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1 Introduction

1.1 Modelling Neurons

A model can be described as a practical analogy of a real life problem. For example in your brain

there are cells called neurons. Each individual neuron can be modelled by a battery. Neurons

receive, integrate and transmit information in the human brain. Like a battery, neurons have

electrochemical reactions called neural impulses. The positive and negative ions move at different

rates.

Figure 1: Human vs animal brain ([1] fig 16.23)

The human brain is incredibly complex with billions of interacting cells. As seen in Figure

1, due to the differences between the human brain and various animal brains, the focus will

be on human brains.These cells coordinate how your body moves, integrates information and

enables speech, planning, remembering, dreaming, creating and thinking. The brain consists of

the hindbrain, midbrain and forebrain. The cerebrum is the section of the forebrain that deals

with activities such as thinking, learning and planning [2]. The cerebral cortex is the outer layer

of the cerebrum. This is where the excitatory and inhibitory neurons are located.

1



Figure 2: Action potential of a neuron can be divided into 5 steps: (i.) Resting potential. (ii.)

Threshold of excitation. (iii.) Peak action potential. (iv.) Hyperpolarization. (v.) Return to

resting potential.

When a neuron is at rest and not sending a message, the voltage is constant. An action

potential is a change in electric charge of a neuron. As seen in Figure 2, an action potential has

several steps. The neuron receives a stimulus, and then the threshold of excitation is reached.

The potential becomes less negative, this is called depolarization. This occurs until the peak

action potential is reached. The time taken for depolarization and repolarization is known as

the absolute refractory period, lasting 1-2 milliseconds.The absolute refractory period is the gree

box in Figure 2. Then repolarization occurs, where the cell attempts to return to the original

voltage. As this occurs, the cell hyperpolarizes, where the potential becomes lower than resting

state temporarily. This time is known as the relative refractory period. An action potential is

an all or nothing process, either the neuron fires or it does not. This firing can send a message,

excitatory or inhibitory. Since excitatory neurons have a positive voltage, this leads to a greater

chance of firing. On the other hand, inhibitory neurons have a negative voltage, leading to a

lower chance of firing [2].

1.2 Epilepsy

Epilepsy is a neurological disorder with recurrent seizures. It can be diagnosed using an elec-

troencephalograph (EEG), a procedure where electrodes on the scalp record the brain’s elec-
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trical activity [2]. The abnormal brain activity seen on the recording indicates the occurrence

of a seizure. Currently mechanisms behind seizures is not known [3]. Epilepsy is treated with

antiepileptic drugs [4] with surgery being a last resort. An important historical case is patient

H. M. who had parts of his brain removed due to epilepsy. While the surgery did help with the

seizures, it left him with anterograde amnesia(the inability to form new long-term memories)

[5].

1.3 Mathematical Modelling

Mathematical models seek to represent problems using equations. The complexity can vary

from a few equations to hundreds [6]. A model with only a handful of equations might be

more general and/or less accurate compared to a model with more equations. This report looks

at two papers [3] and [7] discussing the modelling of epilepsy using the Wilson-Cowan model.

The model was developed in 1972 by Hugh Wilson and Jack Cowan. A system of differential

equations is used to model interactions between a local population of excitatory and inhibitory

neurons [5]. Some assumptions are made so that mathematical models can be generalized and

are not overly complex [6].

1.4 Mean Field Theory

Coarse-graining is a technique that considers a model(system) at a lower resolution. This is

done by seeking to represent the model by excluding information that is not crucial [8]. An

example is gas molecules in a closed room. Ensuring the comfort of the room is possible using

coarse-graining measures of pressure, temperature and density of the relative molecules. The

dynamics of all of the molecules are not relevant [8].

Mean field theory is a coarse-graining approach that was initially used for magnetism. This

involves the movement and alignment of atomic spins. To simplify matter, if the number of spins

is sufficiently high and uncorrelated, then by the central limit theorem (Theorem 1) the fluctu-

ations go down to zero. Mean then becomes the relevant quantity, hence the name. Similarly

to atoms, interactions between neurons are negligible.

Theorem 1 (Central limit theorem) Let X1, X2, ..., Xn be independent and identically distributed

random variables with mean, E[Xi] = µ and variance, V [Xi] = σ2 <∞ for i = 1, 2, ..., n where

Zn = X̄−µ
σ/

√
n
=

∑n
i=1 Xi−nµ√

nσ
Then the distribution function of Zn converges to the standard normal

distribution function as n goes to ∞.
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Temporal coarse-graining is a technique used for simplification in statistical physics [5]. The

main idea is to replace some dependent variable f(t) by moving the time average over some

interval s. Then,

f̄(t) =
1

s

∫ t

t−s

f(t′)dt′ (1)

is the coarse-grained variable.

1.5 Phase Portraits

Let

dx

dt
= f(x, y) (2)

dy

dt
= g(x, y) (3)

be a system of nonlinear equations.

Nullclines are curves in the xy plane. While not solution curves, they do provide insight

on solution trajectories [6]. A curve in the phase plane in which dx
dt

= 0 is called a x-nullcline.

Here x(t) is fixed while y(t) changes. Respectively a y-nullcline is a curve in the plane on which
dy
dt

= 0. The region where f(x, y) < 0 is where dx
dt

< 0 and x(t) is decreasing in the direction

of the arrow (←). When f(x, y) > 0, x(t) is increasing in the (→) direction. The region where

g(x, y) < 0 and dy
dt

< 0, is where y(t) is decreasing downwards while g(x, y) > 0 is where y(t) is

increasing in the upwards direction. The point where the nullclines intersect are the equilibrium

points.

The equilibrium points (x∗, y∗) are when f(x∗, y∗) = g(x∗, y∗) = 0. The nonlinear system

can be linearized by approximating f(x, y), g(x, y) when (x, y) is close to (x∗, y∗). Let

u = x− x∗ (4)

v = y − y∗ (5)

Then

du

dt
=

dx

dt
= f(x, y) = f(x∗ + u, y∗ + v) (6)

dv

dt
= g(x∗ + u, y∗ + v) (7)

Then using Taylor expansions of f and g,

f(x∗ + u, y∗ + v) = f(x∗, y∗) + fx(x∗, y∗)u+ fy(x∗, y∗)v + .... (8)

g(x∗ + u, y∗ + v) = g(x∗, y∗) + gx(x∗, y∗)u+ gy(x∗, y∗)v + .... (9)
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Then assuming f and g are differentiable near (x∗, y∗) the system becomes,

du

dt
= fx(x∗, y∗)u+ fy(x∗, y∗)v (10)

dv

dt
= gx(x∗, y∗)u+ gy(x∗, y∗)v (11)

[
du
dt
dv
dt

]
=

[
fx(x∗, y∗) fy(x∗, y∗)

gx(x∗, y∗) gy(x∗, y∗)

][
u

v

]
(12)

The Jacobian matrix at equilibrium points is given by

J(x∗, y∗) =

[
fx(x∗, y∗) fy(x∗, y∗)

gx(x∗, y∗) gy(x∗, y∗)

]
(13)

The phase plane can be analysed at each point. The trace and determinant of the Jacobian

matrix at each point give the type of point and whether the point is stable or not as seen in

Figure 3. This is for the case of two equations and can be generalized for higher dimensions.

Figure 3: Summary of phase plane diagrams dependent on trace and determinant of some matrix

A.

1.6 Introduction to Bifurcation Theory

Taking a nonlinear system of differential equations and linearizing, gives phase portraits for each

equilibrium point. If a parameter’s value is changed and this changes the type of equilibrium

5



point, then this is called a bifurcation. The value at which the parameter changes is called the

bifurcation value. A bifurcation diagram is a graph with the horizontal axis representing the

bifurcation values. The vertical axis is the location of the equilibrium point(s). Generally stable

states are indicated by solid lines and unstable by dashed lines [9].

There are several types of bifurcations,

i. A saddle-node bifurcation is when a pair of points collide or appear to do so.

ii. A transcritical bifurcation is when one point passes through another. The points usually

exchange stabilities.

iii. A pitchfork bifurcation has two forms. A supercritical pitchfork bifurcation is when one

stable fixed point splits into three fixed points with the outer two being stable. A subcrit-

ical pitchfork bifurcation is one unstable that splits into 3 points, with two of them being

unstable.

iv. A Hopf bifurcation is when a limit cycle appears or disappears around an equilibrium

point. A limit cycle is closed curves in the phase plane. The limit cycle is stable if all

other curves move towards it as time approaches positive infinity.

Figure 4 gives examples of bifurcation diagrams. Figure 4a is a saddle-node bifurcation and

Figure 4b is transcritical bifurcation. A supercritical pitchfork bifurcation can be seen in Figure

4c and a subcritical one in Figure 4d. Two types of Hopf bifurcations are seen in Figure 4e and

Figure 4f. The limit cycle is in blue.
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Figure 4: Bifurcation diagrams. (a) saddle-node bifurcation. (b) transcritical bifurcation. (c)

supercritical pitchfork bifurcation. (d) subcritical pitchfork bifurcation. (e) and (f) Hopf bifur-

cation with limit cycle (blue)

2 Wilson-Cowan Model

Using physics and the motion of fluid as an analogy, the Wilson-Cowan model seeks to model the

local population dynamics of neurons. When looking at fluid at the molecular level, brownian

motion is seen. When observing macroscopically, the flow is streamlined. This model looks at

the properties of cell populations instead of individual cells [5]. The assumptions made for this

model are

i. any local population contains both excitatory and inhibitory neurons

ii. time is continuous

iii. spatial interactions are neglected
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2.1 Derivation

Based on [5], let E(t) be defined as the proportion of excitatory cells firing per unit time at the

instance t and I(t) as the proportion of inhibitory cells firing per unit time at the instance t.

These proportions are dependent on the non-refractory (ie. sensitive cells) and the proportion

on cells receiving threshold excitation. Low levels of background activity will be at the state

E(t), I(t) = 0, the resting state. When E and I are small and negative values, they represent

the depression of resting activity and have physiological significance.

Let r be the absolute refractory period in milliseconds. This is the minimum duration after an

action potential occurs and the next one begins. For simplification the relative refractory period

can be assumed to be 0 (see appendix in [5]). To derive E(t) and I(t), assume that the values of

the functions at time (t+r) are equal to the proportion of non-refractory excitatory(respectively

inhibitory) cells and which also receive a minimum threshold excitation at t.

Then, ∫ t

t−r

E(t′)dt′ (14)

gives the proportion of refractory excitatory cells at time, t. Respectively the proportion of

non-refractory excitatory cells is given by

1−
∫ t

t−r

E(t′)dt′ (15)

2.1.1 Subpopulation response function

The expected proportion of cells in a subpopulation that would respond if not initially in an

absolute refractory state is given by Sϵ(x)and Si(x), the respective subpopulation response

functions for E(t) and I(t).

Assuming that there is a a distribution of neural threshold excitement denoted by the dis-

tribution function D(θ), then S(x) is given by

S(x) =

∫ x(t)

0

D(θ)dθ (16)

where x(t) is the average excitation since all cells receive the same number of impulses. Since

S(x) is monotonically increasing function of x(t), an assumption that S(x) is a sigmoid function

can be made. In general a function, f(x) is said to be a sigmoid function if it has the following

properties

i. f(x) is monotonically increasing
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ii. f(x) has asymptotic values at 1 and 0 as it approaches −∞ and ∞

iii. f(x) has one inflection point
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Figure 5: Sigmoid Function

The subpopulation response function is a sigmoid function and the following can be observed

regarding the shape

i. If the level of excitement is too low, the threshold elements will not be excited. On the

other hand, all the elements will be excited if the level is too high.

ii. Numerous studies have show that both single cell response curves and and population

response curves are sigmoid functions.

Taking the sum of all the individual cell’s input along with simulation decay and time course

α(t) which is a response function representing the time evolution of neural spikes. Then the

average level of excitation at time, t for excitatory cells is given by∫ t

−∞
α(t− t′)[c1E(t′)− c2I(t

′) + P (t′)]dt′ (17)

where c1, c2 > 0 are the connectivity coefficients representing the average number of excitatory

and inhibitory synapses per cell and P (t) is the external input. For inhibitory cells it is∫ t

−∞
α(t− t′)[c3E(t′)− c4I(t

′) +Q(t′)]dt′ (18)
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where c3, c4 > 0 are the connectivity coefficients representing the average number of excitatory

and inhibitory synapses per cell and Q(t) is the external input. The external input will be varied

throughout the analysis with values ranging from −1 to 2.

The probability of a cell being sensitive is independent of the probability of a cell being

excited and a correlation equation is added. However in this case the correlation is taken to be

0 and, the equations for population dynamics of a local population are given by

E(t+ τ) =

[
1−

∫ t

t−r

E(t′)dt′
]
Sϵ

[∫ t

−∞
α(t− t′)[c1E(t′)− c2I(t

′) + P (t′)]dt′
]

(19)

I(t+ τ ′) =

[
1−

∫ t

t−r

I(t′)dt′
]
Si

[∫ t

−∞
α(t− t′)[c3E(t′)− c4I(t

′) +Q(t′)]dt′
]

(20)

where τ and τ ′ are response delays.

2.1.2 Time coarse-graining

The above equations are complex and can be simplified using a technique called temporal coarse-

graining as seen in equation (1).

∫ r

t−r

E(t′)dt′ → rĒ(t) (21)∫ t

−∞
α(t− t′)E(t′)dt′ → kĒ(t) (22)

where r and k are constants with k =
∫ t

−∞ α(t− t′)dt′.

Taking Taylor expansions of E(t+ τ) and I(t+ τ ′) around τ = 0 gives

τ
dĒ

dt
= −Ē + [1− rĒ]Sϵ[kc1Ē − c2kĪ + kP (t)] (23)

τ
dĪ

dt
= −Ī + [1− rĪ]Si[k

′c3Ē − c4kĪ + k′Q(t)] (24)

Adding back the interaction with the inhibitory population gives

τ
dE

dt
= −E[1−

∫ t

t−r

E(t′)dt′]Sϵ

[∫ t

−∞
et−t′ [c1E(t′) + P (t′)]dt′

]
(25)

τ
dĒ

dt
= −Ē[1− rĒ]Sϵ[kc1Ē + kP (t)] (26)

2.2 Analysis

Noting that if P (t), Q(t) = 0, then Ē = Ī = 0 is a steady state. Further simplification occurs by

setting Sϵ(0) = 0 and Ii(0) = 0 by subtracting S(0) from the subpopulation response functions.
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Dropping the bars for convenience gives,

τϵ
dE

dt
= −E + (kϵ − rϵE)Sϵ(c1E − c2I + P ) (27)

τi
dI

dt
= −I + (ki − riI)Si(c3E − c4I +Q) (28)

where kϵ and ki are the result of the modified refractory terms. Taking S−1
ϵ and S−1

i as the

unique inverses of the sigmoid functions then,

c2I = c1 − S−1
ϵ

[
E

kϵ − rϵE

]
+ P (29)

c3E = c4I + S−1
i

[
I

ki − riI

]
−Q (30)

are the equations for the nullclines when dE/dt = 0 and dI/dt = 0. This can be seen in figure

6 where c1 = 12, c2 = 4, c3 = 13, c4 = 11, aϵ = 1.2, θϵ = 2.8, ai = 1, θi = 4, rϵ = ri = 1 and

P = Q = 0. Here the (+) denotes stable states.

Figure 6: Nullclines for equations (29) and (30). The stable states are denoted by (+) and

unstable ones by (-). ([5] fig 4)
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Taking the subpopulation response function as

S(x) =
1

1 + exp(−a(x− θ))
(31)

where a and θ are parameters giving the maximum slope of

max[S ′(x)] = S ′(θ) =
a

4
(32)

This is the subpopulation response function chosen for the analysis in [5], if any other sigmoid

function was taken the details of solutions would be different.

To calculate the slope, an assumption can be made that the slope of equation (29) at S−1
ϵ

be greater than zero. The slope of the isocline at this point is then

c1
c2
− 9

aϵc2
(33)

This leads to the condition c1 > 9
aϵ

where aϵ is slope parameter for the excitatory response

function.

The following theorem as seen in [5] can be stated: if c1 > 9
aϵ
, then there is a class of

stimulus configurations such that the isoclines as defined in equations (29) and (30) will have

at least three intersections. This means that there are at minimum three steady state solutions

in equations (27) and (28). A detailed proof can be found in [5].

In Figure 6, the two steady states are separated by an unstable one. The same parameters

are used for Figure 7. Here the solid lines represent stable states while the dashed ones indicate

instability. The arrows indicate the hysteresis loop.
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Figure 7: Steady state values for E as a function of P with Q = 0. Solid lines represent stable

states and dashed lines represent unstable states. The arrows indicate the hysteresis loop. ([5]

fig 5)

Changing the parameters to c1 = 13, c2 = 4, c3 = 22, c4 = 2, aϵ = 1.5, θϵ = 2.5, ai = 6,

θi = 4.3, rϵ = ri = 1, and P = Q = 0 gives 5 steady states as seen in Figure 8. The condition

for 5 steady states is
aϵc2

aϵc1 − 9
>

aic4 + 9

aic3
(34)

Figure 8: Nullclines where parameters meet the condition for 5 steady states ([5] fig 8)
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3 Modelling with Gaussian Activation Function

In [3], Meijer et al model epileptic activity using a model based on the Wilson-Cowan model.

In this case a Gaussian function is used instead of sigmoid.

3.1 Study Observations

In this study the participants were observed during seizure activity. Micro-electrodes were

surgically implanted into the participants heads (the participants in this study had tried other

treatment methods). Plots of the recordings show that the activation function is a mix of a

sigmoid function and a Gaussian function with a maximum. The firing rate index (FRI) which

is the average electrical activity is plotted in Figure 9 against the signal from the electrode called

the low frequency component.
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Figure 9: Plot of firing rate index (FRI) vs low frequency component (L-LFP) ([3] fig 1C)

An assumption that the number of spikes is not dependent on the input current is made for

simplification. Given that the input current has a finite range, a Gaussian function is obtained

when summing over an entire population.
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3.2 Local Microcircuit Modelling

The local microcircuit model with both excitatory and inhibitory neurons is given by the fol-

lowing,

τEE
′
k = −Ek + (1− Ek)FE(JEk

) (35)

JEk
= wEEEk − wIEIk + β + αwEE(Ek+1 + Ek−1) (36)

τII
′
k = −Ik + (1− Ik)FI(JIk) (37)

JIk = wEIEk − wIIIk (38)

where k = 1, 2, ..., N . The currents are give by JEk
and JIk .Eθ and Iθ denote the threshold

levels, and Esd, Isd the standard deviations. The values of the parameters will be the same as

seen in previous studies [3]. Taking τE = τI = 1, wEE = 16, wEI = 18, wII = 3, wIE = 12, Eθ =

7, Iθ = 5, Esd = 2.1 and Isd = 1.5. The Gaussian functions are given by

FE(JEk
) = exp

(
−
(
JEk
− Eθ

Esd

)2
)
− exp

(
−
(
−Eθ

Esd

)2
)

(39)

FI(JIk) = exp

(
−
(
JIk − Iθ

Isd

)2
)
− exp

(
−
(
−Iθ
Isd

)2
)

(40)

and the sigmoid functions by

FE(JEk
) = (1 + exp(−Es(JEk − Eθ)))

−1 − (1 + exp(EsEθ))
−1 (41)

FI(JIk) = (1 + exp(−Is(JIk − Iθ)))
−1 − (1 + exp(IsIθ))

−1 (42)

The values of the parameters for the sigmoid functions are Eθ = 5.2516, Es = 1.5828, Iθ = 3.7512

and Is = 2.22.

3.2.1 Spatially continuous model

Replacing Ek(t) and Ik(t) by E(y, t) and I(y, t) respectively, then the input currents are given

by the following functions,

JE(y, t) = λE

∫ L

0

[
wEEe

|y−z|/σEEE(z, t)− wIEe
|y−z|/σIEI(z, t)

]
dz +B(y, t) (43)

JI(y, t) = λI

∫ L

0

[
wEIe

|y−z|/σEIE(z, t)− wIIe
|y−z|/σIII(z, t)

]
dz (44)

where y ∈ [0, 1000µm] and wEE = 2, wIE = 1.65, wEI = 1.5, wII = 0.01, σEE = 70µm, σIE =

90µm, σIE = 90µm, σII = 70µm,Eθ = 18, Esd = 6.7, Iθ = 10 and Isd = 3.2.

To compare to the sigmoid function, Eθ = 12.41, Esd = 2, Itheta = 7.33, Isd = 0.95 and

density is λE = λI = 1µm−1.
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3.3 Analysis

3.3.1 One E-I pair

The phase plane analysis for the equations in section 3.2 with β = 3 are given in Figure 10. The

excitatory nullcline is similar for both the Gaussian and sigmoid activation functions in terms of

shape. For the inhibitory nullcline, the sigmoid activation function has monotonic shape while

the Gaussian one has a hump.

Figure 10: Phase plane analysis for Gaussian (left) and sigmoid (right). The E-nullcline is in

blue and the I-nullcline is in black. ([3] fig 4)

There is one critical point at around (0.2, 0.15) for both the Gaussian and sigmoid activation

functions. The Gaussian activation function has two more points, a saddle at around (0.4, 0.3)

and a stable node at (0.41, 0.1). This stable node is something that exists with usual Wilson-

Cowan dynamics with a sigmoid function. Bifurcation diagrams varying wEI and β can help

to show this. The bifurcation diagrams are similar to ones done on a sigmoid function in a

previous study. The Gaussian diagram (see Figure 11) shows a saddle-node bifurcation curve

corresponding to the steady state. This occurs with high values of wEI and lower values of β.

The excitatory population drives the inhibitory population to the depolarization block.
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Figure 11: Bifurcation diagram for Gaussian function. The colours indicate the bifurcations

curves. Saddle-node (blue), Hopf (red), limit points of the cycles (black), homoclinic to saddle

(green) and neutral saddle (dashed red line). ([3] fig 5)

3.3.2 Two E-I pairs

The bifurcation diagrams for two excitatory coupled E-I pairs are done by fixing wEI = 18 so

that an additional steady state happens and by varying α and β. α is the coupling strength

between excitatory populations so negative values are not neurophysiologically relevant but can

be shown. When β = 2.45, there are two equilibrium states, one with high excitatory activity

and the other with low. For β = 3, there is the high equilibria and a stable oscillation state.

Looking at Figure 12, at around α = 0 and E ≈ 0.01 there is a solid black steady state line.

This occurs until α ≈ 0.33 where there is an unstable saddle-node, denoted SN1. Another stable

area is between the pitchfork bifurcations, PF1 at α ≈ −0.647 and PF2 at α ≈ 1.13. Then

unstable from PF2 until the stable saddle-node SN3 at α ≈ 0.86. PF1 to SN2 at α ≈ 0.502 is

also unstable. Then the supercritical Hopf bifurcation, H at α ≈ 0.255. Lastly, there is a stable

asymmetric in-phase oscillation branch that ends in a saddle-node.
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Figure 12: Bifurcation diagram for β = 2.45. The colours indicate the solution type. Symmetric

(black) and asymmetric (blue) steady states and in-phase asymmetric oscillations (red). The

dashed lines indicate unstable branches. ([3] fig 7)

When β = 3, the steady states are similar. Between PF1 and PF2 there is a high symmetric

steady state but the lower one is unstable. There is also a similar in-phase asymmetric oscillation

at H1.

3.3.3 Spatially continuous model

The analysis of a model with 2 populations shows that stable asymmetric in-phase oscillations

occurs. The simulation can also be repeated for a larger network with 25 populations. Setting

β = 2.3 and α = 0.1 and putting all the populations in a steady low activity equilibrium. E12

receives additional stimuli by adjusting β12 and this population switches to a steady state with

high activity. This forces the neighbouring populations into an oscillatory mode analogous the

the asymmetric in-phase oscillation. Since the remaining cell populations remain in low activity

the oscillation is localized.

β is increased to 2.45 and the simulation is repeated. As the cycles occur 3 or more popula-

tions enter oscillatory mode. The waves end when the boundary is reached or several populations
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are active simultaneously. When β = 3, the oscillation is not local, instead the entire network

is driven by one population.

In Figure 13, the simulations from the spatially continuous model are shown. The top row

is the sigmoid firing response function. The middle is the Gaussian activation function and the

bottom is also Gaussian at different times.

Figure 13: Spatially continuous model diagrams ([3] fig 11)

In conclusion, for equilibrium, which activation function is chosen is not important. What

matters is that the inhibitory firing rate function has a maximum and drops off. But of course,

this is just one way to model. There are also other computational models.

4 Simulations and Mean Field Model

In [7], models are used to simulate the activity of neurons. A mean field model is then derived

to verify the simulations.

4.1 Simulation

Two models were used to stimulate neurons. One was the Morris-Lecar(M-L) and the other

was Hodgkin-Huxley(H-H) [7]. The H-H neuron models the system through the opening and

closing of voltage-gated ion channels, while the M-L neuron replaces the channels with voltage

dependent functions. Modification of M-L neuron parameters means the excitatory neurons

are regularly spiking while the inhibitory neurons are fast spiking and the inhibitory neurons
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are more susceptible to the depolarization block than the excitatory ones[7]. The modified M-L

model used in the simulation replaces the calcium ion channel with a sodium ion (Na+) channel.

The M-L model can be represented by a system of differential equations with the membrane

potential V and the potassium activation channel w,

C
dVi

dt
= −gNam(Vi)(Vi − ENa)− gkw(t)(Vi − Ek)− gCl(Vi − ECl) + Iexti (t) + Isyni (t) (45)

dw

dt
= ϕ

w∞(Vj)− w

τ∞
(46)

wherem(V ) = (1+tanh((V −V1)/V2))/2, w∞(V ) = (1+tanh((V −V3)/V4))/2, τ∞ = 1/ cosh((V −
V5/(2V6))). The values for all the parameters can be found in a table in [7]. As seen in Figure

14 there are 3 main states dependent on Iext,

i. rest state (in solid black) when Iext is low

ii. limit cycle (in red)

iii. depolarization block (solid black) when Iext is high

Figure 14: Bifurcation diagrams for Morris-Lecar neuron model. For the excitatory neurons

in A.i. Ek = −90mv and in A.ii. Ek = −70mv. Similarly for the inhibitory neurons in B.i.

Ek = −90mv and in B.ii. Ek = −70mv. The solid and dashed black lines indicate stable and

unstable fixed points. The red lines indicate the max and min of limit cycles. ([7] fig 1)

4.2 Mean Field Model

The mean firing rates are given by

dre
dt

= −re + ϕe

(
Jeere − Jeiri + IEext

)
(47)

τ
dri
dt

= −ri + ϕi

(
Jiere − Jiiri + IIext

)
(48)
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with the following activations functions

ϕe(x) =
1

1 + e−x
(49)

ϕi(x) =
1

1 + e−x

1

1 + ek(x−θ)
(50)

The coupling strengths are given by Jee, Jei, Jie and Jii from one population to another and τ is

the time constant. The external inputs are given by IEext and IIext. In Figure 15, the excitatory

activation function is a sigmoid function (in black). As the depolarization block threshold

decreases so does the maximum value of the function. θ is reduced from 10 (blue), then 8

(green) and then 6 (red). In the mean field model, the parameter θ is akin to Ek in the M-L

model.

Figure 15: Activation function for mean field model for different values of θ ([7] fig 2)

The phase plane diagram for the mean field model can be seen in Figure 16A with two stable

fixed points. The normal state b1 and the seizure state b2. The seizure state occurs when there

is excessive excitatory activity while the inhibitory population is in the depolarization block.
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At the point b2, re is at its maximum and ri is near zero. The removal of the seizure state can

be seen in Figure 16B and in Figure 16C. In B, the external input is reduced, so IEext = −7 and

there is one stable fixed point. In C, θ = 10.

Figure 16: Phase plane diagrams for the mean field model. The re-nullcline is in blue and the

ri-nullcline is in red. ([7] fig 3)

The mean field model helps to analyse the transitions between seizure states and other non-

seizure states. The bifurcation diagram for a low value of θ can be seen in Figure 17A.i. If the

external input, IIext is sufficiently large, then the transition to seizure is made via a saddle-node

bifurcation as shown in the phase plane diagram in Figure 17A.iii. The middle figure shows a

bifurcation diagram for a higher value of θ. When exiting the seizure state, the inhibitory firing

rate makes a strong rebound and the excitatory firing rate drops from maximum to normal.

Figure 17: Bifurcation diagrams and phase plane ([7] fig 4)

This demonstrates that before a seizure, inhibition is strong.
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5 Conclusion

For the field of computational neuroscience, the Wilson-Cowan equations are an important

landmark [8]. More than 50 years later they are still begin used, for example by Meijer et al in

[3] and by Chow and Karimipanah in [8].

5.1 Wilson-Cowan Model

The Wilson-Cowan equations model the local population dynamics of neurons. What sets this

model apart from previous ones is the interactions between the two subpopulations [5]. However

this model still has limitations including the neglect of spatial interactions seen in a later paper

[8] and the assumption that the relative refractory period is 0.

5.2 Gaussian Activation Function Model

The model in [3] shows the the activation function is mix of sigmoid function and a Gaussian

function. The microcircuit model used to examine the two activation functions shows that

the excitatory population drives the inhibitory population the the depolarization block. After

expanding the microcircuit model to include multiple populations, the conclusion that the type

of activation function does not matter. Whatever function is chosen, needs an inhibitory firing

rate function with a maximum that drops off.

One limitation of this model is that it does not describe the transition between certain states.

5.3 Neuron Simulation and Mean Field Model

In [7], the H-H and M-L neurons models were used to stimulate neurons. The mean field model

was used to verify the simulation. The M-L neurons show that to reach the depolarization

block, the external input for the inhibitory neurons is lower. The mean field models show the

conditions for the existence of both a seizure and normal state. Removal of the seizure state is

also shown along with transition to a seizure state via a saddle-node bifurcation.

One limitation of the M-L neurons simulation, is the dynamics of potassium were not mod-

elled. For the mean field model, mapping between single cell dynamics and population dynamics

is lacking.
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5.4 What Comes Next

Looking at Figure 10 and Figure 16, the phase plane diagrams, it can be observed that the

excitatory nullcline (blue in both figures) has similar curves. The curves in Figure 16 are more

similar to the sigmoid curve in Figure 10. Recall that in Figure 10, the inhibitory nullcline is

in black and in Figure 16 it’s in red. The inhibitory nullcline from Figure 16 is more similar to

the Gaussian activation function’s curve in Figure 10. It would be interesting to see the model

in neuron simulation and field model with a Gaussian activation function in order to compare

to the sigmoid one. However in both [3] and [7], stable and seizure states can coexist. Strong

inhibition also comes before an epileptic wave.

The modelling of seizure activity is important as epilepsy affects about 1% of the population

[3] and currently mechanisms behind seizures are not known. Better understanding could lead

to potential improvements for those for whom current treatment it is unsuccessful.
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