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Abstract

This paper will explore the categorical logistic relationship between quantifiable
independent variables against a categorical dependent Bernoulli random variable in an insurance
claim dataset. In particular, this paper studies independent variables such as exposure, vehicle
type, vehicle age, gender, geographic area, and driver age, as well as a binary dependent
Bernoulli random variable of whether or not a given person made a car insurance claim. Using
logistic regression, it will be determined which of the above variables have a significant effect in
determining the probability of a given claimant making a claim. Additionally, it will explore
relationships between independent variables, determined by adding an interaction term to the

model.



Chapter 1- Logistic Regression

1.1 Introduction to Logistic Regression

As with any statistic model-building technique, logistic regression aims to find the most
fitting model to describe or predict the relationships between a dependent variable and one or
more independent variables. Logistic regression, however, is more suitable for datasets whose
dependent variable is binary and independent variable(s) are categorical. Producing scatterplots

of data set with binary response variables will look similar to the following:
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It is clear to see that from the figure 1.1.1, a linear regression model would not be
appropriate as the model does not follow a linear trend. As such, logistic regression is a common
and useful statistical technique to fit appropriate models to binary response variables.

The scatterplot produced in figure 1.1.1 above represents a single, continuous, and
independent variable; exposure (from car insurance data, this example is explored further in

chapter 3), plotted against a binary dependent variable; insurance claims. Here, a simple linear



model cannot accurately predict the probability that a given exposure value will have a claim
value of 0 or a claim value of 1, whereas simple logistic regression model will be able to predict
these probabilities with more certainty.

Comparable to linear regression, there can be one or more independent variables, so
logistic regression splits into two models; simple logistic regression and multiple logistic
regression, which will be discussed in sections 1.2 and 1.3, respectively. Beginning with an
understanding of simple logistic regression is essential to set the foundation to further build upon

in multiple logistic regression.

1.2 Simple Logistic Regression

Simple logistic regression is generally an appropriate model to use when simple linear
regression does not fit under the above conditions, since logistic regression shares many ideal
characteristics with linear regression, in the sense that the logistic regression model is linear
within its parameters and may range over all the real numbers depending on its domain. These
ideal characteristics simplify the logistic model, making it easier to work with and fit in real-
world applications.

Since logistic regression models fit best when the dependent variable is binary, it is
important to recognize the significance of the distribution of the dependent variable. A binary
dependent variable Y follows a Bernoulli distribution with parameter  with probability of
success, P(Y = 1) = m, and probability of failure, P(Y = 0) = (1 — m). Thus, the probability

density function of Y is

fO)=mrA-m'>



We can assume that fori = 1, ..., n, where n is the number of independent observations, then the

Y;’s are independent with joint probability density function
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Where
o m;isthe parameter forY,i=1,..,n;
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o Py, B are estimated using maximum likelihood method

As noted above, 8, and f; are estimated using the maximum likelihood method. Whereas in
simple linear regression 5, and f; are estimated using the least squares method. However, the
least squares estimates for 8 and [5; do not share the ideal properties under logistic regression.
As such, the maximum likelihood method provides more accurate estimations of 3, and [5; in
that the estimates are more appropriate in applications of binary data. To use the maximum
likelihood method to produce values for 5, and 3;, one tries to maximize the likelihood function
for values 8, and ;. First the natural logarithm of equation 1.2.1 is applied to both sides to
produce:
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Next, equation 1.2.2 is then derived with respect to 5, and then with respect to f;, producing the
following 2 equations (note the substitution of 7; in the second line as defined above), called the

likelihood equations:
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Now all that remains is to set equations 1.2.3 and 1.2.4 equal to zero to solve for the
unknown values of 5, and 3;. Solving for the values 5, and S;requires an iterative procedure
that is difficult and time consuming to do by hand. One common method included in most

statistical software to calculate the values of 8, and f; is the Newton Raphson method.

The Newton Raphson method uses the following equations:
n
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to define the vector q, where ¢' = Q= v, — Xie m = 0,00 vix; — Yieymx; = 0). This

allows for the formation of the Hessian matrix, H, as defined below:
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The Newton Raphson iterative procedure aims to solve for the unknown vector
B = (Bo, B1) by first selecting an initial estimate for 8, which is denoted by B(®. The procedure
then uses the first two terms of the Taylor Series polynomial at B to produce a “better”
solution; in that the estimate B will be closer to the actual solution as k gets larger. During

(k)th

the process, the f8 estimate is given by

g = Bl [(H(k—l))_l « qUeD]
where H*~1 and g~ denote the Hessian matrix H and the vector q evaluated at the prior
estimate %1, respectively. The process continues in this manner until the estimates converge,
which is the Newton Raphson estimate B = (B,, ;). Having an estimate for 8 now allows for

an estimate of m;; specifically,

¢ (Bo+Bix)
I ()

1.3 Multiple Logistic Regression

Now that the theory of simple logistic regression has been discussed, multiple logistic
regression may be understood more clearly. Whereas the simple logistic regression model uses
one independent variable and one categorical dependent variable, multiple logistic regression can
form models for cases where there are two or more independent variables that contribute to the
discrete response variable.

Since it was already discussed in section 1.2 that the logistic regression model fits best
when the dependent variable is binary and where Y follows a Bernoulli distribution with
parameter 7 and probability of success, P(Y = 1) = m, many of the conclusions gathered still
hold true as more independent variables are added. As such, the probability density function

defined in equation 1.2.1 remains the same, with some minor adjustments in ;.



For simplicity, it is assumed that there are p independent variables, p = 1,2,3, ..., ina
sample of n independent observations. This way, the vector x; can be defined by a set of the
independent variables, first augmented by constant 1, where

x; = (1, %1, X2, Xi3, e Xip)
such that the unknown vector 8 as in simple logistic regression is now defined as

B' = (Bo, B1, B2, B3, '"'ﬁp)
where there are now p + 1 parameters to solve for.

Specifically, the joint probability density function remains

n
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Where now

o B'= (ﬁo,ﬁl,ﬁz,ﬁ3, ...,,Bp) and x; = (1, X1, X2, X3, --., Xip) T€place B =

(Bo, f1) and x; from section 1.2, respectively;
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o B'" = (Bo, b1, B2 B3, -, Bp) is estimated using maximum likelihood method

Again, the maximum likelihood method is used to estimate the unknown vector . To
recall, this is done by first applying the natural logarithm of both sides of equation 1.2.1 to
produce equation 1.2.2, then deriving equation 1.2.2 with respect to 5, then S, and finally
setting these equal to zero to estimate- using statistical software- the values of 8, and ;. This is
easily extended to the multiple logistic regression case by deriving equation 1.2.2 with respect to

each of the unknowns f;,j = 1, ..., p, setting each equation to zero, and estimating for each

unknown. Doing so produces the equations
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As in the single variable case, the Newton Raphson method is used to estimate f3.

However in multiple logistic regression, q is instead defined as

Which then allows for the formation of the new Hessian matrix, H:
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The process that the Newton Raphson method uses is the exact same from simple logistic

regression in that is solves for B by first selecting an initial estimate, B(*), and using an iterative

process defined by g¥ = %=V — [(H ("_1))_1 + =] to produce a better estimate, and again
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H%=1 and g~V represent the H and q evaluated at the prior estimate B%*~1, respectively.

Once the process reaches convergence, the final estimate is the Newton Raphson estimate, f8.

xiB
. A ey
The value for 7; can now be estimated as 77; = — 5
1+ eV

12



Chapter 2- Assessing Significance in Logistic Regression

2.1 Assessing Significance

Although the model has provided an estimate for 8, the estimate may not be reliable.
Thus, assessing the significance of the coefficients is useful to determine if the estimate is
probable in application. Many significance tests can be constructed to determine if-and which-
independent variables have a substantial impact on the dependent response variable.

It is first important to note that the above Hessian matrices in sections 1.2 and 1.3 are
very useful for finding the standard error of 8, since the square roots of the diagonal elements of
—(H) ™! provide the standard errors of 8, and f;. Ideally, these standard errors will be quite
low. However, if these standard errors are high, the estimate 8 may not be reliable.

Furthermore, recall from linear regression that the P-Value is a good indicator of whether
or not a specific independent variable has a significant effect on the dependent response variable.
P-values can be used to determine whether the null hypothesis is rejected or not; the null
hypothesis generally being that a specific independent variable has no significant effect on the
response variable, which is compared to the alternate hypothesis that the specific independent
variable does have a significant effect on the response variable. In this way, if the calculated P-
Values are larger than a given, or required, significance level a, (p > @), then the null
hypothesis that the independent variable in question does not have any significant effect on the
response variable should not be rejected. However, if the P-Value is small (p < ), then the null
hypothesis should be rejected and it can be concluded that the independent variable in question
has a significant effect on the response variable in the model. For any given level of «
(commonly a = 0.01, ¢ = 0.05, or a = 0.10), the P-Value represents the confidence of a

relationship amongst a given independent variable and the dependent response variable. The
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calculation of P-values and their interpretation are identical within the logistic regression model
as from linear regression. As such, the P-Value test will not be discussed further.

Another important test for assessing significance of independent variables is the Chi-
Square Hypothesis test. The Chi-Square Hypothesis test for logistic regression is comparable to
the F-Test for linear regression in its ability to test multiple variables simultaneously to
determine if at least one has a significant effect on the model. The F-Test in linear regression
focusses on the difference between the sum of squares of the model including the variable and
the sum of squares of the model not including the variable. In this way, a small F value shows
no significance of the independent variable on the model, whereas a large F value shows that the
alternate hypothesis being tested has a high significance on the dependent variable. Similarly,
the Chi-Square Hypothesis test is used for logistic regression since it functions best on
categorical data. Similar to the F-Test, a large Chi-Square value shows evidence of the alternate
hypothesis that the independent variable has a significant effect in the model, whereas a small
Chi-Square value shows that the null hypothesis should not be rejected. Exact “rules” of when to
accept and reject the null hypothesis based on the Chi-Square Test will be examined further in
sections 2.2 and 2.3.

The Odds and Odds Ratio are also useful in determining the likelihood of the success of
an event and will be discussed in their relation towards the significance of the independent
variables in the model. The Odds and Odds Ratio are important tools for assessing the change
in the “log-odds” of the dependent response variable occurring, ¥; = 1, for a one unit increase in

the independent variable x;. In general, the Odds of an event occurring can be defined as:

0= 1’%}9, where p is the probability of success
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Similarly, since the goal is to assess the change in the log-odds for a one unit increase in x;, the

odds ratio is defined as

Odds at (x; + 1)

Odds Ratio = 0dds at x,

In this way, taking the natural logarithm of the odds ratio allows for an assessment of how an
independent variable effects the dependent variable.

Finally, the Wald Test and Score Test are important in statistical software packages to
assess significance of independent variables. The Wald Test gives an idea of how far the
independent variable(s) are from the value in the null hypothesis (often 0). Using the Wald Test
in statistical software packages for multiple logistic regression allows for multiple independent
variables to be assessed concurrently. The Wald Test uses a similar concept as the Chi-Square
Test in that it aims to estimate the value of the G statistic. However, in direct calculation of the
G statistic, it is often required to calculate the difference between two models (discussed in
section 2.3), whereas the Wald Test is able to approximate the G statistic using only one model.
The Score Test also only uses one model, but instead it measures the improvement in the model
if additional independent variables are added. Also often referred to as the Lagrange Multiplier

Test, the test’s value is calculated using the slope of the likelihood function.

2.2 Significance Tests in Simple Logistic Regression

To use the Chi-Square statistic to assess goodness of fit in simple logistic regression, it is

first important to note that the deviance, D = =2 };1*;[y; In (ﬁ ) +(1—-y)In (

mi “i
Yi

)1, in the

1
1-y;
likelihood ratio test for logistic regression is exactly equivalent to the sum of squares due to error

(SSE) from linear regression. Thus, the G statistic for the Chi-Square hypothesis test can be

15



defined by calculating the difference between the deviance with and without the independent
variable of interest. For the case of simple logistic regression, G can be defined as:

G = D(model without the variable) — D(model with the variable)

likelihood without the variable

A (2.2.1)
likelihood with the variable

When testing the null hypothesis of no significance of a single independent variable against the

alternate hypothesis that the independent variable has significance, it is easy to see that if x; is

not significant in the model then the alternate hypothesis (f; = 0) is not rejected, such that

eﬁO
1+ ePo

Ty
which is equivalent for any value of i and thus ; = 7.
Since the derivative of In (1r;) with respect to 8, is m(1 — 1), it is clear that the likelihood

function for S, is identical whether or not the variable x; is included in the model. Thus,

equation 1.2.3 can be recalled and redefined as:

OUN(f (¥1, Y2, ¥))) _ zn:y. ~ ini —0

9(Bo)

Which allows for a simple substitution of 8, above with 8, and rearranging the equation to solve

for the estimate 3, as follows:
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Having an estimate for 5, now allows for a proper definition of G. Equation 2.2.1 can be

extended, using /3, to solve for G:
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n
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When testing the null hypothesis against the alternate hypothesis f; = 0, G follows a chi-square
distribution with 1 degree of freedom. In this way, a large G statistic (relative to a specified level
alpha) indicates that the independent variable has a significant effect on the dependent response
variable. Specifically, the following relation applies making it simple to analyze significance;
If, (for @, a given constant):

[P(¥2(1) > G)] < a = the independent variable is significant.

(2.2.3)
[P(x2(1) > G)] > a = the independent variable is not significant.

Next recall that in chapter one, it was discussed that logistic regression uses a dependent
Bernoulli distributed variable Y; and the probability of success was then defined as P(Y = 1) =

m. In this way, the Odds in simple logistic regression can be expressed as:

Specifically, the Odds at x; is:
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Similarly, the Odds at (x; + 1) is:
0(x; +1) = ebothrlxitD)
— oBotBaixi+p
— oBo+Bixiphs
So the Odds Ratio is:

O(Xi + 1)

Odds Ratio =
0(x;)

eﬁO"‘ﬁlxl‘eﬁl

eBotBix;
= eb1
Taking the natural logarithm of each side yields the “log-odds™:
In(Odds Ratio) = f;
In application, this means that the unknown variable ; measures the change in the logarithmic

odds of success for a one unit increase in x;.
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2.3 Significance Tests in Multiple Logistic Regression
The Chi-Square Hypothesis test and Odds Ratios can be extended into the case of
multiple independent variables. Recall that under multiple logistic regression, with a set of p
independent variables, then the following can be defined:
Set of p independent variables: x; = (1, X1, Xi2, Xi3, -, Xip)

Unknown vector value: B’ = (Bo, B1, B2, B35 -+ Bp)

n

Density function: f(yq, V2, o , V) = l—lni” (1 —m)'™i;and
i=1

pPo+B1xi1+B2Xp++ BpXip o*iB

Paramater for Yi:m; = T POt Bixi Xt T oty

1+e*h

The Chi-Square Hypothesis test for multiple logistic regression tests the null hypothesis
that none of the independent variables have a significant effect on the response variable against
the alternate hypothesis that at least one of the independent variables is significant. In this way,
the Chi-Square Hypothesis test shares many similarities with the F test from linear regression.
As in simple logistic regression, the likelihood function is identical whether x; is included in the
model or not, and so the estimate for f,, f3,, remains independent of x}. Thus, the G-Statistic for

multiple logistic regression is identical to the G statistic as defined in equation 2.2.2:

no _yn o
=1 Vi 2im Vi AN Zim1Yi
n n

G=-2In -
] (=

However, now when testing the null hypothesis against the alternate hypothesis §, = 0, G
follows a chi-square distribution with p degrees of freedom, where p is the number of
independent variables. Thus, the significance of the independent variables can be determined by

the relation of the probability of a chi-square distribution with p degrees of freedom being larger
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than the G statistic compared to the specified level of alpha. Specifically, relation 2.2.3 can be
easily extended into the multiple variables case where if, (for a, a given constant):

[P(x*(p) > G)] < @ = at least one independent variable is significant.

[P(x?(p) > G)] > a = none of the independent variables are significant.
Furthermore, it is often of interest which specific independent variable is significant in the
model, so the G-Statistic can be refitted to assess the significance of a single variable. To do so,
the null and alternate hypotheses must be redefined. After selecting a specific independent
variable to assess, the likelihood ratio chi-square test compares the null hypothesis that the
specific independent variable is not significant versus the alternate hypothesis that the specific
independent variable is significant. To do so, a new G-statistic is defined as the difference
between the G-statistic for the full model and the G-statistic for the “refitted” model. The G-
statistic for the full model is identical to G as defined in equation 2.2.2, and is now denoted Gfyy;
The G-statistic is then recalculated for the model without the independent variable of interest,
and is denoted Gy fitreq- In this way, the G-statistic of interest is the difference between Gy
and Grefitteq, denoted by AG = Gryy — Grefittea- When testing the null hypothesis that the
variable is not significant against the alternate hypothesis that the variable is significant, AG
follows a chi-square distribution with degrees of freedom equal to the difference in degrees of
freedom between Gryy; and Grefirreq- Recall Gy has p degrees of freedom, while Gyefitreq has
(p — 1) degrees of freedom. Then AG has Adf = p — (p — 1) = 1 degrees of freedom. Thus,
AG follows a chi-square distribution with 1 degree of freedom. In this case, the strategies for
assessing significance of the independent variable of interest is exactly equivalent to the

strategies from the single variable case defined in relation 2.2.3.
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It is also often of interest to test the significance of a subset of the p independent
variables. To do s0, Grefitreq 18 Tedefined by calculating the G-statistic without the subset of
independent variables of interest. Here, Adf = p — k, where k is the number of independent
variables in the subset of interest. Thus, when testing the null hypothesis that none of the k

independent variables are significant against the alternate hypothesis that at least one of the k

independent variables are significant, AG follows a chi-square distribution with p — k degrees of

freedom. Here, to assess significance, the following relation holds;

If, (for @, a given constant):

[P(x*(p — k) > G)] < @ = at least one independent variable is significant.
[P(x?(p — k) > G)] > a = none of the independent variables are significant.
Finally, the Odds and Odds Ratio can be extended to the case of multiple logistic

regression. Here, notation changes slightly as the odds ratio assesses a unit change in a single

independent variable, holding all other independent variables constant. In this way, the Odds at

xij,j € [0,p], is:

eﬁo+ﬁ1xi1+ﬁzxi2+'“+ BpXip
1 4 ePothaxintBaxizt+ Ppxip

O(Xij) = ePo+Bixin+Boxiz+ -+ BpXip
<1 T4 oPotBratBra T Bpxip>
= ePotBixintBaXizt+ BpXip
Similarly, the Odds at (x;; + 1) is:
O(xij + 1) — pPotBrxi++ Bj(xij+1)++ Bpxip
= ePotBixint -+ (Bjxij+Bj)+ -+ PpXip

= ePotBixint+ Bixijt -+ BpXip o Bj

So the Odds Ratio for multiple logistic regression is:
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Odds Ratio = M
0(xi;)

eBotBixintBaXizt+ BpXip o Bj

eBotBixittB2Xizt+ BpXip
= efi
Taking the natural logarithm of each side yields the “log-odds™:
In(0dds Ratio) = f;
Thus, similar to the log-odds in simple logistic regression, in multiple logistic regression the
unknown variable f8; measures the change in the logarithmic odds of success for a one unit

increase in the independent variable x;;.
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Chapter 3- Data and SAS

3.1 Introduction of Dataset

Next, to exemplify the theory and assessment from the previous two chapters, it is
applied to a dataset of insurance claims. The raw dataset contains 67,856 observations, each of
which has 10 variables. These 10 variables are:

Claim: a binary variable (0 or 1); 0 if no claim was made, 1 if at least one claim is made

Numclms: the number of claims made; 0 if no claim was made, integer values up to 4

Amount: value of claim; 0 if no claim was made, integer values

Exposure: the claimant’s exposure; continuous between 0 and 1.

Value: value of car making claim, in $10,000’s; continuous values

Vehicle: vehicle body; 13 categories (bus, convertible, coupe, hatchback, hardtop,

motorized caravan, minibus, panel van, roadster, sedan, station wagon, truck,
and utility)

Vehage: vehicle age; 1 (youngest), up to 4

Gender: gender of claimant; male or female

Area: claimant’s geographical area of residence; categorical from A to F

Age: claimant’s age; 1 (youngest), up to 6
Now, using this information, it is possible to set up a model to determine which variables have a
significant effect on whether or not a claim is made. In this way, the dependent variable is the
binary variable “Claim.” This will allow the formation of a logistic regression model as
discussed in chapter 1. However, including “Numclms” and “Amount” is redundant since these

variables are just extensions of the dependent variable, including constraints. So the model will
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be built using “Claim” as the dependent variable, and using the remaining 7 variables as the
independent variables.
To get an idea of the variables and their ranges, a snapshot of the first 10 rows of the

dataset is as follows:

Obs value exposure clm numclms amount vehicle vehage gender area age

1/ 1.0600  0.30390 0 0 0.00 HBACK 3 F C 2
2 1.0300 0.64887 0 0 0.00 HBACK 2 F A 4
3 32600 0.56947 0 0 0.00 UTE 2 F E 2
4 41400 0.31759 0 0 0.00 STNWG 2 F D 2
5/ 0.7200  0.64887 0 0 0.00 HBACK 4 F C 2
6 20100 0.85421 0 0 0.00 HDTOP I M C 4
7 16000 0.85421 0 0 0.00 PANVN 3 M A 4
8 14700 0.55578 0 0 0.00 HBACK 2 M B 6
9 05200 0.36140 0 0 0.00 HBACK 4 F A 3
10 0.3800 0.52019 0 0 0.00 HBACK 4 F B 4

Building the model in this way determines which (independent) variables have a
significant effect in estimating the probability that a given claimant makes a claim or not. The
model will be built by analyzing each variable one at a time, selecting and keeping the best one
(or selecting none if none increase the G2 statistic), and repeating this process until a final model
is reached. Additionally, the interaction between certain independent variables will be analyzed
in their significance in the model.

To use SAS to find the most appropriate model, each independent variable should be
tested individually against the dependent “Claim” variable. In this way, the main portion of the

code is as follows:
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data claims;

infile 'p:\insurancel.dat';

input value exposure clm numclms amount vehicle $ vehage gender £ area $ age £ @E;
proc logistic descending;

class numclms vehicle vehage gender area age / param=ref ref=last;

model clm = exposure / lackfit covb;

ruan;

The first line of the code (“data claims;”) defines the data file to which will be referenced in
future lines. The second line calls the insurance claim dataset from the P drive. The third line
defines each of the variables from the insurance claim dataset. Variables with a ‘$’ succeeding
the variable name denotes that the preceding variable is categorical rather than numerical. The
fourth line is a built in procedure in SAS to build a logistic model that models the probability that
Y=1, in other words the probability of a claimant making a claim. This line will print out the
model information, the model fit statistics, the chi-square value for each of the 3 tests of
interested (described in chapter 2) and their corresponding p-values, the analysis of the
maximum likelihood estimates, and the odds ratio estimates. The fifth line defines the
categorical variables again and instructs SAS to use the last category in each variable as the
reference variable. Finally, the sixth line builds the logistic model with the independent
variables of interest on the right side, and will print out the estimated covariance matrix, the
partition for the Hosmer and Lemeshow test, and the goodness of fit statistic to analyze how well
the model fits. This sixth line is the only line of code that changes throughout the analysis,
depending on which independent variable(s) are being tested. In the above excerpt of code,

exposure is being tested individually first, and SAS produces the following output:

Testing Global Null Hypothesis: BETA=0 Analysis of Maximum Likelihood Estimates
Test Chi-Square DF Pr > ChiSq Standard Wald
Likelihood Ratio | 1199.1909 1 < 0001 Parameter DF | Estimate Error | Chi-Square | Pr > ChiSq
Score 1199 9503 1 < 0001 Intercept 1 -3.6018 0.0362  9897.5104 <.0001
Wald 1138.5274 1 <.0001 exposure 1 1.8421 0.0546  1138.5274 <.0001
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Odds Ratio Estimates Hosmer and Lemeshow Goodness-of-Fit

Test
95% Wald
Effect Point Estimate Confidence Limits Chi-Square  DF Pr > ChiSq
exposure 6.309 5.669 7.022 102.1805 8 <.0001

3.2 Selecting the Appropriate Model

For exposure, the G2 value (likelihood ratio chi-square value) is G2 = 1199.1909 on one
degree of freedom with an associated p-value of p — val < 0.0001. The large G? statistic and
the small p-value indicate that exposure is significant in the model. However, the rest of the 6
independent variables must be tested in an identical manner to determine which independent
variable is estimated to be most significant. Repeating this process for each of the other 6
independent variables yields G2 values all less than 1199.1909 (refer to appendix B for SAS
output for each of the 7 individual models). Thus, the independent variable “exposure” is added
into the model, and each of the remaining 6 are tested with “exposure”. That is, for example, the
model statement when testing “exposure” and “age” would change to:

model clm = exposure age / lackfit covbk;

So “exposure” would remain in each model tested, while “age” would change for each of the
remaining 6 variables tested. Then the process of selecting and accepting the variable with the

highest G2 value continues. In this dataset, this process continues and first accepts “exposure”
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into the model, then “age,” “vehicle,” “vehage,” “area,” and finally “value.” Each of the G2
values (and their associated degrees of freedom and p-values) are available for reference in

Appendices B through H.
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Additionally, it is noted that “gender” is rejected from the model, as the last model tested
as the most recent model has G? = 1394.2100,d. f = 30 and p — val < 0.0001, and adding
“gender” to the model increases the G2 statistic minimally, with an increase in the degrees of
freedom. Specifically, the model including “gender” has G? = 1394.5643,d.f = 31 and p —
val < 0.0001. The increase in G2 of 0.3543 is determined to not be worth the increase in

degrees of freedom, and so “gender” is not included in the final model.

3.3 Interaction
At each stage of selection, the new variable added into the model is also analyzed in

terms of its interaction with the other independent variables already added into the model. This
is done by adding an extra term in the model statement. The model statement would now look as
follows:

model clm = exposure age exposure*age / lackfit covb;
Adding the term “exposure*age” now gives information on the interaction between the 2
variables. Specifically, under the output for logistic procedure, there is a table titled “Joint
Tests” where the chi-square statistic (and its associated degrees of freedom and p-value) are
calculated based on Wald inference. For the example where “age” was determined to be the next
most significant independent variable after exposure and was included into the model with

exposure, the interaction between them is described in the last line of the following table:

Joint Tests
Wald
Effect DF  Chi-Square Pr > ChiSq
exposure 1 114.6986 <.0001
age 5 32.3949 <.0001
exposure*age 5 8.1204 0.1497
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The p-value for the “exposure*age” interaction variable is p — val = 0.1497 > 0.10 = « and so
it is determined that there is no evidence of a significant interaction between “exposure” and
“age” in this model. Examining the interaction between each of the newly added variables with
the already accepted variables continues at each step, and the exact value for the interaction term
is available for reference in Appendix .

99 <6

Through this process it is found that “vehicle,” “area,” and “value” have no evidence of
interaction either with each other or with “exposure” or “age,” while “vehage” is found to have
evidence of a significant interaction between it and “exposure. The Joint Tests for
“vehage*exposure” produces a p-value less than @ = 0.1 and so this interaction is not rejected,
and is thus included in the model.

Next, the interaction between another independent variable with the interaction
“exposure*vehage” is analyzed and determined that “area” also interacts with “exposure” and
“vehage.” However, similar as to why “gender” was rejected from the model, the trade-off for
the increase in the G2 statistic is not worth the increase in degrees of freedom. Specifically, the
model with only the interaction “exposure*vehage” has G = 1394.2100,d.f = 30 and p —
val < 0.0001, while the model including “exposure*vehage*area” has G2 = 1404.1696,

d.f =42 and p — val < 0.0001. The increase in the G2 of 9.9596 is not worth the increase of
12 degrees of freedom, so the model including the interaction term “exposure*vehage*area” is
rejected.
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Thus, the final model includes the variables (in order) “exposure,” “age,” “vehicle,”

29 ¢¢

“vehage,” “area,” and “value,” along with the interaction term “exposure*vehage.” That is, the

final model statement is:

model clm = exposure age vehicle vehage area value exposure*wvehage / lackfit covb;
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and the output for this model is:

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 1394.2100 30 <.0001

Score 1408.5095 30 <.0001

Wald 1329.5191 30 <.0001

Analysis of Maximum Likelihood Estimates
Standard Wald

Parameter DF ' Estimate Error  Chi-Square  Pr > ChiSq
Intercept 1 -39134 0.1264 958.7735 <.0001
exposure 1 15281 0.1060 207.7601 <.0001
age 1 1 05033 0.0731 47.4620 <.0001
age 2 1 02941 0.0652 20.3641 <.0001
age 3 1 0.2466 0.0635 15.0922 0.0001
age 4 1 02146 0.0632 11.5442 0.0007
age 5 1 -0.00415 0.0689 0.0036 0.9520
vehicle BUS 1 12744 0.3811 11.1840 0.0008
vehicle CONVT = 1 -0.5845 0.6097 0.9192 0.3377
vehicle COUPE = 1 05920 0.1446 16.7576 <.0001
vehicle HBACK | 1 01787 0.0746 5.7410 0.0166
vehicle HDTOP | 1 0.3475 0.1131 9.4386 0.0021
vehicle MCARA | 1 0.8033 0.2970 7.3162 0.0068
vehicle MIBUS 1 0.1362 0.1722 0.6260 0.4288
vehicle PANVN | 1 0.2641 0.1499 3.1051 0.0780
vehicle RDSTR | 1| 0.2188 0.7499 0.0851 0.7705
vehicle SEDAN | 1 0.2010 0.0719 7.8094 0.0052
vehicle STNWG 1 02322 0.0726 10.2178 0.0014
vehicle TRUCK | 1 0.1575 0.1156 1.8575 0.1729
vehage 1 1 -0.4021 0.1179 11.6249 0.0007
vehage 2 1 -0.0356 0.1030 0.1195 0.7296
vehage 3 1 -0.0990 0.0974 1.0330 0.3095
area A 1 -0.0781 0.0726 1.1576 0.2820
area B 1 0.0131 0.0737 0.0317 0.8587
area C 1/ -0.0410 0.0711 0.3324 0.5643
area D 1 -0.1650 0.0795 4.3106 0.0379
area E 1/ -0.0898 0.0832 1.1664 0.2801
value 1/ 0.0305 0.0188 2.6307 0.1048
exposure*vehage 1 1 0.8653 0.1696 26.0425 <.0001
exposure*vehage 2 1 0.3534 0.1501 55439 0.0185
exposure*vehage 3 1 0.2882 0.1464 3.8764 0.0490

Joint Tests
Wald
Effect DF | Chi-Square | Pr > ChiSq
exposure 1 207.7601 <.0001
age 5 83.5295 <.0001
vehicle 12 37.2261 0.0002
vehage 3 13.8114 0.0032
area 5 11.4420 0.0433
value 1 2.6307 0.1048
exposure*vehage 3 26.2640 <.0001
Odds Ratio Estimates
95% Wald
Effect Point Estimate A Confidence Limits
age 1vs 6 1.654 1434 1.909
age 2vs 6 1.342 1.181 1.525
age 3vs 6 1.280 1.130 1.449
age 4vs 6 1.239 1.095 1.403
age 5vs 6 0.996 0.870 1.140
vehicle BUS vs UTE 3577 1.695 7.548
vehicle CONVT vs UTE 0.557 0.169 1.841
vehicle COUPE vs UTE 1.808 1.361 2.400
vehicle HBACK vs UTE 1.196 1.033 1.384
vehicle HDTOP vs UTE 1.415 1.134 1.767
vehicle MCARA vs UTE 2.233 1.248 3.997
vehicle MIBUS vs UTE 1.146 0.818 1.606
vehicle PANVN vs UTE 1.302 0.971 1.747
vehicle RDSTR vs UTE 1.245 0.286 5412
vehicle SEDAN vs UTE 1.223 1.062 1.408
vehicle STNWG vs UTE 1.261 1.094 1.454
vehicle TRUCK vs UTE 1171 0.933 1.468
areaAvsF 0.925 0.802 1.066
areaBvs F 1.013 0.877 1171
areaCvs F 0.960 0.835 1.103
areaDvs F 0.848 0.726 0.991
areaEvsF 0914 0.777 1.076
value 1.031 0.994 1.070

Hosmer and Lemeshow Goodness-of-Fit
Test

Chi-Square = DF Pr > ChiSq
72.6603 8 <.0001
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Chapter 4- Analysis and Interpretation

4.1 Expressing the Appropriate Model
Now that the appropriate model has been constructed, it is important to recognize the

implications of the chosen model. As seen in chapter 3, the most fitting model includes the
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following variables: “exposure,” “age,” “vehicle,
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vehage,” “value,” and “area”. This means

that the model can be represented by:

logit[n(xi)]=ln< n(x)> Zﬁ, Xij

ePothixitBaxiptt Bpxip exgl” . . .
Where m; = 1+ PP PR Bpry L g so equation 4.1.1 is equivalent to:
p P 3
oZj=0Pi¥ij ~ oZj=0Pi¥ij
M =——0 S0, =—F——
1+621_°Bjxij 1+e7J oPrxij

So the equation for the probability that a given claimant makes a claim is:
e*if

—1 o ; With

e¥if = exP(Bo + ,élxil + Bzxiz + Bsxi3 + ,[?4351'4 + Bsxis + ,éexie + 37951'7 + Bsxis + B9xi9 +
Bloxiw + B11xi11 + B12xi12 + ,[?13351'13 + B14xi14 + B15xi15 + Blﬁxl’16 + ,[?17351'17 +
Blei18 + B19xi19 + Bzoxizo + B21xi21 + Bzzxizz + 323351'23 + B24xi24 + stxizs +
B26xi26 + Bz7xi27 + ,ézsxuxiw + Bz9xi1xi20 + ﬁ30xi1xi21)

Where x;; is the exposure of the claimant (between 0 and 1); x;, = 1 if the claimant is in the first

(youngest) age category, and 0 otherwise; x;3 = 1 if the claimant is in the second age category,

and 0 otherwise; x;, = 1 if the claimant is in the third age category, and 0 otherwise; x;5 = 1 if

the claimant is in the fourth age category, and 0 otherwise; x;, = 1 if the claimant is in the fifth

age category, and 0 otherwise; x;; = 1 if the claimant drives a bus, and 0 otherwise; x;g = 1 if
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the claimant drives a convertible, and 0 otherwise; x;o = 1 if the claimant drives a coupe, and 0
otherwise; x;;o = 1 if the claimant drives a hatchback, and 0 otherwise; x;;; = 1 if the claimant
drives a hardtop, and 0 otherwise; x;;, = 1 if the claimant drives a motorized caravan, and 0
otherwise; x;;3 = 1 if the claimant drives a minibus, and 0 otherwise; x;;, = 1 if the claimant
drives a panel van, and 0 otherwise; x;;5 = 1 if the claimant drives a roadster, and 0 otherwise;
X;16 = 1 if the claimant drives a sedan, and 0 otherwise; x;;; = 1 if the claimant drives a station
wagon, and 0 otherwise; x;;g = 1 if the claimant drives a truck, and 0 otherwise; x;;9 = 1 if the
claimant’s vehicle is in the first (youngest) age category, and 0 otherwise, x;,, = 1 if the
claimant’s vehicle is in the second age category, x;,; = 1 if the claimant’s vehicle is in the third
age category, and 0 otherwise; x;,, = 1 if the claimant lives in geographical area A, and 0
otherwise; x;,3 = 1 if the claimant lives in geographical area B, and 0 otherwise; x;,, = 1 if the
claimant lives in geographical area C, and 0 otherwise; x;,5 = 1 if the claimant lives in
geographical area D, and 0 otherwise; x;,, = 1 if the claimant lives in geographical area E, and
0 otherwise, and x;,; is the value of the claimant’s vehicle (in $10,000’s);. Additionally, the last
3 terms are the interaction terms between exposure and claimant age.

Thus, using the output given in chapter 3 and Appendix I, the an equation for 7; can be
constructed by first substituting the SAS values for ﬁp (p =0,1,2,...,30) into exiB producing:

e*iB = exp(—3.9134 + 1.5281x;;, + 0.5033x;, + 0.2941x;5 + 0.2466x;, + 0.2146x;5 —
0.00415x;, + 1.2744x;, — 0.5845x;5 + 0.5920x;0 + 0.1787x;10 + 0.3475x;1, +
0.8033x;1, + 0.1362x;15 + 0.2641%x;14 + 0.2188x;,5 + 0.2010x;,¢ + 0.2322%;1, +
0.1575x;15 — 0.4021x;16 — 0.0356x;50 — 0.0990x;5; — 0.0781x;5, + 0.0131%x;55 —
0.0410x;5, — 0.1650x;,5 — 0.0898x;, + 0.0305x;,, + 0.8653%x;1 %19 +

0.3534x;1x;59 + 0.2882x;1x;21)
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Now, the exact estimated equation for the probability that a given claimant makes a claim is:

; = [exp(—3.9134 + 1.5281x;; + 0.5033x;, + 0.2941x;3 + 0.2466x;, + 0.2146x;5 —
0.00415x;5 + 1.2744x;; — 0.5845x;5 + 0.5920x;9 + 0.1787x;10 + 0.3475x;11 +
0.8033x;1, + 0.1362x;13 + 0.2641x;,4 + 0.2188x;,5 + 0.2010x;,¢ + 0.2322x;,, +
0.1575x;15 — 0.4021x;,9 — 0.0356x;5¢9 — 0.0990x;,; — 0.0781x;,, + 0.0131x;,3 —
0.0410x;54 — 0.1650x;,5 — 0.0898x;,¢ + 0.0305x;,7 + 0.8653x;,X;19 +
0.3534x;1x;50 + 0.2882xl-1x,-21)]/[1 + exp(—3.9134 + 1.5281x;; + 0.5033x;, +
0.2941x;53 + 0.2466x;, + 0.2146x;5 — 0.00415x;¢ + 1.2744x;;, — 0.5845x;5 +
0.5920x;9 + 0.1787x;19 + 0.3475x;11 + 0.8033x;1, + 0.1362x;;3 + 0.2641x;14 +
0.2188x;15 + 0.2010x;,¢4 + 0.2322x;17 + 0.1575x;,5 — 0.4021x;,9 — 0.0356x;59 —
0.0990x;,; — 0.0781x;5, + 0.0131x;,5 — 0.0410x;,, — 0.1650x;,5 — 0.0898x;,¢ +
0.0305x;,7 + 0.8653x;1x;19 + 0.3534x;1x;5¢ + 0.2882x;1x;51)]

Where each of the x;;'s are defined as above. For this model, a Hosmer-Lemeshow test shows

no evidence of a lack of fit of the model (p-value < 0.0001)

4.2 Interpretation of Odds Ratios
Using SAS, it was found that 6 of the 7 variables are significant in estimating the

probability that a given claimant makes a claim, as well as the interaction between exposure and

vehicle age. The exposure of the claimant is the biggest determiner of whether or not a claim is
made. However, the combination of exposure, claimant age, vehicle type, vehicle age, vehicle
value, and geographical area are also significant in estimating this probability. Furthermore, SAS
provides the Odds Ratio estimates for each variable. In particular, the following conclusions can

be made regarding claimant age while keeping the other variables fixed (using figure 4.2.1

below):
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The odds of a claimant in the first (youngest) age category making a claim is
estimated to be 1.654 times higher than the odds of a claimant in the last (oldest)
age category. Additionally, it is noted that with 95% confidence, the odds of a
claimant in the first (youngest) age category making a claim is anywhere between
1.434 and 1.909 times the odds of a claimant in the last (oldest) age category.

The odds of a claimant in the second age category making a claim is estimated to
be 1.342 times higher than the odds of a claimant in the last (oldest) age category.
Additionally, it is noted that with 95% confidence, the odds of a claimant in the
second age category making a claim is anywhere between 1.181 and 1.525 times
the odds of a claimant in the last (oldest) age category.

The odds of a claimant in the third age category making a claim is estimated to be
1.280 times higher than the odds of a claimant in the last (oldest) age category.
Additionally, it is noted that with 95% confidence, the odds of a claimant in the
third age category making a claim is anywhere between 1.130 and 1.449 times the
odds of a claimant in the last (oldest) age category.

The odds of a claimant in the fourth age category making a claim is estimated to be
1.239 times higher than the odds of a claimant in the last (oldest) age category.
Additionally, it is noted that with 95% confidence, the odds of a claimant in the
fourth age category making a claim is anywhere between 1.095 and 1.403 times the
odds of a claimant in the last (oldest) age category.

The odds of a claimant in the fifth age category making a claim is estimated to be
0.996 times the odds of a claimant in the last (oldest) age category. Additionally, it

is noted that with 95% confidence, the odds of a claimant in the fifth age category
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making a claim is anywhere between 0.870 and 1.140 times the odds of a claimant

in the last (oldest) age category.

These conclusions indicate that a claimant in the first (youngest) age category is more likely to

make a claim than a claimant in any of the other categories, while a claimant in the fifth age

category is least likely to make a claim. This makes sense logically since new drivers typically

have less experience, and old drivers are getting old in age as well and may be losing some

motor functions or memory skills, but the drivers in the second to oldest age category are still

functioning well cognitively while having a high amount of driving experience. Similar

conclusions can be pulled for comparisons between different claimant ages, vehicle type,

geographical area, and value, and are summarized in the following tables:

Odds Ratio Estimates for Claimant Age Odds Ratio Estimates for Vehicle Value
95% Wald Comfidence Limits 95% Wald Comfidence Limits
Point Estimate |C.I. Lower Bound |C.|. Upper Bound Point Estimate [C.I. Lower Bound |C.I. Upper Bound
Age 1vs Age 6 1.654 1.434 1.909 Value 1.031 0.994 1.07
Age 2 vs Age 6 1.342 1.181 1.525
Age 3 vs Age 6 1.28 1.13 1.449
Age 4 vs Age 6 1.239 1.095 1.403 Odds Ratio Estimates for Geographical Area
Age 5 vs Age 6 0.996 0.87 1.14 95% Wald Comfidence Limits
Age 1vs Age 5 1.661 1.466 1.883 Point Estimate [C.|. Lower Bound |C.|. Upper Bound
Age 2 vs Age 5 1.347 1.211 1.5 Area A vs Area F 0.925 0.802 1.066
Age 3 vs Age 5 1.285 1.159 1.425 Area B vs Area F 1.013 0.877 1.171
Age 4 vs Age 5 1.245 1.123 1.379 Area Cvs Area F 0.96 0.835 1.103
Age 1vs Age 4 1.335 1.193 1.494 Area Dvs Area F 0.848 0.726 0.991
Age 2 vs Age 4 1.083 0.988 1.187 Area E v Area F 0.914 0.777 1.076
Age 3vs Age 4 1.032 0.946 1.127 Area Avs Area E 1.012 0.895 1.144
Age 1vs Age 3 1.293 1.155 1.447 Area B vs Area E 1.108 0.978 1.256
Age 2 vs Age 3 1.049 0.957 1.149 Area Cvs Area E 1.05 0.932 1.183
Age 1vs Age 2 1.233 1.098 1.384 Area Dvs Area E 0.928 0.807 1.066
Area Avs Area D 1.091 0.975 1.22
(4'2'1) Area B vs Area D 1.195 1.066 1.339
Area Cvs Area D 1.132 1.016 1.261
Area A vs Area C 0.964 0.887 1.047
Area B vs Area C 1.056 0.969 1.15
Area Avs Area B 0.913 0.833 1
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Odds Ratio Estimates for Vehicle Type Minibus vs Sadan 0937 0681 1289
95% Wald Comfidence Limits Panel Van vs Sadan 1.065 0813 1395
Point Estimate [C1 Lower Bound | CL UpperBound | | gy afgter vs Sedan 1018 0235 441
R 3557 ] 7548)  |Bus vs Roadster 2874 0558 14311
e 0357 0.169 L34LE | Convertible vs Roadster 0443 0.069 2923
Coupe vs Utility 1308 1361 24
Hatehback vs Utiity 1196 1033 Tase| [CoUPeVS Roddster 1452 L 6414
Hardtop vs Utiity 1415 1134 1767 Hatchback vs Roadster 0961 0221 4.167
Motorized Caravan vs Utiity 2233 1248 1997| [Manitopvs Roaisher 1137 026 4573
Minibus vs Utility 1.146 0818 1606 Motorized Caravan vs Roadster 1794 0374 8611
Panel Vian vs Utility 1302 0971 1747 Minibus vs Roadster 0921 0.206 4114
Roadster vs Utility 1245 0286 5412 Panel Van vs Roadster 1.046 0236 4636
Sedan vs Utility 1223 1062 1408 Bus vs Panel Van 2747 1256 6.005
Station Wagon vs Utility 1261 1094 1454  |Convertible vs Panel Van 0428 0.126 1449
Truck vs Utility 1171 0933 1468 Coupe vs Panel Van 1388 0963 2001
Bus vs Truck 3055 1429 6531 Hatchback vs Panel Van 0918 07 1204
Convertible vs Truck 0476 0.143 1584] | }ardtop vs Pane Van 1087 0788 1.499
Coupe vs Truck 1544 1125 21181 | )Motorized Caravan vs Panel Van 1715 0915 3213
s e m—f T
Motorized Caravan vs Truck 1.908 1.049 63| 3121 1402 5347
MIbUS vs Truck 0979 05679 1411 Convertible vs Minibus 0486 0.143 1658
[Pand Van vs Truck 1112 02803 154| |Coupevs Minibus 1577 1057 2353
Roadster vs Truck 1063 0243 ags3| [Hatchbackvs Mindus 1043 0.756 144
Sedan vs Truek 1044 0856 1275| |Hardtop vs Minibus 1235 0861 1773
Station Wagon vs Truek 1078 0883 1314 Motorized Caravan vs Minibus 1949 102 3722
Bus vs Station Wagon 2836 1354 594 Bus vs Motorized Caravan 1602 0632 406
Convertible vs Station Wagon 0.442 0.135 1446 Convertible vs Motorized Caravan 025 0067 0923
Coupe vs Station Wagon 1433 1.104 186 Coupe vs Motorized Caravan 0809 0435 1506
Hatchback vs Station Wagon 0948 0854 1053|  |Hatchback vs Motorized Caravan 0535 0301 0953
Hardtop vs Station Wagon 1122 03926 136] | Hardtop vs Motorized Caravan 0634 0349 115
Motorized Caravan vs Station Wag 177 1.001 313| [ gs ve Hardtop 2527 1184 5394
Mthnwwm 0909 0661 1249 Convertible vs Hardtop 0394 0119 1308
e 1032 0783 1358} | Coupe vs Hardtop 1277 0935 1744
Roadster vs Station Wagon 0987 0.228 4267 T 0815 Y L0e
Sadan vs Station Wagon 0969 0883 1064 -
Bus vs Sedan 2925 1397 6125| |SusVSHatchback 2991 1427 627
R 0456 0138 1soa| |Convertiblevs Hatchback 0.466 0141 1543
Coupe vs Sadan 1478 1139 1918 Coupe vs Hatchback 1512 1.161 1969
Hatchback vs Sadan 0978 0902 106| |Busvs Coupe 1979 0908 4312
Hardtop vs Sedan 1.158 0954 1404 Convertible vs Coupe 0308 0092 1037
Motorized Caravan vs Sedan 1826 103 3239 Bus vs Convertible 6417 1584 25992
Odds Ratio Estimates for Vehicle Age (Holding Exposure Constant at 0.22) Odds Ratio Estimates for Vehicle Age (Holding Exposure Constant at 0.71)
95% Wald Comfidence Limits 95% Wald Comfidence Limits
Point Estimate  |C.l. Lower Bound |C.|. Upper Bound Point Estimate [C.l. Lower Bound |C.|. Upper Bound
Vehicle Age 1 vs Vehicle Age 4 1.235819113|  0.939805879|  1.531832348| |Vehicle Age 1 vs Vehicle Age 4 0.808751968|  0.359068562 1.258435374
Vehicle Age 2 vs Vehicle Age 4 0.958727878|  0.698653837 1.21880192|  [Vehicle Age 2 vs Vehicle Age 4 0.806288226  0.409209656|  1.203366795
Vehicle Age 3 vs Vehicle Age 4 1.036237122 0.787357955 1.285116289| [Vehicle Age 3 vs Vehicle Age 4 0.899764695 0.515954498 1.283574892
Vehicle Age 1 vs Vehicle Age 3 0.489259625 0.327444114 0.651075136| |[Vehicle Age 1 vs Vehicle Age 3 0.368748293 0.260798148 0.476698439
Vehicle Age 2 vs Vehicle Age 3 0.379559466 0.202679457 0.556439474 Vehicle Age 2 vs Vehicle Age 3 0.367624957 0.153359234 0.581890679
Vehicle Age 1 vs Vehicle Age 2 1.289019691 1.13007608 1.447963302 Vehicle Age 1 vs Vehicle Age 2 1.003055659 0.901441989 1.104669329
Odds Ratio Esti for Vehicle Age (Holding Exp Constant at 0.45) Odds Ratio Estimates for Exposure for a 0.25 unit increase
95% Wald Comfidence Limits 95% Wald Comfidence Limits
Point Estimate |C.I. Lower Bound |C.I. Upper Bound Point Estimate |C.l. Lower Bound|C.I. Upper Bound
Vehicle Age 1 vs Vehicle Age 4 1.012796179 0.645634919 1.37995744 Vehicle Age Category 1 1.819114783 1.786017389 1.852212178
Ve Ao s Ve s 4 | osearroisr| cesassees] Tsorsserss] |Lehicle Age Category2 Looosousos|  157ameeses| 1627152004
Vehicle Age 1 vs Vehicle Age 3 0.428444102]  0.30887a302] _ 0.5a8013002]  [ocnicle Age Category 3 ISTETATT| Seanes LaNeae e
Vehicle Age 2 vs Vehicle Age 3 0.373910057|  0.188881074 0.55893004| | Vehicle Age Category 4 1.465248716| 1.438745178 1491752253
Vehicle Age 1 vs Vehicle Age 2 1.14584803]  1.032086026]  1.259610033 ( 4. 6)
(4.2.5)
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It is important to note that to make comparisons against categories that are included as the
indicator variables, the code must be changed in the class statement. Such a change sets the
reference variable to one of the current indicator variables, rather than just setting it to the last
category.

Furthermore, SAS does not directly provide the Odds Ratio Estimates for Vehicle Age or
for Exposure since there is an interaction amongst these variables included in the model. In this
situation, the point estimates and 95% Wald Confidence Limits must be computed by hand. This
is done so by using the 8 estimates provided from SAS along with the Covariance Matrix, also
provided by SAS. To compute the Odds Ratios for vehicle age, exposure must be held constant
at some arbitrary value. Here, the Odds Ratios for Vehicle Age are computed using exposure
levels of the 25, 50, and 75" percentiles. To compute the Odds Ratios for Exposure, generally
the odds would be calculated at an arbitrary exposure level and then recalculated for a one unit
increase. However, exposure is a continuous value between 0 and 1, so an increase of 1 unit
would be out of range. Instead, the odds are recalculated for a 0.1 unit increase in exposure.
Then conclusions can be made for each of the 6 independent variables in the model.

Specifically, a claimant that drives a bus is most likely to make a claim, while a
claimant that drives a convertible is least likely to make a claim, as observed in figure 4.2.4.
Again this is logical since busses are large vehicles that may be hard to manoeuvre, while
convertibles are generally sports cars and tend to be well cared for. Additionally, claimants in
geographical area B are most likely to make a claim, while claimants in geographical area D are
least likely to make a claim, as observed from figure 4.2.3. This cannot be confirmed by logic
since no information is available on which geographical areas are urban, suburban, or rural.

Using logic, it can be estimated that geographical area B is an urban area with a higher volume
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of traffic, while geographical area D is a rural area with low traffic volume. Also, the odds of a
claimant making at least one claim increases by 1.031 times for every $10,000 increase in
vehicle value, seen in figure 4.2.2. It is concluded with 95% confidence that the odds of a
claimant making at least one claim is between 0.994 and 1.070 times for every $10,000 increase
in vehicle value (figure 4.2.2). Using the median exposure, it is estimated that for a fixed
exposure level of 0.45, the odds of a vehicle in the first age category making a claim is the
highest, while the odds of a vehicle in the second age category is the lowest (figure 4.2.5). This
is intuitive since claimants driving brand new cars or very old may have more disposable income

to buy these vehicles.

4.3 Discarded Variables

It was determined through the model building process that the gender variable could be
discarded from the model, as it has no significance in determining the probability of a claimant
making a claim. This is a surprising result as it is widely believed within the car insurance
industry that gender plays a significant role, specifically that males are more likely to make
claims. However, using the 67,856 observations in the dataset, it is clear that males are not any
more likely than females to make insurance claims.

Moreover, at the beginning of chapter 3 it was noted that the “number of claims” and
“claim amount” variables were discarded as they were essentially the dependent variable with

29 ¢

constraints. It is important to recognize that any of these 3 variables (“claim,” “numclms,” and
“amount”) could have been used as the dependent variable instead. The values under “numclms”

and “amount” will be 0 if no claim is made, and all other values indicate a claim was made.

Thus, a simple SAS program can be constructed to turn either the “numclms” or “amount”
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variables to binary by setting all values greater than zero to 1. In this way, the “numclms” and

“amount” variables will be identical to the “claim” variable used throughout this analysis.
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Conclusion

This project aimed to build an appropriate logistic regression model to estimate the
probability of a person making a car insurance claim based on a given exposure level, driver age,
vehicle type, vehicle type, vehicle value, driver’s geographical area, and driver’s gender. This is
a very practical analysis in the insurance industry as insurance prices generally fluctuate based
on the estimated probability of a given person making a claim. That is, the higher the estimated
probability of a person making a claim, the higher their insurance rate will be.

It was discussed in chapter 1 that logistic regression is an important statistical method to
model a dependent binary variable against one or more independent variables of interest. The
logistic model was derived for simple logistic regression as well as for multiple logistic
regression. The likelihood equations were derived using maximum likelihood estimation, and
using the Newton-Raphson method, were set to zero to solve for the estimates f5;, i = 0, ... p.

Chapter 2 went on to discuss ways to assess significance of the estimates found
from the theory in chapter 1. Specifically, many hypothesis tests were discussed, including the
Chi-Square hypothesis test (likelihood hypothesis test), the Score hypothesis test, the Wald
hypothesis test, and the P-value hypothesis test. Additionally, the Odds and Odds ratios were
derived in their relation to a one unit increase in any specific variable to determine how the
probability of making a claim may change as a single independent variable changes.

Next, chapter 3 introduced the dataset used throughout the analysis. The dataset
contains 67,856 rows of information on the following 10 variables: exposure, claim, number of
claims, amount of claim, value of vehicle, type of vehicle, geographical area, gender, claimant
age, and vehicle age. SAS was utilized to produce output for analyzing and building the most

fitting model for the given data. The model was built by testing one individual variable at a time,
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and building the model upwards, selecting a new variable to accept into the model at each step.
The interaction between specific independent variables was also discussed in its relation towards
the model and variable significance.

Finally, chapter 4 combined all the information discussed within the previous 3
chapters to consider the real-world implications of the model. Specifically, the equation for the
final model is stated using the estimates for f5; as given in the SAS output. Conclusions were
made based on the model estimates and Odds Ratio estimates provided by SAS. Finally, the
Odds Ratios to form confidence intervals for the two variables included in the interaction term
must be computed by hand (and using excel spreadsheets) to compute the point estimates and
95% Wald Confidence limits for both vehicle age and exposure.

In conclusion, the final model for determining the probability of a given claimant making
a claim is given by equation 4.1.1. It was found that the most significant independent variables in
the model are exposure, claimant age, vehicle type, vehicle age, area, and value, in that order.
The only variable discarded from the model was gender, which proves surprising considering
how the insurance industry often charges males higher insurance rates than they charge females.
It was determined that the youngest and oldest drivers are, unsurprisingly, most likely to make a
claim, as well as claimants who drive a bus, compared to claimants in other age categories and

claimants who drive other vehicles, respectively.
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Appendices

Appendix A:

Macro code (using SAS) used in analysis

|ldata claims;
o

infile 'p:\insurancel.dat';
input value exposure clm numclms amount vehicle $ vehage gender £ area $ age S @E;

|proc logistic descending;
class numclms vehicle vehage gender area age / param=ref ref=last;

model clm = exposure age vehicle vehage area value exposure*vehage / lackfit covb;

ran;

Note that this code represents the final model. The model statement began testing claim against

each individual variable, then against 2 variables, and so on.

Also note that class statement was altered in the reference command to compare Odds Ratios

against categories other than the last one.
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Appendix B:

Output from first stage of selection (in reading order: age; exposure; gender; value; vehage;
vehicle; area) where exposure was selected based on likelihood ratio statistic.

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF | Pr > ChiSq
Likelihood Ratio 711300 5 <.0001
Score | 713330 5 <.0001
Wald 708826 5 <.0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF | Pr > ChiSq
Likelihood Ratio 0.2875 1 0.5918
Score 02873 1 0.5919
Wald 0.2868 1 0.5923

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF | Pr > ChiSq
Likelihood Ratio 26.3086 3 <.0001
Score | 26.5296 3 <.0001
Wald 26.4762 3 <.0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF | Pr > ChiSq
Likelihood Ratio 18.1173 5 0.0028
Score 18.1602 5 0.0028
Wald 18.1263 5 0.0028

Testing Global Null Hypothesis: BETA=0

Test Chi-Square  DF | Pr = ChiSq
Likelihood Ratio | 1199.1909 | 1 | <.0001
Score 1199.9503 1 <.0001
Wald 1138.5274 1 <.0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF | Pr > ChiSq
Likelihood Ratio 21.6800 1 <.0001
Score 23.0681 | 1 <.0001
Wald 231287 1 <.0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square | DF | Pr > ChiSq
Likelihood Ratio | 39.5472 | 12 | <.0001
Score 433441 12 <.0001
Wald 420411 12 <.0001
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Appendix C:

Output from second stage of selection (in reading order: exposure with age; exposure with area;
exposure with gender; exposure with value; exposure with vehage; exposure with vehicle) where
age was selected based on likelihood ratio statistic.

Testing Global Null Hypothesis: BETA=0

Test Chi-Square  DF | Pr > ChiSq
Likelihood Ratio | 1288.0431 | 6 | <.0001
Score 1286.5361 6 <.0001
Wald 1221.0615 6 <.0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square  DF | Pr > ChiSq

Likelihood Ratio ' 1200.3095 2 <0001
Score 12009952 2 <.0001
Wald 1139.56163 @ 2 <0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF | Pr > ChiSq
Likelihood Ratio  1227.0485 4 <.0001
Score 12271226 4 <.0001
Wald 1164.3664 4 <.0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio  1214.3945 6 <.0001
Score 1215.0766 6 <.0001
Wald 11528891 6 <.0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF | Pr > ChiSq
Likelihood Ratio | 1221.8819 | 2 | <.0001
Score 1223.2147 2 <.0001
Wald 1160.5893 2 <.0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF | Pr > ChiSq
Likelihood Ratio  1235.1634 13 <.0001
Score | 1238.7082 13 <.0001
Wald 1174.0394 13 <.0001

44



Appendix D:

Output from third stage of selection (in reading order: exposure and age with vehage; exposure
and age with area; exposure and age with value; exposure and age with vehicle; exposure and
age with gender) where vehicle was selected based on likelihood ratio statistic.

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio ' 1313.8280 9 <.0001
Score 1311.7637 9 <.0001
Wald 12449353 9 <.0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square | DF | Pr > ChiSq
Likelihood Ratio| 1307.3730 7 <0001
Score 13064089 7 <0001
Wald 12398685 7 <0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF | Pr > ChiSq
Likelihood Ratio  1288.4984 7 <.0001
Score 1286.9341 7 <.0001
Wald 12214209 7 <.0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square  DF | Pr > ChiSq
Likelihood Ratio 13001034 11 <0001
Score 12983783 11 <0001
Wald 12322240 11 <0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square  DF | Pr > ChiSq
Likelihood Ratio | 1325.0779 18 | <.0001
Score 1326.1398 18 <.0001
Wald 1257.0406 18 <.0001
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Appendix E:

Output from fourth stage of selection (in reading order: exposure, age, and vehicle with area;
exposure, age, and vehicle with value; exposure, age, and vehicle with vehage; exposure, age,
and vehicle with gender) where vehage was selected based on likelihood ratio statistic.

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF | Pr > ChiSq
Likelihood Ratio | 1336.6312 | 23 <.0001
Score 1337.5060 23 <.0001
Wald 1267.7326 23 <.0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF | Pr > ChiSq

Likelihood Ratio  1353.6445 21 <.0001

Score 1353.7817 21 <.0001

Wald 1283.2100 21 <.0001
Appendix F:

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr> ChiSq
Likelihood Ratio | 1343.4127 19 <.0001
Score 1344 6726 19 <.0001
Wald 1274 5044 19 <.0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF | Pr > ChiSq
Likelihood Ratio  1325.3462 19 <.0001
Score 1326.4165 19 <.0001
Wald 1257.2967 19 <.0001

Output from fifth stage of selection (in reading order: exposure, age, vehicle, and vehage with
area; exposure, age, vehicle, and vehage with value; exposure, age, vehicle, and vehage with
gender, including interaction term between exposure and vehage) where area was selected based

on likelihood ratio statistic.

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF | Pr > ChiSq
Likelihood Ratio  1391.6637 29 <.0001
Score 1405.8604 29 <.0001
Wald 1326.9390 29 <.0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio  1380.3896 25 <.0001
Score 1394.7549 25 <.0001
Wald 1316.5087 25 <.0001

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF  Pr > ChiSq
Likelihood Ratio  1382.6707 25 <.0001
Score 1397.1320 | 25 <.0001
Wald 1318.8253 25 <.0001
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Appendix G:

Output from sixth stage of selection (in reading order: exposure, age, vehicle, vehage, and area
with gender; exposure, age, vehicle, vehage, and area with value, including interaction term
between exposure and vehage) where value was selected based on likelihood ratio statistic.

Testing Global Null Hypothesis: BETA=0 Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr> ChiSq | Test Chi-Square DF | Pr> ChiSq
Likelihood Ratio | 1391.9021 30 <0001 Likelihood Ratio  1394.2100 30 <.0001
Score 1406.1169 = 30 <0001 Score 1408.5095 30 <.0001
Wald 13271744 30 <0001 Wald 1329.5191 30 <.0001
Appendix H:

Output from final stage of selection (exposure, age, vehicle, vehage, area, and value with gender,
including interaction term between exposure and vehage) where gender was NOT selected based
on likelihood ratio statistic and degrees of freedom.

Testing Global Null Hypothesis: BETA=0

Test Chi-Square | DF | Pr = ChiSq
Likelihood Ratio | 13945643 31 <.0001
Score 1408.8828 31 <.0001
Wald 1329.8655 31 <.0001
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Appendix I:

SAS complete output for final model (exposure, age, vehicle, vehage, area, and value, including
interaction term between exposure and vehage)

Testing Global Null Hypothesis: BETA=0 Odds Ratio Estimates
: ' - 95% Wald
Test ‘ Chi-Square . DF ‘ Pr> ChiSq Effect Point Estimate | Confidence Limits
Likelihood Ratio | 1394 5643 31 <0001 age1vs6 1.650 1.430 1.905
Score 1408.8828 31 <.0001  29e2vs6 | I
age 3vs 6 1.276 1.126 1.446
Wald 1329.8655 31 <.0001
agedvsb 1.237 1.092 1.400
Analysis of Maximum Likelihood Estimates age 5vs 6 0.994 0.869 1.138
Standard Wald
Parameter DF | Estimate Error  Chi-Square Pr>ChiSq | vehicle BUS vs UTE 3571 1.692 7.536
Intercept 1) 39172 01265  958.2694 <0001 | te CONVT vs UTE 0.551 0.167 1821
exposure 1) 15280 01060  207.7487 <.0001
e, % 3| oeom0| o FETTe <004 vehicle COUPE vs UTE 1.798 1.353 2.388
age 2 102912 0.0653 19.8529 <0001 | vehicle HBACK vs UTE 1.186 1.022 1.376
pto 2 1) 02437 00637 146606 0.0001 |y opicle HDTOP vs UTE 1410 1129 1.761
age 4 10 02124 00633  11.2640 0.0008
diie 5 1| 000569 00689 0.0068 0.9342 vehicle MCARA vs UTE 2224 1.242 3.981
vehicle BUS 1) 12727 03811  11.1506 0.0008 | vehicle MIBUS vs UTE 1.138 0.812 1.596
vehicle [CONVT | 1 0594 06101 0.9558 03283 [ i e PANVN vs UTE 1304 0.972 1.749
vehicle COUPE | 1 05865 01449  16.3820 <.0001 -
vehicle HBACK | 1| 01707  0.0758 sor4 o023 Vvehicle RDSTR vs UTE 1242 0.286 5.402
vehicle HDTOP | 1 03438  0.1133 9.2108 0.0024 | vehicle SEDAN vs UTE 1.214 1.053 1.401
vehicle MCARA | 1 07993 02971 7.2394 00071 | chicle STNWG vs UTE 1955 1088 1449
vehicle MIBUS | 1 01205  0.1725 0.5637 0.4528 !
ol PANVN | 1 02651 01499 31284  ooreg  Vvehicle TRUCK vs UTE 1472 0934 1470
vehicle RDSTR | 1 02170  0.7499 0.0837 07723 | | area A vs F 0.926 0.503 1.068
vehicle SEDAN = 1 01943  0.0728 71215 R —— p— poo— —
vehicle STNWG 1 02274  0.0731 9.6828 0.0019 !
vehicle TRUCK | 1 01586  0.116 18820 04701 areaCvsF _ 0.961 0.836 1.105
vehage 1 1| 04045 01180  11.7530 00006  area D vsF 0848 0.725 0.991
vehage 2 1 00377 01030 0.1342 OTHt | B R E — — s
vehage 3 1) 01007  0.0975 1.0675 0.3015
area A 1) 00770 00726 11230 02893  value _ 1.032 0.994 1.070
area B 1 00141 00737 0.0367 08481 gender F vs M 1020 0956 1087
area c 1 00400  0.0711 0.3161 0.5739
area D 1) 01653  0.0795 43204 0.0376
area E 1) 00898  0.0832 11644 0.2806
value 1 00312 00188 27524 0.0971
gender F 1 00194 00326 0.3540 0.5518
exposure*vehage | 1 1) 08658 01696  26.0774 <.0001
exposure*vehage 2 1 0.3538 0.1501 5.5565 0.0184
exposure*vehage 3 1 0.2888 0.1464 3.8908 0.0486
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Effect
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age
vehicle
vehage
area
value

gender
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Joint Tests
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1
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12
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36.9348
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11.5478

2.7524
0.3540
26.2973

Pr > ChiSq
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0.0002
0.0030
0.0415
0.0971
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