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Abstract 

 

This paper will explore the categorical logistic relationship between quantifiable 

independent variables against a categorical dependent Bernoulli random variable in an insurance 

claim dataset.  In particular, this paper studies independent variables such as exposure, vehicle 

type, vehicle age, gender, geographic area, and driver age, as well as a binary dependent 

Bernoulli random variable of whether or not a given person made a car insurance claim.  Using 

logistic regression, it will be determined which of the above variables have a significant effect in 

determining the probability of a given claimant making a claim. Additionally, it will explore 

relationships between independent variables, determined by adding an interaction term to the 

model.   
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Chapter 1- Logistic Regression 

 
1.1 Introduction to Logistic Regression  

 As with any statistic model-building technique, logistic regression aims to find the most 

fitting model to describe or predict the relationships between a dependent variable and one or 

more independent variables.  Logistic regression, however, is more suitable for datasets whose 

dependent variable is binary and independent variable(s) are categorical.  Producing scatterplots 

of data set with binary response variables will look similar to the following: 

 

It is clear to see that from the figure 1.1.1, a linear regression model would not be 

appropriate as the model does not follow a linear trend.  As such, logistic regression is a common 

and useful statistical technique to fit appropriate models to binary response variables.   

The scatterplot produced in figure 1.1.1 above represents a single, continuous, and 

independent variable; exposure (from car insurance data, this example is explored further in 

chapter 3), plotted against a binary dependent variable; insurance claims.  Here, a simple linear 

(1.1.1) 
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model cannot accurately predict the probability that a given exposure value will have a claim 

value of 0 or a claim value of 1, whereas simple logistic regression model will be able to predict 

these probabilities with more certainty.   

 Comparable to linear regression, there can be one or more independent variables, so 

logistic regression splits into two models; simple logistic regression and multiple logistic 

regression, which will be discussed in sections 1.2 and 1.3, respectively.  Beginning with an 

understanding of simple logistic regression is essential to set the foundation to further build upon 

in multiple logistic regression.   

 

1.2 Simple Logistic Regression  

  Simple logistic regression is generally an appropriate model to use when simple linear 

regression does not fit under the above conditions, since logistic regression shares many ideal 

characteristics with linear regression, in the sense that the logistic regression model is linear 

within its parameters and may range over all the real numbers depending on its domain.  These 

ideal characteristics simplify the logistic model, making it easier to work with and fit in real-

world applications.   

 Since logistic regression models fit best when the dependent variable is binary, it is 

important to recognize the significance of the distribution of the dependent variable.  A binary 

dependent variable 𝑌 follows a Bernoulli distribution with parameter 𝜋 with probability of 

success, 𝑃(𝑌 = 1) = 	𝜋	, and probability of failure, 𝑃(𝑌 = 0) = (1 − 𝜋).  Thus, the probability 

density function of 𝑌 is  

𝑓(𝑦) = 	𝜋!	(1 − 𝜋)"#! 
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We can assume that for 𝑖 = 1,… , 𝑛, where n is the number of independent observations, then the 

𝑌$’s are independent with joint probability density function 

𝑓(𝑦", 𝑦%, …	 , 𝑦&) = 	1𝑓(𝑦$)
&

$'"

 

																																																					= 	1𝜋$!! 	(1 − 𝜋$)"#!!
&

$'"

 

Where 

o 𝜋$ 	𝑖𝑠	𝑡ℎ𝑒	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟	𝑓𝑜𝑟	𝑌$ , 𝑖 = 1,… , 𝑛;   

o 𝜋$ =
("#$"%&!

")	("#$"%&!
; and  

o 𝛽+, 𝛽"	𝑎𝑟𝑒	𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑢𝑠𝑖𝑛𝑔	𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	𝑚𝑒𝑡ℎ𝑜𝑑	 

 

As noted above, 𝛽+	and 𝛽" are estimated using the maximum likelihood method.  Whereas in 

simple linear regression 𝛽+	and 𝛽" are estimated using the least squares method.  However, the 

least squares estimates for 𝛽+	and 𝛽"  do not share the ideal properties under logistic regression.  

As such, the maximum likelihood method provides more accurate estimations of 𝛽+	and 𝛽" in 

that the estimates are more appropriate in applications of binary data.  To use the maximum 

likelihood method to produce values for 𝛽+	and 𝛽", one tries to maximize the likelihood function 

for values 𝛽+	and 𝛽".  First the natural logarithm of equation 1.2.1 is applied to both sides to 

produce:  

lnE	𝑓(𝑦", 𝑦%, …	 , 𝑦&)F = lnG1𝜋$!! 	(1 − 𝜋$)"#!!
&

$'"

H 

																																						= Iln	(𝜋$!! 	(1 − 𝜋$)"#!!
&

$'"

) 

																																																																= I𝑦$ ln(𝜋$) +	I(1 − 𝑦$)	ln	(1 −
&

$'"

&

$'"

𝜋$) 

(1.2.1) 

(1.2.2) 
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Next, equation 1.2.2 is then derived with respect to 𝛽+, and then with respect to 𝛽", producing the 

following 2 equations (note the substitution of 𝜋$ in the second line as defined above), called the 

likelihood equations:   

𝜕(ln(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))
𝜕(𝛽+)

= 	
𝜕(∑ 𝑦$ ln(𝜋$) +	∑ (1 − 𝑦$)	ln	(1 −&

$'"
&
$'" 𝜋$))

𝜕(𝛽+)
 

																																																																					
𝜕[(∑ 𝑦! ln )

𝑒"!#""$#
1 +	𝑒"!#""$#-) + (∑ (1 − 𝑦!)	ln	(1 − )

𝑒"!#""$#
1 +	𝑒"!#""$#-))]

%
!&'

%
!&'

𝜕(𝛽()
 

																																																																						
𝜕(∑ 𝑦! ln )

𝑒"!#""$#
1 +	𝑒"!#""$#-)

%
!&'

𝜕(𝛽()
+	
𝜕(∑ (1 − 𝑦!)	ln	(1 − )

𝑒"!#""$#
1 +	𝑒"!#""$#-))

%
!&'

𝜕(𝛽()
 

																																																																						
∑ 𝑦!𝜕(ln )

𝑒"!#""$#
1 +	𝑒"!#""$#-)

%
!&'

𝜕(𝛽()
+	
∑ (1 − 𝑦!)𝜕	(ln	(1 − )

𝑒"!#""$#
1 +	𝑒"!#""$#-))

%
!&'

𝜕(𝛽()
 

																																																																						2𝑦!

%

!&'

	3
𝜕(ln ) 𝑒"!#""$#

1 +	𝑒"!#""$#-)

𝜕(𝛽()
4 +	2(1 − 𝑦!)

%

!&'

	3
𝜕	(ln	(1 − ) 𝑒"!#""$#

1 +	𝑒"!#""$#-))

𝜕(𝛽()
4 

																																																																						2𝑦! )
1

1 +	𝑒"!#""$#
-

%

!&'

−	2(1 − 𝑦!) 5
𝑒"!#""$#

1 +	𝑒"!#""$#
6

%

!&'

 

																																																																						2𝑦!(1 −𝜋𝑖)
%

!&'

−	2(1 − 𝑦!)(𝜋𝑖)
%

!&'

 

																																																																						2𝑦! − 𝑦!𝜋𝑖−
%

!&'

𝜋𝑖+ 𝑦!𝜋𝑖 

																																																																						2𝑦!

%

!&'

−	2𝜋𝑖
%

!&'

	 

 

𝜕(ln(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))
𝜕(𝛽")

= 	
𝜕(∑ 𝑦$ ln(𝜋$) +	∑ (1 − 𝑦$)	ln	(1 −&

$'"
&
$'" 𝜋$))

𝜕(𝛽")
 

																																																																						2𝑦!

%

!&'

	3
𝜕(ln ) 𝑒"!#""$#

1 +	𝑒"!#""$#-)

𝜕(𝛽')
4 +	2(1 − 𝑦!)

%

!&'

	3
𝜕	(ln	(1 − ) 𝑒"!#""$#

1 +	𝑒"!#""$#-))

𝜕(𝛽')
4 

																																																																						2𝑦! 7
𝑥!

1 +	𝑒"!#""$#
9

%

!&'

−	2(1 − 𝑦!) 5
𝑒"!#""$#𝑥!
1 +	𝑒"!#""$#

6
%

!&'

 

																																																																						2𝑦!(𝑥!)(1 −𝜋𝑖)
%

!&'

−	2(1 − 𝑦!)(𝑥!)(𝜋𝑖)
%

!&'

 

																																																															"𝑦'𝑥' − 𝑦'𝑥'𝜋' −
(

')*

𝜋'𝑥' + 𝑦'𝑥'𝜋' 

; 𝑎𝑛𝑑 

= 

= 

= 

= 

= 

= 

= 

= 

(1.2.3) 

= 

= 

= 

= 
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																																																															"𝑦'𝑥'

(

')*

−	"𝜋'𝑥'

(

')*

	 

 

Now all that remains is to set equations 1.2.3 and 1.2.4 equal to zero to solve for the 

unknown values of 𝛽+	and 𝛽".  Solving for the values 𝛽+	and 𝛽"requires an iterative procedure 

that is difficult and time consuming to do by hand.  One common method included in most 

statistical software to calculate the values of 𝛽+	and 𝛽" is the Newton Raphson method.   

 

 The Newton Raphson method uses the following equations: 

I𝑦$

&

$'"

−	I𝜋$

&

$'"

= 0	; 𝑎𝑛𝑑	 

I𝑦$𝑥$

&

$'"

−	I𝜋$𝑥$

&

$'"

= 0																		 

to define the vector 𝒒, where 𝒒- = (∑ 𝑦$&
$'" −	∑ 𝜋$&

$'" = 0	, ∑ 𝑦$𝑥$&
$'" −	∑ 𝜋$𝑥$&

$'" = 0	).  This 

allows for the formation of the Hessian matrix, H, as defined below: 

𝐻 =	

⎣
⎢
⎢
⎢
⎡𝜕

%(ln(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))
𝜕𝛽+%

𝜕%(ln(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))	
𝜕𝛽+𝜕𝛽"

𝜕%(ln(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))	
𝜕𝛽"𝜕𝛽+

𝜕%(ln(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))	
𝜕𝛽"% ⎦

⎥
⎥
⎥
⎤
 

=	

⎣
⎢
⎢
⎢
⎡𝜕(

∑ 𝑦𝑖
𝑛
𝑖=1 −	∑ 𝜋$𝑛

𝑖=1 	)

𝜕𝛽+
𝜕(∑ 𝑦𝑖𝑥𝑖

𝑛
𝑖=1 −	∑ 𝜋𝑖𝑥𝑖)

𝑛
𝑖=1

𝜕𝛽+
𝜕(∑ 𝑦𝑖

𝑛
𝑖=1 −	∑ 𝜋$𝑛

𝑖=1 	)

𝜕𝛽"
𝜕(∑ 𝑦𝑖𝑥𝑖

𝑛
𝑖=1 −	∑ 𝜋𝑖𝑥𝑖)

𝑛
𝑖=1

𝜕𝛽" ⎦
⎥
⎥
⎥
⎤
														 

=	

⎣
⎢
⎢
⎢
⎢
⎡ −I𝜋$(1 − 𝜋$)

&

$'"

−I 𝑥𝑖𝜋$(1 − 𝜋$)
&

$'"

−I 𝑥𝑖𝜋$(1 − 𝜋$)
&

$'"

−I 𝑥𝑖2𝜋$(1 − 𝜋$)
&

$'" ⎦
⎥
⎥
⎥
⎥
⎤

																					 

						 

= (1.2.4) 
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The Newton Raphson iterative procedure aims to solve for the unknown vector 

𝜷 = (𝛽+, 𝛽") by first selecting an initial estimate for 𝜷,	which is denoted by 𝜷(+).	The procedure 

then uses the first two terms of the Taylor Series polynomial at 𝜷(+) to produce a “better” 

solution; in that the estimate 𝜷(0) will be closer to the actual solution as k gets larger.   During 

the process, the 𝜷(0)12 estimate is given by  

𝜷0 =	𝜷(0#") − [E𝐻(0#")F
#"
∗ 𝒒(0#")] 

where 𝐻(0#") and 𝒒(0#") denote the Hessian matrix H and the vector q evaluated at the prior 

estimate 𝜷(0#"), respectively.  The process continues in this manner until the estimates converge, 

which is the Newton Raphson estimate 𝜷Z = (𝛽[+, 𝛽[").  Having an estimate for 𝜷 now allows for 

an estimate of  𝜋$; specifically,  

𝜋\$ =	
𝑒345#)45%6!7

1 +	𝑒345#)45%6!7
 

	   

1.3 Multiple Logistic Regression  

 Now that the theory of simple logistic regression has been discussed, multiple logistic 

regression may be understood more clearly.  Whereas the simple logistic regression model uses 

one independent variable and one categorical dependent variable, multiple logistic regression can 

form models for cases where there are two or more independent variables that contribute to the 

discrete response variable.   

Since it was already discussed in section 1.2 that the logistic regression model fits best 

when the dependent variable is binary and where Y follows a Bernoulli distribution with 

parameter 𝜋 and probability of success, 𝑃(𝑌 = 1) = 	𝜋, many of the conclusions gathered still 

hold true as more independent variables are added.  As such, the probability density function 

defined in equation 1.2.1 remains the same, with some minor adjustments in 𝜋$.  



 10 

For simplicity, it is assumed that there are p independent variables, 𝑝 = 1,2,3, … , in a 

sample of n independent observations.  This way, the vector 𝒙𝒊 can be defined by a set of the 

independent variables, first augmented by constant 1, where 

𝒙𝒊- = (1, 𝑥$", 𝑥$%, 𝑥$9, … , 𝑥$:) 

such that the unknown vector 𝜷 as in simple logistic regression is now defined as 

𝜷- = (𝛽+, 𝛽", 𝛽%, 𝛽9, … , 𝛽:) 

where there are now 𝑝 + 1 parameters to solve for. 

Specifically, the joint probability density function remains 

𝑓(𝑦", 𝑦%, …	 , 𝑦&) = 	1𝜋$!! 	(1 − 𝜋$)"#!!
&

$'"

 

Where now  

o 𝜷- = E𝛽+, 𝛽", 𝛽%, 𝛽9, … , 𝛽:F	𝑎𝑛𝑑	𝒙𝒊- = (1, 𝑥$", 𝑥$%, 𝑥$9, … , 𝑥$:)	𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝜷 =

(𝛽+, 𝛽")	𝑎𝑛𝑑	𝑥$ 	𝑓𝑟𝑜𝑚	𝑠𝑒𝑐𝑡𝑖𝑜𝑛	1.2, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦;    

o 𝜋$ 	=
("#$"%&!%$"0&!0$⋯$	"3&!3

")	("#$"%&!%$"0&!0$⋯$	"3&!3
                                                                                                                       

…..= (𝒙𝒊
6𝜷

")(𝒙𝒊
6𝜷
; 𝑎𝑛𝑑																																	 

o 𝜷- = (𝛽+, 𝛽", 𝛽%, 𝛽9, … , 𝛽:)		𝑖𝑠	𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑢𝑠𝑖𝑛𝑔	𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	𝑚𝑒𝑡ℎ𝑜𝑑	 

 

Again, the maximum likelihood method is used to estimate the unknown vector 𝜷.	To 

recall, this is done by first applying the natural logarithm of both sides of equation 1.2.1 to 

produce equation 1.2.2, then deriving equation 1.2.2 with respect to 𝛽+	then 𝛽", and finally 

setting these equal to zero to estimate- using statistical software- the values of 𝛽+	and 𝛽".	This is 

easily extended to the multiple logistic regression case by deriving equation 1.2.2 with respect to 

each of the unknowns 𝛽; , 𝑗 = 1,… , 𝑝, setting each equation to zero, and estimating for each 

unknown. Doing so produces the equations 
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𝜕(ln	(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))
𝜕E𝛽;F

= 	

⎩
⎪
⎨

⎪
⎧I𝑦$

&

$'"

−	I𝜋$

&

$'"

= 0	,																𝑖𝑓	𝑗 = 0	; 𝑎𝑛𝑑

I𝑦$𝑥$;

&

$'"

−	I𝜋$𝑥$;

&

$'"

= 0,									𝑖𝑓	𝑗 = 1,… , 𝑝

	 

 

 As in the single variable case, the Newton Raphson method is used to estimate 𝜷. 

However in multiple logistic regression, q is instead defined as   

𝒒- = GI𝑦$

&

$'"

−	I𝜋$

&

$'"

,I𝑦$𝑥$"

&

$'"

−	I𝜋$𝑥$"

&

$'"

, … ,I𝑦$𝑥$:

&

$'"

−	I𝜋$𝑥$:

&

$'"

H 

Which then allows for the formation of the new Hessian matrix, H: 

𝐻 =	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜕

%(ln(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))
𝜕𝛽+%

𝜕%(ln(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))	
𝜕𝛽+𝜕𝛽"

𝜕%(ln(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))	
𝜕𝛽"𝜕𝛽+

𝜕%(ln(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))	
𝜕𝛽"%

…	
…
…	

𝜕%(ln(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))	
𝜕𝛽+𝜕𝛽:

𝜕%(ln(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))	
𝜕𝛽"𝜕𝛽:

⋮																																																						⋮ ⋱ ⋮
𝜕%(ln(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))	

𝜕𝛽:𝜕𝛽+
𝜕%(ln(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))	

𝜕𝛽:𝜕𝛽"
⋯

𝜕%(ln(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))	
𝜕𝛽:% ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

						= 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −I𝜋$(1 − 𝜋$)

&

$'"

−I𝑥$"𝜋$(1 − 𝜋$)
&

$'"

−I𝑥$"𝜋$(1 − 𝜋$)
&

$'"

−I𝑥$"% 𝜋$(1 − 𝜋$)
&

$'"

…	
…
…	

−I𝑥$:𝜋$(1 − 𝜋$)
&

$'"

−I𝑥$"𝑥$:𝜋$(1 − 𝜋$)
&

$'"
⋮																																																						⋮ ⋱ ⋮

−I𝑥$:𝜋$(1 − 𝜋$)
&

$'"

−I𝑥$"𝑥$:𝜋$(1 − 𝜋$)
&

$'"

⋯ −I𝑥$:% 𝜋$(1 − 𝜋$)
&

$'" ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

The process that the Newton Raphson method uses is the exact same from simple logistic 

regression in that is solves for 𝜷 by first selecting an initial estimate, 𝜷(+), and using an iterative 

process defined by 𝜷0 =	𝜷(0#") − [E𝐻(0#")F
#"
∗ 𝒒(0#")] to produce a better estimate, and again 
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𝐻(0#") and 𝒒(0#") represent the H and q evaluated at the prior estimate 𝜷(0#"), respectively. 

Once the process reaches convergence, the final estimate is the Newton Raphson estimate, 𝜷Z. 

The value for 𝜋$ can now be estimated as 𝜋\$ =	
((&!

6𝜷9)

")	((&!
6𝜷);

 .   
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Chapter 2- Assessing Significance in Logistic Regression 
 
 
2.1 Assessing Significance 

 Although the model has provided an estimate for 𝜷, the estimate may not be reliable.  

Thus, assessing the significance of the coefficients is useful to determine if the estimate is 

probable in application.  Many significance tests can be constructed to determine if-and which- 

independent variables have a substantial impact on the dependent response variable.   

It is first important to note that the above Hessian matrices in sections 1.2 and 1.3 are 

very useful for finding the standard error of 𝜷,Z  since the square roots of the diagonal elements of 

−(𝐻)#" provide the standard errors of 𝛽[+ and 𝛽[".  Ideally, these standard errors will be quite 

low.  However, if these standard errors are high, the estimate 𝜷Z may not be reliable.     

 Furthermore, recall from linear regression that the P-Value is a good indicator of whether 

or not a specific independent variable has a significant effect on the dependent response variable. 

P-values can be used to determine whether the null hypothesis is rejected or not; the null 

hypothesis generally being that a specific independent variable has no significant effect on the 

response variable, which is compared to the alternate hypothesis that the specific independent 

variable does have a significant effect on the response variable.  In this way, if the calculated P-

Values are larger than a given, or required, significance level 𝛼,  (𝑝 > 𝛼), then the null 

hypothesis that the independent variable in question does not have any significant effect on the 

response variable should not be rejected.  However, if the P-Value is small (𝑝 < 𝛼), then the null 

hypothesis should be rejected and it can be concluded that the independent variable in question 

has a significant effect on the response variable in the model.  For any given level of 𝛼 

(commonly 𝛼 = 0.01, 𝛼 = 0.05, 𝑜𝑟	𝛼 = 0.10), the P-Value represents the confidence of a 

relationship amongst a given independent variable and the dependent response variable.  The 



 14 

calculation of P-values and their interpretation are identical within the logistic regression model 

as from linear regression. As such, the P-Value test will not be discussed further.   

 Another important test for assessing significance of independent variables is the Chi-

Square Hypothesis test.  The Chi-Square Hypothesis test for logistic regression is comparable to 

the F-Test for linear regression in its ability to test multiple variables simultaneously to 

determine if at least one has a significant effect on the model.  The F-Test in linear regression 

focusses on the difference between the sum of squares of the model including the variable and 

the sum of squares of the model not including the variable.  In this way, a small F value shows 

no significance of the independent variable on the model, whereas a large F value shows that the 

alternate hypothesis being tested has a high significance on the dependent variable.  Similarly, 

the Chi-Square Hypothesis test is used for logistic regression since it functions best on 

categorical data.  Similar to the F-Test, a large Chi-Square value shows evidence of the alternate 

hypothesis that the independent variable has a significant effect in the model, whereas a small 

Chi-Square value shows that the null hypothesis should not be rejected.  Exact “rules” of when to 

accept and reject the null hypothesis based on the Chi-Square Test will be examined further in 

sections 2.2 and 2.3.   

 The 𝑂𝑑𝑑𝑠 and 𝑂𝑑𝑑𝑠	𝑅𝑎𝑡𝑖𝑜 are also useful in determining the likelihood of the success of 

an event and will be discussed in their relation towards the significance of the independent 

variables in the model.  The 𝑂𝑑𝑑𝑠	and	𝑂𝑑𝑑𝑠	𝑅𝑎𝑡𝑖𝑜 are important tools for assessing the change 

in the “log-odds” of the dependent response variable occurring, 𝑌$ = 1, for a one unit increase in 

the independent variable 𝑥$ .  In general, the 𝑂𝑑𝑑𝑠 of an event occurring can be defined as: 

𝑂 =
𝑝

1 − 𝑝 ,𝑤ℎ𝑒𝑟𝑒	𝑝	𝑖𝑠	𝑡ℎ𝑒	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠 
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Similarly, since the goal is to assess the change in the log-odds for a one unit increase in 𝑥$ ,	the 

odds ratio is defined as    

𝑂𝑑𝑑𝑠	𝑅𝑎𝑡𝑖𝑜 =
𝑂𝑑𝑑𝑠	𝑎𝑡	(𝑥$ + 1)
𝑂𝑑𝑑𝑠	𝑎𝑡	𝑥$

 

In this way, taking the natural logarithm of the odds ratio allows for an assessment of how an 

independent variable effects the dependent variable.   

Finally, the Wald Test and Score Test are important in statistical software packages to 

assess significance of independent variables.  The Wald Test gives an idea of how far the 

independent variable(s) are from the value in the null hypothesis (often 0).  Using the Wald Test 

in statistical software packages for multiple logistic regression allows for multiple independent 

variables to be assessed concurrently.  The Wald Test uses a similar concept as the Chi-Square 

Test in that it aims to estimate the value of the G statistic.  However, in direct calculation of the 

G statistic, it is often required to calculate the difference between two models (discussed in 

section 2.3), whereas the Wald Test is able to approximate the G statistic using only one model.  

The Score Test also only uses one model, but instead it measures the improvement in the model 

if additional independent variables are added.  Also often referred to as the Lagrange Multiplier 

Test, the test’s value is calculated using the slope of the likelihood function.   

 
2.2 Significance Tests in Simple Logistic Regression  

 To use the Chi-Square statistic to assess goodness of fit in simple logistic regression, it is 

first important to note that the deviance, 𝐷 = −2∑ [𝑦$ ln u
<=!
!!
v + (1 − 𝑦$) ln u

"#<=!
"#!!

v]&
$'" , in the 

likelihood ratio test for logistic regression is exactly equivalent to the sum of squares due to error 

(SSE) from linear regression.  Thus, the G statistic for the Chi-Square hypothesis test can be 
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defined by calculating the difference between the deviance with and without the independent 

variable of interest.   For the case of simple logistic regression, 𝐺 can be defined as: 

𝐺 = 𝐷(𝑚𝑜𝑑𝑒𝑙	𝑤𝑖𝑡ℎ𝑜𝑢𝑡	𝑡ℎ𝑒	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) − 𝐷(𝑚𝑜𝑑𝑒𝑙	𝑤𝑖𝑡ℎ	𝑡ℎ𝑒	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) 

																										= −2ln	 x
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	𝑤𝑖𝑡ℎ𝑜𝑢𝑡	𝑡ℎ𝑒	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	𝑤𝑖𝑡ℎ	𝑡ℎ𝑒	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 y 

When testing the null hypothesis of no significance of a single independent variable against the 

alternate hypothesis that the independent variable has significance, it is easy to see that if 𝑥$ is 

not significant in the model then the alternate hypothesis (𝛽" = 0)  is not rejected, such that  

𝜋$ =
𝑒4#

1 + 𝑒4#
 

which is equivalent for any value of 𝑖 and thus 𝜋$ = 𝜋.  

Since the derivative of ln	(𝜋$) with respect to 𝛽+ is 𝜋(1 − 𝜋), it is clear that the likelihood 

function for 𝛽+ is identical whether or not the variable 𝑥$ is included in the model.  Thus, 

equation 1.2.3 can be recalled and redefined as: 

𝜕(ln(𝑓( 𝑦", 𝑦%, …	 , 𝑦&)))
𝜕(𝛽+)

= 	I 𝑦𝑖

𝑛

𝑖=1

−	I𝜋$

𝑛

𝑖=1

= 0 

																																									⟹ 	I 𝑦𝑖

𝑛

𝑖=1

−I𝜋
𝑛

𝑖=1

= 0 

																																																						⟹ 	I 𝑦𝑖

𝑛

𝑖=1

− 	𝑛{
𝑒4#

1 + 𝑒4#
| = 0 

																																															⟹ 	I 𝑦𝑖

𝑛

𝑖=1

= 	𝑛{
𝑒4#

1 + 𝑒4#
| 

Which allows for a simple substitution of 𝛽+ above with 𝛽[+ and rearranging the equation to solve 

for the estimate 𝛽[+ as follows:  

(2.2.1) 



 17 

𝛽[+ = ln{
∑ 𝑦$&
$'"

𝑛 − ∑ 𝑦$&
$'"

| 

Having an estimate for 𝛽+ now allows for a proper definition of 𝐺. Equation 2.2.1 can be 

extended, using 𝛽[+, to solve for 𝐺: 

𝐺 = −2 ln

⎣
⎢
⎢
⎢
⎡~
∑ 𝑦$&
$'"
𝑛 �

∑ 𝑦𝑖
𝑛
𝑖=1

	~𝑛 −
∑ 𝑦$&
$'"
𝑛 �

&#∑ 𝑦𝑖
𝑛
𝑖=1

∏ 𝜋\$
!!(1 − 𝜋\$)"#!!&

$'"
⎦
⎥
⎥
⎥
⎤
 

= 2 +"	[𝑦' ln(𝜋') + (1 − 𝑦') ln(1 − 𝜋')]
(

')*

− 23"𝑦' 	
(

')*

4 ln3"𝑦'

(

')*

4 + 3𝑛 −"𝑦'

(

')*

4 ln3𝑛 −"𝑦'

(

')*

4 − 	𝑛 ln(𝑛)6	7 

When testing the null hypothesis against the alternate hypothesis 𝛽" = 0, 𝐺 follows a chi-square 

distribution with 1 degree of freedom.  In this way, a large 𝐺 statistic (relative to a specified level 

alpha) indicates that the independent variable has a significant effect on the dependent response 

variable.   Specifically, the following relation applies making it simple to analyze significance; 

If, (for 𝛼, 𝑎	𝑔𝑖𝑣𝑒𝑛	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡): 

				�
[ℙ(𝜒%(1) > 𝐺)] < 𝛼	 ⟹ 	the	independent	variable	is	significant.						

					
	[ℙ(𝜒%(1) > 𝐺)] > 𝛼	 ⟹ 	the	independent	variable	is	not	significant.

 

 

Next recall that in chapter one, it was discussed that logistic regression uses a dependent 

Bernoulli distributed variable 𝑌$ and the probability of success was then defined as 𝑃(𝑌 = 1) =

	𝜋.  In this way, the 𝑂𝑑𝑑𝑠 in simple logistic regression can be expressed as: 

𝑂 =
𝜋

1 − 𝜋 

Specifically, the 𝑂𝑑𝑑𝑠 at 𝑥$ is: 

(2.2.2) 

(2.2.3) 
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𝑂(𝑥$) =
~ 𝑒4#)4%6!
1 +	𝑒4#)4%6!�

~1 − 𝑒4#)4%6!
1 +	𝑒4#)4%6!�

 

				=
~ 𝑒4#)4%6!
1 +	𝑒4#)4%6!�

u 1
1 +	𝑒4#)4%6!v

 

= 𝑒4#)4%6! 								 

Similarly, the 𝑂𝑑𝑑𝑠 at (𝑥$ + 1) is:  

𝑂(𝑥$ + 1) = 	 𝑒4#)4%(6!)") 

																									= 𝑒4#)4%6!)4% 								 

																	= 𝑒4#)4%6!𝑒4% 

So the 𝑂𝑑𝑑𝑠	𝑅𝑎𝑡𝑖𝑜 is: 

𝑂𝑑𝑑𝑠	𝑅𝑎𝑡𝑖𝑜 =
𝑂(𝑥$ + 1)
𝑂(𝑥$)

 

																													=
𝑒4#)4%6!𝑒4%
	𝑒4#)4%6!

	 

												= 𝑒4% 

Taking the natural logarithm of each side yields the “log-odds”:  

ln(𝑂𝑑𝑑𝑠	𝑅𝑎𝑡𝑖𝑜) = 	𝛽" 

In application, this means that the unknown variable 𝛽" measures the change in the logarithmic 

odds of success for a one unit increase in 𝑥$ .	 
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2.3 Significance Tests in Multiple Logistic Regression  

 The Chi-Square Hypothesis test and Odds Ratios can be extended into the case of 

multiple independent variables.  Recall that under multiple logistic regression, with a set of p 

independent variables, then the following can be defined: 

𝑆𝑒𝑡	𝑜𝑓	𝑝	𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠:	𝒙𝒊- = (1, 𝑥$", 𝑥$%, 𝑥$9, … , 𝑥$:) 

𝑈𝑛𝑘𝑛𝑜𝑤𝑛	𝑣𝑒𝑐𝑡𝑜𝑟	𝑣𝑎𝑙𝑢𝑒:	𝜷- = (𝛽+, 𝛽", 𝛽%, 𝛽9, … , 𝛽:) 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:	𝑓(𝑦", 𝑦%, …	 , 𝑦&) = 	1𝜋$!! 	(1 − 𝜋$)"#!!
&

$'"

; 𝑎𝑛𝑑	 

𝑃𝑎𝑟𝑎𝑚𝑎𝑡𝑒𝑟	𝑓𝑜𝑟	𝑌$:	𝜋$ 	=
("#$"%&!%$"0&!0$⋯$	"3&!3

")	("#$"%&!%$"0&!0$⋯$	"3&!3
= (𝒙𝒊

6𝜷

")(𝒙𝒊
6𝜷

                       

 
The Chi-Square Hypothesis test for multiple logistic regression tests the null hypothesis 

that none of the independent variables have a significant effect on the response variable against 

the alternate hypothesis that at least one of the independent variables is significant.  In this way, 

the Chi-Square Hypothesis test shares many similarities with the F test from linear regression.  

As in simple logistic regression, the likelihood function is identical whether 𝒙𝒊- is included in the 

model or not, and so the estimate for 𝛽+,  𝛽[+, remains independent of 𝒙𝒊-.  Thus, the G-Statistic for 

multiple logistic regression is identical to the G statistic as defined in equation 2.2.2: 

𝐺 = −2 ln	

⎣
⎢
⎢
⎢
⎡~
∑ 𝑦$&
$'"
𝑛 �

∑ !!<
!=%

~𝑛 −
∑ 𝑦$&
$'"
𝑛 �

&#∑ !!<
!=%

∏ 𝜋\$
!!&

$'" (1 − 𝜋\$)"#!!
⎦
⎥
⎥
⎥
⎤
	 

However, now when testing the null hypothesis against the alternate hypothesis 𝛽? = 0, 𝐺 

follows a chi-square distribution with 𝑝 degrees of freedom, where 𝑝 is the number of 

independent variables.  Thus, the significance of the independent variables can be determined by 

the relation of the probability of a chi-square distribution with 𝑝 degrees of freedom being larger 
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than the 𝐺 statistic compared to the specified level of alpha.  Specifically, relation 2.2.3 can be 

easily extended into the multiple variables case where if, (for 𝛼, 𝑎	𝑔𝑖𝑣𝑒𝑛	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡): 

				�
[ℙ(𝜒%(𝑝) > 𝐺)] < 𝛼	 ⟹ 	𝑎𝑡	𝑙𝑒𝑎𝑠𝑡	one	independent	variable	is	significant.								

					
	[ℙ(𝜒%(𝑝) > 𝐺)] > 𝛼	 ⟹ 	none	of	the	independent	variables	are	significant.						

 

Furthermore, it is often of interest which specific independent variable is significant in the 

model, so the G-Statistic can be refitted to assess the significance of a single variable.  To do so, 

the null and alternate hypotheses must be redefined.  After selecting a specific independent 

variable to assess, the likelihood ratio chi-square test compares the null hypothesis that the 

specific independent variable is not significant versus the alternate hypothesis that the specific 

independent variable is significant. To do so, a new G-statistic is defined as the difference 

between the G-statistic for the full model and the G-statistic for the “refitted” model.  The G-

statistic for the full model is identical to 𝐺 as defined in equation 2.2.2, and is now denoted 𝐺@ABB  

The G-statistic is then recalculated for the model without the independent variable of interest, 

and is denoted 𝐺C(@$11(D . In this way, the G-statistic of interest is the difference between 𝐺@ABB 

and 𝐺C(@$11(D , denoted by ∆𝐺 = 𝐺@ABB − 𝐺C(@$11(D. When testing the null hypothesis that the 

variable is not significant against the alternate hypothesis that the variable is significant, ∆𝐺 

follows a chi-square distribution with degrees of freedom equal to the difference in degrees of 

freedom between 𝐺@ABB and 𝐺C(@$11(D.  Recall 𝐺@ABB has 𝑝 degrees of freedom, while 𝐺C(@$11(D has 

(𝑝 − 1) degrees of freedom.  Then ∆𝐺 has ∆𝑑𝑓 = 𝑝 − (𝑝 − 1) = 1 degrees of freedom.  Thus, 

∆𝐺 follows a chi-square distribution with 1 degree of freedom.  In this case, the strategies for 

assessing significance of the independent variable of interest is exactly equivalent to the 

strategies from the single variable case defined in relation 2.2.3. 
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It is also often of interest to test the significance of a subset of the 𝑝 independent 

variables.  To do so, 𝐺C(@$11(D is redefined by calculating the G-statistic without the subset of 

independent variables of interest.  Here, ∆𝑑𝑓 = 𝑝 − 𝑘, where 𝑘 is the number of independent 

variables in the subset of interest.  Thus, when testing the null hypothesis that none of the 𝑘 

independent variables are significant against the alternate hypothesis that at least one of the 𝑘 

independent variables are significant, ∆𝐺 follows a chi-square distribution with 𝑝 − 𝑘 degrees of 

freedom.   Here, to assess significance, the following relation holds; 

If, (for 𝛼, 𝑎	𝑔𝑖𝑣𝑒𝑛	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡): 

				�
[ℙ(𝜒%(𝑝 − 𝑘) > 𝐺)] < 𝛼	 ⟹ 	𝑎𝑡	𝑙𝑒𝑎𝑠𝑡	one	independent	variable	is	significant.								

					
	[ℙ(𝜒%(𝑝 − 𝑘) > 𝐺)] > 𝛼	 ⟹ 	none	of	the	independent	variables	are	significant.						

 

Finally, the 𝑂𝑑𝑑𝑠 and 𝑂𝑑𝑑𝑠	𝑅𝑎𝑡𝑖𝑜 can be extended to the case of multiple logistic 

regression. Here, notation changes slightly as the odds ratio assesses a unit change in a single 

independent variable, holding all other independent variables constant.  In this way, the 𝑂𝑑𝑑𝑠 at 

𝑥$; , 𝑗 ∈ [0, 𝑝], is: 

𝑂(𝑥$;) =
{ 𝑒4#)4%6!%)406!0)⋯)	436!3
1 +	𝑒4#)4%6!%)406!0)⋯)	436!3

|

{1 − 𝑒4#)4%6!%)406!0)⋯)	436!3
1 +	𝑒4#)4%6!%)406!0)⋯)	436!3

|
 

= 𝑒4#)4%6!%)406!0)⋯)	436!3 								 

Similarly, the 𝑂𝑑𝑑𝑠 at (𝑥$; + 1) is:  

𝑂E𝑥$; + 1F = 	𝑒4#)4%6!%)⋯)	4>36!>)"7)⋯)	436!3 

																						= 𝑒4#)4%6!%)⋯)	(4>6!>)4>))⋯)	436!3 

																				= 𝑒4#)4%6!%)⋯)	4>6!>)⋯)	436!3𝑒4> 

So the 𝑂𝑑𝑑𝑠	𝑅𝑎𝑡𝑖𝑜 for multiple logistic regression is: 
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𝑂𝑑𝑑𝑠	𝑅𝑎𝑡𝑖𝑜 =
𝑂E𝑥$; + 1F
𝑂E𝑥$;F

 

																																																										=
𝑒4#)4%6!%)406!0)⋯)	436!3𝑒4>

𝑒4#)4%6!%)406!0)⋯)	436!3
			 

										= 𝑒4> 

Taking the natural logarithm of each side yields the “log-odds”:  

ln(𝑂𝑑𝑑𝑠	𝑅𝑎𝑡𝑖𝑜) = 	𝛽; 

Thus, similar to the log-odds in simple logistic regression, in multiple logistic regression the 

unknown variable 𝛽; measures the change in the logarithmic odds of success for a one unit 

increase in the independent variable 𝑥$; . 
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Chapter 3- Data and SAS  
 
3.1 Introduction of Dataset   

Next, to exemplify the theory and assessment from the previous two chapters, it is 

applied to a dataset of insurance claims.  The raw dataset contains 67,856 observations, each of 

which has 10 variables.  These 10 variables are: 

Claim: a binary variable (0 or 1); 0 if no claim was made, 1 if at least one claim is made 

Numclms: the number of claims made; 0 if no claim was made, integer values up to 4  

Amount: value of claim; 0 if no claim was made, integer values 

Exposure: the claimant’s exposure; continuous between 0 and 1.   

Value: value of car making claim, in $10,000’s; continuous values  

Vehicle: vehicle body; 13 categories (bus, convertible, coupe, hatchback, hardtop, 

motorized caravan, minibus, panel van, roadster, sedan, station wagon, truck, 

and utility) 

Vehage: vehicle age; 1 (youngest), up to 4 

Gender: gender of claimant; male or female  

Area: claimant’s geographical area of residence; categorical from A to F 

Age: claimant’s age; 1 (youngest), up to 6 

Now, using this information, it is possible to set up a model to determine which variables have a 

significant effect on whether or not a claim is made.  In this way, the dependent variable is the 

binary variable “Claim.”  This will allow the formation of a logistic regression model as 

discussed in chapter 1.  However, including “Numclms” and “Amount” is redundant since these 

variables are just extensions of the dependent variable, including constraints.  So the model will 
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be built using “Claim” as the dependent variable, and using the remaining 7 variables as the 

independent variables.   

To get an idea of the variables and their ranges, a snapshot of the first 10 rows of the 

dataset is as follows:  

 
 

Building the model in this way determines which (independent) variables have a 

significant effect in estimating the probability that a given claimant makes a claim or not.  The 

model will be built by analyzing each variable one at a time, selecting and keeping the best one 

(or selecting none if none increase the 𝐺% statistic), and repeating this process until a final model 

is reached.  Additionally, the interaction between certain independent variables will be analyzed 

in their significance in the model.   

 To use SAS to find the most appropriate model, each independent variable should be 

tested individually against the dependent “Claim” variable.  In this way, the main portion of the 

code is as follows: 
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The first line of the code (“data claims;”) defines the data file to which will be referenced in 

future lines.  The second line calls the insurance claim dataset from the P drive.  The third line 

defines each of the variables from the insurance claim dataset.  Variables with a ‘$’ succeeding 

the variable name denotes that the preceding variable is categorical rather than numerical.  The 

fourth line is a built in procedure in SAS to build a logistic model that models the probability that 

Y=1, in other words the probability of a claimant making a claim.  This line will print out the 

model information, the model fit statistics, the chi-square value for each of the 3 tests of 

interested (described in chapter 2) and their corresponding p-values, the analysis of the 

maximum likelihood estimates, and the odds ratio estimates.   The fifth line defines the 

categorical variables again and instructs SAS to use the last category in each variable as the 

reference variable.  Finally, the sixth line builds the logistic model with the independent 

variables of interest on the right side, and will print out the estimated covariance matrix, the 

partition for the Hosmer and Lemeshow test, and the goodness of fit statistic to analyze how well 

the model fits.  This sixth line is the only line of code that changes throughout the analysis, 

depending on which independent variable(s) are being tested.  In the above excerpt of code, 

exposure is being tested individually first, and SAS produces the following output: 
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3.2 Selecting the Appropriate Model 

For exposure, the 𝐺% value (likelihood ratio chi-square value) is 𝐺% = 1199.1909 on one 

degree of freedom with an associated p-value of 𝑝 − 𝑣𝑎𝑙 < 0.0001.  The large 𝐺% statistic and 

the small p-value indicate that exposure is significant in the model.  However, the rest of the 6 

independent variables must be tested in an identical manner to determine which independent 

variable is estimated to be most significant.  Repeating this process for each of the other 6 

independent variables yields 𝐺% values all less than 1199.1909 (refer to appendix B for SAS 

output for each of the 7 individual models).  Thus, the independent variable “exposure” is added 

into the model, and each of the remaining 6 are tested with “exposure”.  That is, for example, the 

model statement when testing “exposure” and “age” would change to: 

 

So “exposure” would remain in each model tested, while “age” would change for each of the 

remaining 6 variables tested.  Then the process of selecting and accepting the variable with the 

highest 𝐺% value continues.  In this dataset, this process continues and first accepts “exposure” 

into the model, then “age,” “vehicle,”  “vehage,”  “area,” and finally “value.”  Each of the 𝐺% 

values (and their associated degrees of freedom and p-values) are available for reference in 

Appendices B through H.   
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Additionally, it is noted that “gender” is rejected from the model, as the last model tested 

as the most recent model has 𝐺% = 1394.2100, 𝑑. 𝑓 = 30	𝑎𝑛𝑑	𝑝 − 𝑣𝑎𝑙 < 0.0001, and adding 

“gender” to the model increases the 𝐺% statistic minimally, with an increase in the degrees of 

freedom.  Specifically, the model including “gender” has 𝐺% = 1394.5643, 𝑑. 𝑓 = 31	𝑎𝑛𝑑	𝑝 −

𝑣𝑎𝑙 < 0.0001.	The increase in 𝐺% of 0.3543 is determined to not be worth the increase in 

degrees of freedom, and so “gender” is not included in the final model.   

 

3.3 Interaction  

 At each stage of selection, the new variable added into the model is also analyzed in 

terms of its interaction with the other independent variables already added into the model.  This 

is done by adding an extra term in the model statement.  The model statement would now look as 

follows:  

Adding the term “exposure*age” now gives information on the interaction between the 2 

variables.  Specifically, under the output for logistic procedure, there is a table titled “Joint 

Tests” where the chi-square statistic (and its associated degrees of freedom and p-value) are 

calculated based on Wald inference.  For the example where “age” was determined to be the next 

most significant independent variable after exposure and was included into the model with 

exposure, the interaction between them is described in the last line of the following table:  
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The p-value for the “exposure*age” interaction variable is 𝑝 − 𝑣𝑎𝑙 = 0.1497 > 0.10 = 𝛼 and so 

it is determined that there is no evidence of a significant interaction between “exposure” and 

“age” in this model.  Examining the interaction between each of the newly added variables with 

the already accepted variables continues at each step, and the exact value for the interaction term 

is available for reference in Appendix I.   

Through this process it is found that “vehicle,” “area,” and “value” have no evidence of 

interaction either with each other or with “exposure” or “age,” while “vehage” is found to have 

evidence of a significant interaction between it and “exposure.  The Joint Tests for 

“vehage*exposure” produces a p-value less than 𝛼 = 0.1 and so this interaction is not rejected, 

and is thus included in the model.   

Next, the interaction between another independent variable with the interaction 

“exposure*vehage” is analyzed and determined that “area” also interacts with “exposure” and 

“vehage.”  However, similar as to why “gender” was rejected from the model, the trade-off for 

the increase in the 𝐺% statistic is not worth the increase in degrees of freedom.  Specifically, the 

model with only the interaction “exposure*vehage” has 𝐺% = 1394.2100, 𝑑. 𝑓 = 30	𝑎𝑛𝑑	𝑝 −

𝑣𝑎𝑙 < 0.0001, while the model including “exposure*vehage*area” has 𝐺% = 1404.1696,

𝑑. 𝑓 = 42	𝑎𝑛𝑑	𝑝 − 𝑣𝑎𝑙 < 0.0001.  The increase in the 𝐺% of 9.9596 is not worth the increase of 

12 degrees of freedom, so the model including the interaction term “exposure*vehage*area” is 

rejected.   

Thus, the final model includes the variables (in order) “exposure,” “age,” “vehicle,” 

“vehage,” “area,” and “value,” along with the interaction term “exposure*vehage.” That is, the 

final model statement is:  
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 and the output for this model is:  
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Chapter 4- Analysis and Interpretation 

4.1 Expressing the Appropriate Model  

Now that the appropriate model has been constructed, it is important to recognize the 

implications of the chosen model.  As seen in chapter 3, the most fitting model includes the 

following variables: “exposure,” “age,” “vehicle,” “vehage,” “value,” and “area”.  This means 

that the model can be represented by: 

logit[𝜋(𝑥$)] = ln {
𝜋(𝑥$)

1 − 𝜋(𝑥$)
| =I𝛽;𝑥$;

:

;'+
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So the equation for the probability that a given claimant makes a claim is:  

𝜋\$ =
𝑒𝒙𝒊

6𝜷

1 + 𝑒𝒙𝒊6𝜷
; 𝑤𝑖𝑡ℎ 

𝑒𝒙𝒊
6𝜷 = 𝑒𝑥𝑝(𝛽[+ + 𝛽["𝑥$" + 𝛽[%𝑥$% + 𝛽[9𝑥$9 + 𝛽[H𝑥$H + 𝛽[I𝑥$I + 𝛽[J𝑥$J + 𝛽[K𝑥$K + 𝛽[L𝑥$L + 𝛽[M𝑥$M +

𝛽["+𝑥$"+ + 𝛽[""𝑥$"" + 𝛽["%𝑥$"% + 𝛽["9𝑥$"9 + 𝛽["H𝑥$"H + 𝛽["I𝑥$"I + 𝛽["J𝑥$"J + 𝛽["K𝑥$"K +

𝛽["L𝑥$"L + 𝛽["M𝑥$"M + 𝛽[%+𝑥$%+ + 𝛽[%"𝑥$%" + 𝛽[%%𝑥$%% + 𝛽[%9𝑥$%9 + 𝛽[%H𝑥$%H + 𝛽[%I𝑥$%I +

𝛽[%J𝑥$%J + 𝛽[%K𝑥$%K + 𝛽[%L𝑥$"𝑥$"M + 𝛽[%M𝑥$"𝑥$%+ + 𝛽[9+𝑥$"𝑥$%") 

Where 𝑥$" is the exposure of the claimant (between 0 and 1); 𝑥$% = 1	if the claimant is in the first 

(youngest) age category, and 0 otherwise; 𝑥$9 = 1 if the claimant is in the second age category, 

and 0 otherwise; 𝑥$H = 1 if the claimant is in the third age category, and 0 otherwise; 𝑥$I = 1 if 

the claimant is in the fourth age category, and 0 otherwise; 𝑥$J = 1 if the claimant is in the fifth 

age category, and 0 otherwise; 𝑥$K = 1 if the claimant drives a bus, and 0 otherwise; 𝑥$L = 1 if 
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the claimant drives a convertible, and 0 otherwise; 𝑥$M = 1 if the claimant drives a coupe, and 0 

otherwise; 𝑥$"+ = 1 if the claimant drives a hatchback, and 0 otherwise; 𝑥$"" = 1 if the claimant 

drives a hardtop, and 0 otherwise; 𝑥$"% = 1 if the claimant drives a motorized caravan, and 0 

otherwise; 𝑥$"9 = 1 if the claimant drives a minibus, and 0 otherwise; 𝑥$"H = 1 if the claimant 

drives a panel van, and 0 otherwise; 𝑥$"I = 1 if the claimant drives a roadster, and 0 otherwise; 

𝑥$"J = 1 if the claimant drives a sedan, and 0 otherwise; 𝑥$"K = 1 if the claimant drives a station 

wagon, and 0 otherwise; 𝑥$"L = 1 if the claimant drives a truck, and 0 otherwise; 𝑥$"M = 1 if the 

claimant’s vehicle is in the first (youngest) age category, and 0 otherwise, 𝑥$%+ = 1 if the 

claimant’s vehicle is in the second age category, 𝑥$%" = 1 if the claimant’s vehicle is in the third 

age category, and 0 otherwise; 𝑥$%% = 1 if the claimant lives in geographical area A, and 0 

otherwise; 𝑥$%9 = 1 if the claimant lives in geographical area B, and 0 otherwise; 𝑥$%H = 1 if the 

claimant lives in geographical area C, and 0 otherwise; 𝑥$%I = 1 if the claimant lives in 

geographical area D, and 0 otherwise;  𝑥$%J = 1 if the claimant lives in geographical area E, and 

0 otherwise, and 𝑥$%K is the value of the claimant’s vehicle (in $10,000’s);.  Additionally, the last 

3 terms are the interaction terms between exposure and claimant age.   

Thus, using the output given in chapter 3 and Appendix I, the an equation for 𝜋\$ can be 

constructed by first substituting the SAS values for 𝛽[:	(𝑝 = 0,1,2, … ,30) into 𝑒𝒙𝒊
6𝜷 producing:  

𝑒𝒙𝒊
6𝜷 = 𝑒𝑥𝑝(−3.9134 + 1.5281𝑥$" + 0.5033𝑥$% + 0.2941𝑥$9 + 0.2466𝑥$H + 0.2146𝑥$I −

0.00415𝑥$J + 1.2744𝑥$K − 0.5845𝑥$L + 0.5920𝑥$M + 0.1787𝑥$"+ + 0.3475𝑥$"" +

0.8033𝑥$"% + 0.1362𝑥$"9 + 0.2641𝑥$"H + 0.2188𝑥$"I + 0.2010𝑥$"J + 0.2322𝑥$"K +

0.1575𝑥$"L − 0.4021𝑥$"M − 0.0356𝑥$%+ − 0.0990𝑥$%" − 0.0781𝑥$%% + 0.0131𝑥$%9 −

0.0410𝑥$%H − 0.1650𝑥$%I − 0.0898𝑥$%J + 0.0305𝑥$%K + 0.8653𝑥$"𝑥$"M +

0.3534𝑥$"𝑥$%+ + 0.2882𝑥$"𝑥$%") 
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Now, the exact estimated equation for the probability that a given claimant makes a claim is: 

𝜋\$ = [𝑒𝑥𝑝(−3.9134 + 1.5281𝑥$" + 0.5033𝑥$% + 0.2941𝑥$9 + 0.2466𝑥$H + 0.2146𝑥$I −

0.00415𝑥$J + 1.2744𝑥$K − 0.5845𝑥$L + 0.5920𝑥$M + 0.1787𝑥$"+ + 0.3475𝑥$"" +

0.8033𝑥$"% + 0.1362𝑥$"9 + 0.2641𝑥$"H + 0.2188𝑥$"I + 0.2010𝑥$"J + 0.2322𝑥$"K +

0.1575𝑥$"L − 0.4021𝑥$"M − 0.0356𝑥$%+ − 0.0990𝑥$%" − 0.0781𝑥$%% + 0.0131𝑥$%9 −

0.0410𝑥$%H − 0.1650𝑥$%I − 0.0898𝑥$%J + 0.0305𝑥$%K + 0.8653𝑥$"𝑥$"M +

0.3534𝑥$"𝑥$%+ + 0.2882𝑥$"𝑥$%")]     [1 + 𝑒𝑥𝑝(−3.9134 + 1.5281𝑥$" + 0.5033𝑥$% +

0.2941𝑥$9 + 0.2466𝑥$H + 0.2146𝑥$I − 0.00415𝑥$J + 1.2744𝑥$K − 0.5845𝑥$L +

0.5920𝑥$M + 0.1787𝑥$"+ + 0.3475𝑥$"" + 0.8033𝑥$"% + 0.1362𝑥$"9 + 0.2641𝑥$"H +

0.2188𝑥$"I + 0.2010𝑥$"J + 0.2322𝑥$"K + 0.1575𝑥$"L − 0.4021𝑥$"M − 0.0356𝑥$%+ −

0.0990𝑥$%" − 0.0781𝑥$%% + 0.0131𝑥$%9 − 0.0410𝑥$%H − 0.1650𝑥$%I − 0.0898𝑥$%J +

0.0305𝑥$%K + 0.8653𝑥$"𝑥$"M + 0.3534𝑥$"𝑥$%+ + 0.2882𝑥$"𝑥$%")] 

Where each of the 𝑥$;′𝑠 are defined as above.  For this model, a Hosmer-Lemeshow test shows 

no evidence of a lack of fit of the model (p-value < 0.0001) 

4.2 Interpretation of Odds Ratios  

Using SAS, it was found that 6 of the 7 variables are significant in estimating the 

probability that a given claimant makes a claim, as well as the interaction between exposure and 

vehicle age.  The exposure of the claimant is the biggest determiner of whether or not a claim is 

made.  However, the combination of exposure, claimant age, vehicle type, vehicle age, vehicle 

value, and geographical area are also significant in estimating this probability. Furthermore, SAS 

provides the Odds Ratio estimates for each variable.  In particular, the following conclusions can 

be made regarding claimant age while keeping the other variables fixed (using figure 4.2.1 

below):  

(4.1.1) 
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• The odds of a claimant in the first (youngest) age category making a claim is 

estimated to be 1.654 times higher than the odds of a claimant in the last (oldest) 

age category.  Additionally, it is noted that with 95% confidence, the odds of a 

claimant in the first (youngest) age category making a claim is anywhere between 

1.434 and 1.909 times the odds of a claimant in the last (oldest) age category.  

• The odds of a claimant in the second age category making a claim is estimated to 

be 1.342 times higher than the odds of a claimant in the last (oldest) age category.  

Additionally, it is noted that with 95% confidence, the odds of a claimant in the 

second age category making a claim is anywhere between 1.181 and 1.525 times 

the odds of a claimant in the last (oldest) age category. 

• The odds of a claimant in the third age category making a claim is estimated to be 

1.280 times higher than the odds of a claimant in the last (oldest) age category.  

Additionally, it is noted that with 95% confidence, the odds of a claimant in the 

third age category making a claim is anywhere between 1.130 and 1.449 times the 

odds of a claimant in the last (oldest) age category. 

• The odds of a claimant in the fourth age category making a claim is estimated to be 

1.239 times higher than the odds of a claimant in the last (oldest) age category. 

Additionally, it is noted that with 95% confidence, the odds of a claimant in the 

fourth age category making a claim is anywhere between 1.095 and 1.403 times the 

odds of a claimant in the last (oldest) age category. 

•  The odds of a claimant in the fifth age category making a claim is estimated to be 

0.996 times the odds of a claimant in the last (oldest) age category.  Additionally, it 

is noted that with 95% confidence, the odds of a claimant in the fifth age category 
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making a claim is anywhere between 0.870 and 1.140 times the odds of a claimant 

in the last (oldest) age category. 

These conclusions indicate that a claimant in the first (youngest) age category is more likely to 

make a claim than a claimant in any of the other categories, while a claimant in the fifth age 

category is least likely to make a claim.  This makes sense logically since new drivers typically 

have less experience, and old drivers are getting old in age as well and may be losing some 

motor functions or memory skills, but the drivers in the second to oldest age category are still 

functioning well cognitively while having a high amount of driving experience.  Similar 

conclusions can be pulled for comparisons between different claimant ages, vehicle type, 

geographical area, and value, and are summarized in the following tables: 

 

 (4.2.1) 

(4.2.2) 

(4.2.3) 
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(4.2.4) 

(4.2.5) 
(4.2.6) 
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It is important to note that to make comparisons against categories that are included as the 

indicator variables, the code must be changed in the class statement.  Such a change sets the 

reference variable to one of the current indicator variables, rather than just setting it to the last 

category.   

Furthermore, SAS does not directly provide the Odds Ratio Estimates for Vehicle Age or 

for Exposure since there is an interaction amongst these variables included in the model.  In this 

situation, the point estimates and 95% Wald Confidence Limits must be computed by hand.  This 

is done so by using the 𝛽[  estimates provided from SAS along with the Covariance Matrix, also 

provided by SAS.  To compute the Odds Ratios for vehicle age, exposure must be held constant 

at some arbitrary value.  Here, the Odds Ratios for Vehicle Age are computed using exposure 

levels of the 25th, 50th, and 75th percentiles.  To compute the Odds Ratios for Exposure, generally 

the odds would be calculated at an arbitrary exposure level and then recalculated for a one unit 

increase.  However, exposure is a continuous value between 0 and 1, so an increase of 1 unit 

would be out of range.  Instead, the odds are recalculated for a 0.1 unit increase in exposure.  

Then conclusions can be made for each of the 6 independent variables in the model.   

  Specifically, a claimant that drives a bus is most likely to make a claim, while a 

claimant that drives a convertible is least likely to make a claim, as observed in figure 4.2.4.  

Again this is logical since busses are large vehicles that may be hard to manoeuvre, while 

convertibles are generally sports cars and tend to be well cared for.  Additionally, claimants in 

geographical area B are most likely to make a claim, while claimants in geographical area D are 

least likely to make a claim, as observed from figure 4.2.3.  This cannot be confirmed by logic 

since no information is available on which geographical areas are urban, suburban, or rural.  

Using logic, it can be estimated that geographical area B is an urban area with a higher volume 
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of traffic, while geographical area D is a rural area with low traffic volume.  Also, the odds of a 

claimant making at least one claim increases by 1.031 times for every $10,000 increase in 

vehicle value, seen in figure 4.2.2. It is concluded with 95% confidence that the odds of a 

claimant making at least one claim is between 0.994 and 1.070 times for every $10,000 increase 

in vehicle value (figure 4.2.2).  Using the median exposure, it is estimated that for a fixed 

exposure level of 0.45, the odds of a vehicle in the first age category making a claim is the 

highest, while the odds of a vehicle in the second age category is the lowest (figure 4.2.5).  This 

is intuitive since claimants driving brand new cars or very old may have more disposable income 

to buy these vehicles.   

 

4.3 Discarded Variables  

It was determined through the model building process that the gender variable could be 

discarded from the model, as it has no significance in determining the probability of a claimant 

making a claim.  This is a surprising result as it is widely believed within the car insurance 

industry that gender plays a significant role, specifically that males are more likely to make 

claims.  However, using the 67,856 observations in the dataset, it is clear that males are not any 

more likely than females to make insurance claims.   

Moreover, at the beginning of chapter 3 it was noted that the “number of claims” and 

“claim amount” variables were discarded as they were essentially the dependent variable with 

constraints. It is important to recognize that any of these 3 variables (“claim,” “numclms,” and 

“amount”) could have been used as the dependent variable instead.  The values under “numclms” 

and “amount” will be 0 if no claim is made, and all other values indicate a claim was made.  

Thus, a simple SAS program can be constructed to turn either the “numclms” or “amount” 
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variables to binary by setting all values greater than zero to 1.  In this way, the “numclms” and 

“amount” variables will be identical to the “claim” variable used throughout this analysis.      
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Conclusion 

This project aimed to build an appropriate logistic regression model to estimate the 

probability of a person making a car insurance claim based on a given exposure level, driver age, 

vehicle type, vehicle type, vehicle value, driver’s geographical area, and driver’s gender.  This is 

a very practical analysis in the insurance industry as insurance prices generally fluctuate based 

on the estimated probability of a given person making a claim.  That is, the higher the estimated 

probability of a person making a claim, the higher their insurance rate will be.   

It was discussed in chapter 1 that logistic regression is an important statistical method to 

model a dependent binary variable against one or more independent variables of interest.  The 

logistic model was derived for simple logistic regression as well as for multiple logistic 

regression.  The likelihood equations were derived using maximum likelihood estimation, and 

using the Newton-Raphson method, were set to zero to solve for the estimates 𝛽$ , 𝑖 = 0,…𝑝.  

 Chapter 2 went on to discuss ways to assess significance of the estimates found 

from the theory in chapter 1.  Specifically, many hypothesis tests were discussed, including the 

Chi-Square hypothesis test (likelihood hypothesis test), the Score hypothesis test, the Wald 

hypothesis test, and the P-value hypothesis test.  Additionally, the Odds and Odds ratios were 

derived in their relation to a one unit increase in any specific variable to determine how the 

probability of making a claim may change as a single independent variable changes.   

 Next, chapter 3 introduced the dataset used throughout the analysis.  The dataset 

contains 67,856 rows of information on the following 10 variables: exposure, claim, number of 

claims, amount of claim, value of vehicle, type of vehicle, geographical area, gender, claimant 

age, and vehicle age.  SAS was utilized to produce output for analyzing and building the most 

fitting model for the given data.  The model was built by testing one individual variable at a time, 
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and building the model upwards, selecting a new variable to accept into the model at each step.  

The interaction between specific independent variables was also discussed in its relation towards 

the model and variable significance.   

 Finally, chapter 4 combined all the information discussed within the previous 3 

chapters to consider the real-world implications of the model.  Specifically, the equation for the 

final model is stated using the estimates for 𝛽$ as given in the SAS output.  Conclusions were 

made based on the model estimates and Odds Ratio estimates provided by SAS.  Finally, the 

Odds Ratios to form confidence intervals for the two variables included in the interaction term 

must be computed by hand (and using excel spreadsheets) to compute the point estimates and 

95% Wald Confidence limits for both vehicle age and exposure.   

In conclusion, the final model for determining the probability of a given claimant making 

a claim is given by equation 4.1.1. It was found that the most significant independent variables in 

the model are exposure, claimant age, vehicle type, vehicle age, area, and value, in that order.  

The only variable discarded from the model was gender, which proves surprising considering 

how the insurance industry often charges males higher insurance rates than they charge females.  

It was determined that the youngest and oldest drivers are, unsurprisingly, most likely to make a 

claim, as well as claimants who drive a bus, compared to claimants in other age categories and 

claimants who drive other vehicles, respectively.    
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Appendices 
 
Appendix A: 

Macro code (using SAS) used in analysis  

 

Note that this code represents the final model.  The model statement began testing claim against 

each individual variable, then against 2 variables, and so on.   

Also note that class statement was altered in the reference command to compare Odds Ratios 

against categories other than the last one.    
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Appendix B: 

Output from first stage of selection (in reading order: age; exposure; gender; value; vehage; 
vehicle; area) where exposure was selected based on likelihood ratio statistic.  
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Appendix C: 

Output from second stage of selection (in reading order: exposure with age; exposure with area; 
exposure with gender; exposure with value; exposure with vehage; exposure with vehicle) where 
age was selected based on likelihood ratio statistic.  
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Appendix D: 

Output from third stage of selection (in reading order: exposure and age with vehage; exposure 
and age with area; exposure and age with value; exposure and age with vehicle; exposure and 
age with gender) where vehicle was selected based on likelihood ratio statistic.  
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Appendix E: 

Output from fourth stage of selection (in reading order: exposure, age, and vehicle with area; 
exposure, age, and vehicle with value; exposure, age, and vehicle with vehage; exposure, age, 
and vehicle with gender) where vehage was selected based on likelihood ratio statistic.  
 

 
 

Appendix F: 

Output from fifth stage of selection (in reading order: exposure, age, vehicle, and vehage with 
area; exposure, age, vehicle, and vehage with value; exposure, age, vehicle, and vehage with 
gender, including interaction term between exposure and vehage) where area was selected based 
on likelihood ratio statistic.  
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Appendix G: 

Output from sixth stage of selection (in reading order: exposure, age, vehicle, vehage, and area 
with gender; exposure, age, vehicle, vehage, and area with value, including interaction term 
between exposure and vehage) where value was selected based on likelihood ratio statistic.  
 

 
 
 
Appendix H: 

Output from final stage of selection (exposure, age, vehicle, vehage, area, and value with gender, 
including interaction term between exposure and vehage) where gender was NOT selected based 
on likelihood ratio statistic and degrees of freedom. 
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Appendix I: 
 
SAS complete output for final model (exposure, age, vehicle, vehage, area, and value, including 
interaction term between exposure and vehage) 
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