression for the expected value of 

𝜂̂(𝑥𝑖): 

𝐸(𝜂̂(𝑥𝑖)) ≈ 𝐸(𝜂̂(𝑥𝑖)|β̂= β) +
𝜕𝜂̂

𝜕β̂0
|β̂= β𝐸(β̂0 − β0) +

𝜕𝜂̂

𝜕β̂1
|β̂= β𝐸(β̂1 − β1) + ⋯+

𝜕𝜂̂

𝜕β̂𝑝
|β̂= β𝐸(β̂𝑝 − β𝑝) +

1

2
[

𝜕2𝜂̂

𝜕β̂0
2 |β̂= β𝐸 [(β̂0 − β0)

2
] +

𝜕2𝜂̂

𝜕β̂1
2 |β̂= β𝐸 [(β̂1 − β1)

2
] + ⋯+

𝜕2𝜂̂

𝜕β̂𝑝
2 |β̂= β𝐸 [(β̂𝑝 − β𝑝)

2
]] +

𝜕2𝜂̂

𝜕β̂0𝜕β̂1
|β̂= β𝐸[(β̂0 − β0)(β̂1 − β1)] + ⋯+

𝜕2𝜂̂

𝜕β̂0𝜕β̂𝑝
|β̂= β𝐸[(β̂0 − β0)(β̂𝑝 − β𝑝)] +

𝜕2𝜂̂

𝜕β̂1𝜕β̂2
|β̂= β𝐸[(β̂1 − β1)(β̂2 − β2)] + ⋯+

𝜕2𝜂̂

𝜕β̂1𝜕β̂𝑝
|β̂= β𝐸[(β̂1 − β1)(β̂𝑝 − β𝑝)] + ⋯+

𝜕2𝜂̂

𝜕β̂𝑝−1𝜕β̂𝑝
|β̂= β𝐸[(β̂𝑝−1 − β𝑝−1)(β̂𝑝 − β𝑝)]  
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We will now recall a few definitions that will lead to a nice simplification for the expected 

value. First note that the estimate 𝜂̂ evaluated at β̂ =  β is constant and equal to the true relative 

difference in proportions 𝜂. Thus, the first term in this expansion becomes the expected value of 

𝜂 which evaluates to 𝜂 itself. Also, as conditioned in the delta method, β̂𝑗 , 𝑗 = 1,… , 𝑝, converges 

to a normal distribution with mean β𝑗. This implies that the maximum likelihood estimates β̂𝑗 

are asymptotically unbiased and so, 𝐸(β̂𝑗) = β𝑗 for a large sample size 𝑛. Therefore, we have: 

𝐸(β̂𝑗 − β𝑗) = 𝐸(β̂𝑗) − β𝑗 = 0  

for all 𝑗 = 1,… , 𝑝 as 𝑛 approaches infinity. Also, recall that we may define the variance of a 

variable 𝑌 using its expected value as follows: 

𝑉(𝑌) = 𝐸 [(Y − 𝐸(Y))
2
] 

In addition, the covariance between two variables, 𝑌1 and 𝑌2, is defined, using expectation, by the 

expression:  

𝑐𝑜𝑣(𝑌1, 𝑌2) = 𝐸[(𝑌1 − E(𝑌1))(𝑌2 − E(𝑌2))]  

By the above definitions and the asymptotic unbiasedness of the maximum likelihood estimators 

we have: 

𝐸 [(β̂𝑗 − β𝑗)
2
] = 𝐸 [(β̂𝑗 − 𝐸(β̂𝑗))

2
] = 𝑉(β̂𝑗) 

and 

𝐸[(β̂𝑗 − β𝑗)(β̂𝑘 − β𝑘)] = 𝐸 [(β̂𝑗 − 𝐸(β̂𝑗)) (β̂𝑘 − 𝐸(β̂𝑘))] = 𝑐𝑜𝑣(β̂𝑗 , β̂𝑘) 

for 𝑗, 𝑘 = 1,… , 𝑝, 𝑗 ≠ 𝑘. Combining these results leads to a simplified expression for the 

expected value of the estimate for a relative difference in proportions given by: 

𝐸(𝜂̂(𝑥𝑖)) ≈ 𝜂(𝑥𝑖) +
1

2
∑

𝜕2𝜂̂

𝜕β̂𝑗
2 |β̂= β𝑉(𝑝

𝑗=0 β̂𝑗) + ∑ ∑
𝜕2𝜂̂

𝜕β̂𝑗𝜕β̂𝑘
|β̂= β𝑐𝑜𝑣(β̂𝑗 , β̂𝑘)𝑝

𝑘>𝑗
𝑝−1
𝑗=0       (2.7) 

All that remains is to derive the variance and covariance of the maximum likelihood estimates. 

However, as seen at the end of Section 1.3, we can obtain estimates for these values by taking 

the inverse of the observed information matrix I, derived in the Newton-Raphson algorithm for 

finding the maximum likelihood estimates, and evaluating it at the estimate β̂. Finally, 

substituting the estimates, 𝑉̂(β̂𝑗) and 𝑐𝑜𝑣̂(β̂𝑗 , β̂𝑘), 𝑗, 𝑘 = 1,… , 𝑝, obtained from I−1(β̂) into 

equation (2.7) yields the final expression for the expected value of an estimated relative 
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difference in proportions. More importantly, subtracting 𝜂(𝑥𝑖) from both sides of equation (2.7) 

provides a measure for the bias of the estimate 𝜂̂, as discussed earlier in this section. 

 

Similarly, taking the variance of both sides of the second order Taylor series expansion of 

𝜂̂ gives us an expression for the variance of an estimated relative difference in proportions. 

However, when taking the variance of the right-hand side of the second order expansion, we will 

be left will the sum of the variances of each term plus the sum of the covariance between every 

pair of terms in the expansion. To evaluate this, it would require finding the variance of the 

squared maximum likelihood estimates as well as many other cross covariance terms that we do 

not have estimates for. Therefore, using the result of the delta method which showed that the 

second order terms of the Taylor series expansion are asymptotically insignificant, we will omit 

the second order terms and use a first order Taylor series expansion to derive the variance. 

Ignoring the second partial derivatives in our second order Taylor series expansion of 𝜂̂ provides 

a first order expansion. Then, taking the variance of both sides yields: 

𝑉(𝜂̂(𝑥𝑖)) ≈ 𝑉(𝜂̂(𝑥𝑖)|β̂= β) + [
𝜕𝜂̂

𝜕β̂0
|β̂= β]

2
𝑉(β̂0 − β0) + [

𝜕𝜂̂

𝜕β̂1
|β̂= β]

2
𝑉(β̂1 − β1) + ⋯+

[
𝜕𝜂̂

𝜕β̂𝑝
|β̂= β]

2

𝑉(β̂𝑝 − β𝑝) + 2∑ ∑ (
𝜕𝜂̂

𝜕β̂𝑗
|β̂= β) (

𝜕𝜂̂

𝜕β̂𝑘
|β̂= β) 𝑐𝑜𝑣(𝑝

𝑘>𝑗
𝑝−1
𝑗=0 β̂𝑗 − β𝑗 , β̂𝑘 − β𝑘)  

As previously mentioned, the estimate 𝜂̂ evaluated at β̂ =  β is simply the true relative difference 

in proportions 𝜂. Since this is a constant in our expansion, its variance is zero. Also, using the 

definitions for variance and covariance as well as the asymptotic unbiasedness of the maximum 

likelihood estimators we have: 

𝑉(β̂𝑗 − β𝑗) = 𝐸 [((β̂𝑗 − β𝑗) − 𝐸(β̂𝑗 − β𝑗))
2
] = 𝐸 [(β̂𝑗 − 𝐸(β̂𝑗))

2
] = 𝑉(β̂𝑗) 

and 

𝑐𝑜𝑣(β̂𝑗 − β𝑗 , β̂𝑘 − β𝑘) = 𝐸 [(β̂𝑗 − 𝐸(β̂𝑗))(β̂𝑘 − 𝐸(β̂𝑘))] = 𝑐𝑜𝑣(β̂𝑗 , β̂𝑘) 

for 𝑗, 𝑘 = 1,… , 𝑝. Making these substitutions yields the following expression for the variance of 

the estimated relative difference in proportions: 

𝑉(𝜂̂(𝑥𝑖)) ≈ ∑ [
𝜕𝜂̂

𝜕β̂𝑗
|β̂= β]

2

𝑉(β̂𝑗)
𝑝
𝑗=0 + 2 ∑ ∑ (

𝜕𝜂̂

𝜕β̂𝑗
|β̂= β) (

𝜕𝜂̂

𝜕β̂𝑘
|β̂= β) 𝑐𝑜𝑣(𝑝

𝑘>𝑗
𝑝−1
𝑗=0 β̂𝑗 , β̂𝑘)  (2.8) 

Just as with the expected value, we may estimate the variance and covariance of the maximum 

likelihood estimates using the inverse of observed information matrix from Section 1.3. 
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Therefore, replacing these terms in equation (2.8) with their corresponding estimates 𝑉̂(β̂𝑗) and 

𝑐𝑜𝑣̂(β̂𝑗 , β̂𝑘), 𝑗, 𝑘 = 1,… , 𝑝, obtained from I−1(β̂) yields the final expression for the variance of 

an estimated relative difference in proportions. Finally, we can use this expression for variance 

along with the estimate 𝜂̂ given in equation (2.5) to construct a 95% Wald confidence interval 

that is parallel to equation (2.6). 

 

To illustrate this, let us return to the example in which we want to estimate the relative 

difference between the probability of an individual having lung cancer given they are a smoker 

and the probability of an individual having lung cancer given they are a non-smoker. Given the 

model we derived for this relative difference in expression (2.4), the estimated relative difference 

directly follows from equation (2.5) and is given by: 

𝜂̂(𝑥𝑖2) =
𝑒β̂1 +𝑒β̂0+β̂1+β̂2𝑥𝑖2  

1+ 𝑒β̂0+β̂1+β̂2𝑥𝑖2  
− 1    (2.9) 

where β̂0, β̂1, and β̂2 are the maximum likelihood estimators of β0, β1, and β2 respectively. We 

may also find a 95% confidence interval to estimate the true relative difference in proportions of 

individuals with lung cancer, 𝜂, using the Wald interval given in expression (2.6). To do so, we 

will need to find the variance of the estimate 𝜂̂(𝑥𝑖2) using the result of the delta method. The 

corresponding Taylor series expansion for the estimate of this model is given by: 

𝜂̂(𝑥𝑖2) ≈ 𝜂̂(𝑥𝑖2)|β̂= β +
𝜕𝜂̂

𝜕β̂0
|β̂= β(β̂0 − β0) +

𝜕𝜂̂

𝜕β̂1
|β̂= β(β̂1 − β1) +

𝜕𝜂̂

𝜕β̂2
|β̂= β(β̂2 − β2) +

1

2
[

𝜕2𝜂̂

𝜕β̂0
2 |β̂= β(β̂0 − β0)

2
+

𝜕2𝜂̂

𝜕β̂1
2 |β̂= β(β̂1 − β1)

2
+

𝜕2𝜂̂

𝜕β̂2
2 |β̂= β(β̂2 − β2)

2
] +

𝜕2𝜂̂

𝜕β̂0𝜕β̂1
|β̂= β(β̂0 − β0)(β̂1 − β1) +

𝜕2𝜂̂

𝜕β̂0𝜕β̂2
|β̂= β(β̂0 − β0)(β̂2 − β2) +

𝜕2𝜂̂

𝜕β̂1𝜕β̂2
|β̂= β(β̂1 − β1)(β̂2 − β2)  

Then, using equation (2.7), we can find an expression for the expected value of the estimated 

relative difference between proportions of individuals with lung cancer given their smoking 

status as follows: 

𝐸(𝜂̂(𝑥𝑖2)) ≈ 𝜂(𝑥𝑖2) +
1

2
[

𝜕2𝜂̂

𝜕β̂0
2 |β̂= β𝑉̂(β̂0) +

𝜕2𝜂̂

𝜕β̂1
2 |β̂= β𝑉̂(β̂1) +

𝜕2𝜂̂

𝜕β̂2
2 |β̂= β𝑉̂(β̂2)] +

𝜕2𝜂̂

𝜕β̂0𝜕β̂1
|β̂= β𝑐𝑜𝑣̂(β̂0, β̂1) +

𝜕2𝜂̂

𝜕β̂0𝜕β̂2
|β̂= β𝑐𝑜𝑣̂(β̂0, β̂2) +

𝜕2𝜂̂

𝜕β̂1𝜕β̂2
|β̂= β𝑐𝑜𝑣̂(β̂1, β̂2)  
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where 𝑉̂(β̂𝑗) and 𝑐𝑜𝑣̂(β̂𝑗 , β̂𝑘), 𝑗, 𝑘 = 1,2,3, are the estimates obtained from the inverse of the 

observed information matrix evaluated at β̂. The partial derivatives in the Taylor series 

expansion are well-defined and can be derived as shown in Appendix I. Therefore, evaluating the 

partial derivatives at β̂ =  β yields the following expression for the bias of 𝜂̂: 

𝐸(𝜂̂(𝑥𝑖2)) − 𝜂(𝑥𝑖2)

≈
1

2
[𝜋1(1 − 𝜋1)(1 − 2𝜋1)(1 − 𝑒β1)𝑉̂(β̂0) + (1 − 𝜋1)[𝑒

β1(1 − 𝜋1)

+ 𝜋1] (1 − 2𝜋1)𝑉̂(β̂1) + 𝑥𝑖2
2𝜋1(1 − 𝜋1)(1 − 2𝜋1)(1 − 𝑒β1)𝑉̂(β̂2)]

+ 𝜋1(1 − 𝜋1)[1 − 2𝜋1 − 2𝑒β1(1 − 𝜋1)]𝑐𝑜𝑣̂(β̂0, β̂1)

+ 𝑥𝑖2𝜋1(1 − 𝜋1)(1 − 2𝜋1)(1 − 𝑒β1)𝑐𝑜𝑣̂(β̂0, β̂2)

+ 𝑥𝑖2𝜋1(1 − 𝜋1)[1 − 2𝜋1 − 2𝑒β1(1 − 𝜋1)]𝑐𝑜𝑣̂(β̂1, β̂2) 

Finally, collecting like terms, we may express the bias of the estimated relative difference in the 

probability of an individual having lung cancer as: 

𝐸(𝜂̂(𝑥𝑖2)) − 𝜂(𝑥𝑖2) ≈ 𝜋1(1 − 𝜋1)(1 − 2𝜋1)(1 − 𝑒β1) [
1

2
(𝑉̂(β̂0) + 𝑥𝑖2

2𝑉̂(β̂2)) +

𝑥𝑖2𝑐𝑜𝑣̂(β̂0, β̂2)] +
1

2
(1 − 𝜋1)[𝑒

β1(1 − 𝜋1) + 𝜋1](1 − 2𝜋1)𝑉̂(β̂1) +

𝜋1(1 − 𝜋1)[1 − 2𝜋1 − 2𝑒β1(1 − 𝜋1)[𝑐𝑜𝑣̂(β̂0, β̂1) + 𝑥𝑖2𝑐𝑜𝑣̂(β̂1, β̂2)]  

 

Similarly, we will use a first order Taylor series expansion of 𝜂̂ about β̂ =  β to derive the 

variance of the estimated relative difference in the probability of having lung cancer given 

smoking status. Using equation (2.8) we have the following expression for this variance: 

𝑉(𝜂̂(𝑥𝑖2)) ≈ [
𝜕𝜂̂

𝜕β̂0
|β̂= β]

2
𝑉(β̂0) + [

𝜕𝜂̂

𝜕β̂1
|β̂= β]

2
𝑉(β̂1) + [

𝜕𝜂̂

𝜕β̂2
|β̂= β]

2
𝑉(β̂2) +

2 [(
𝜕𝜂̂

𝜕β̂0
|β̂= β) (

𝜕𝜂̂

𝜕β̂1
|β̂= β) 𝑐𝑜𝑣(β̂0, β̂1) + (

𝜕𝜂̂

𝜕β̂0
|β̂= β) (

𝜕𝜂̂

𝜕β̂2
|β̂= β) 𝑐𝑜𝑣(β̂0, β̂2) +

(
𝜕𝜂̂

𝜕β̂1
|β̂= β) (

𝜕𝜂̂

𝜕β̂2
|β̂= β) 𝑐𝑜𝑣(β̂1, β̂2)]  

where 𝑉̂(β̂𝑗) and 𝑐𝑜𝑣̂(β̂𝑗 , β̂𝑘), 𝑗, 𝑘 = 1,2,3, are the estimates obtained from the inverse of the 

observed information matrix evaluated at β̂. Recall that a first order expansion is valid due to the 

insignificance of the second order terms when assuming a large sample size. Once again, the 

partial derivatives of 𝜂̂ in this expansion are well-defined and evaluating them yields: 
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𝑉(𝜂̂(𝑥𝑖2)) ≈ [𝜋1(1 − 𝜋1)(1 − 𝑒β1 )]
2
𝑉(β̂0) + [𝑒β1(1 − 𝜋1)

2 + 𝜋1(1 − 𝜋1)]
2
𝑉(β̂1) +

[𝑥𝑖2𝜋1(1 − 𝜋1)(1 − 𝑒β1 )]
2
𝑉(β̂2) + 2 [𝜋1(1 − 𝜋1)(1 − 𝑒β1 ) (𝑒β1(1 − 𝜋1)

2 +

𝜋1(1 − 𝜋1)) 𝑐𝑜𝑣(β̂0, β̂1) + 𝑥𝑖2𝜋1
2(1 − 𝜋1)

2(1 − 𝑒β1 )2𝑐𝑜𝑣(β̂0, β̂2) +

(𝑒β1(1 − 𝜋1)
2 + 𝜋1(1 − 𝜋1)) 𝑥𝑖2𝜋1(1 − 𝜋1)(1 − 𝑒β1 )𝑐𝑜𝑣(β̂1, β̂2)]  

Finally, collecting like terms, we may express the variance of the estimated relative difference in 

the probability of having lung cancer as: 

𝑉(𝜂̂(𝑥𝑖2)) ≈ 𝜋1
2(1 − 𝜋1)

2(1 − 𝑒β1 )
2
[𝑉(β̂0) + 𝑥𝑖2 (𝑉(β̂2) + 2𝑐𝑜𝑣(β̂0, β̂2))] +

[𝑒β1(1 − 𝜋1)
2 + 𝜋1(1 − 𝜋1)]

2
𝑉(β̂1) + 2𝜋1(1 − 𝜋1)(1 − 𝑒β1 ) (𝑒β1(1 − 𝜋1)

2 +

𝜋1(1 − 𝜋1)) [𝑐𝑜𝑣(β̂0, β̂1) + 𝑥𝑖2𝑐𝑜𝑣(β̂1, β̂2)]  

Thus, we have the following 95% Wald confidence interval for the true relative difference 

between the proportion of individuals who have lung cancer given they are smokers and the 

proportion of individuals who have lung cancer given they are non-smokers: 

𝜂̂(𝑥𝑖2) ± 1.96 √𝑉𝑎𝑟(𝜂̂(𝑥𝑖2)) 

where 𝑧0.05/2 = 1.96 is the (0.025)𝑡ℎ quantile of the standard normal distribution. 

 

CHAPTER 3: Testing the Model 
 

3.1 Generating Data 
 

The final phase of this study on modelling a relative difference in proportions due to an 

effect of an explanatory variable is to test the model using simulations. Since the probabilities 

that we wish to compare are instances of a “success” for a Bernoulli distributed random response 

variable that can be modeled using multiple logistic regression, we can easily generate samples 

of the response rather than using observational data. In doing so, we can repeatedly estimate a 

relative difference in proportions while controlling the true values of the parameters for the 

model. This will allow us to analyze the effect that the choice of parameters has on the fit of the 

model in terms of the bias, variance, and accuracy of our estimates for the relative difference. 

We will use the lung cancer example that was developed in the previous chapters to carry out the 

simulations and analysis. 
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First, let’s discuss the macro that was created to estimate the relative difference between 

the proportion of individuals who have lung cancer given they are smokers and the proportion of 

individuals who have lung cancer given they are non-smokers. For reference, the complete 

macro is given in Appendix II. To begin, the macro sets column names for the variables and 

quantities that will be generated including two explanatory variables, the indicator 𝑥1 and the 

continuous variable 𝑥2 representing smoking status and age respectively, as well as the response 

variable 𝑌 representing the presence or absence of lung cancer and EtaHat which holds the 

generated estimates for the relative difference. We will denote the number of simulations of the 

estimate 𝜂̂(𝑥𝑖2) by N and the number of observations per simulation by 𝑛. That is, 𝑛 will denote 

the sample size of observed individuals who may or may not have lung cancer. After setting 

values for β0, β1, β2, 𝑛, and the true age value 𝑥𝑖2, the macro proceeds to calculate the true 

relative difference in proportions of individuals with lung cancer using the given parameters and 

the expression 𝜂(𝑥𝑖2) from equation (2.4). We then simulate 𝑛 values for 𝑥1, half of which are 0 

while the remaining 
𝑛

2
 are 1, as well as 𝑛 values for 𝑥2 that are uniformly distributed between 30 

and 70 which yields the observations 𝑥𝑖
′ = (1, 𝑥1, 𝑥2), 𝑖 = 1,… , 𝑛. These observations remain 

the same throughout a single run of the macro, and so they are constant for every sample of the 

response variable that will be generated. To conclude the preliminary portion of the macro, we 

perform a calculation of the true probability of having lung cancer, 𝑃(𝑌 = 1), using the preset 

parameters and the multiple logistic regression model 𝜋𝑖 . The iterative portion of the macro is 

essentially a nested loop which repeatedly generates a sample of 𝑛 observations of the Bernoulli 

distributed response variable 𝑌 and fits the multiple logistic regression model 𝜋𝑖  using the pairs 

(𝑥𝑖 , 𝑌𝑖), 𝑖 = 1,… , 𝑛, to obtain the maximum likelihood estimators β̂ = (β̂0, β̂1, β̂2, … , β̂𝑝). 

Although we allow variation in the sample size 𝑛 for different executions of the macro, the outer 

loop that dictates the estimates for 𝜂 always iterates 200 times so that the large sample 

assumption is upheld. Therefore, we obtain 200 samples of the form (𝑥𝑖 , 𝑌𝑖), 𝑖 = 1, … , 𝑛, and 200 

corresponding estimates for the relative difference in proportions of individuals with lung cancer 

given smoking status. When the nested loop terminates, the outer loop carries out procedures 

such as a goodness of fit test and regression on the parameters of the model to test their 

significance, however, we are not too concerned with these details. In addition, for each sample 
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of size 𝑛 we compute a single estimate for the relative difference between proportions of 

individuals with lung cancer given smoking status, EtaHat, using the model estimate 𝜂̂(𝑥𝑖2) 

given in equation (2.9), the values for the maximum likelihood estimates β̂, and the true value for 

age 𝑥𝑖2. Furthermore, for each estimate we also calculate its variance, obtain a 95% confidence 

interval for the true relative difference in proportions, record whether the confidence interval 

covered the true relative difference 𝜂, and calculate the error of the estimate in terms of its 

distance from the true relative difference. Finally, when the outer loop terminates, we obtain 

values for the estimated bias of 𝜂̂(𝑥𝑖2) and the estimated coverage rate of the confidence 

intervals by taking the average of the 200 values for the error of each estimate and the average of 

the 200 values for the coverage of the confidence intervals, respectively. We also estimate the 

standard deviation of 𝜂̂(𝑥𝑖2) by taking the sample standard deviation of the estimates held in 

EtaHat, and lastly, calculate the mean of the variances of the estimates EtaHat and take the 

square root for comparison to the standard deviation estimate. 

 

We are most interested in analyzing the four values that were estimated before 

termination of the macro – bias of 𝜂̂, standard deviation of 𝜂̂, average √𝑉𝑎𝑟(𝜂̂), and coverage 

rate – and how their values are influenced by varying the preset parameters β0, β1, β2, 𝑛, and 𝑥𝑖2. 

More specifically, we want to investigate how changing the parameters of the true model for a 

relative difference in the proportions of individuals with lung cancer given smoking status will 

affect the accuracy of our estimate and the ability to construct a confidence interval that will 

cover the true relative difference. A summary of 35 executions of the macro using various values 

of β0, β1, β2, 𝑛, and 𝑥𝑖2 is given in the table below: 

 

 

Sim. 

# 

 

N 

 

n 

 

𝛃𝟎 

 

𝛃𝟏 

 

𝛃𝟐 
Age 

(𝒙𝒊𝟐) 

 

𝜼 

 

Estimated 

Bias (𝜼̂) 

 

Sample 

Std. 

Dev. of 𝜼̂ 

 

Average 

of 

√𝑽̂(𝜼̂) 

 

Coverage 

rate 

1 

2 

3 

4 

200 

200 

200 

200 

200 

200 

40 

200 

-1 

-1 

-1 

-1 

0.1 

0.1 

0.1 

0.5 

0.01 

0.01 

0.01 

0.01 

40 

60 

60 

40 

0.0655 

0.0604 

0.0604 

0.3406 

0.0196 

0.0150 

0.0735 

0.0043 

0.1962 

0.1891 

0.5319 

0.2291 

0.20896 

0.1895 

0.6021 

0.2481 

0.965 

0.945 

0.95 

0.945 
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5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

200 

50 

200 

100 

200 

200 

80 

200 

200 

200 

60 

200 

200 

120 

200 

120 

200 

200 

200 

200 

200 

120 

200 

200 

120 

100 

200 

200 

60 

200 

80 

-1 

-1 

-2 

-2 

-2 

-2 

-2 

-2 

-2 

-2 

-2 

-3 

-3 

-3 

-3 

-3 

-3 

-3 

-3 

-3 

-3 

-3 

-3 

-3 

-3 

-3 

-3 

-4 

-4 

-4 

-4 

0.1 

0.1 

0.2 

0.2 

0.5 

0.5 

0.5 

1 

1 

1 

1 

0.5 

0.5 

0.5 

2 

2 

2 

2 

3 

3 

3 

3 

4 

4 

4 

4 

5 

0.1 

0.1 

2 

2 

0.03 

0.03 

0.02 

0.01 

0.01 

0.01 

0.01 

0.02 

0.01 

0.05 

0.05 

0.01 

0.01 

0.01 

0.01 

0.01 

0.05 

0.05 

0.01 

0.02 

0.05 

0.05 

0.01 

0.02 

0.02 

0.02 

0.01 

0.05 

0.05 

0.05 

0.05 

50 

50 

40 

60 

40 

60 

60 

50 

60 

60 

60 

40 

60 

60 

60 

60 

40 

60 

40 

50 

50 

50 

40 

50 

70 

70 

40 

50 

50 

50 

50 

0.0373 

0.0373 

0.1619 

0.1702 

0.4867 

0.4612 

0.4612 

0.8591 

1.0287 

0.2048 

0.2048 

0.5779 

0.5643 

0.5643 

3.8251 

3.8251 

1.7183 

0.7616 

7.659 

5.1329 

1.4478 

1.4478 

10.6026 

6.389 

4.4579 

4.4579 

12.2607 

0.0844 

0.0844 

2.4121 

2.4121 

0.0150 

0.0274 

0.0353 

0.1377 

0.0830 

0.1018 

0.1724 

0.0777 

0.1208 

0.0023 

0.0471 

0.3037 

0.3910 

0.4657 

0.8918 

1.5285 

0.1086 

0.0311 

1.4672 

0.5946 

0.0119 

0.1981 

3.6808 

0.9542 

1.5460 

1.1524 

4.2553 

0.0769 

0.2147 

0.2018 

0.4059 

0.1145 

0.2644 

0.2925 

0.6909 

0.4385 

0.4515 

0.8579 

0.3962 

0.5983 

0.0873 

0.2308 

1.0686 

1.4038 

1.3977 

2.7599 

3.9462 

0.6185 

0.2179 

5.970 

2.1976 

0.3791 

0.6334 

8.567 

2.8627 

6.01138 

4.6547 

16.0715 

0.3445 

0.9283 

0.9309 

1.8258 

0.1168 

0.2595 

0.2985 

0.6842 

0.4679 

0.4681 

0.9454 

0.4038 

0.6024 

0.0862 

0.2334 

1.1936 

1.6312 

1.9438 

3.0913 

5.6212 

0.6284 

0.2129 

7.0215 

2.3071 

0.3653 

0.5773 

9.5922 

2.95295 

6.6394 

6.5748 

20.0371 

0.3701 

1.0291 

0.9469 

1.9908 

0.955 

0.93 

0.93 

0.935 

0.955 

0.97 

0.91 

0.97 

0.93 

0.93 

0.885 

0.905 

0.93 

0.915 

0.885 

0.95 

0.95 

0.95 

0.91 

0.95 

0.91 

0.96 

0.955 

0.93 

0.915 

0.90 

0.94 

0.94 

0.915 

0.94 

0.93 

 

The first column, titled simulation number, simply orders the executions of the macro that were 

performed. Columns two and three hold the number of replications of the estimate 𝜂̂(𝑥𝑖2), 

denoted N, and the sample size of individuals used to obtain each estimate 𝜂̂, denoted 𝑛. The 
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remaining columns hold the choice of parameters, the true relative difference in proportions 𝜂, 

and the quantities that were estimated in each run of the macro. Thus, the columns that will be 

most interesting are the last four columns which hold the estimated values. As mentioned in 

Section 2.2, we are aiming for our estimate of the relative difference in proportions to have a 

small bias as this would suggest that we can expect the estimate to be close to the true relative 

difference 𝜂. In addition, taking the average of the root of the variance of each estimate as shown 

in the second column from the right should approximate the standard error of 𝜂̂. Thus, we can 

also compare this column to the values for the sample standard deviation of 𝜂̂ and expect them to 

be very similar. Most importantly, since we constructed 95% confidence intervals using each 

estimate for the relative difference in proportions, we can expect the coverage rate of the 

confidence intervals throughout each execution of the macro to be approximately 95%. This is 

the measure that will provide the most insight on the performance of the estimate of a relative 

difference in proportions. That is, when the desired coverage rate is not obtained it is likely due 

to the choice of parameters, such as the sample size 𝑛, or is a result of unsatisfactory values for 

the bias or variance of the estimate. Therefore, when combined, these three properties will 

underline the effectiveness of the estimate for a relative difference between proportions of 

individuals with lung cancer. 

 

3.2 Analysis 
 

Looking at the table containing simulations that were executed using the macro given in 

Appendix II, we can assess the patterns that arise when altering the parameters in the model for a 

relative difference in proportions, 𝜂, by observing the estimates that the model produces as well 

as the resulting bias, variance, and coverage obtained from those estimates. When choosing 

parameters to test, I aimed to choose values for β0, β1, and β2 that would yield reasonable 

probabilities of an individual having lung cancer given their smoking status based on the 

multiple logistic regression model 𝜋𝑖 . I found it most reasonable to maintain the value for β0 to 

be relatively small and negative in effort to counterbalance two positive values for β1 and β2. 

Otherwise, the probability of having lung cancer for smokers, 𝜋1, and the probability of having 

lung cancer for non-smokers, 𝜋0, tend to be unrealistically large. At a glance, the pattern for 

choosing which parameters to test will be quite evident. 
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As previously mentioned, the most intuitive estimate that we obtained from the macro is 

the coverage rate of the confidence intervals in each simulation. This is because the coverage rate 

is a measure of how well the relative difference in proportions can be estimated. That is, if we 

obtain a coverage rate of 95% then this implies that we successfully constructed a confidence 

interval that contained the true relative difference in proportions using 95% of the estimates 

made for 𝜂. However, since we obtain this estimate of the coverage rate through Monte Carlo 

simulation, successive runs of the same simulation will exhibit sampling variability and so, the 

estimate is subject to some degree of error. In fact, this error is known as the Monte Carlo error. 

If we let 𝑝 denote a target quantity of interest and 𝑝𝑛 denote the Monte Carlo estimate of 𝑝 from 

a simulation with 𝑛 replications, then the Monte Carlo error is defined as the standard deviation 

of 𝑝𝑛 given by: 

MCE(𝑝
𝑛
) = √𝑉𝑎𝑟(𝑝

𝑛
)  

Indeed, the target coverage rate taken across all repetitions of the estimated relative difference in 

proportions is 𝑝 = 95% which implies a Monte Carlo error of: 

√
𝑝(1−𝑝)

𝑁
  

Furthermore, since our confidence intervals depend on quatiles of the standard normal 

distribution, we may increase this error by a factor of 3 since: 

𝑃(−3 ≤ 𝑍 ≤ 3) ≈ 1 

where 𝑍 follows a standard normal distribution. Therefore, the Monte Carlo error for the 

simulations which estimate the coverage rate becomes: 

3√
𝑝(1−𝑝)

𝑁
= 3√

0.95(0.05)

200
≈ 0.046  

Thus, we will begin by analyzing the simulations which yield a coverage rate that is not within 

the range 0.95 ± 0.046. 

 

 Simulations number 15 and 30 both yield a coverage rate that is below what can be 

credited to Monte Carlo error. Naturally, there may be some other aspect of the simulation that 

did not permit the estimates to construct appropriate confidence intervals for the true relative 

difference in proportions of individuals with lung cancer. If we observe the simulations that 
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immediately precede these, specifically simulations 14 and 29, the parameters chosen for these 

simulations only differ from 15 and 30, respectively, in terms of the sample size 𝑛. In fact, the 

sample size is increased in both simulations 14 and 29 and the resulting coverage rates of these 

simulations are within an acceptable distance from 0.95. Considering that all other simulations 

had reasonable coverage and the bias and variance of simulations 15 and 30 appear to be regular, 

their downfall is most likely the small sample size of individuals that was used to fit the model. 

Intuitively, a small sample size will decrease the accuracy of the estimates produced. Since these 

estimates are used to construct the confidence intervals which the coverage rate depends on, an 

inaccurate estimate will likely construct a confidence interval that is shifted away from the true 

relative difference in proportions and will not cover 𝜂, consequently skewing the coverage rate. 

To see this, we may find the correlation between the coverage rate and the parameters that we 

control in the macro, β0, β1, β2, 𝑛, and 𝑥𝑖2, using the values in columns 3-7 and column 12 from 

the table of simulations. Doing so yields the following chart: 

 

where C1, C2, C3, C4, C5, and C6 represent β0, β1, β2, 𝑥𝑖2, 𝑛, and coverage rate, respectively. 

The final row of the chart provides the p-value to test the significance of the correlation between 

coverage rate and the other five parameters. Although none of the parameters have a significant 

correlation with respect to the coverage rate at any commonly used significance level 𝛼, the most 

noteworthy p-value for a correlation with coverage rate is 0.062, obtained from C5 which 

represents 𝑛. Therefore, we can conclude that as the sample size of individuals increases, the 

coverage rate is likely to improve as seen in the simulations 15 to 14 and 30 to 29. This is also 
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the case for many of the other simulations that were performed twice and only differed in the 

value for 𝑛 such as simulations 10 and 11 as well as simulations 32 and 33. 

 

 It is also interesting to note that as the value for β0 grows further from zero in the 

negative direction, keeping all other parameters constant, the probability of having lung cancer 

given an individual is a non-smoker, 𝜋0, decreases. Therefore, the numerator of 𝜂 will increase 

while the denominator of 𝜂 decreases and so, as β0 grows further from zero in the negative 

direction, the relative difference in proportions, 𝜂, increases. This can be seen through the 

simulations 4, 9, and 16, where β1, β2, 𝑥𝑖2, and 𝑛 remain constant while β0 strays away from 0. 

Another result of the decreasing behaviour of 𝜋0 as β0 becomes smaller is that it becomes 

difficult to fit the multiple logistic regression model for non-smokers when the sample size of 

individuals, 𝑛, is small. That is, when there are only a few observations in the sample being fit to 

the model 𝜋𝑖  and the probability of having lung cancer for non-smokers is very small, it becomes 

unlikely to generate an observation where the individual is a non-smoker and has lung cancer. In 

fact, all non-smoking individuals in the sample may not have lung cancer and this lack of 

variation in the observations will not allow the multiple logistic regression model to be fit. 

Indeed, this occurred may times when running simulations where the value for β0 was relatively 

far from zero and the sample size 𝑛 was small. All observed non-smokers did not have lung 

cancer and the coefficients of 𝜋𝑖  could not be estimated, causing the macro to terminate. If we 

look at any of the small sample simulations in the table which had a value β0 ≤ −2, the 

corresponding sample size 𝑛 is the smallest sample size for which the macro would fully 

execute. For instance, simulations 18 and 20 were both run using a sample size of 50, 60, 80, and 

100, none of which were executed without an error in fitting the regression model. This influence 

of β0 is an indication that this coefficient has some significance to the model. Indeed, when 

omitting all simulations with a sample size 𝑛 < 200 and reevaluating the correlation between 

coverage rate and the parameters β0, β1, β2, and 𝑥𝑖2 we have the following chart: 
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where C1, C2, C3, C4, and C5 represent β0, β1, β2, 𝑥𝑖2, and coverage rate, respectively. Again, 

the final row of this chart provides the p-value to test the significance of the correlation between 

coverage rate and the other four parameters. Although none of the parameters have a significant 

correlation with respect to coverage rate at any commonly used significance level 𝛼, the p-value 

for the correlation between C1 and C5, representing β0 and the coverage rate, is 0.072 which is 

much smaller than that of any other parameter and indicates that the greatest effect on coverage 

rate is from β0. Therefore, given a larger number of simulations with a constant, large sample of 

observations, 𝑛, it could be possible to estimate the coverage rate of the confidence intervals for 

a relative difference in proportions of individuals with lung cancer solely using the parameter β0. 

That is, assuming a constant sample size, generating additional large sample simulations could 

improve the significance of the p-value for the correlation between β0 and the coverage rate 

which would suggest performing a simple linear regression with the response variable as the 

coverage rate and a single explanatory variable β0. This would allow us to predict the coverage 

of the confidence intervals using a single parameter.  

 

 In summary, it appears that the model for the relative difference between the probability 

of having lung cancer given an individual is a smoker and the probability of having lung cancer 

given an individual is a non-smoker performs as expected. When the simulations obey the large 

sample requirements of Monte Carlo simulation and the central limit theorem, the bias of the 

estimates produced is relatively small, the two estimates for the standard deviation of 𝜂̂ are 

similar, and the desired coverage rate of the confidence intervals is achieved. However, the 



Model-Based Estimation for a Relative Difference in Proportions 

 

33 

macro is limited in its estimation of the relative difference in proportions since we cannot expect 

as efficient of a performance when using a small sample of individuals. A small sample size 

inhibits the ability to obtain estimates for 𝜂 since the lack of variation with certain parameters 

does not allow the multiple logistic regression model to be fit and so, the parameter estimates for 

𝜂 cannot be found. In addition, when the parameters are successfully estimated for a small 

sample size it is more likely that the resulting confidence interval does not cover the true relative 

difference in proportions. Thus, taking a large sample will yield the desired results as anticipated. 

Furthermore, having a large and constant sample size provides the possibility of estimating the 

mean coverage of the confidence intervals using far less parameters than required to fit a 

multiple logistic regression model. 
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Conclusion 

 

 The goal of this project was to illustrate how to model and estimate a relative difference 

in proportions using a multiple logistic regression model. In doing so, we explored simple 

logistic regression and saw the benefits of using such a model to represent the relationship 

between a dichotomous response variable and an appropriate explanatory variable. The 

introductory chapter also demonstrated how to fit the simple logistic regression model to find the 

maximum likelihood estimates required to estimate the probability of a success for the response 

variable. Furthermore, the attractiveness of the simple logistic regression model transferred to the 

multivariate case in which we used parallel techniques to model and estimate the probability of a 

success for a dichotomous response variable when p independent explanatory variables are 

considered. This multiple logistic regression model was the building block for the model of a 

relative difference in proportions. By representing the factor which may contribute to a 

difference in proportions as an explanatory variable in the multiple logistic regression model, 

𝜋𝑖 , we were able to build a model for a relative difference in proportions that depends on the 

unknown parameters of 𝜋𝑖 . Thus, estimating the model for a relative difference in proportions 

becomes arbitrary once it is known how to fit the multiple logistic regression model and find the 

maximum likelihood estimates for its unknown parameters. The complexity of the expression for 

our estimate posed a challenge when finding its bias and constructing appropriate confidence 

intervals. However, linearizing the estimate for a relative difference in proportions using the 

results of the delta method made finding the expected value and variance of the estimate quite 

simple, yielding the desired expressions for bias and a 95% Wald confidence interval.  

 

 Throughout the project, the ideas that were developed were demonstrated by an example 

to estimate the relative difference between proportions of individuals with lung cancer given they 

are smokers and the proportion of individuals with lung cancer given they are non-smokers. The 

corresponding model, estimate, bias, and confidence interval for this example were obtained 

using the methods discussed in each chapter. The results were used to perform Minitab 

simulations to test the limits of the model. By generating data for hypothetical individuals that 

may or may not have lung cancer given their age and smoking status, the techniques developed 

throughout the project were used to find estimates for a relative difference in having lung cancer 
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due to smoking. As anticipated, the model behaves well for large sample sizes, yielding 

estimates with a small bias and approximately a 95% coverage rate. However, smaller sample 

sizes proved to be far less efficient and less informative. Nevertheless, the goal to estimate a 

relative difference in proportions was accomplished and the ideas can be applied to many 

situations in which the effect of a set of independent explanatory variables on the presence of a 

response variable is of interest. 
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Appendix I 

 

To evaluate the Taylor series expansion of 𝜂̂(𝑥𝑖2), we must compute the following partial 

derivatives: 
𝜕𝜂̂(𝑥𝑖2)

𝜕β̂0
, 

𝜕𝜂̂(𝑥𝑖2)

𝜕β̂1
, 

𝜕𝜂̂(𝑥𝑖2)

𝜕β̂2
, 

𝜕2𝜂̂(𝑥𝑖2)

𝜕β̂0
2 , 

𝜕2𝜂̂(𝑥𝑖2)

𝜕β̂1
2 , 

𝜕2𝜂̂(𝑥𝑖2)

𝜕β̂2
2 , 

𝜕2𝜂̂(𝑥𝑖2)

𝜕β̂0𝜕β̂1
, 
𝜕2𝜂̂(𝑥𝑖2)

𝜕β̂0𝜕β̂2
, 
𝜕2𝜂̂(𝑥𝑖2)

𝜕β̂1𝜕β̂2
 

First, let 𝑓(β̂) = β̂0 + β̂1 + β̂2𝑥𝑖2. The following expressions will be useful for computation: 

1) 𝜂̂(𝑥𝑖2) =
𝑒β̂1 +𝑒𝑓(β̂)  

1+ 𝑒𝑓(β̂)  
− 1 =

𝑒β̂1 

1+ 𝑒𝑓(β̂)  
+

𝑒𝑓(β̂)  

1+ 𝑒𝑓(β̂)
− 1 

2) 
𝑒β̂1 

1+ 𝑒𝑓(β̂)  
= 𝑒β̂1 (1 + 𝑒𝑓(β̂)  )

−1
    

 ⟹  𝜕 (
𝑒β̂1 

1+ 𝑒𝑓(β̂)  
)

1

𝜕β̂0
= −𝑒β̂1 (1 + 𝑒𝑓(β̂)  )−2𝑒𝑓(β̂)    

3) 1 − 𝜋1(𝑥𝑖2) = 1 −
𝑒𝑓(β̂)  

1+ 𝑒𝑓(β̂)
=

1+𝑒𝑓(β̂) –𝑒𝑓(β̂) 

1+ 𝑒𝑓(β̂)
=

1

1+ 𝑒𝑓(β̂)
 

 ⟹ 𝜋1(𝑥𝑖2)[1 − 𝜋1(𝑥𝑖2)] =
𝑒𝑓(β̂)  

[1+ 𝑒𝑓(β̂)]2
  

Returning to the partial derivatives: 

𝜕𝜂̂(𝑥𝑖2)

𝜕β̂0
=

𝜕

𝜕β̂0
(

𝑒β̂1 

1+ 𝑒𝑓(β̂)  
+

𝑒𝑓(β̂)

1+ 𝑒𝑓(β̂)
− 1)  

=
𝑒𝑓(β̂)(1+𝑒𝑓(β̂))−𝑒𝑓(β̂) 𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2 −

𝑒 β̂1 𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2   

=
𝑒𝑓(β̂) [(1+𝑒𝑓(β̂)  )−𝑒𝑓(β̂)]

[1+ 𝑒𝑓(β̂)]
2 −

𝑒 β̂1 𝑒𝑓(β̂)  

[1+ 𝑒𝑓(β̂)]
2  

= (1 − 𝑒β̂1)
𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2  

= 𝜋1(1 − 𝜋1)(1 − 𝑒 β̂1 )  

 

𝜕𝜂̂(𝑥𝑖2)

𝜕β̂1
=

𝜕

𝜕β̂1
(

𝑒β̂1+𝑒𝑓(β̂)

1+ 𝑒𝑓(β̂)
− 1)  

=
(𝑒 β̂1+𝑒𝑓(β̂))(1+𝑒𝑓(β̂))−(𝑒β̂1+𝑒𝑓(β̂))𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2    

=
𝑒β̂1+𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2  

= 𝑒β̂1(1 − 𝜋1)
2 + 𝜋1(1 − 𝜋1)  
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𝜕𝜂̂(𝑥𝑖2)

𝜕β̂2
=

𝜕

𝜕β̂2
(

𝑒β̂1+𝑒𝑓(β̂)

1+ 𝑒𝑓(β̂)
− 1)  

=
𝑥𝑖2𝑒𝑓(β̂)(1+ 𝑒𝑓(β̂))−(𝑒β̂1+𝑒𝑓(β̂))𝑥𝑖2𝑒

𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2   

= 𝑥𝑖2(1 − 𝑒β̂1)
𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2  

= 𝑥𝑖2𝜋1(1 − 𝜋1)(1 − 𝑒β̂1 ) 

 

𝜕2𝜂̂(𝑥𝑖2)

𝜕β̂0
2 =

𝜕

𝜕β̂0
((1 − 𝑒 β̂1)

𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2)  

= (1 − 𝑒β̂1)
𝑒𝑓(β̂)[1+ 𝑒𝑓(β̂)]

2
−2𝑒𝑓(β̂)[1+ 𝑒𝑓(β̂)]𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
4   

= (1 − 𝑒β̂1)
𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2 (1 − 2

𝑒𝑓(β̂)

1+ 𝑒𝑓(β̂)
)  

= 𝜋1(1 − 𝜋1)(1 − 2𝜋1)(1 − 𝑒β̂1 ) 

 

𝜕2𝜂̂(𝑥𝑖2)

𝜕β̂1
2 =

𝜕

𝜕β̂1
(

𝑒β̂1+𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2)  

=
(𝑒β̂1+𝑒𝑓(β̂))[1+ 𝑒𝑓(β̂)]

2
−2(𝑒β̂1+𝑒𝑓(β̂))(1+ 𝑒𝑓(β̂))𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
4   

=
𝑒β̂1+𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2 (1 − 2

𝑒𝑓(β̂)

1+ 𝑒𝑓(β̂)
)  

= (1 − 𝜋1)[𝑒
β̂1(1 − 𝜋1) + 𝜋1] (1 − 2𝜋1)  

 

𝜕2𝜂̂(𝑥𝑖2)

𝜕β̂2
2 =

𝜕

𝜕β̂2
(𝑥𝑖2(1 − 𝑒β̂1)

𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2)  

= 𝑥𝑖2(1 − 𝑒β̂1)
𝑥𝑖2𝑒𝑓(β̂)[1+ 𝑒𝑓(β̂)]

2
−2𝑒𝑓(β̂)(1+ 𝑒𝑓(β̂))𝑥𝑖2𝑒

𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
4   

= 𝑥𝑖2
2(1 − 𝑒β̂1)

𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2 (1 − 2

𝑒𝑓(β̂)

1+ 𝑒𝑓(β̂)
)  

= 𝑥𝑖2
2𝜋1(1 − 𝜋1)(1 − 2𝜋1)(1 − 𝑒β̂1 ) 
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𝜕𝜂̂(𝑥𝑖2)

𝜕β̂0𝜕β̂1
=

𝜕

𝜕β̂0
(

𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2 +

𝑒β̂1

[1+ 𝑒𝑓(β̂)]
2)  

=
𝑒𝑓(β̂)[1+ 𝑒𝑓(β̂)]

2
−2𝑒𝑓(β̂)(1+ 𝑒𝑓(β̂))𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
4 − 2

𝑒β̂1𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
3  

=
𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2 (1 − 2

𝑒𝑓(β̂)

1+ 𝑒𝑓(β̂)
− 2

𝑒 β̂1

1+ 𝑒𝑓(β̂)
)  

= 𝜋1(1 − 𝜋1)[1 − 2𝜋1 − 2𝑒β̂1(1 − 𝜋1)]  

 

𝜕𝜂̂(𝑥𝑖2)

𝜕β̂0𝜕β̂2
=

𝜕

𝜕β̂0
(𝑥𝑖2(1 − 𝑒 β̂1)

𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2)  

= 𝑥𝑖2(1 − 𝑒β̂1)
𝑒𝑓(β̂)[1+ 𝑒𝑓(β̂)]

2
−2𝑒𝑓(β̂)(1+ 𝑒𝑓(β̂))𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
4   

= 𝑥𝑖2(1 − 𝑒β̂1)
𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2 (1 − 2

𝑒𝑓(β̂)

1+ 𝑒𝑓(β̂)
)  

= 𝑥𝑖2𝜋1(1 − 𝜋1)(1 − 2𝜋1)(1 − 𝑒β̂1)  

 

𝜕𝜂̂(𝑥𝑖2)

𝜕β̂1𝜕β̂2
=

𝜕

𝜕β̂1
(𝑥𝑖2

𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2 (1 − 𝑒β̂1))  

= 𝑥𝑖2

𝑒𝑓(β̂)[1+ 𝑒𝑓(β̂)]
2
−2𝑒𝑓(β̂)(1+ 𝑒𝑓(β̂))𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
4 (1 − 𝑒 β̂1) −

𝑒𝑓(β̂)𝑒β̂1

[1+ 𝑒𝑓(β̂)]
2  

= 𝑥𝑖2
𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2 [(1 − 2

𝑒𝑓(β̂)

1+ 𝑒𝑓(β̂)
)(1 − 𝑒 β̂1) − 𝑒β̂1]  

= 𝑥𝑖2
𝑒𝑓(β̂)

[1+ 𝑒𝑓(β̂)]
2 [1 − 2

𝑒𝑓(β̂)

1+ 𝑒𝑓(β̂)
− 2

𝑒𝑓(β̂)𝑒β̂1

1+ 𝑒𝑓(β̂)
− 2𝑒β̂1]  

= 𝑥𝑖2𝜋1(1 − 𝜋1)[1 − 2𝜋1 − 2𝑒β̂1(1 − 𝜋1)]  

 

Evaluating each derivative at β̂ =  β will yield the desired values for the second order Taylor 

series expansion. 
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Appendix II 

 

The macro coded for Minitab to simulate the probability of having lung cancer for smokers and 

non-smokers and to estimate the relative difference between these probabilities is given below: 

 

gmacro 

honours 

name c1 "x1" 

name c2 "x2" 

name c4 "Y" 

name c5 "EtaHat" 

name c6 "Var(EtaHat)" 

name c7 "Lower" 

name c8 "Upper" 

name c9 "Cover" 

name c10 "Error" 

### k1 is the value of Beta_0 

let k1=-3.0 

let k2=0.5 

let k3=0.01 

let k4=100 

let k7=2*k4 

let k8=40 

let k9=(exp(k2)-1)/(1+exp(k1+k2+k3*k8)) 

Set c1 

1( 0 : 1 / 1 )k4 

End. 

Random k7 c2; 

Uniform 30 70. 

Let c2 = ROUND(c2,0) 

let c3=exp(k1+k2*c1+k3*c2)/(1+exp(k1+k2*c1+k3*c2)) 

do k20=1:200 

do k6=1:k7 

let k5=c3(k6) 

random 1 c50; 

bernoulli k5. 

let c4(k6)=c50(1) 

enddo 

erase c50 

name C11 "COEF" M1 "XPWX". 

Gzlm; 

Nodefault; 

REvent 1; 

Response C4; 
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Continuous C1 C2; 

Terms C1 C2; 

Constant; 

Binomial; 

Logit; 

TOdds; 

Increment 1 1; 

Unstandardized; 

Tmethod; 

Trinfo; 

Tdeviance; 

Tsummary; 

Tcoefficients; 

Tequation; 

Tgoodness; 

TDiagnostics 0; 

Coefficients 'COEF'; 

Xpwxinverse 'XPWX'. 

copy m1 c12-c14 

let k10=exp(c11(2))-1 

let k11=exp(c11(1)+c11(2)+c11(3)*k8) 

let k12=1+k11 

let k14=k11/k12 

let c5(k20)=k10/k12 

let k15=-k10*k14*(1-k14) 

let k16=(exp(c11(2))*(1-k14)**2)+k14*(1-k14) 

let k17=-k8*k10*k14*(1-k14) 

let k18=k15*k15*c12(1)+k16*k16*c13(2)+k17*k17*c14(3) 

let k19=2*(k15*k16*c12(2)+k15*k17*c12(3)+k16*k17*c13(3)) 

let c6(k20)=k18+k19 

let c7(k20)=c5(k20)-1.96*sqrt(c6(k20)) 

let c8(k20)=c5(k20)+1.96*sqrt(c6(k20)) 

let c9(k20)=(k9 ge c7(k20) and k9 le c8(k20)) 

let c10(k20)=c5(k20)-k9 

erase c11-c14 

enddo 

let k21=stde(c5) 

let k22=mean(c6) 

let k23=sqrt(k22) 

let k24=mean(c10) 

let k25=mean(c9) 

print k9 k24 k21 k23 k25 

endmacro 
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