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Abstract 
 
 
 

This project is regarding the prediction of heart disease. Heart disease is the 2nd leading cause of 

death in Canada. Understanding the factors that can lead to an individual’s diagnosis of heart 

disease can play an important role in the world of health care. We consider analyzing an 

observational data set that contains 13 independent variables as well as a binary outcome 

variable indicating the presence of the heart disease in a patient. In this project, logistic 

regression will be used to assess the variables to understand their significance and to obtain an 

accurate prediction model.  



5 
 

1. Logistic Regression 
 
 

1.1 Introduction to Binary Logistic Regression Models 
 
 

When dealing with categorical data from a target variable, logistic regression is often used to 

model the data. There are different types of logistic regression that can be used, such as simple 

logistic regression and multiple logistic regression. In the case of the data set that is used 

throughout this project, multiple logistic regression is used, as the outcome variable represents 

binary responses (indication of heart disease in a patient).  

In the case of a binary logistic model, we will be setting the predictor variables (13 variables) as 

X and the dichotomous response variable as Y, defined by  

Y = {
0, if absense of heart disease
1, if presence of heart diease.

  

Before discussing multiple logistic regression model, an introduction to simple logistic 

regression is needed. Simple logistic regression with a binary outcome variable will lead to a 

binomial distribution with parameters 𝑛𝑖 and 𝑝𝑖. The parameter 𝑛𝑖 represents the number of trials 

and the parameter 𝑝𝑖 represents the probability of success in a given trial. Note that the 

probability of failure is expressed as 1 − 𝑝𝑖. 

To explore the relationship between each predictor variable, X, and outcome variable, Y, we can 

provide a scatterplot between the two variables. Figure 1 shows the scatterplot that represents the 

binary relationship between one of the predictor variable’s, “Age”, and the outcome variable, 

presence of the heart disease. Note that the scatterplot for the other predictor variables by the 

outcome variable look similar to the scatterplot shown in Figure 1. 
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Figure 1: Scatterplot of the binary outcome of heart disease by age of 297 patients. 

As shown in Figure 1, the points fall on two parallel lines. This plot depicts that the outcome 

variable is in fact binary, as one line represents Y=0 and the other Y=1. Suppose 𝑝𝑖 denotes the 

probability that an individual has a heart disease. The probability 𝑝𝑖 is defined as a function of 

the covariates 𝑥𝑖 using the logistic regression model 

Logit(pi(x)) = log (
pi(x)

1−pi(x)
)   

   = log[𝑒β0+β1𝑥𝑖]                            

               = 𝛽0 + 𝛽1𝑥𝑖.                                                    (1.1) 
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The probability of success can be written as 

𝐸 (
𝑦(𝑥)

𝑛𝑖
) = 𝑝𝑖(𝑥) =

𝑒𝛽0+𝛽1𝑥𝑖

1+𝑒𝛽0+𝛽1𝑥𝑖
.                   (1.2) 

The probability of success, 𝑝𝑖, will fall in the interval of [0,1]. Figure 2 exhibits the proportions 

of success 
𝑦𝑖

𝑛𝑖
 at different values of the predictor variable 𝑥𝑖.  

           . 

Figure 2: Plot of proportion of successes 𝑝𝑖 by age. 

As shown in the plot, the values of 𝑝𝑖 are between the range of [0,1]. The curve of the plot 

follows an “S-shape”. In the case of a binary outcome variable, it is normal to have a plot that 

represents a typical plot of a cumulative distribution (S- shaped curve).  

Now that a simple binary logistic regression has been introduced, we will now discuss multiple 

logistic regression. Multiple logistic regression will be used throughout this project as there are 

13 predictor variables, and we will account for the dependent variable representing a 

dichotomous outcome. The predictor, x, can be represented as a vector, 

                              𝐱 = (x1, … , xn)
𝑇. 
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The multiple logistic regression model represented is defined by 

              Logit(pi(x)) = log (
pi(x)

1−pi(x)
) 

                                              = log[𝑒β0+β1x1+β2x2+⋯+βpxp] 

                        = β0 + β1x1 + β2x2 +⋯+ βpxp.                                  (1.3) 

                                       

The probability of success 𝑝𝑖 for multiple logistic regression can be written as 

                            𝐸 (
𝑦(𝑥)

𝑛𝑖
) = 𝑝𝑖(𝒙) =

𝑒β0+β1x1+β2x2+⋯+βpxp

1+𝑒β0+β1x1+β2x2+⋯+βpxp
 .                         (1.4)                   

 

1.2 Parameter Estimation Using Maximum Likelihood  

 
When discussing the parameter estimation in regression models, the methods are not the same 

for both linear regression and logistic regression. In linear regression, the least squares method is 

used to estimate the unknown parameters β0 and β1. The assumptions that can be made about the 

linear regression that allows us to use the least square method are not valid for the logistic 

regression. The method of maximum likelihood is used instead for the logistic regression. First, 

we will be discussing the maximum likelihood for simple logistic regression. The maximum 

likelihood method obtains the estimates of the regression parameters by maximizing the 

likelihood function. Recall as previously mentioned the pi(x) in Equation (1.2); this will be used 

for the likelihood function. Given a pair of (xi, yi) we can represent the contribution to the 

likelihood function as  

                   {
1 − pi(𝑥),         given  yi = 0

pi(x),                 given  yi = 1
 . 
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The probability mass function of the binomial distribution with the given probabilities is defined 

by 

    f(yi) = (
𝑛𝑖
𝑦𝑖
) pi

yi(1 − pi)
𝑛𝑖−𝑦𝑖. 

Assuming the observations are independent, the likelihood function is obtained by evaluating the 

joint density of yi as 

ℒ(β) =∏ (
𝑛𝑖
𝑦𝑖
) pi

yi(1 − pi)
𝑛𝑖−𝑦𝑖

n

i=1
 .                    (1.5)  

The estimate of β is obtained by maximizing ℒ(β). To do so, we take log on both sides, that is 

l(β) = log[ℒ(β)] =∑ {log (
𝑛𝑖
𝑦𝑖
) + yi log [

pi

1−pi
] + ni log(1 − 𝑝𝑖)}

n

i=1
. 

Since there are two unknown parameters, β0 and β1, to obtain their estimates, β̂0 and β̂1, we 

take the derivative of l(β) and set it equal to 0. The estimate of β0 is obtained by solving the 

estimating equation 

∑{yi − ni𝑝𝑖}

n

i=1

= 0, 

with respect to β0, and the estimate of β1 is obtained by solving the estimating equation 

∑{xi[yi − ni𝑝𝑖}

n

i=1

= 0, 

with respect to β1. 

Now that the maximum likelihood method for simple logistic regression has been discussed, the 

maximum likelihood for multiple logistic regression can be introduced. The process is similar to 

the simple logistic regression except all regression estimates for vector x are accounted for. The 

parameters can be represented as a vector 

𝛃 = (β0, … , βp)
𝑇
, 
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and the data can be represented as 

(𝐱𝐢, yi) where i = (1,… , n). 

The maximum likelihood is written similar to Equation (1.5) except that now we introduce the 

vector 𝛃 with the probability 𝑝𝑖(𝒙) from Equation (1.4). The likelihood equations for estimating 

β0 and 𝛃 = (β1, … , βp)
𝑇

 are given by  

 

∑{yi − ni𝑝𝑖}

n

i=1

= 0, 

and 

∑{xij[yi − ni𝑝𝑖]}

n

i=1

= 0,  

for j=(1,…,p), respectively. 
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1.3 Significance of Parameters  

 
After estimating the regression coefficients, the next step is to test the significance of the 

independent variables using hypothesis testing. Hypothesis testing will indicate how significant 

the independent variable is to predict the outcome variable, which leads to a model that performs 

well. Variables are tested to see if the model performs better with or without the inclusion of the 

insignificant variable in the model. To assess the significance of the variables, we first fit logistic 

regression models. This can be done using the statistical software “R”, where the function “glm” 

produces a summary of the fitted logistic regression model. The summary of fit generates the 

estimate, standard error, z-values, and the p-values. In Section 1.2, we discussed how the 

estimates are found. The standard errors of the estimates are found for multiple logistic 

regression using the observed information matrix given below. 

When estimating the variances of the estimators, 𝛃̂ = (β̂1 , … , β̂p)
T
, the second partial derivative 

of the log-likelihood is used. This is expressed as, 

∂2l(β)

∂βj
2 = −∑xij

2pi(1 − nipi)

n

i=1

. 

The observed information matrix is written as 

    𝐈(𝛃) = −[𝜕2𝑙(𝛽) ∕ 𝜕𝛽𝜕𝛽𝑇]. 

 To obtain the variance, we use the inverse of 𝐈(𝛃), that is, 

 Var(𝛃̂) = 𝐈−𝟏(𝛃),  

where Var(βj) is the jth diagonal element of the matrix. The estimates of the variance of the β̂’s 

is represented as V(β̂).  
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To obtain 𝑰(𝛃̂), which is used to fixed the estimated variance, we note that 𝐈(𝛃̂) = 𝐗′𝐕𝐗. The 

design matrix, X, is a (n x (p+1)) matrix of the covariates and V is a (n x n) diagonal matrix of 

diagonal points of p̂i(1 − p̂i). The X and V are denoted as,  

𝐗 = ||

1 x11 x12… x1p
1 x21 x22… x2p
… … … …
1 xn1 xn2 xnp

||, 

and  

𝐕 = |

p̂1(1 − p̂1) 0 0… 0

0 p̂2(1 − p̂2) 0… 0
… … … …
0 0 0 p̂n(1 − p̂n) 

|, 

respectively.  

The standard error of β̂j may be obtained as 

SE(β̂j) = [V(β̂)]
0.5
.  

The z-values are obtained as  

𝑧𝑗 =
𝛽̂𝑗

𝑠. 𝑒. (𝛽̂𝑗)
, 

for j= 0,1,…p, and corresponding p-values are obtained by using the normal probability curve, 

that is, assuming that z follows the standard normal distribution, we have 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃(|𝑧| > 𝑧∗) 

where 𝑧∗ = |𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑧𝑗|. Any regression coefficient with a p-value greater than the level of 

significance α is considered not significant at level α.  
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2. Interpretations of Fitted Logistic 

Regression Models  

 
Section 1 discusses how a logistic regression model is used to assess the significance of the 

predictors. Significance of variables tells how well each variable performs in a model. In this 

section, I will discuss how to assess a logistic regression model as a whole using the odds ratio, 

area under the ROC curve, accuracy and confusion matrices. I will introduce the backward 

elimination process to determine which model is the best regression using the assessment criteria 

stated.  

2.1 Odds Ratio 

Before introducing the odds ratio for the multiple logistic regression, I will first introduce the 

odds ratio for the simple binary logistic regression. In the case of the binary logistic regression, 

we can define a predictor variable to have a value of either 0 or 1. Expressing this in terms of a 

difference in logit model, we can write   

= logit(pi(x = 1)) − logit(pi(𝑥 = 0)) 

= g(1) − g(0) 

= [β0 + β1] − β0 

= β1. 

To interpret the logit difference, we can use odds ratio. Odds ratio is defined as the ratio of odds 

of success at x=1 to the odds of success at x=0. That is, odds ratio,  

                                                      OR =

p(1)

1−p(1)

p(0)

1−p(0)

.                                                                       (2.1) 
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Given the outcome variable, Y, has two dichotomous outcomes, Y=0 and Y=1, the following 

table will represent the values of 𝑝(𝑥) and 1 − 𝑝(𝑥) at the two levels of x,  

 

 Independent variable, X  

Outcome variable, Y x=0 x=1 

y=0 
1 − p(0) =

1

1 + eβ0
 

 

1 − p(1) =
1

1 + eβ0+β1
 

 

y=1 
𝑝(0) =

eβ0

1 + eβ0
 

 

𝑝(1) =
eβ0+β1

1 + eβ0+β1
 

 

Total 1.0 1.0 

Table 1: Equations for p and 1-p for simple binary logistic regression. 

Then the odds ratio is, 

                                                                      OR =

[

eβ0+β1

1+eβ0+β1

 
1

1+eβ0+β1

]

[

eβ0

1+eβ0
1

1+eβ0

]

                                        

                                                                              =
eβ0+β1

eβ0
            (2.2) 

                                                                              = e(β0+β1)−β0 

                                                                              = eβ1. 

Thus, for a simple binary logistic regression with x=0 and x=1, the odds ratio is equal to eβ1. To 

find the estimate of β1, β̂1, one can take log on both sides of the odds ratio, that is, 

β̂1 = log(OR̂) = log(e
β̂1).  
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Now, moving on to multiple logistic regression. Recall Equation (2.1). In the case of the multiple 

logistic regression, suppose the 𝑗𝑡ℎ  predictor 𝑥𝑗 is binary. Then we can write  

OR =

p(xj=1)

1−p(xj=1)

p(xj=0)

1−p(xj=0)

 .                     (2.3) 

Equation (2.2) represents the algebra for OR in terms of the simple logistic regression. In case of 

the multiple logistic regression, we have 

                OR =
exp (𝛽0+𝛽1𝑥1+⋯+𝛽𝑗−1𝑥𝑗−1+𝛽𝑗+𝛽𝑗+1𝑥𝑗+1+⋯+𝛽𝑝𝑥𝑝)

exp (𝛽0+𝛽1𝑥1+⋯+𝛽𝑗−1𝑥𝑗−1+𝛽𝑗+1𝑥𝑗+1+⋯+𝛽𝑝𝑥𝑝)
                                                                            

                                                             = eβj, 

for j=(1,…,p). This is used to estimate any coefficient at any jth level. 

To get the estimate of the coefficient, we take log on both sides of the OR so that 

β̂j = log(OR̂) = log (eβ̂j).  

 

2.2 Akaike Information Criterion 

 
When computing the summary fit using statistical software “R”, produced in the summary is a 

value labelled “AIC”. AIC stands for Akaike Information Criterion and is utilized in the 

interpretation of the fitted model. AIC follows the formula,  

  𝐴𝐼𝐶 = −2(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑜𝑔 − 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠). 

The number of free parameters is the number of estimates used in the fitted model,  

𝛃̂ = (β̂1 , … , β̂p)
T
.  
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The AIC evaluates how poorly the model fits the data set. This is based on the estimation 

provided using the maximum of log-likelihood. The AIC indicates the bias given from the log-

likelihood by the number of free parameters. 

 When choosing the best fitted regression model, choose the model with the lowest AIC. The 

lower the AIC the lower the bias in the model is. The model with the lowest AIC will tend to 

produce a better cross-validation confusion matrix and accuracy predictor. The chosen estimates 

from the model with the lowest AIC should have estimates with competitive mean square errors, 

as AIC is based on the maximum log-likelihoods.  

When comparing models used to fit the data set, aim for the model with the smallest AIC. The 

AIC will reduce when the former model has a small reduction of residual deviance compared to 

the following model. AIC is an informative measurement of a model for its overall goodness-of-

fit. Combining AIC and more interpretation evaluations will lead to an easy process of selecting 

the best regression model.  

 

2.3 Confusion Matrix and Accuracy 

 
First, we will discuss the confusion matrix. Confusion matrices are a result of cross- classifying 

the predicted values against the actual values. In the case of this project, the confusion matrix is a 

binary classifier matrix, as there are only two classes. The possible values of the predicted class 

are “yes” and “no”. In order to classify the data, the classification must be set at a certain 

threshold of a value “c”, typically taken to be 0.5. Thus the table below will evaluate the model 

of the outcome variable by classifying subjects based on the threshold of “c”. The outline of the 

table is given as below 
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 Predicted (No) Predicted (Yes) 

Actual (No) True Negative (TN) False Positive (FP) 

Actual (Yes) False Negative (FN) True Positive (TP) 

Table 2: Confusion matrix table in general terms. 

These values can be described as such, 

• true positive is when the predicted value and the actual value are both positive, 

• true negative is when the predicted value and the actual value are both negative, 

• false positive is when the predicted value is positive, but the actual value is negative. This 

is also known as type 1 error, 

• false negative is when the predicted value is negative, but the actual value is positive. 

This is also known as type 2 error. 

The fitted model is considered an accurate representation of the data set if the true positive and 

negatives are maximized and the false positive and negatives are minimized.  

Accuracy can be calculated using the confusion matrix. Accuracy is used to easily sum up what 

the confusion matrix says. Accuracy is calculated by taking the ratio of the true positives and 

true negatives against the total number, which gives a proportion of how accurate the fitted 

model is. This is denoted as,  

Accuracy =
TP + TN

TP + FP + TN + FN
. 

If accuracy is approximately 1, then the model fits the data well. If the accuracy is 1 then all the 

predicted values match the actual values.  
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2.4 Area Under the ROC Curve 

 
The ROC curve is similar to the confusion matrix. The curve reflects on the model’s classifiers 

performance over the threshold at the c=0.5. The plot consists of the true positive rate as the y-

axis and the false positive rate as the x-axis. The formulas for the true positive rate and false 

positive rate are 

True Positive Rate =
TP

Actual number of "Yes"
 , 

and 

False Positive Rate =
FP

Actual number of "No"
 , 

respectively.  

The area under the ROC curve (AUC) is measured as it gives and overall performance of the 

classifier over the entire range of the data set. The AUC measures if the model can discriminate 

between the individuals who have the outcome of interest (true positive rate) versus those who 

do not (false positive rate).  The AUC ranges between 0 and 1. This is what the AUC 

measurement means in terms of how well the model can discriminate: 

AUC = {

0.5, Sugests no discrimination
(0.5,0.8), acceptable discrimination
[0.8, 0.9), excellent discrimination 
[0.9,1], outstanding discrimination

. 

Although the AUC is most ideal to be in the range of [0.9,1], it is very rare for the AUC to be in 

that range.  
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2.5 Backward Elimination 

 
Backward elimination is a procedure to examine the independent variables that can lead to the 

“best” regression. Backward elimination is a part of stepwise regression. I will be discussing 

stepwise regression first.  

Stepwise regression starts with one single independent variable and then building the model by 

adding one independent variable at a time. The variables are chosen using partial F-Test. The 

variable with the most significant F-value is chosen and will be added as an additional 

independent variable to the next model. As variables are added to the model, one should examine 

the overall model to see if the model is performing as well or better with the additional variables. 

Stepwise regression can then be processed using the following steps: 

1. Provide a summary of fit that contains the z-values of the independent variables that are 

correlated to the dependent variable.  

2. Check z-value for an estimate. 

3. Check if the value is significant at level α. 

4. If the value is significant, adopt the independent variable into the model and repeat the process 

with another independent variable. If the value is not significant, then remove the variable and 

declare the model as the best possible regression to fit the data set. 

 

Now moving onto backward elimination. Backward elimination derives from stepwise regression 

as it attempts to find the best regression model to fit the data. Backward elimination has a similar 

process but commences will all independent variables included in the model and removes them 

based on their level of significance.  
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Backward elimination can then be processed using the following steps: 

1. Provide a summary of fit with the z-values for all the possible independent variables that are 

correlated to the dependent variable.  

2. Select the lowest F-value and compare it to the default F-value at a significance level of α. 

3. If the F-value is smaller than the default F-value, remove the independent variable from the 

model and repeat steps with the adjusted model. If the F-value is larger than the default F-value 

then the model is deemed as the best regression model to fit the data set.  

  



21 
 

3. Heart Disease Data Set 
 
 

3.1 Introduction to the Data Set 
 
 

The data set selected for this project was attained from the UCI Machine Learning Repository 

website. The data set selected is referred to as the Heart Disease Data. This data set has been 

used for interpretations in countries all over the world and has been featured in numerous studies. 

The characteristic of the set is multivariate with a total of 75 attributes and 303 observations. 

There are multiple data sets on this topic, but I have selected the Processed Cleveland data set.  

The processed data set that contains the 303 patients from Cleveland, narrowed down from 75 

attributes to 14 attributes. I will go in depth with each variable indicating which ones are the 

independent variables and which one is the dependent variable.  

1. Attribute 1 is the age of the patient. This is measured in years. Age is a continuous 

independent variable. 

2. Attribute 2 is the sex of the patient. The value “1” indicates that the patient is a male and 

“0” indicates female. Sex is a discrete binary independent variable. 

3. Attribute 3 is CP. CP stands for chest pain where the patient’s chest pain is described by 

4 labels: “1” indicates typical angina, “2” indicates atypical angina, “3” indicates non-

anginal pain and “4” indicates asymptomatic. CP is a discrete independent variable.  

4. Attribute 4 is Trestbps. Trestbps is the patient’s blood pressure at rest. The unit of 

measurement is mm Hg on admission to the hospital. Trestbps is a continuous 

independent variable. 

5. Attribute 5 is Chol. Chol is the patient’s serum cholesterol. The unit of measurement is 

mg/dl. Chol is a continuous independent variable. 
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6. Attribute 6 is Fbs. Fbs stands for fasting blood sugar. The value “1” represents when 

fbs>120 mg/dl and “0” represents when fbs≤120 mg/dl. This is a binary discrete 

independent variable. 

7. Attribute 7 is Restecg. Restecg is the resting electrocardiographic results and is described 

under 3 values. The value “0” indicates normal, “1” indicates having ST-T wave 

abnormality where it has T wave inversions and/or ST elevation or depression of 

>0.05mV, and “2” indicates showing probable or definite left ventricular hypertrophy by 

Estes’ criteria. Restecg is a discrete independent variable. 

8. Attribute 8 is Thalach. Thalach is the maximum heart rate a patient achieves. This is a 

continuous independent variable. 

9. Attribute 9 is Exang. Exang is exercised induced angina described using 2 values. The 

value “0” indicates the patient has exercised induced angina and “1” indicates the patient 

does not have exercised induced angina. This is a binary discrete independent variable.  

10. Attribute 10 is Oldpeak. Oldpeak is ST depression induced by exercise relative to rest. 

This is a continuous independent variable. 

11. Attribute 11 is Slope. Slope is the slope of the peak exercise ST segment, described using 

3 values. The value “1” indicates the slope is up-sloping, “2” indicates the slope is flat, 

and “3” indicates the slope is down-sloping.   

12. Attribute 12 indicates CA. CA is the number of major vessels coloured by fluoroscopy 

that is described within a range of 0 to 3. CA is a continuous independent variable.  

13. Attribute 13 is Thal. Thal is short for thalassemia which is a blood disorder that causes 

the body to produce less hemoglobin than usual. This is described under 3 values. The 
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value “3” indicates normal, “6” indicates fixed defect, and “7” indicates reversable 

defect. Thal is a discrete independent variable.  

14. Attribute 14 is Num. Num represents the indication of heart disease, the angiographic 

disease status, represented under 5 values. The value “0” indicates no presence of heart 

disease, and “1”, “2”, “3” and “4” values indicate presence of heart disease at different 

levels. For “0” there is a <50% diameter narrowing, and for all other values there is 

>50% diameter narrowing. Num is a discrete response variable. 

 

3.2 Manipulation of the Data Set 
 
 

The Processed Cleveland data set contains a few missing values, specifically, for two 

independent variables, Thal and CA. The instances that contain a missing value are instance 88, 

167, 193, 267, 288, and 303. This is a total of six values. I removed these instances completely 

from the data set, as they can affect the concluded statistical model. Keeping instances with 

missing variables can lead to these errors: 

• missing values can reduce the accuracy of the model chosen. This is because it affects the 

significance testing of a variable as it contains illegitimate values, 

• missing values will create a bias in the chosen estimated coefficients provided in the 

summary of fit, 

• missing values will not represent the data set well. This makes it difficult to draw 

accurate conclusions.  

I utilized Excel to create a new data set with these instances removed. The total instances in the 

clean data set is 297. 
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The data set was again manipulated by changing the independent variable from discrete to binary 

discrete. In the original data set, the presence of heart disease was described with 5 individual 

responses. Response “0” indicated no presence of heart disease and response 1-4 indicated 

different levels of heart disease. For the purpose of the model, we disregard the different levels 

of heart disease and interpret them as one individual level. This is expressed as shown, 

Num =

{
 
 

 
 
0,   indicates 0
1,   indicates 1
2,   indicates 1
3,   indicates 1
4,   indicates 1.

 

This way the data set will have a binary dependent variable. This issue was resolved by creating 

a new variable labelled “Num_2” on Excel. Num_2 was created with this code, 

= IF([@Num] = 0, "0", "1"), 

where the IF statement took in all Num values. If the value equals “0”, Num_2 would remain 

“0”, and if else, then Num_2 would change to “1”. 

 

3.3 Assessing the Residuals 
 
 

A key feature of residual plots is the detection of outliers in the data set. Detecting outliers is of 

importance as it can determine if there are data entry errors which can lead to bias in the 

regression.  

Residuals are calculated using the formula,  

     residual = y − ŷ, 

where y are the observed values and y ̂are the predicted values given by the regression. 
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After fitting a model containing all independent variables, we fit the values of the data set using 

R.  This is done using the code,  

  p. hat < − fitted(fit), 

where fit is the fitted model.  

The values that are produced are in the interval [0,1]. Appendix B contains the predicted values 

from the regression. 

Now that the predicted values are calculated, they can be used in the residual equation. This is 

done on R using the code, 

residuals < − as. numeric(Num2) − p. hat, 

where Num_2 is the outcome variable, y, and p.hat are predicted values, ŷ. 

There is a total of thirteen scatterplots that plot the residuals against each independent variable. 

The plots are shown in Appendix C(a) to Appendix C(d).  

The plots indicate that there are no outliers shown in any of the plots, thus all 297 observational 

values will remain in the data set.  
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4. Model Selection Using R 
 
 

4.1 Exploring the Full Model 
 

As backward elimination is the stepwise process chosen, the first model should include all 

variables. The command glm() provided in statistical software R is used to perform the model. 

The command glm() will run a logistic regression that regresses the binary outcome of presence 

of heart disease on the 13 independent variables. The fit is written in the code as  

fit < −glm(as. numeric(Num_2)~Age + Sex + CP + Trestbps + Chol + Fbs +

Restecg + Thalach + Exang + Oldpeak + Slope + as. numeric(CA) +

as. numeric(Thal), family = binomial, data = Cleveland_2). 

The summary fit of this model is provided in Appendix D(a). The model follows a binomial 

distribution as the outcome variable is binary.  

The model includes the independent variables “Age”, “Sex”, “CP”, “Trestbps”, “Chol”, “Fbs”, 

“Restecg”, “Thalach”, “Exang”, “Oldpeak”, “Slope”, “CA” and “Thal” along with the dependent 

variable “Num_2”. The summary of fit provides estimates for all 13 variables. 

The logit is represented by the estimates of the model using Equation (1.3) as 

Logit(p̂(𝑥)) = β̂0 + β̂1𝑥1 + β̂2𝑥2 + β̂3𝑥3 + β̂4𝑥4 + β̂5𝑥5 + β̂6𝑥6 + β̂7𝑥7 + β̂8𝑥8 +

β̂9𝑥9 + β̂10𝑥10 + β̂11𝑥11 + β̂12𝑥12 + β̂13𝑥13. 

From the R output in Appendix C(a), the estimates β̂ = (β̂1 , … , β̂13)
T
 can be expressed as 
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Logit(p̂(𝑥)) = −7.37042 − 0.014164𝑥1 + 1.312073 𝑥2 + 0.575898 𝑥3 + 0.024044𝑥4 +

0.004995𝑥5 − 1.021918𝑥6 + 0.245153𝑥7 − 0.020665𝑥8 + 0.926104𝑥9 + 0.247386𝑥10 +

0.570009𝑥11 + 1.267719 𝑥12 + 0.343936𝑥13. 

The AIC of the full model is 232.69.  

Using Appendix D(a), the variable with the largest p-value in the model is “Age”. “Age” is 

variable 1. As backward elimination is the used, age will be the variable that will be removed 

and assessed without its inclusion in the next model.  

 

4.2 Selection of Best Regression Model 
 
 

Now that the full model has been explored, selecting the most appropriate model can commence. 

In the full model, the variable “Age” was selected to be removed. As backward elimination is 

used, the second fit will consist of 12 variables as “Age” will no longer be included. The second 

fit is coded as 

𝑓𝑖𝑡2 < −𝑔𝑙𝑚(𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐(𝑁𝑢𝑚_2)~𝑆𝑒𝑥 + 𝐶𝑃 + 𝑇𝑟𝑒𝑠𝑡𝑏𝑝𝑠 + 𝐶ℎ𝑜𝑙 + 𝐹𝑏𝑠 + 𝑅𝑒𝑠𝑡𝑒𝑐𝑔 +

𝑇ℎ𝑎𝑙𝑎𝑐ℎ + 𝐸𝑥𝑎𝑛𝑔 + 𝑂𝑙𝑑𝑝𝑒𝑎𝑘 + 𝑆𝑙𝑜𝑝𝑒 + 𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐(𝐶𝐴) + 𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐(𝑇ℎ𝑎𝑙), 𝑓𝑎𝑚𝑖𝑙𝑦 =

𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙, 𝑑𝑎𝑡𝑎 = 𝐶𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑑2). 

The summary of fit 2 is provided in Appendix D(b). 

The model includes the variables “Sex”, “CP”, “Trestbps”, “Chol”, “Fbs”, “Restecg”, “Thalach”, 

“Exang”, “Oldpeak”, “Slope”, “CA” and “Thal” against the dependent variable “Num_2”. The 

summary of fit 2 provides estimates for these 12 variables. The logit equation with the inclusion 

of the estimates is expressed as  
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Logit(p̂(x)) = −8.203028 + 1.346131𝑥1 + 0.583865𝑥2 + 0.022352𝑥3 +

0.004652𝑥4 − 1.031146𝑥5 + 0.243574𝑥6 − 0.018347𝑥7 + 0.942382𝑥8 + 0.260719 𝑥9 +

0.561520𝑥10 +  1.224859𝑥11 + 0.340860𝑥12. 

The AIC of the second model is 231.04. Recall that the AIC in the full model is 232.69. Clearly, 

the second model outperformed the full model. By the backward elimination process, we will 

deem the second model to be more accurate and continue to reduce the model.  

According to Appendix D(b), the variable with the largest p-value is “Oldpeak”. This variable 

will be removed in the next model.  

The new model, fit 3, will consist of 11 variables. The model will be assessed with the 

elimination of “Age” and “Oldpeak” variable. The code to represent the fit is expressed as 

𝑓𝑖𝑡3 < −𝑔𝑙𝑚(𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐(𝑁𝑢𝑚_2)~𝑆𝑒𝑥 + 𝐶𝑃 + 𝑇𝑟𝑒𝑠𝑡𝑏𝑝𝑠 + 𝐶ℎ𝑜𝑙 + 𝐹𝑏𝑠 + 𝑅𝑒𝑠𝑡𝑒𝑐𝑔 +

𝑇ℎ𝑎𝑙𝑎𝑐ℎ + 𝐸𝑥𝑎𝑛𝑔 + 𝑆𝑙𝑜𝑝𝑒 + 𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐(𝐶𝐴) + 𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐(𝑇ℎ𝑎𝑙), 𝑓𝑎𝑚𝑖𝑙𝑦 =

𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙, 𝑑𝑎𝑡𝑎 = 𝐶𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑑2). 

The summary of fit 3 is provided in Appendix D(c). 

The model includes the variables “Sex”, “CP”, “Trestbps”, “Chol”, “Fbs”, “Restecg”, “Thalach”, 

“Exang”, “Slope”, “CA” and “Thal” against the dependent variable “Num_2”. The summary of 

fit 3 provides estimates for these 11 variables. The logit equation with the inclusion of the 

estimates is expressed as,  

Logit(p̂(x)) = −8.474113 + 1.431549𝑥1 + 0.573804𝑥2 + 0.023568𝑥3 +

0.005059𝑥4 − 1.074331𝑥5 +  0.233448𝑥6 − 0.019485𝑥7 + 1.007935𝑥8 + 0.782011𝑥9 +

1.274038 𝑥10 + 0.344010𝑥11. 

The AIC of this model is 230.59. Recall the AIC in the previous model is 231.04. Clearly, the 

further reduced model outperformed the previous model. By backward elimination process, we 
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will deem the third model to be the best model and attempt to further reduce it. According to 

Appendix D(c) the variable with the largest p-value is “Restecg”. This variable is removed in the 

next model.  

The new model, fit 4, consists of 10 variables. The model is assessed with the elimination of 

“Restecg”, “Age” and “Oldpeak” variable. The code to represent the fit is expressed as 

𝑓𝑖𝑡4 < −𝑔𝑙𝑚(𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐(𝑁𝑢𝑚_2)~𝑆𝑒𝑥 + 𝐶𝑃 + 𝑇𝑟𝑒𝑠𝑡𝑏𝑝𝑠 + 𝐶ℎ𝑜𝑙 + 𝐹𝑏𝑠 + 𝑇ℎ𝑎𝑙𝑎𝑐ℎ +

𝐸𝑥𝑎𝑛𝑔 + 𝑆𝑙𝑜𝑝𝑒 + 𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐(𝐶𝐴) + 𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐(𝑇ℎ𝑎𝑙), 𝑓𝑎𝑚𝑖𝑙𝑦 = 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙, 𝑑𝑎𝑡𝑎 =

𝐶𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑑2). 

The summary of fit 4 is provided in Appendix D(d). 

The model includes the variables “Sex”, “CP”, “Trestbps”, “Chol”, “Fbs”, “Thalach”, “Exang”, 

“Slope”, “CA” and “Thal” against the dependent variable “Num_2”. The summary of fit 3 

provides estimates for these 10 variables. The logit equation with the inclusion of the estimates is 

expressed as,  

Logit(p̂(x)) = −8.591527 + 1.498722𝑥1 + 0.569527𝑥2 + 0.024695𝑥3 +

0.005910𝑥4 − 1.068004𝑥5 − 0.019843𝑥6 + 1.021666𝑥7 + 0.822393𝑥8 + 1.280943𝑥9 +

0.330230𝑥10. 

 

The AIC of this model is 230.22. Recall the AIC of the previous model was 230.59. The new 

model slightly outperformed the last model. As the model is still outperformed, we will deem the 

new model as the best regression model and further reduce it in the next model. 

According to Appendix D(d) the variable with the largest p-value is “Chol”. This variable will be 

removed in the next model.  
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The new model, fit 5, will consist of 9 variables. The model will be assessed with the elimination 

of “Chol”, “Restecg”, “Age” and “Oldpeak” variable. The code to represent the fit is expressed 

as, 

𝑓𝑖𝑡5 < −𝑔𝑙𝑚(𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐(𝑁𝑢𝑚_2)~𝑆𝑒𝑥 + 𝐶𝑃 + 𝑇𝑟𝑒𝑠𝑡𝑏𝑝𝑠 + 𝐹𝑏𝑠 + 𝑇ℎ𝑎𝑙𝑎𝑐ℎ + 𝐸𝑥𝑎𝑛𝑔 +

𝑆𝑙𝑜𝑝𝑒 + 𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐(𝐶𝐴) + 𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐(𝑇ℎ𝑎𝑙), 𝑓𝑎𝑚𝑖𝑙𝑦 = 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙, 𝑑𝑎𝑡𝑎 = 𝐶𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑑2). 

The summary of fit 5 is provided in Appendix D(e). 

The model includes the variables “Sex”, “CP”, “Trestbps”, “Fbs”, “Thalach”, “Exang”, “Slope”, 

“CA” and “Thal” against the dependent variable “Num_2”. The summary of fit 3 provides 

estimates for these 9 variables. The logit equation with the inclusion of the estimates is expressed 

as,  

Logit(p̂(x)) = −7.248048 + 1.253367𝑥1 + 0.568646𝑥2 + 0.025231𝑥3 −

1.050740𝑥4 − 0.018587𝑥5 + 1.002225𝑥6 + 0.805342𝑥7 + 1.273935𝑥8 + 0.343888𝑥9. 

The AIC of this model is 230.9. Recall the previous model’s AIC as 230.22. The model with the 

elimination of variable “Chol” does not perform better according to it’s AIC value. As fit 5 

model did not perform better than it’s previous model, the fit 5 will not be further reduced. 

The model (fit 4) with the variables “Sex”, “CP”, “Trestbps”, “Chol”, “Fbs”, “Thalach”, 

“Exang”, “Slope”, “CA” and “Thal” against the dependent variable “Num_2” has performed the 

best according to the measurement of AIC. The models will be further interpreted before the 

conclusion of which model provides the best regression.  
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4.3 Interpretations of Models 
 

Each model has been assessed using the Akaike Information Criterion measurement, but there 

are more ways to assess each model. Before discussing other methods to assess the models, the 

AIC value of the 5 models are provided below as a reference,  

 

      

Figure 3: The AIC values for each individual model. 

Explained in Section 2 is the importance of measurements of odds ratio, confusion matrix, 

accuracy, and area under the ROC curve.  

The full model provides information on all 13 variables. The full model had the worst 

performance according the AIC. Using the code provided in the Appendix A, this model will be 

further assessed.  

The odds ratio, confusion matrix, accuracy and AUC were calculated for the full model using R. 

The evaluations are given in Appendix E(a). 

The OR indicates how well each predictor, x value, affects the outcome variable. The odds ratio 

should range between 0 and infinity and given that the OR>1, the variable is positively 

associated with the outcome. The higher the OR value, the higher it positively influences the 

outcome variable. Listed in Table 3 are the odds ratio for the 13 independent variables. 

The variables with OR<1 are “Age”, “Fbs” and “Thalach”.  Recall in Section 4.1, “Age” is the 

first variable removed from the full model. The OR value shows that “Age” does not positively 

influence the outcome variable. This indicates that the decision to remove “Age” from the first 

model is a good decision.  
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Variable Odds Ratio 

Age 0.9859361762 

Sex 3.7138658483 

CP 1.7787278261 

Trestbps 1.0243354280 

Chol 1.0050077206 

Fbs 0.3599040993 

Restecg 1.2778170041 

Thalach 0.9795467088 

Exang 2.5246544794 

Oldpeak 1.2806736397 

Slope 1.7682826563 

CA 3.5527377615 

Thal 1.4104886307 

Table 3: OR values for each predictor variable, X, in the full model. 

Additional information about the full model given in Appendix E(a) are: 

• the model fits the data set with an accuracy of 84.8485%, 

• the true negative value is 140. This indicates that 140 patients who are predicted to not 

have heart disease were predicted correctly, 

• the true positive value is 112. This indicates that 112 patients who were predicted to have 

heart disease were predicted correctly,  

• combining the true negative and true positive values indicates that 252 out of the 297 

patients are correctly classified, 
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• the false positive (type 1 error) value is 20. This indicates that 20 of the patients were 

predicted to have heart disease when they do not have heart diseases, 

• the false negative (type 2 error) is 25. This indicates that 25 of the patients were predicted 

to not have heart disease, when they do have heart disease, 

• combining false negative and false positive value shows that 45 out of the 297 patients 

are misdiagnosed 

• the AUC value is 84.6259%. This indicates that there is 84.6259% chance that the model 

can distinguish between the positive and negative class. Thus, the model can discriminate 

the outcomes well.  

Now that the full model has been analyzed, we will compare the interpretations of the full model 

to the model with the best regression. 

The model that provided the best regression in terms of the AIC value is fit 4. The model fit 4 

includes the variables “Sex”, “CP”, “Trestbps”, “Chol”, “Fbs”, “Thalach”, “Exang”, “Slope”, 

“CA” and “Thal” against the dependent variable “Num_2”. Additional information about this 

models’ odds ratio, accuracy, confusion matrix and AUC are provided in appendix E(b).  

The OR values for the reduced model are listed in Table 4. 

Comparing the OR values of the reduced model in Table 4 to the OR values of the full model in 

Table 3, the OR values from the reduced model shows improvement. This indicates that the 

reduced model contains predictor values that have a higher chance of influencing the outcome.  

The only predictor value that decreased in value is the variable “Fbs”. In Section 4.2, fit 5 

attempted removing the variable “Fbs” and it did not improve the model. Thus, the variable 

“Fbs” will remain in the reduced model.  
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Variable Odds Ratio 

Sex 4.4759652172 

CP 1.7674304591 

Trestbps 1.0250019451 

Chol 1.0059273520 

Fbs 0.3436937319 

Thalach 0.9803529546 

Exang 2.7778178638 

Slope 2.2759401183 

CA 3.6000318488 

Thal 1.3912881957 

Table 4: OR values for each predictor variable, X, in the reduced model.  

Additional information about the reduced model given in Appendix E(b) are: 

• the model fits the data set with an accuracy of 85.5219%, 

• the true negative value is 142. This indicates that 142 patients who are predicted to not 

have heart disease were predicted correctly, 

• the true positive value is 112. This indicates that 112 patients who were predicted to have 

heart disease were predicted correctly,  

• combining the true negative and true positive values indicates that 254 out of the 297 

patients are correctly classified, 

• the false positive (type 1 error) value is 18. This indicates that 18 of the patients were 

predicted to have heart disease when they do not have heart diseases, 
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• the false negative (type 2 error) is 25. This indicates that 25 of the patients were predicted 

to not have heart disease, when they do have heart disease, 

• combining false negative and false positive value shows that 43 out of the 297 patients 

were misdiagnosed, 

• the AUC value is 85.2509%. This indicates that there is an 85.2509% chance that the 

model can distinguish between the positive and negative class. Thus, the model can 

discriminate the outcomes well.  

The reduced model outperforms the full model. Thus, the model that is produced from fit 4 will 

be the chosen final model to represent the data set, Heart Disease. The summary of the full 

model fit with the inclusion of 95% upper and lower limits is given in Table 5. 

An overview of the final model is listed below, 

• the final model consists of 10 independent variables against 1 dependent variable. The 

chosen independent variables are the sex of the patient (Sex), the type of chest pain the 

patient has (CP), the patient’s blood pressure at rest (Trestbps), the patient’s serum 

cholesterol level (Chol), the patient’s fasting blood sugar level (Fbs), the maximum heart 

rate the patient can achieve (Thalach), if the patient has exercised induced angina 

(Exang), the slope of the patient’s ST segment at their peak while exercising (Slope), the 

colour of the patient’s major vessel by fluoroscopy (CA), and if the patient has 

thalassemia (Thal). These independent variables are against the dependent variable, 

presence of heart disease in a patient (Num_2), 
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Covariate Estimate Std. Error Z-Value P-Value Lower CI Upper CI 

Intercept -8.591527 2.502261 -3.434 0.000596  -13.70398898 -3.852568111 

Sex 1.498722 0.475877 3.149 0.001636 0.590016482 2.466344595 

CP 0.569527 0.190198 2.994 0.002750 0.206288451 0.956636523 

Trestbps 0.024695 0.010038 2.460 0.013888 0.005437453 0.045015807 

Chol 0.005910 0.003607 1.638 0.101328 -0.001201232 0.013222871 

Fbs -1.068004 0.544658 -1.961 0.049894 -2.173276697 -0.027556442 

Thalach -0.019843 0.009351 -2.122 0.033840 -0.038881176 -0.001924691 

Exang 1.021666 0.408926 2.498 0.012475 0.218141747 1.829420800 

Slope 0.822393    0.308011 2.670 0.007585 0.224162769 1.438226862 

CA 1.280943 0.245781 5.212 1.87e-07 0.822586332   1.790734860 

Thal 0.330230 0.097895 3.373 0.000743 0.139802201   0.525268791 

Table 5: The summary of fit of the final model chosen to represent the Heart Disease data set. 

Note the upper and lower limits are at 𝛼 = 0.05. 

• with the estimates given from the summary of the final fit, the logit equation from 

multiple logistic regression is expressed as: 

Logit(p̂(𝑥)) = −8.591527 + 1.498722𝑥1 + 0.569527𝑥2 + 0.024695𝑥3

+ 0.005910𝑥4 − 1.068004𝑥5 − 0.019843𝑥6 + 1.021666𝑥7

+ 0.822393𝑥8 + 1.280943𝑥9 + 0.330230𝑥10. 

This model is the final model as the predictor variables produce the most accuracy in predicting 

if a patient has heart disease.  
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5. Conclusions 
 
 

Creating models that can aide in the medical industry for the prediction of a disease is crucial. 

This project demonstrated the prediction of a patient having heart disease based on numerous 

variables that influence the outcome, using the logistic regression. The importance of the model 

is that doctors can use the model to aide in their clinical decision making. The model can identify 

that if the patient is not yet diagnosed with heart disease, their health factors put them more at 

risk to developing heart disease in the future. 

Section 1 discusses logistic regression and its importance. This Section introduced the logistic 

regression model for the binary outcome as well as its probability of success. Section 1 also 

discusses the method of estimating the unknown parameters, 𝛃 = (β1 , … , βp)
T

, using the 

maximum likelihood method. After the parameters are estimated, they are tested for their 

significance to aide in the selection of the best regression model for the data set.  

Section 2 discusses the interpretations that can be made about a model, and the selection process 

of said models. This section introduced the backward elimination; the process is used in the later 

sections to select the best regression model. Alongside assessing the significance of the 

parameters, Section 2 introduced other methods of assessing the regression model. The section 

discusses the importance of the interpretations of odd ratios, Akaike information criterion, 

confusion matrices, accuracy, and area under the ROC curve.  

Section 3 discusses all 13 independent variables’ meanings and their units of measurements. The 

data set originally contained 303 instances and was reduced to 297 instances as the instances 

with missing values were removed. The outcome variable was then manipulated to become a 

binary variable as it was originally a discrete, nonbinary variable. The residuals of the data set 
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were then assessed to determine if the logistic regression can be used. The residual plot for the 

13 independent variables indicated that there are no outliers in the data set. Thus, all 297 

instances should remain in the data set chosen for the analysis.  

Section 4 explored models with backward elimination. Starting with the full model, the summary 

of fit showed that the variable “Age” did not impact the prediction of heart disease. This was 

concluded based on the predictor’s significance value and the overall model’s AIC value. 

Backward elimination was then repeated and all insignificant variables were removed. The 

model that was selected was model 4. Model 4 included 10 variables, “Sex”, “CP”, “Trestbps”, 

“Chol”, “Fbs”, “Thalach”, “Exang”, “Slope”, “CA” and “Thal”. Thus, the model removed the 

variables “Age”, “Restecg”, and “Oldpeak”. At the end of the Section 4, the full model was 

compared to the best regressed model. Based on the odds ratio, confusion matrix, accuracy, AIC 

and AUC, the reduced model outperformed the full model for all interpretation measurements. 

Thus, model 4 was chosen as the final model to predict the presence of heart disease. 

In conclusion, although the full model does represent the data well, the model will predict heart 

disease in a patient at a higher level of accuracy if the age, the resting electrocardiographic 

results, and the ST depression of a patient when induced by exercise, are not included in the 

model. 
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Appendix 
 
 

Appendix A : Code 

 
install.packages("readxl") 
library("readxl") 
install.packages("ISLR") 
library(ISLR) 
install.packages("Metrics") 
library("Metrics") 
install.packages("tidyverse") 
library(tidyverse) 
library(broom) 
 
#import data set using files 
Cleveland2 <- read_excel("Carleton University/Carleton University Year 5/MATH 
4905(honours project)/Data Sets and Code/Cleveland2.xlsx") 
View(Cleveland2) 
 
#this attaches the variables 
attach(Cleveland2) 
 
#start using glm function 
# with all variables 
fit<-
glm(as.numeric(Num_2)~Age+Sex+CP+Trestbps+Chol+Fbs+Restecg+Thalach+Exang
+Oldpeak+Slope+as.numeric(CA)+as.numeric(Thal), family=binomial, data=Cleveland2) 
summary(fit) 
#Compute the fit odds ratio, confusion matrix, accuracy, AUC 
tidy_fit<- tidy(fit) 
Odds_Ratio1<- exp(tidy_fit$estimate) 
Odds_Ratio1 
Num_2<- as.numeric(Num_2) 
pred<-predict(fit,Cleveland2,type="response") 
Cleveland2$pred<- ifelse(pred>=0.5,1,0) 
AUC1<- auc(Cleveland2$Num_2, Cleveland2$pred) 
AUC1 
accuracy1<- accuracy(Cleveland2$Num_2, Cleveland2$pred) 
accuracy1 
confusion_matrix1<- table(Cleveland2$Num_2, Cleveland2$pred, 
dnn=c("True","Predicted")) 
confusion_matrix1 
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#Introduce fit 2 
#remove variable age 
fit2<-
glm(as.numeric(Num_2)~Sex+CP+Trestbps+Chol+Fbs+Restecg+Thalach+Exang+Oldp
eak+Slope+as.numeric(CA)+as.numeric(Thal), family=binomial, data=Cleveland2) 
summary(fit2) 
 
#introduce fit 3 
#remove variable oldpeak 
fit3<-
glm(as.numeric(Num_2)~Sex+CP+Trestbps+Chol+Fbs+Restecg+Thalach+Exang+Slop
e+as.numeric(CA)+as.numeric(Thal), family=binomial, data=Cleveland2) 
summary(fit3) 
 
#introduce fit 4 
#remove variable restecg 
fit4<-
glm(as.numeric(Num_2)~Sex+CP+Trestbps+Chol+Fbs+Thalach+Exang+Slope+as.num
eric(CA)+as.numeric(Thal), family=binomial, data=Cleveland2) 
summary(fit4) 
#Compute the fit odds ratio, confusion matrix, accuracy, AUC 
tidy_fit4<- tidy(fit4) 
Odds_Ratio4<- exp(tidy_fit4$estimate) 
Odds_Ratio4 
Num_2<- as.numeric(Num_2) 
pred4<-predict(fit4,Cleveland2,type="response") 
Cleveland2$pred4<- ifelse(pred4>=0.5,1,0) 
AUC4<- auc(Cleveland2$Num_2, Cleveland2$pred4) 
AUC4 
accuracy4<- accuracy(Cleveland2$Num_2, Cleveland2$pred4) 
accuracy4 
confusion_matrix4<- table(Cleveland2$Num_2, Cleveland2$pred4, 
dnn=c("True","Predicted")) 
confusion_matrix4 
 
#introduce fit 5 
#remove variable chol 
fit5<-
glm(as.numeric(Num_2)~Sex+CP+Trestbps+Fbs+Thalach+Exang+Slope+as.numeric(C
A)+as.numeric(Thal), family=binomial, data=Cleveland2) 
summary(fit5) 
 
#compare all AIC's 
AIC<- c(fit=AIC(fit), fit2=AIC(fit2), fit3=AIC(fit3), fit4=AIC(fit4), fit5=AIC(fit5)) 
AIC 
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#the residuals of the variables 
p<-fitted(fit)  
fitted(fit) 
residuals<-as.numeric(Num_2)-p #plot against covariates 
residuals 
 
#plot of the residuals 
par(mfrow=c(2,2)) 
plot(x=Age,y=residuals, ylab="residuals", xlab="age", main="Age vs. Residuals 
plot",abline(0,0)) 
plot(x=Sex,y=residuals, ylab="residuals", xlab="sex", main="Sex vs. Residuals 
plot",abline(0,0)) 
plot(x=CP,y=residuals, ylab="residuals", xlab="CP", main="CP vs. Residuals 
plot",abline(0,0)) 
plot(x=Trestbps,y=residuals, ylab="residuals", xlab="trestbps", main="Trestbps vs. 
Residuals plot",abline(0,0)) 
#Chol, Fbs, Restecg, Thalach vs. Residuals  
par(mfrow=c(2,2)) 
plot(x=Chol,y=residuals, ylab="residuals", xlab="chol", main="Chol vs. Residuals 
plot",abline(0,0)) 
plot(x=Fbs,y=residuals, ylab="residuals", xlab="fbs", main="Fbs vs. Residuals 
plot",abline(0,0)) 
plot(x=Restecg,y=residuals, ylab="residuals", xlab="restecg", main="Restecg vs. 
Residuals plot",abline(0,0)) 
plot(x=Thalach,y=residuals, ylab="residuals", xlab="thalach", main="Thalach vs. 
Residuals plot",abline(0,0)) 
#Exang, Oldpeak, Slope, CA vs. Residuals 
par(mfrow=c(2,2)) 
plot(x=Exang,y=residuals, ylab="residuals", xlab="Exang", main="Exang vs. Residuals 
plot",abline(0,0)) 
plot(x=Oldpeak,y=residuals, ylab="residuals", xlab="oldpeak", main="Oldpeak vs. 
Residuals plot",abline(0,0)) 
plot(x=Slope,y=residuals, ylab="residuals", xlab="slope", main="Slope vs. Residuals 
plot",abline(0,0)) 
plot(x=CA,y=residuals, ylab="residuals", xlab="CA", main="CA vs. Residuals 
plot",abline(0,0)) 
#Thal vs. Residuals 
plot(x=Thal,y=residuals, ylab="residuals", xlab="thal", main="Thal vs. Residuals 
plot",abline(0,0)) 
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Appendix B: 

 
The image below are the predicted values of the 297 observational values given by the 
regression model containing all thirteen independent variables and the one outcome 
variable. 
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Appendix C(a): 

 
 Residual plots for independent variables Age, Sex, CP and Trestbps.

 

Appendix C(b): 

 
Residuals plot for independent variables Chol, Fbs, Restecg and Thalach 
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Appendix C(c): 

 
Residuals plot for independent variables Exang, Oldpeak, Slope and CA.  

 

Appendix C(d): 

 
Residuals plot for the independent variable, Thal. 
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Appendix D(a): Fit 1 

 
The image below represents the glm() command function for the full model with all 13 
independent variables against the dependent variable.  

 

 

Appendix D(b): Fit 2 

 
The image below represents the glm() command function for the reduced model with 12 
independent variables against the dependent variable.  
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Appendix D(c): Fit 3 

 
The image below represents the glm() command function for the reduced model with 11 
independent variables against the dependent variable.  

 
 

Appendix D(d): Fit 4 

 
The image below represents the glm() command function for the reduced model with 10 
independent variables against the dependent variable.  
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Appendix D(e): Fit 5 

 
The image below represents the glm() command function for the reduced model with 9 
independent variables against the dependent variable.  

 
 

Appendix E(a): Full Model 

 
Output below represents the odds ratio, AUC, confusion matrix and accuracy for the full 
model  
with the 13 independent variables 
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Appendix E(b): Best Regressed Reduced Final Model 

 
Output below represents the odds ratio, AUC, confusion matrix and accuracy for the 
best regressed reduced model with the 10 independent variables, “sex”, “CP”, 
“trestbps”, “chol”, “fbs”, “thalach”, “exang”, “slope”, “CA”, and “thal”. 
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