MATH0009- Calculus and Vectors - Fall 2020

Instructor: Dr. Zahra Montazeri
Office: HP 4220; Tel: 520-2600 Ext. 4225
E-mail: zahra@math.carleton.ca

Lectures: Two Asynchronous Lectures; available on CuLearn each Tuesday and Thursday.

Office hours: Online office hours will be offered in 2 different times per week: Tuesdays 4-5pm and 5-6pm. Participating in one of them is mandatory.

Tutorial/Activity: It is on Thursday, 2:35-3:25pm including solving problems and quiz. Attending tutorial is mandatory.

Prerequisites: Grade 12 Mathematics (Advanced Functions); or both MATH 0005 and MATH 0006; or permission of the School.

Text Book:
- Applied Calculus by S. Calaway, D. Hoffman and D. Lippman. The free online version is [here](#).
- Solution to selected problems from textbook, you may find it in CuLearn page
- Algebra and Geometry, by Dunkley, Gilbert, Anderson, Crippin, Davidson, Rachich, and Zorzitto.
- Instructor’s Notes on CuLearn

Marking Scheme: The course will be made up to three parts:

- Tutorials/Activities ——————————— 10%
- Office hours ———————————— 10%
- 2 Tests ———————————— 20%
- 3 Assignments ———————————— 20%
- Final Exam ———————————— 40%

Tests: There will be two 50-minute tests on Oct. 15, and Nov. 26. There are no make-up tests.

Assignments: There will be 3 assignments with deadlines Oct. 3, Nov. 7, Nov 21

Final Exam: 3-hour online final examination to be held during the exam period (date and time TBA) covering the entire course.

Important Notes:

- If you miss the any activity, test or assignment you will receive a zero unless you provide me with a proper documented reason (e.g., medical), in which case the weight of the test will be shifted to the final exam.

- Selected exercises, mainly from the text, will be assigned for your practice. These exercises are not to be handed in and will not be graded. However, to succeed in the course it is absolutely essential that you do the exercises on a regular basis.
Academic Accommodations:

Pregnancy obligation: Write me with any requests for academic accommodation during the first two weeks of class, or as soon as possible after the need for accommodation is known to exist. For more details, see the [Student Guide](#).

Religious obligation: Write me with any requests for academic accommodation during the first two weeks of class, or as soon as possible after the need for accommodation is known to exist. For more details, see the [Student Guide](#).

Students with disabilities: requiring academic accommodations in this course must register with the Paul Menton Centre for Students with Disabilities (PMC) for a formal evaluation of disability-related needs. Documented disabilities include but are not limited to mobility/physical impairments, specific Learning Disabilities (LD), psychiatric/psychological disabilities, sensory disabilities, Attention Deficit Hyperactivity Disorder (ADHD), and chronic medical conditions. Registered PMC students are required to contact the PMC every term to have a Letter of Accommodation sent to the Instructor by their Coordinator. In addition, students are expected to confirm their need for accommodation with the Instructor no later than two weeks before the first assignment is due or the first in-class test/midterm. If you require accommodations only for formally scheduled exam(s) in this course, you must request accommodations by the official accommodation deadline published on the [PMC website](#).

Note: November 13, 2020 Last day to request Formal Examination Accommodation Forms for August examinations to the Paul Menton Centre for Students with Disabilities.

Detailed Class Outline

<table>
<thead>
<tr>
<th>DATES</th>
<th>TOPICS</th>
</tr>
</thead>
</table>
| Week 1 | Basic Algebraic Operations
Solving Equality and Inequality |
| Week 2 | Functions and Graphs
Factoring and Fractions and Quadratic Equations |
| Week 3 | Exponentials and Logarithms Functions
Inverse function, Exponential Growth and Decay |
| Week 4 | Trigonometric Functions
Limits, Evaluating Limits at Infinity |
| Week 5 | Continuity, Introduction to the Derivative
Basic Rules of Differentiation |
| Week 6 | Product and Quotient Rules
Marginal Analysis and Chain Rule |
| Week 7 | Fall Break |
| Week 8 | Implicit Rule |
| Week 9 | Derivatives of Exponential and Logarithm Functions |
| Week 10 | Increasing and Decreasing Functions
Relative Extrema, Concavity and Curve Sketching |
| Week 11 | Business and Economics Applications of the Derivative,
Optimization Problems |
| Week 12 | Introduction of Vectors and Vector Operations
Dot and Cross Products, Projections |
| Week 13 | Equations of Lines and Planes in 3 Dimensional Space
Intersection points and distance between points, lines and planes |
| Week 13 | Course Review |

The above class outline is subject to change depending on the progress of the course.