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Abstract

This project is regarding the prediction of heart disease. Heart disease is the 2" leading cause of
death in Canada. Understanding the factors that can lead to an individual’s diagnosis of heart
disease can play an important role in the world of health care. We consider analyzing an
observational data set that contains 13 independent variables as well as a binary outcome
variable indicating the presence of the heart disease in a patient. In this project, logistic
regression will be used to assess the variables to understand their significance and to obtain an

accurate prediction model.



1. Logistic Regression

1.1 Introduction to Binary Logistic Regression Models

When dealing with categorical data from a target variable, logistic regression is often used to
model the data. There are different types of logistic regression that can be used, such as simple
logistic regression and multiple logistic regression. In the case of the data set that is used
throughout this project, multiple logistic regression is used, as the outcome variable represents
binary responses (indication of heart disease in a patient).

In the case of a binary logistic model, we will be setting the predictor variables (13 variables) as
X and the dichotomous response variable as Y, defined by

_ {O, if absense of heart disease
~ 1, if presence of heart diease.

Before discussing multiple logistic regression model, an introduction to simple logistic
regression is needed. Simple logistic regression with a binary outcome variable will lead to a
binomial distribution with parameters n; and p;. The parameter n; represents the number of trials
and the parameter p; represents the probability of success in a given trial. Note that the
probability of failure is expressed as 1 — p;.

To explore the relationship between each predictor variable, X, and outcome variable, Y, we can
provide a scatterplot between the two variables. Figure 1 shows the scatterplot that represents the
binary relationship between one of the predictor variable’s, “Age”, and the outcome variable,
presence of the heart disease. Note that the scatterplot for the other predictor variables by the

outcome variable look similar to the scatterplot shown in Figure 1.
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Figure 1: Scatterplot of the binary outcome of heart disease by age of 297 patients.
As shown in Figure 1, the points fall on two parallel lines. This plot depicts that the outcome
variable is in fact binary, as one line represents Y=0 and the other Y=1. Suppose p; denotes the
probability that an individual has a heart disease. The probability p; is defined as a function of

the covariates x; using the logistic regression model

' Pi(x
Logit(pico) = log (F(c))

— log[e BO+lei]

= Bo + B1x;. (1.1)



The probability of success can be written as

eBotB1x;

(x)
E (&) = pi(X) = W. (12)

nj
The probability of success, p;, will fall in the interval of [0,1]. Figure 2 exhibits the proportions

of success % at different values of the predictor variable x;.
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Figure 2: Plot of proportion of successes p; by age.
As shown in the plot, the values of pi are between the range of [0,1]. The curve of the plot
follows an “S-shape”. In the case of a binary outcome variable, it is normal to have a plot that
represents a typical plot of a cumulative distribution (S- shaped curve).
Now that a simple binary logistic regression has been introduced, we will now discuss multiple
logistic regression. Multiple logistic regression will be used throughout this project as there are
13 predictor variables, and we will account for the dependent variable representing a

dichotomous outcome. The predictor, X, can be represented as a vector,

X = (Xq, ., Xp)7.



The multiple logistic regression model represented is defined by

. Pi(x
Logit(pi) = log (F(m)x))

= log[e Bo+31X1+82X2+...+Bpxp]

= Bo + B1x1 + Baxz + - + BpXp. (1.3)

The probability of success p; for multiple logistic regression can be written as

eBo+B1x1+B2x2++BpXp

v\ _ _
E (n_L) - pi(x) T 14ePo+Bix1+Baxa++Bpxp (1'4)

1.2 Parameter Estimation Using Maximum Likelihood

When discussing the parameter estimation in regression models, the methods are not the same
for both linear regression and logistic regression. In linear regression, the least squares method is
used to estimate the unknown parameters 3, and ;. The assumptions that can be made about the
linear regression that allows us to use the least square method are not valid for the logistic
regression. The method of maximum likelihood is used instead for the logistic regression. First,
we will be discussing the maximum likelihood for simple logistic regression. The maximum
likelihood method obtains the estimates of the regression parameters by maximizing the
likelihood function. Recall as previously mentioned the p;(x) in Equation (1.2); this will be used
for the likelihood function. Given a pair of (x;,y;) we can represent the contribution to the

likelihood function as

{1 —pi(x), giveny; =0
pi (%), given y; = 1°



The probability mass function of the binomial distribution with the given probabilities is defined
by
n; .
f(yi) = (yi) Py (1 — p)™i.
Assuming the observations are independent, the likelihood function is obtained by evaluating the

joint density of y; as
n n;
= t yi — ) Yi
e =] ] Goera-pmr. (L5)

The estimate of {3 is obtained by maximizing £(3). To do so, we take log on both sides, that is

n

1(B) = logle(®)] = > flog(},) + yilog ;2] + mylog(1 - p)}.

i=1
Since there are two unknown parameters, B, and B, to obtain their estimates, 8, and f,, we
take the derivative of 1() and set it equal to 0. The estimate of 3, is obtained by solving the

estimating equation

n
Z{Yi —np;} =0,
i=1

with respect to 3, and the estimate of 3, is obtained by solving the estimating equation

n
Z{Xi lyi —nip;} =0,
=1

with respect to ;.

Now that the maximum likelihood method for simple logistic regression has been discussed, the
maximum likelihood for multiple logistic regression can be introduced. The process is similar to
the simple logistic regression except all regression estimates for vector x are accounted for. The

parameters can be represented as a vector

B =(Bo - Bp)



and the data can be represented as
(x;,v;) wherei = (1,...,n).
The maximum likelihood is written similar to Equation (1.5) except that now we introduce the

vector B with the probability p;(x) from Equation (1.4). The likelihood equations for estimating

Boand B = (By, -, Bp)T are given by

n
Z{Yi —njp;} =0,
i=1

and

Z{Xij [yi —nipi]} =0,
i=1

for j=(1,...,p), respectively.
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1.3 Significance of Parameters

After estimating the regression coefficients, the next step is to test the significance of the
independent variables using hypothesis testing. Hypothesis testing will indicate how significant
the independent variable is to predict the outcome variable, which leads to a model that performs
well. Variables are tested to see if the model performs better with or without the inclusion of the
insignificant variable in the model. To assess the significance of the variables, we first fit logistic
regression models. This can be done using the statistical software “R”, where the function “glm”
produces a summary of the fitted logistic regression model. The summary of fit generates the
estimate, standard error, z-values, and the p-values. In Section 1.2, we discussed how the
estimates are found. The standard errors of the estimates are found for multiple logistic

regression using the observed information matrix given below.

When estimating the variances of the estimators, p = (Gl ) e Gp)T, the second partial derivative

of the log-likelihood is used. This is expressed as,

n

0%1(B)
op? = _zxiszi(l — n;p;).

i=1

The observed information matrix is written as

I(B) = —[8%1(B) / 0BAB"].

To obtain the variance, we use the inverse of I(B), that is,
Var(B) = 1"1(B),
where Var(B;) is the j* diagonal element of the matrix. The estimates of the variance of the B’s

is represented as V(B).

11



To obtain I(B), which is used to fixed the estimated variance, we note that I(B) = X'VX. The
design matrix, X, is a (n x (p+1)) matrix of the covariates and V is a (n x n) diagonal matrix of

diagonal points of p;(1 — p;). The X and V are denoted as,

1 X1 Xq2. Xqp

X = 1 X1 Xppeo Xgp

and

respectively.
The standard error of Bj may be obtained as
~ ~\10.5
SE(B;) = [V(B)] ™
The z-values are obtained as

S.ée. (B])’

Zj

for j=0,1,...p, and corresponding p-values are obtained by using the normal probability curve,
that is, assuming that z follows the standard normal distribution, we have

p —value = P(|z| > z7)
where z* = |calculated zj|. Any regression coefficient with a p-value greater than the level of

significance a is considered not significant at level a.

12



2. Interpretations of Fitted Logistic
Regression Models

Section 1 discusses how a logistic regression model is used to assess the significance of the
predictors. Significance of variables tells how well each variable performs in a model. In this
section, | will discuss how to assess a logistic regression model as a whole using the odds ratio,
area under the ROC curve, accuracy and confusion matrices. | will introduce the backward
elimination process to determine which model is the best regression using the assessment criteria

stated.

2.1 Odds Ratio

Before introducing the odds ratio for the multiple logistic regression, | will first introduce the
odds ratio for the simple binary logistic regression. In the case of the binary logistic regression,
we can define a predictor variable to have a value of either 0 or 1. Expressing this in terms of a

difference in logit model, we can write

= logit(pi(x = 1)) — logit(pi(x = O))

= g(1) —g(0)
= [Bo + B1] — Bo
= B1-

To interpret the logit difference, we can use odds ratio. Odds ratio is defined as the ratio of odds

of success at x=1 to the odds of success at x=0. That is, odds ratio,

OR = 20 (2.1)

13



Given the outcome variable, Y, has two dichotomous outcomes, Y=0 and Y=1, the following

table will represent the values of p(x) and 1 — p(x) at the two levels of x,

Independent variable, X

Outcome variable, Y x=0 x=1
y=0 _ _ _ _
1 p(O) _'1 +'eBO 1 p(l) _'1 +‘€BO+31
y:l eBo e30+31
p(0) = 15 obo p(1) = T4 ofoths
Total 1.0 1.0

Table 1: Equations for p and 1-p for simple binary logistic regression.

Then the odds ratio is,

eBO+Bl

OR =

eBO
1+ePo
1
1+eBo

__eBO+Bl

eBO

= e(Bo"'Bl)—Bo

= efr,

14+eBo+B1
1

1+eBO+Bl

(22)

Thus, for a simple binary logistic regression with x=0 and x=1, the odds ratio is equal to efz. To

find the estimate of B, $,, one can take log on both sides of the odds ratio, that is,

B, = log(OR) = log(eP).

14



Now, moving on to multiple logistic regression. Recall Equation (2.1). In the case of the multiple

logistic regression, suppose the j** predictor x; is binary. Then we can write

(2.3)

Equation (2.2) represents the algebra for OR in terms of the simple logistic regression. In case of

the multiple logistic regression, we have

exp (Bo+B1x1++Bj_1Xj_1+Bj+Bjr1Xjr1++BpXp)
exp (Bo+PB1x1++Bj1Xj_1+Bjt1Xj41++BpXp)

OR =
= eBi,
for j=(1,...,p). This is used to estimate any coefficient at any j™ level.

To get the estimate of the coefficient, we take log on both sides of the OR so that

B; = log(OR) = log (egi).

2.2 Akaike Information Criterion

When computing the summary fit using statistical software “R”, produced in the summary is a
value labelled “AIC”. AIC stands for Akaike Information Criterion and is utilized in the
interpretation of the fitted model. AIC follows the formula,

AIC = —2(maximum log — likelihood) + 2(number of free parameters).

The number of free parameters is the number of estimates used in the fitted model,

15



The AIC evaluates how poorly the model fits the data set. This is based on the estimation
provided using the maximum of log-likelihood. The AIC indicates the bias given from the log-
likelihood by the number of free parameters.

When choosing the best fitted regression model, choose the model with the lowest AIC. The
lower the AIC the lower the bias in the model is. The model with the lowest AIC will tend to
produce a better cross-validation confusion matrix and accuracy predictor. The chosen estimates
from the model with the lowest AIC should have estimates with competitive mean square errors,
as AIC is based on the maximum log-likelihoods.

When comparing models used to fit the data set, aim for the model with the smallest AIC. The
AIC will reduce when the former model has a small reduction of residual deviance compared to
the following model. AIC is an informative measurement of a model for its overall goodness-of-
fit. Combining AIC and more interpretation evaluations will lead to an easy process of selecting

the best regression model.

2.3 Confusion Matrix and Accuracy

First, we will discuss the confusion matrix. Confusion matrices are a result of cross- classifying
the predicted values against the actual values. In the case of this project, the confusion matrix is a
binary classifier matrix, as there are only two classes. The possible values of the predicted class
are “yes” and “no”. In order to classify the data, the classification must be set at a certain
threshold of a value “c”, typically taken to be 0.5. Thus the table below will evaluate the model
of the outcome variable by classifying subjects based on the threshold of “c”. The outline of the

table is given as below

16



Predicted (No) Predicted (Yes)

Actual (No) True Negative (TN) False Positive (FP)

Actual (Yes) False Negative (FN) True Positive (TP)

Table 2: Confusion matrix table in general terms.
These values can be described as such,
e true positive is when the predicted value and the actual value are both positive,
e true negative is when the predicted value and the actual value are both negative,
e false positive is when the predicted value is positive, but the actual value is negative. This
is also known as type 1 error,
e false negative is when the predicted value is negative, but the actual value is positive.

This is also known as type 2 error.

The fitted model is considered an accurate representation of the data set if the true positive and
negatives are maximized and the false positive and negatives are minimized.

Accuracy can be calculated using the confusion matrix. Accuracy is used to easily sum up what
the confusion matrix says. Accuracy is calculated by taking the ratio of the true positives and
true negatives against the total number, which gives a proportion of how accurate the fitted
model is. This is denoted as,

TP + TN
TP + FP + TN + FN’

Accuracy =

If accuracy is approximately 1, then the model fits the data well. If the accuracy is 1 then all the

predicted values match the actual values.

17




2.4 Area Under the ROC Curve

The ROC curve is similar to the confusion matrix. The curve reflects on the model’s classifiers
performance over the threshold at the c=0.5. The plot consists of the true positive rate as the y-
axis and the false positive rate as the x-axis. The formulas for the true positive rate and false

positive rate are

TP
Actual number of "Yes"’

True Positive Rate =

and

FP
Actual number of "No

False Positive Rate =

n’

respectively.

The area under the ROC curve (AUC) is measured as it gives and overall performance of the
classifier over the entire range of the data set. The AUC measures if the model can discriminate
between the individuals who have the outcome of interest (true positive rate) versus those who
do not (false positive rate). The AUC ranges between 0 and 1. This is what the AUC
measurement means in terms of how well the model can discriminate:

0.5, Sugests no discrimination
(0.5,0.8), acceptable discrimination
[0.8,0.9), excellent discrimination °
[0.9,1], outstanding discrimination

AUC =

Although the AUC is most ideal to be in the range of [0.9,1], it is very rare for the AUC to be in

that range.

18



2.5 Backward Elimination

Backward elimination is a procedure to examine the independent variables that can lead to the
“best” regression. Backward elimination is a part of stepwise regression. I will be discussing
stepwise regression first.

Stepwise regression starts with one single independent variable and then building the model by
adding one independent variable at a time. The variables are chosen using partial F-Test. The
variable with the most significant F-value is chosen and will be added as an additional
independent variable to the next model. As variables are added to the model, one should examine
the overall model to see if the model is performing as well or better with the additional variables.
Stepwise regression can then be processed using the following steps:

1. Provide a summary of fit that contains the z-values of the independent variables that are
correlated to the dependent variable.

2. Check z-value for an estimate.

3. Check if the value is significant at level a.

4. If the value is significant, adopt the independent variable into the model and repeat the process
with another independent variable. If the value is not significant, then remove the variable and

declare the model as the best possible regression to fit the data set.

Now moving onto backward elimination. Backward elimination derives from stepwise regression
as it attempts to find the best regression model to fit the data. Backward elimination has a similar
process but commences will all independent variables included in the model and removes them

based on their level of significance.

19



Backward elimination can then be processed using the following steps:

1. Provide a summary of fit with the z-values for all the possible independent variables that are
correlated to the dependent variable.

2. Select the lowest F-value and compare it to the default F-value at a significance level of a.

3. If the F-value is smaller than the default F-value, remove the independent variable from the
model and repeat steps with the adjusted model. If the F-value is larger than the default F-value

then the model is deemed as the best regression model to fit the data set.

20



3. Heart Disease Data Set

3.1 Introduction to the Data Set

The data set selected for this project was attained from the UCI Machine Learning Repository
website. The data set selected is referred to as the Heart Disease Data. This data set has been
used for interpretations in countries all over the world and has been featured in numerous studies.
The characteristic of the set is multivariate with a total of 75 attributes and 303 observations.
There are multiple data sets on this topic, but | have selected the Processed Cleveland data set.
The processed data set that contains the 303 patients from Cleveland, narrowed down from 75
attributes to 14 attributes. I will go in depth with each variable indicating which ones are the
independent variables and which one is the dependent variable.

1. Attribute 1 is the age of the patient. This is measured in years. Age is a continuous
independent variable.

2. Attribute 2 is the sex of the patient. The value “1” indicates that the patient is a male and
“0” indicates female. Sex is a discrete binary independent variable.

3. Attribute 3 is CP. CP stands for chest pain where the patient’s chest pain is described by
4 labels: “1” indicates typical angina, “2” indicates atypical angina, “3” indicates non-
anginal pain and “4” indicates asymptomatic. CP is a discrete independent variable.

4. Attribute 4 is Trestbps. Trestbps is the patient’s blood pressure at rest. The unit of
measurement is mm Hg on admission to the hospital. Trestbps is a continuous
independent variable.

5. Attribute 5 is Chol. Chol is the patient’s serum cholesterol. The unit of measurement is

mg/dl. Chol is a continuous independent variable.

21



10.

11.

12.

13.

Attribute 6 is Fbs. Fbs stands for fasting blood sugar. The value “1” represents when
fbs>120 mg/dl and “0” represents when fbs<120 mg/dl. This is a binary discrete
independent variable.

Attribute 7 is Restecg. Restecg is the resting electrocardiographic results and is described
under 3 values. The value “0” indicates normal, “1” indicates having ST-T wave
abnormality where it has T wave inversions and/or ST elevation or depression of
>0.05mV, and “2” indicates showing probable or definite left ventricular hypertrophy by
Estes’ criteria. Restecg is a discrete independent variable.

Attribute 8 is Thalach. Thalach is the maximum heart rate a patient achieves. This is a
continuous independent variable.

Attribute 9 is Exang. Exang is exercised induced angina described using 2 values. The
value “0” indicates the patient has exercised induced angina and “1” indicates the patient
does not have exercised induced angina. This is a binary discrete independent variable.
Attribute 10 is Oldpeak. Oldpeak is ST depression induced by exercise relative to rest.
This is a continuous independent variable.

Attribute 11 is Slope. Slope is the slope of the peak exercise ST segment, described using
3 values. The value “1” indicates the slope is up-sloping, “2” indicates the slope is flat,
and “3” indicates the slope is down-sloping.

Attribute 12 indicates CA. CA is the number of major vessels coloured by fluoroscopy
that is described within a range of 0 to 3. CA is a continuous independent variable.
Attribute 13 is Thal. Thal is short for thalassemia which is a blood disorder that causes

the body to produce less hemoglobin than usual. This is described under 3 values. The
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value “3” indicates normal, “6” indicates fixed defect, and “7” indicates reversable
defect. Thal is a discrete independent variable.

14. Attribute 14 is Num. Num represents the indication of heart disease, the angiographic
disease status, represented under 5 values. The value “0” indicates no presence of heart
disease, and “17, “2”, “3” and “4” values indicate presence of heart disease at different
levels. For “0” there is a <50% diameter narrowing, and for all other values there is

>50% diameter narrowing. Num is a discrete response variable.

3.2 Manipulation of the Data Set

The Processed Cleveland data set contains a few missing values, specifically, for two
independent variables, Thal and CA. The instances that contain a missing value are instance 88,
167, 193, 267, 288, and 303. This is a total of six values. | removed these instances completely
from the data set, as they can affect the concluded statistical model. Keeping instances with
missing variables can lead to these errors:
e missing values can reduce the accuracy of the model chosen. This is because it affects the
significance testing of a variable as it contains illegitimate values,
e missing values will create a bias in the chosen estimated coefficients provided in the
summary of fit,
e missing values will not represent the data set well. This makes it difficult to draw

accurate conclusions.

| utilized Excel to create a new data set with these instances removed. The total instances in the

clean data set is 297.

23



The data set was again manipulated by changing the independent variable from discrete to binary
discrete. In the original data set, the presence of heart disease was described with 5 individual
responses. Response “0” indicated no presence of heart disease and response 1-4 indicated
different levels of heart disease. For the purpose of the model, we disregard the different levels
of heart disease and interpret them as one individual level. This is expressed as shown,
( 0, indicates 0
1, indicates 1
Num =< 2, indicates 1
3, indicates 1
4, indicates 1.
This way the data set will have a binary dependent variable. This issue was resolved by creating
a new variable labelled “Num_2” on Excel. Num_2 was created with this code,
— IF([@Num] — 0, uou' "1"),

where the IF statement took in all Num values. If the value equals “0”, Num_2 would remain

“0”, and if else, then Num_2 would change to “1”.

3.3 Assessing the Residuals

A key feature of residual plots is the detection of outliers in the data set. Detecting outliers is of
importance as it can determine if there are data entry errors which can lead to bias in the
regression.
Residuals are calculated using the formula,

residual =y — 9,

where y are the observed values and ¥ are the predicted values given by the regression.

24



After fitting a model containing all independent variables, we fit the values of the data set using
R. This is done using the code,
p. hat < — fitted(fit),

where fit is the fitted model.
The values that are produced are in the interval [0,1]. Appendix B contains the predicted values
from the regression.
Now that the predicted values are calculated, they can be used in the residual equation. This is
done on R using the code,

residuals < — as.numeric(Num,) — p. hat,
where Num_2 is the outcome variable, y, and p.hat are predicted values, ¥.
There is a total of thirteen scatterplots that plot the residuals against each independent variable.
The plots are shown in Appendix C(a) to Appendix C(d).
The plots indicate that there are no outliers shown in any of the plots, thus all 297 observational

values will remain in the data set.

25



4. Model Selection Using R

4.1 Exploring the Full Model
As backward elimination is the stepwise process chosen, the first model should include all
variables. The command glm() provided in statistical software R is used to perform the model.
The command glm() will run a logistic regression that regresses the binary outcome of presence
of heart disease on the 13 independent variables. The fit is written in the code as
fit < —glm(as.numeric(Num_2)~Age + Sex + CP + Trestbps + Chol + Fbs +
Restecg + Thalach + Exang + Oldpeak + Slope + as.numeric(CA) +

as.numeric(Thal), family = binomial, data = Cleveland_2).
The summary fit of this model is provided in Appendix D(a). The model follows a binomial
distribution as the outcome variable is binary.
The model includes the independent variables “Age”, “Sex”, “CP”, “Trestbps”, “Chol”, “Fbs”,
“Restecg”, “Thalach”, “Exang”, “Oldpeak”, “Slope”, “CA” and “Thal” along with the dependent
variable “Num_2”. The summary of fit provides estimates for all 13 variables.

The logit is represented by the estimates of the model using Equation (1.3) as
Logit(p(x)) = Bo + B1xs + Baxz + Baxz + Baxs + Psxs + Bexs + Brxy + Baxs +
Boxo + BioXx10 + BiaXa1 + Bizxiz + Bisxas.

From the R output in Appendix C(a), the estimates § = (B, ..., G13)T can be expressed as

26



Logit(p(x)) = —7.37042 — 0.014164x, + 1.312073 x, + 0.575898 x5 + 0.024044x, +
0.004995x5 — 1.021918x, + 0.245153x, — 0.020665xg + 0.926104x, + 0.247386x, +
0.570009x,, + 1.267719 x;, + 0.343936x; 5.

The AIC of the full model is 232.69.

Using Appendix D(a), the variable with the largest p-value in the model is “Age”. “Age” is
variable 1. As backward elimination is the used, age will be the variable that will be removed

and assessed without its inclusion in the next model.

4.2 Selection of Best Regression Model

Now that the full model has been explored, selecting the most appropriate model can commence.
In the full model, the variable “Age” was selected to be removed. As backward elimination is
used, the second fit will consist of 12 variables as “Age” will no longer be included. The second
fit is coded as

fit2 < —glm(as.numeric(Num_2)~Sex + CP + Trestbps + Chol + Fbs + Restecg +
Thalach + Exang + Oldpeak + Slope + as.numeric(CA) + as.numeric(Thal), family =

binomial,data = Cleveland?).

The summary of fit 2 is provided in Appendix D(b).
The model includes the variables “Sex”, “CP”, “Trestbps”, “Chol”, “Fbs”, “Restecg”, “Thalach”,
“Exang”, “Oldpeak”, “Slope”, “CA” and “Thal” against the dependent variable “Num_2”. The
summary of fit 2 provides estimates for these 12 variables. The logit equation with the inclusion

of the estimates is expressed as
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Logit(p(x)) = —8.203028 + 1.346131x,; + 0.583865x, + 0.022352x; +
0.004652x, — 1.031146x5 + 0.243574x — 0.018347x, + 0.942382x5 + 0.260719 x4 +
0.561520x,7 + 1.224859x;; + 0.340860x;,.
The AIC of the second model is 231.04. Recall that the AIC in the full model is 232.69. Clearly,
the second model outperformed the full model. By the backward elimination process, we will
deem the second model to be more accurate and continue to reduce the model.
According to Appendix D(b), the variable with the largest p-value is “Oldpeak”. This variable
will be removed in the next model.
The new model, fit 3, will consist of 11 variables. The model will be assessed with the
elimination of “Age” and “Oldpeak” variable. The code to represent the fit is expressed as
fit3 < —glm(as.numeric(Num_2)~Sex + CP + Trestbps + Chol + Fbs + Restecg +
Thalach + Exang + Slope + as.numeric(CA) + as.numeric(Thal), family =
binomial,data = Cleveland?).
The summary of fit 3 is provided in Appendix D(c).
The model includes the variables “Sex”, “CP”, “Trestbps”, “Chol”, “Fbs”, “Restecg”, “Thalach”,
“Exang”, “Slope”, “CA” and “Thal” against the dependent variable “Num_2”. The summary of
fit 3 provides estimates for these 11 variables. The logit equation with the inclusion of the
estimates is expressed as,
Logit(p(x)) = —8.474113 + 1.431549x, + 0.573804x, + 0.023568x; +
0.005059x, — 1.074331x5 + 0.233448x, — 0.019485x, + 1.007935xg + 0.782011x, +
1.274038 x;4 + 0.344010x, ;.
The AIC of this model is 230.59. Recall the AIC in the previous model is 231.04. Clearly, the

further reduced model outperformed the previous model. By backward elimination process, we
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will deem the third model to be the best model and attempt to further reduce it. According to
Appendix D(c) the variable with the largest p-value is “Restecg”. This variable is removed in the
next model.
The new model, fit 4, consists of 10 variables. The model is assessed with the elimination of
“Restecg”, “Age” and “Oldpeak” variable. The code to represent the fit is expressed as

fit4 < —glm(as.numeric(Num_2)~Sex + CP + Trestbps + Chol + Fbs + Thalach +

Exang + Slope + as.numeric(CA) + as.numeric(Thal), family = binomial, data =

Cleveland?2).
The summary of fit 4 is provided in Appendix D(d).
The model includes the variables “Sex”, “CP”, “Trestbps”, “Chol”, “Fbs”, “Thalach”, “Exang”,
“Slope”, “CA” and “Thal” against the dependent variable “Num_2”. The summary of fit 3
provides estimates for these 10 variables. The logit equation with the inclusion of the estimates is
expressed as,
Logit(p(x)) = —8.591527 + 1.498722x, + 0.569527x, + 0.024695x; +

0.005910x, — 1.068004x5 — 0.019843x, + 1.021666x, + 0.822393xg + 1.280943x4 +

0.330230x4,.

The AIC of this model is 230.22. Recall the AIC of the previous model was 230.59. The new
model slightly outperformed the last model. As the model is still outperformed, we will deem the
new model as the best regression model and further reduce it in the next model.

According to Appendix D(d) the variable with the largest p-value is “Chol”. This variable will be

removed in the next model.
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The new model, fit 5, will consist of 9 variables. The model will be assessed with the elimination
of “Chol”, “Restecg”, “Age” and “Oldpeak” variable. The code to represent the fit is expressed
as,

fit5 < —glm(as.numeric(Num_2)~Sex + CP + Trestbps + Fbs + Thalach + Exang +
Slope + as.numeric(CA) + as.numeric(Thal), family = binomial, data = Cleveland?2).
The summary of fit 5 is provided in Appendix D(e).
The model includes the variables “Sex”, “CP”, “Trestbps”, “Fbs”, “Thalach”, “Exang”, “Slope”,
“CA” and “Thal” against the dependent variable “Num_2”. The summary of fit 3 provides
estimates for these 9 variables. The logit equation with the inclusion of the estimates is expressed
as,

Logit(f)(x)) = —7.248048 + 1.253367x; + 0.568646x, + 0.025231x3 —
1.050740x, — 0.018587x5 + 1.002225x4 + 0.805342x; + 1.273935x5 + 0.343888x,.
The AIC of this model is 230.9. Recall the previous model’s AIC as 230.22. The model with the

elimination of variable “Chol” does not perform better according to it’s AIC value. As fit 5
model did not perform better than it’s previous model, the fit 5 will not be further reduced.

The model (fit 4) with the variables “Sex”, “CP”, “Trestbps”, “Chol”, “Fbs”, “Thalach”,
“Exang”, “Slope”, “CA” and “Thal” against the dependent variable “Num_2” has performed the
best according to the measurement of AIC. The models will be further interpreted before the

conclusion of which model provides the best regression.
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4.3 Interpretations of Models
Each model has been assessed using the Akaike Information Criterion measurement, but there
are more ways to assess each model. Before discussing other methods to assess the models, the

AIC value of the 5 models are provided below as a reference,

> AIC
fitl fit2 fit3 fitd fits
232. 6887 231.0393 230.5924 230.2234 230.8958

Figure 3: The AIC values for each individual model.

Explained in Section 2 is the importance of measurements of odds ratio, confusion matrix,
accuracy, and area under the ROC curve.

The full model provides information on all 13 variables. The full model had the worst
performance according the AIC. Using the code provided in the Appendix A, this model will be
further assessed.

The odds ratio, confusion matrix, accuracy and AUC were calculated for the full model using R.
The evaluations are given in Appendix E(a).

The OR indicates how well each predictor, x value, affects the outcome variable. The odds ratio
should range between 0 and infinity and given that the OR>1, the variable is positively
associated with the outcome. The higher the OR value, the higher it positively influences the
outcome variable. Listed in Table 3 are the odds ratio for the 13 independent variables.

The variables with OR<1 are “Age”, “Fbs” and “Thalach”. Recall in Section 4.1, “Age” is the
first variable removed from the full model. The OR value shows that “Age” does not positively
influence the outcome variable. This indicates that the decision to remove “Age” from the first

model is a good decision.
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Variable Odds Ratio

Age 0.9859361762
Sex 3.7138658483
CP 1.7787278261
Trestbps 1.0243354280
Chol 1.0050077206
Fbs 0.3599040993
Restecg 1.2778170041
Thalach 0.9795467088
Exang 2.5246544794
Oldpeak 1.2806736397
Slope 1.7682826563
CA 3.5527377615
Thal 1.4104886307

Table 3: OR values for each predictor variable, X, in the full model.
Additional information about the full model given in Appendix E(a) are:
e the model fits the data set with an accuracy of 84.8485%,
e the true negative value is 140. This indicates that 140 patients who are predicted to not
have heart disease were predicted correctly,
o the true positive value is 112. This indicates that 112 patients who were predicted to have
heart disease were predicted correctly,
e combining the true negative and true positive values indicates that 252 out of the 297

patients are correctly classified,
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e the false positive (type 1 error) value is 20. This indicates that 20 of the patients were
predicted to have heart disease when they do not have heart diseases,

e the false negative (type 2 error) is 25. This indicates that 25 of the patients were predicted
to not have heart disease, when they do have heart disease,

e combining false negative and false positive value shows that 45 out of the 297 patients
are misdiagnosed

e the AUC value is 84.6259%. This indicates that there is 84.6259% chance that the model
can distinguish between the positive and negative class. Thus, the model can discriminate

the outcomes well.

Now that the full model has been analyzed, we will compare the interpretations of the full model
to the model with the best regression.

The model that provided the best regression in terms of the AIC value is fit 4. The model fit 4
includes the variables “Sex”, “CP”, “Trestbps”, “Chol”, “Fbs”, “Thalach”, “Exang”, “Slope”,
“CA” and “Thal” against the dependent variable “Num_2”. Additional information about this
models’ odds ratio, accuracy, confusion matrix and AUC are provided in appendix E(b).

The OR values for the reduced model are listed in Table 4.

Comparing the OR values of the reduced model in Table 4 to the OR values of the full model in
Table 3, the OR values from the reduced model shows improvement. This indicates that the
reduced model contains predictor values that have a higher chance of influencing the outcome.
The only predictor value that decreased in value is the variable “Fbs”. In Section 4.2, fit 5
attempted removing the variable “Fbs” and it did not improve the model. Thus, the variable

“Fbs” will remain in the reduced model.
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Variable Odds Ratio

Sex 4.4759652172
CP 1.7674304591
Trestbps 1.0250019451
Chol 1.0059273520
Fbs 0.3436937319
Thalach 0.9803529546
Exang 2.7778178638
Slope 2.2759401183
CA 3.6000318488
Thal 1.3912881957

Table 4: OR values for each predictor variable, X, in the reduced model.

Additional information about the reduced model given in Appendix E(b) are:

the model fits the data set with an accuracy of 85.5219%,

the true negative value is 142. This indicates that 142 patients who are predicted to not
have heart disease were predicted correctly,

the true positive value is 112. This indicates that 112 patients who were predicted to have
heart disease were predicted correctly,

combining the true negative and true positive values indicates that 254 out of the 297
patients are correctly classified,

the false positive (type 1 error) value is 18. This indicates that 18 of the patients were

predicted to have heart disease when they do not have heart diseases,
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the false negative (type 2 error) is 25. This indicates that 25 of the patients were predicted
to not have heart disease, when they do have heart disease,

combining false negative and false positive value shows that 43 out of the 297 patients
were misdiagnosed,

the AUC value is 85.2509%. This indicates that there is an 85.2509% chance that the
model can distinguish between the positive and negative class. Thus, the model can

discriminate the outcomes well.

The reduced model outperforms the full model. Thus, the model that is produced from fit 4 will

be the chosen final model to represent the data set, Heart Disease. The summary of the full

model fit with the inclusion of 95% upper and lower limits is given in Table 5.

An overview of the final model is listed below,

the final model consists of 10 independent variables against 1 dependent variable. The
chosen independent variables are the sex of the patient (Sex), the type of chest pain the
patient has (CP), the patient’s blood pressure at rest (Trestbps), the patient’s serum
cholesterol level (Chol), the patient’s fasting blood sugar level (Fbs), the maximum heart
rate the patient can achieve (Thalach), if the patient has exercised induced angina
(Exang), the slope of the patient’s ST segment at their peak while exercising (Slope), the
colour of the patient’s major vessel by fluoroscopy (CA), and if the patient has
thalassemia (Thal). These independent variables are against the dependent variable,

presence of heart disease in a patient (Num_2),
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Covariate Estimate | Std. Error | Z-Value P-Value Lower CI Upper ClI
Intercept | -8.591527 | 2.502261 -3.434 0.000596 | -13.70398898 | -3.852568111
Sex 1.498722 | 0.475877 3.149 0.001636 0.590016482 | 2.466344595
CP 0.569527 0.190198 2.994 0.002750 | 0.206288451 | 0.956636523
Trestbps | 0.024695 | 0.010038 2.460 0.013888 | 0.005437453 | 0.045015807
Chol 0.005910 | 0.003607 1.638 0.101328 | -0.001201232 | 0.013222871
Fbs -1.068004 | 0.544658 -1.961 0.049894 | -2.173276697 | -0.027556442
Thalach | -0.019843 | 0.009351 -2.122 0.033840 | -0.038881176 | -0.001924691
Exang 1.021666 | 0.408926 2.498 0.012475 0.218141747 | 1.829420800
Slope 0.822393 | 0.308011 2.670 0.007585 | 0.224162769 | 1.438226862
CA 1.280943 | 0.245781 5.212 1.87e-07 0.822586332 | 1.790734860
Thal 0.330230 | 0.097895 3.373 0.000743 0.139802201 | 0.525268791

Table 5: The summary of fit of the final model chosen to represent the Heart Disease data set.

Note the upper and lower limits are at « = 0.05.

e with the estimates given from the summary of the final fit, the logit equation from

multiple logistic regression is expressed as:

Logit(p(x)) = —8.591527 + 1.498722x, + 0.569527x, + 0.024695x5

+ 0.005910x, — 1.068004x5 — 0.019843x, + 1.021666x,

+ 0.822393xg + 1.280943x, + 0.330230x4,.

This model is the final model as the predictor variables produce the most accuracy in predicting

if a patient has heart disease.
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5. Conclusions

Creating models that can aide in the medical industry for the prediction of a disease is crucial.
This project demonstrated the prediction of a patient having heart disease based on numerous
variables that influence the outcome, using the logistic regression. The importance of the model
is that doctors can use the model to aide in their clinical decision making. The model can identify
that if the patient is not yet diagnosed with heart disease, their health factors put them more at
risk to developing heart disease in the future.

Section 1 discusses logistic regression and its importance. This Section introduced the logistic

regression model for the binary outcome as well as its probability of success. Section 1 also

discusses the method of estimating the unknown parameters, g = ([31 ) e Bp)T, using the
maximum likelihood method. After the parameters are estimated, they are tested for their
significance to aide in the selection of the best regression model for the data set.

Section 2 discusses the interpretations that can be made about a model, and the selection process
of said models. This section introduced the backward elimination; the process is used in the later
sections to select the best regression model. Alongside assessing the significance of the
parameters, Section 2 introduced other methods of assessing the regression model. The section
discusses the importance of the interpretations of odd ratios, Akaike information criterion,
confusion matrices, accuracy, and area under the ROC curve.

Section 3 discusses all 13 independent variables’ meanings and their units of measurements. The
data set originally contained 303 instances and was reduced to 297 instances as the instances
with missing values were removed. The outcome variable was then manipulated to become a

binary variable as it was originally a discrete, nonbinary variable. The residuals of the data set
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were then assessed to determine if the logistic regression can be used. The residual plot for the
13 independent variables indicated that there are no outliers in the data set. Thus, all 297
instances should remain in the data set chosen for the analysis.

Section 4 explored models with backward elimination. Starting with the full model, the summary
of fit showed that the variable “Age” did not impact the prediction of heart disease. This was
concluded based on the predictor’s significance value and the overall model’s AIC value.
Backward elimination was then repeated and all insignificant variables were removed. The
model that was selected was model 4. Model 4 included 10 variables, “Sex”, “CP”, “Trestbps”,
“Chol”, “Fbs”, “Thalach”, “Exang”, “Slope”, “CA” and “Thal”. Thus, the model removed the
variables “Age”, “Restecg”, and “Oldpeak”. At the end of the Section 4, the full model was
compared to the best regressed model. Based on the odds ratio, confusion matrix, accuracy, AIC
and AUC, the reduced model outperformed the full model for all interpretation measurements.
Thus, model 4 was chosen as the final model to predict the presence of heart disease.

In conclusion, although the full model does represent the data well, the model will predict heart
disease in a patient at a higher level of accuracy if the age, the resting electrocardiographic
results, and the ST depression of a patient when induced by exercise, are not included in the

model.
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Appendix

Appendix A : Code

install.packages("readx!")
library("readxI")
install.packages("ISLR")
library(ISLR)
install.packages("Metrics")
library("Metrics")
install.packages("tidyverse")
library(tidyverse)
library(broom)

#import data set using files

Cleveland2 <- read_excel("Carleton University/Carleton University Year 5/MATH
4905(honours project)/Data Sets and Code/Cleveland2.xIsx™)

View(Cleveland?2)

#this attaches the variables
attach(Cleveland?2)

#start using glm function

# with all variables

fit<-
glm(as.numeric(Num_2)~Age+Sex+CP+Trestbps+Chol+Fbs+Restecg+Thalach+Exang
+Oldpeak+Slope+as.numeric(CA)+as.numeric(Thal), family=binomial, data=Cleveland2)
summary(fit)

#Compute the fit odds ratio, confusion matrix, accuracy, AUC

tidy_fit<- tidy(fit)

Odds_Ratiol<- exp(tidy_fitdestimate)

Odds_Ratiol

Num_2<- as.numeric(Num_2)

pred<-predict(fit,Cleveland2,type="response")

Cleveland2$pred<- ifelse(pred>=0.5,1,0)

AUCI1<- auc(Cleveland2$Num_2, Cleveland2$pred)

AUC1

accuracyl<- accuracy(Cleveland2$Num_2, Cleveland23$pred)

accuracyl

confusion_matrix1<- table(Cleveland2$Num_2, Cleveland2$pred,
dnn=c("True","Predicted"))

confusion_matrix1
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#Introduce fit 2

#remove variable age

fit2<-
glm(as.numeric(Num_2)~Sex+CP+Trestbps+Chol+Fbs+Restecg+Thalach+Exang+Oldp
eak+Slope+as.numeric(CA)+as.numeric(Thal), family=binomial, data=Cleveland?2)
summary(fit2)

#introduce fit 3

#remove variable oldpeak

fit3<-
glm(as.numeric(Num_2)~Sex+CP+Trestbps+Chol+Fbs+Restecg+Thalach+Exang+Slop
e+as.numeric(CA)+as.numeric(Thal), family=binomial, data=Cleveland?2)

summary(fit3)

#introduce fit 4

#remove variable restecg

fitd<-
glm(as.numeric(Num_2)~Sex+CP+Trestbps+Chol+Fbs+Thalach+Exang+Slope+as.num
eric(CA)+as.numeric(Thal), family=binomial, data=Cleveland?2)
summary(fit4)

#Compute the fit odds ratio, confusion matrix, accuracy, AUC
tidy_fit4<- tidy(fit4)

Odds_Ratio4<- exp(tidy_fitd$estimate)

Odds_Ratio4

Num_2<- as.numeric(Num_2)
pred4<-predict(fit4,Cleveland2,type="response")
Cleveland2$pred4<- ifelse(pred4>=0.5,1,0)

AUC4<- auc(Cleveland2$Num_2, Cleveland2$pred4)

AUC4

accuracy4<- accuracy(Cleveland2$Num_2, Cleveland2$pred4)
accuracy4

confusion_matrix4<- table(Cleveland2$Num_2, Cleveland2$pred4,
dnn=c("True","Predicted"))

confusion_matrix4

#introduce fit 5

#remove variable chol

fito<-
glm(as.numeric(Num_2)~Sex+CP+Trestbps+Fbs+Thalach+Exang+Slope+as.numeric(C
A)+as.numeric(Thal), family=binomial, data=Cleveland?2)

summary(fits)

#compare all AIC's

AIC<- c(fit=AIC(fit), fit2=AIC(fit2), fit3=AIC(fit3), fitd=AIC(fit4), fit5=AIC(fit5))
AIC
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#the residuals of the variables

p<-fitted(fit)

fitted(fit)

residuals<-as.numeric(Num_2)-p #plot against covariates
residuals

#plot of the residuals

par(mfrow=c(2,2))

plot(x=Age,y=residuals, ylab="residuals", xlab="age", main="Age vs. Residuals
plot”,abline(0,0))

plot(x=Sex,y=residuals, ylab="residuals", xlab="sex", main="Sex vs. Residuals
plot”,abline(0,0))

plot(x=CP,y=residuals, ylab="residuals", xlab="CP", main="CP vs. Residuals
plot”,abline(0,0))

plot(x=Trestbps,y=residuals, ylab="residuals", xlab="trestbps", main="Trestbps vs.
Residuals plot",abline(0,0))

#Chol, Fbs, Restecg, Thalach vs. Residuals

par(mfrow=c(2,2))

plot(x=Chol,y=residuals, ylab="residuals", xlab="chol", main="Chol vs. Residuals
plot",abline(0,0))

plot(x=Fbs,y=residuals, ylab="residuals", xlab="fbs", main="Fbs vs. Residuals
plot",abline(0,0))

plot(x=Restecg,y=residuals, ylab="residuals", xlab="restecg", main="Restecg vs.
Residuals plot",abline(0,0))

plot(x=Thalach,y=residuals, ylab="residuals", xlab="thalach", main="Thalach vs.
Residuals plot",abline(0,0))

#Exang, Oldpeak, Slope, CA vs. Residuals

par(mfrow=c(2,2))

plot(x=Exang,y=residuals, ylab="residuals", xlab="Exang", main="Exang vs. Residuals
plot",abline(0,0))

plot(x=Oldpeak,y=residuals, ylab="residuals", xlab="oldpeak", main="Oldpeak vs.
Residuals plot",abline(0,0))

plot(x=Slope,y=residuals, ylab="residuals", xlab="slope", main="Slope vs. Residuals
plot",abline(0,0))

plot(x=CA,y=residuals, ylab="residuals", xlab="CA", main="CA vs. Residuals
plot",abline(0,0))

#Thal vs. Residuals

plot(x=Thal,y=residuals, ylab="residuals", xlab="thal", main="Thal vs. Residuals
plot”,abline(0,0))
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Appendix B:

The image below are the predicted values of the 297 observational values given by the
regression model containing all thirteen independent variables and the one outcome

variable.

> fitted(fit)
1 2 3 4 5 6 7 &8 9 10 11
0.266023854 0.997764279 0.991842631 0.323325153 0.022484651 0.028863589 0.891871550 0.128500498 0.913722320 0.875336134 0.501415413
12 13 14 15 16 17 18 19 20 21 22
0.086533628 0.795574613 0.126762917 0.230124330 0.091793115 0.287800504 0.202787191 0.045391327 0.050629579 0.163284916 0.009683734
23 24 25 26 27 28 29 30 31 32 33
0.164548789 ©0.913632160 0.992709495 0.044329073 0.021148689 0.122794426 0.252397688 0.905426504 0.147879399 0.859715517 0.134412993
34 35 36 37 38 349 40 41 42 43 44
0.541638029 ©0.149556382 0.126443366 0.924605405 0.984376926 0.976158129 0.292439373 0.988727066 0.246228796 0.272526908 0.058907168
45 46 47 48 49 50 51 52 53 54 55
0.0718505%91 0.768941864 0.088895099 0.916200131 0.138%02203 0.166976337 0.020045125 0.326467354 0.490004874 0.042915575 0.910945675
56 57 58 54 60 61 62 63 64 65 66
0.986775924 0.747413464 0.347438015 0.680160399 0.478061234 0.666974259 0.310167271 0.997939951 0.010171906 0.893748866 0.996113932
67 68 (3] 70 71 72 73 74 75 76 77
0.333888526 0.530534371 0.990105697 0.450490342 0.059906776 0.787691535 0.993260619 0.851867259 0.259494364 0.148035389 0.975841043
78 79 80 81 82 83 84 85 86 a7 88
0.339492238 0.095640838 0.935563961 0.602949468 0.172399397 0.170230471 0.837438951 0.045690568 0.114754336 0.178317685 0.072662268
89 a0 a1l 92 93 94 as a6 a7 a8 a9
0.055961022 0.341477758 0.996557221 0.979124477 0.013889378 0.029476768 0.845899626 0.944838826 0.950223939 0.165698905 0.104747741
100 101 102 103 104 105 106 107 108 109 110
0.112957226 0.023592402 0.229606172 0.046090610 0.977491767 0.144431324 0.814857373 0.800063033 0.964515131 0.639611346 0.782741359
111 112 113 114 115 116 117 118 119 120 121
0.701586831 0.063759833 0.745249233 0.735865512 0.320146602 0.044226980 0.041292323 0.993426687 0.961264627 0.941362868 0.995164946
122 123 124 125 126 127 128 129 130 131 132
0.249434931 0.982875047 0.117173265 0.033282479 0.996578952 0.958819210 0.030518396 0.024416705 0.543878354 0.581359235 0.037095974
133 134 135 136 137 138 139 140 141 142 143
0.346529177 0.030933042 0.056086252 0.937698468 0.883502979 0.858784745 0.116933776 0.105749359 0.501987023 0.008446257 0. 820846099
144 145 l46 147 148 149 150 151 152 153 154
0.622379612 ©0.061416901 0.995279834 0.044424346 0.087037384 0.052644432 0.126393910 0.168302653 0.529041593 0.985056495 0. 968859198
155 156 157 158 159 160 161 162 163 164 163
0.991779318 ©.751269353 0.916501465 0.972897136 0.373872763 0.031819353 0.958935199 0.032519856 0.134892497 0.221320694 0. 518992775
166 167 168 169 170 171 172 173 174 175 176
0.083600125 ©.795153823 0.017201046 0.982212750 0.894376276 0.417305136 0.289507690 0.979744148 0.990800716 0.882206136 0.977704163
177 178 179 180 181 182 183 184 185 186 187
0.437747697 0.638730394 0.655892546 0.986251527 0.461437974 0.B76452317 0.138147181 0.088332626 0.173859622 0.990860337 0.743251443
188 189 130 191 192 193 194 195 196 197 198
0.990472974 0.061436470 0.999231806 (. 888216182 0.118000514 0.950536321 0.227949918 0.329094632 0.013411320 0.167977516 0.044930473
199 200 201 202 203 204 205 206 207 208 209
0.336687559 0.230433676 0.207082299 0.265780778 0.998154887 0.995267763 0.929538573 0.054474305 0.297475541 0.015977971 0.418128775
210 211 212 213 214 215 216 217 218 219 220
0.262472872 ©.903810315 0.252000298 0.219642897 0.005062863 0.322794891 0.793346701 0.169493843 0.061248146 0.021088901 0.006433250
221 222 223 224 225 226 227 228 229 230 231
0.995502370 0.637823567 0.006637393 0.115199308 0.096228926 0.B855294451 0.655567153 0.050336480 0. 867641667 0.885395340 0.230686273
232 233 234 235 236 237 238 239 240 241 242
0.113345468 0.987369412 0.940988171 0.601365619 0.028899130 0.052643140 0.038047054 0.017819%9123 0.044802130 0.597899634 0.015926660
243 244 245 246 247 248 249 250 251 252 253
0.578296678 ©0.510409243 0.905620247 0.865321752 0.029522982 0.727537469 0.959368087 0.96608%785 0.046899071 0.204478562 0.023817843
254 255 256 257 258 259 260 261 262 263 264
0.253918686 0.111190588 0.143324246 0.215459862 0.143455146 0.152676332 0.010458629 0.055624676 0.936451998 0.923019697 0. 543665043
265 266 267 268 269 270 271 272 273 274 275
0.421368119 ©0.083152296 0.955200517 0.756922854 0.995874120 0.065842933 0.251350357 0.453642798 0.290835607 0.060142554 0.292535296
276 277 278 279 280 281 282 283 284 285 286
0.102747769 0.963839148 0.062636096 0.885849722 0.029159015 0.704818223 0.996886646 0.958136492 0.202256319 0.085660647 0.638399886
287 288 289 290 291 292 293 294 295 296 297
0.025361490 0.854024323 0.989996143 0.153449713 0.018367679 0.978654041 0.662745084 0.260910059 0.936749005 0.946755042 0.084023319
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Appendix C(a):

Residual

Age vs. Residuals plot

plots for independent variables Age, Sex, CP and Trestbps.

Sex vs. Residuals plot
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Residuals plot for independent variables Chol, Fbs, Restecg and Thalach
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Appendix C(c):

Residuals plot for independent variables Exang, Oldpeak, Slope and CA.

Exang vs. Residuals plot

Oldpeak vs. Residuals plot
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Appendix C(d):
Residuals plot for the independent variable, Thal.
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Appendix D(a): Fit 1

The image below represents the gim() command function for the full model with all 13
independent variables against the dependent variable.

call:

gim(formula = as.numeric(Num_2) ~ Age + Sex + CP + Tresthbps +
chol + Fbs + Restecg + Thalach + Exang + Oldpeak + Slope +
as.numeric(ca) + as.numeric(Thal), family = binomial, data

Deviance Residuals:
Min 1q Median 3Q Max
-2.7818 -0.5207 -0.1863 0.4248 2.3622

Coefficients:
Estimate std. Error z value Pri=|z|)
2

(Intercept) -7.372042 . 879476 -2.560 0.01046 *
Age -0.014164 0.023970 -0.591 0.55459

sex 1.312073 0.488474 2.686 0.00723 =*
cp 0.575898 0.191197 3.012 0.00259 **
Trestbps 0.024044 0.010730 2.241 0.02504 *
chol 0.004995 0.003774 1.324 0.18561

Fbs -1.021918 0.555330 -1.840 0.06574 .
Restecqg 0.245153 0.185005 1.325 0.18513
Thalach -0.020665 0.010225 -2.021 0.04327 *
Exang 0.926104 0.413343 2.241 0.02506 *
oldpeak 0. 247386 0.211832 1.168 0.24287
slope 0. 570009 0.363085 1.570 0.11644

as. numeric(ca) 1.267719 0.265384 4,777 1.78e-06 #**
as.numeric(Thal) 0.343936 0.100361 3.427 0.00061 *¥**
signif. codes: @ ***%' 0,001 ‘**' 0.01 *‘*' Q.05 . 0.1 °

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 409.95 on 296 degrees of freedom
Residual deviance: 204.69 on 283 degrees of freedom
AIC: 232.69

Number of Fisher scoring iterations: 6

Appendix D(b): Fit 2

The image below represents the gim() command function for the reduced model with 12

independent variables against the dependent variable.

> suhmary(fitzj

call:

gIlm{(formula = as.numeric({Num_2) ~ Sex + CP + Trestbps + chol +
Fbs + restecg + Thalach + Exang + Oldpeak + Slope + as.numeric(ca) +

as.numeric(Thal), family = binomial, data = Cleveland2)

Deviance Residuals:
Min 10 Median 3q Max
-2.7823 -0.5345 -0.1748 0.4222 2.3776

Coefficients:
Estimate std. Error z value Pri=|z|)

(Intercept) -8.203028 2.518247 -3.257 0.001124 **
sex 1.346131 0.483665 2.783 0.005383 **
P 0.583865 0.190616 3.063 0.002191 **
Tresthps 0.022352 0.010309 2.168 0.030149 *
chol 0.004652 0.003708 1.255 0.209369

Fbs -1.031146 0.552085 -1.868 0.061800
Restecqg 0.243574 0.184921 1.317 0.187779
Thalach -0.018347 0.009402 -1.951 0.051023
Exang 0.942382 0.411836 2,288 0.022123 *
oldpeak 0.260719 0.210961 1.236 0.216509
slope 0.561520 0.363142 1.546 0.122036
as.numeric(ca) 1.224859 0.253198 4.838 1.31e-06 #**
as.numeric(thal) 0.340860 0.099949 3.410 0.000649 ¥**
signif. codes: © “#%%' 0,001 ‘¥*' 0.01 ‘%' 0.05 *." 0.1 °

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 409.95 on 296 degrees of freedom
Residual deviance: 205.04 on 284 degrees of freedom
AIC: 231.04

Number of Fisher Scoring iterations: &
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Appendix D(c): Fit 3

The image below represents the gim() command function for the reduced model with 11

independent variables against the dependent variable.

> summary (fit3)

call:

glm(formula = as.numeric(Num_2) ~ Sex + CP + Trestbps + chol
Fbs + Restecg + Thalach + Exang + Slope + as.numeric(ca)
as.numeric(Tthal), family = binomial, data = Cleveland2)

Deviance Residuals:
Min 1Q Median 3qQ Max
-2.7863 -0.3246 -0.1751 0.4468 2.3492

coefficients:
Estimate std. Error z value Pr(=|z|)

(Intercept) -§.474113 2.517806 -3.3006 0.000764 ¥***
Sex 1.431549 0.479022 2.988 0.002804 **
CP 0.573804 0.190700 3.009 0.002622 **
Tresthps 0.023568 0.010160 2.320 0.020362 *
chol 0. 005059 0.003677 1.376 0.168861

Fbs -1.074331 0.547571 -1.962 0.049763 *
Restecqg 0.233448 0.183402 1.273 0.203062
Thalach -0.019485 0.009342 -2.086 0.037010 *
Exang 1.007935 0.409139 2.464 0.013757 *
slope 0.782011 0.313735 2.493 0.012682 *
as.numeric{ca) 1.274038 0. 248963 5.117 3.1le-07 %¥¥
as.numeric{Thal) 0.344010 0.099790 3.447 0.000566 ***

signif. codes: © "#*%*' 0,001 ‘#*' 0.01 ‘* 0.05 ‘." 0.1 * °

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 409.95 on 296 degrees of freedom

rResidual deviance: 206.59 on 285 degrees of freedom

AIC: 230.59

Number of Fisher Scoring iterations: 6

Appendix D(d): Fit 4

+
+

1

The image below represents the gim() command function for the reduced model with 10

independent variables against the dependent variable.

> summary (fit4)

call:

gim(formula = as.numeric(Num_2) ~ Sex + CP + Trestbps + chol +
Fbs + Thalach + Exang + Slope + as.numeric(cA) + as.numeric(Thal),

family = binomial, data = Cleveland2)

Deviance Residuals:
Min 1q Median 3Q Max
-2.8670 -0.5566 -0.1748 0.4547 2. 3489

coefficients:
Estimate std. Error z value Pri=|z|)

(Intercept) -8.591527 2.502261 -3.434 0.000596 ***
sex 1.498722 0.475877 3.149 0.001636 **
CP 0.569527 0.190198 2.994 0.002750 =+
Tresthps 0.024695 0.010038 2.460 0.013888 *
chol 0.005910 0.003607 1.638 0.101328

Fbs -1.068004 0.544658 -1.961 0.049894 *
Thalach -0.019843 0.009351 -2.122 0.033840 *
Exang 1.021666 0.408926 2.498 0.012475 *
slope 0.822393 0.308011 2.670 0.007585 *¥
as.numeric(ca) 1.280943 0.245781 5.212 1.87e-0Q7 ***
as.numeric(Thal) 0.330230 0.097895 3.373 0.000743 *¥*
signif. codes: 0 *#*¥*' 0. 001 ‘*%' Q.01 ‘*' 0.05 ‘.’ 0.1 °©

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 409%9.95 on 296 degrees of freedom
rResidual deviance: 208.22 on 286 degrees of freedom
AIC: 230.22

Number of Fisher scoring iterations: 6
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Appendix D(e): Fit5

The image below represents the gim() command function for the reduced model with 9

independent variables against the dependent variable.

> summary(fits)

call:

glm{(formula = as.numeric(Num_2) ~ Sex + CP + Trestbps + Fbs +
Thalach + Exang + Slope + as.numeric(ca) + as.numeric(Thal),

family = binomial, data = Cleveland2)

Deviance Residuals:
Min 10 Median 3Q Max
-2.8752 -0.5573 -0.1878 0.4730 2.4683

coefficients:
Estimate std. Error z value Pr(=|z|)

(Intercept) -7.248048 2.312335 -3.135 0.001721 **
sex 1.253367 0.443325 2.827 0.004696 **
cP 0.568646 0.188831 3.011 0.002600 **
Tresthbps 0.025231 0.009945 2.537 0.011178 *
Fbs -1.050740 0.540131 -1.945 0.051734 .
Thalach -0.018587 0.009144 -2.033 0.042076 *
EXang 1.002225 0.403071 2.486 0.012902 *
Slope 0.805342 0.305314 2.638 0.008346 **
as.numeric(ca) 1.273935 0.241789 5.269 1.37e-0F *#*
as.numeric(Thal) 0.343888 0.097930 3.512 0.000445 #&*
signif. codes: @ "#%*' 0.001 ‘**° Q.01 ‘*' Q.05 ‘.' 0.1 ° °

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 409.95 on 296 degrees of freedom
residual deviance: 210.90 on 287 degress of freedom
AIC: 230.9

Number of Fisher Scoring iterations: 6

Appendix E(a): Full Model

Output below represents the odds ratio, AUC, confusion matrix and accuracy for the full

model
with the 13 independent variables
> 0dds_Ratiol

[1] 0.0006285834 0.9859361762 3.7138658483 1.7787278261 1.024335428C
1.0050077206 0.3599040993 1.2778170041
[11] 1.2B06736397 1.7682826563 3.5527377615 1.4104886307

= AUCT
[1] 0.8462591
> ACCUuracyl
[1] 0.8484843
> confusion_matrixl
Predicted
True Q 1
0 140 20
1 25 112

0.9795467088 2.5246544794
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Appendix E(b): Best Regressed Reduced Final Model

Output below represents the odds ratio, AUC, confusion matrix and accuracy for the
best regressed reduced model with the 10 independent variables, “sex”, “CP”,

“trestbps”, “chol”, “fbs”, “thalach”, “exang”, “slope”, “CA”, and “thal”.
= Odds_Ratiod
[1] 0.0001856724 4.4759652172 1.7674304591 1.0250019451 1.0059273520 0.3436937319 0.9803529546
2.777B178638 2.2759401183 3.6000318488 1.3912881957
> Num_2<- as.numeric{Num_2)
= predd<-predict(fitd4,Clevelandz, type="response™)
= Cleveland2$predd<- ifelse(predd>=0.5,1,0)
= AUC4d<- auc(Cleveland2inum_2, Cleveland2$predd)
> AUC4d
[1] 0.8525091
= accuracyd<- accuracy(Cleveland2iNum_2, Cleveland2$predd)
> accuracyd
[1] 0.8552189
> confusion_matrixd<- table(clevelandzinum_2, Ccleveland2ipredd4, dnn=c("True”,"predicted"})
> confusion_matrix4
Predicted
True 0 1
0 142 18
1 25 112
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