Review Questions for MATH 1107EF Final Exam. Fall 2019
Page 1
Instructors: Şaban Alaca and Kevin Cheung
Last updated: December 5, 2019

PART I: Multiple Choice Questions.

1. Consider the following augmented matrix of a system of linear equations:
$\left[\begin{array}{rrrr|r}1 & 1 & -2 & 2 & 3 \\ 1 & 2 & -2 & 2 & 3 \\ 0 & 0 & 1 & -1 & 3 \\ 0 & 0 & -1 & 2 & -3\end{array}\right]$. The system has
a) a unique solution b) no solutions
c) infinitely many solutions with one free variable
d) infinitely many solutions with two variables
e) infinitely many solutions with three variables
2. Suppose that A is a 5×5 matrix, $\operatorname{det} A=0$, and b is a vector in R^{5}.

The matrix equation $A x=b$ has
a) exactly one solution
b) no solutions
c) infinitely many solutions with one parameter
d) either no solution or infinitely many solutions
e) infinitely many solutions with two parameters
3. Let $u_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], u_{2}=\left[\begin{array}{r}1 \\ -1 \\ 0 \\ 0\end{array}\right], u_{3}=\left[\begin{array}{r}1 \\ -1 \\ 0 \\ -2\end{array}\right], u_{4}=\left[\begin{array}{r}1 \\ 2 \\ k \\ -3\end{array}\right]$.

For what value of k is the set $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ linearly dependent?
a) -1
b) -2
c) -3
d) 0
e) 1
4. Let $A=\left[\begin{array}{rrr}1 & -2 & 3 \\ 0 & 1 & 4 \\ 3 & -6 & k\end{array}\right]$. For what value of k are the columns of A linearly dependent?
a) 0
b) -6
c) 6
d) -9
e) 9
5. Let $A=\left[\begin{array}{ll}-3 & 2 \\ -4 & 5\end{array}\right]$. What is $\operatorname{det} A$?
a) -15
b) -8
c) 8
d) -7
e) 7
6. Let $A=\left[\begin{array}{rrr}1 & -2 & 3 \\ 0 & 0 & 4 \\ 3 & 2 & 1\end{array}\right]$. What is $\operatorname{det} A$?
a) 32
b) -32
c) 16
d) -16
e) 0

Instructors: Şaban Alaca and Kevin Cheung

7. Let A be a 4×4 matrix such that $\operatorname{det} A=9$. What is $\operatorname{det}(3 A)$?
a) 3^{2}
b) 3^{4}
c) 3^{6}
d) 3^{8}
8. Let A and B be 3×3 matrices such that $\operatorname{det} A=3$, and $\operatorname{det} B=-4$.

Find $\operatorname{det}\left(B A^{T} B^{-1}\right)$.
a) 3
b) -3
c) 4
d) -4
e) $1 / 3$
9. Let $A=\left[\begin{array}{rrrr}1 & 0 & -2 & 1 \\ 0 & 1 & 1 & -3 \\ 0 & 0 & 0 & 0\end{array}\right]$. What is the dimension of the null space of A ?
a) 1
b) 2
c) 3
d) 4
e) 0
10. Let A be a 7×9 matrix. If the dimension of the null space of A is 4 , what is the rank of A ?
a) 4
b) 7
c) 9
d) 3
e) 5
11. Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$. What are the eigenvalues of A ?
a) 3 and 1
b) 3 and -1
c) -3 and 1
d) -3 and -1
e) 0 and 2
12. $\lambda=3$ is an eigenvalue for the matrix $A=\left[\begin{array}{rrrr}3 & 0 & 0 & 0 \\ 0 & 3 & 5 & -10 \\ 1 & 0 & 3 & 0 \\ 1 & 0 & 0 & 3\end{array}\right]$.

What is the dimension of the eigenspace for $\lambda=3$?
a) 1
b) 2
c) 3
d) 4
e) 0
13. Let $z=2-4 i$. What is the modulus of z ?
a) 2
b) 4
c) $\sqrt{5}$
d) $\frac{1}{\sqrt{5}}$
e) $2 \sqrt{5}$
14. Let $z=3+4 i$ and $w=1-2 i$. What is $\left|\frac{z}{w}\right|$?
a) 5
b) $5 \sqrt{5}$
c) $\sqrt{5}$
d) $\frac{1}{\sqrt{5}}$
e) 1
15. Let $u=\left[\begin{array}{r}2 \\ -1 \\ 0 \\ 1\end{array}\right]$ and $v=\left[\begin{array}{r}-1 \\ -1 \\ 2 \\ -1\end{array}\right]$. What is the dot product of \mathbf{u} and \mathbf{v} ?
a) -1
b) -2
c) 0
d) 1
e) 2

Instructors: Şaban Alaca and Kevin Cheung

16. Let $u=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $v=\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$. What is the inner product of \mathbf{u} and \mathbf{v} ?
a) 1
b) 2
c) 3
d) -1
e) 6
17. What is the angle between the vectors $u=\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 0\end{array}\right]$ and $v=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$?
a) 0
b) $\pi / 6$
c) $\pi / 4$
d) $\pi / 3$
e) $\pi / 2$
18. What is the angle between the vectors $u=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $v=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$?
a) 0
b) $\pi / 6$
c) $\pi / 4$
d) $\pi / 3$
e) $\pi / 2$
19. Which of the following matrices is invertible?
a) $\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$
b) $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 1 \\ 2 & 3 & 4\end{array}\right]$
c) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
d) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
e) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$
20. Let $A=\left[\begin{array}{ll}a & 4 \\ 3 & 2\end{array}\right]$. For what value of a is the matrix A not invertible?
a) 0
b) 2
c) 3
d) 4
e) 6

Review Questions for MATH 1107EF Final Exam. Fall 2019

PART II: Short Answer Questions.

1. Let $T: R^{3} \longrightarrow R^{2}$ be a linear transformation defined by $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x-y+z \\ 2 x+y-z\end{array}\right]$. Find a nonzero vector $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ such that $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Is T onto?
2. Let $T: R^{3} \longrightarrow R^{2}$ be a linear transformation defined by $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{l}x-z \\ y-z\end{array}\right]$. Find a basis for $\operatorname{ker}(T)$. Is T one-to-one?
3. Suppose that $\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]^{-1} \mathbf{x}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$, where $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2}\end{array}\right]$. Find \mathbf{x}.
4. Suppose A is a 2×2 matrix such that $A \cdot\left[\begin{array}{ll}1 & 3 \\ 1 & 2\end{array}\right]=\left[\begin{array}{rr}1 & 6 \\ -1 & 3\end{array}\right]$. Find A.
5. Let A and B be two 4×4 matrices such that $\operatorname{det} A=2$ and $\operatorname{det} B=9$.

Find $\operatorname{det}\left(3 A B^{-1} A^{T}\right)$.
6. Let $A=\left[\begin{array}{rr}1 & -3 \\ 2 & 1\end{array}\right]$. Find the eigenvalues of A.
7. Let $A=\left[\begin{array}{rr}3 & 4 \\ -4 & 3\end{array}\right]$. Find the eigenvalues of A.
8. Let $A=\left[\begin{array}{rrr}1 & 2 & 0 \\ 0 & -4 & k \\ 0 & -4 & 4\end{array}\right]$. Find the value of k for which the rank of A is 2 .
9. Write the complex number $\frac{-2+11 i}{-3+4 i}$ in the form $a+b i$, where a and b are real numbers.
10. Write down the polar form of the complex number $z=-2+2$ i.
11. You are given that $\lambda=2$ is an eigenvalue for the matrix $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 1 & 1 & 3 \\ 0 & 0 & 2\end{array}\right]$. Determine the eigenspace of A corresponding to $\lambda=2$.
12. You are given that $\lambda=3$ is an eigenvalue of the matrix $A=\left[\begin{array}{ccc}5 & 2 & -4 \\ 2 & 5 & -4 \\ 2 & 2 & -1\end{array}\right]$. Determine a basis for E_{3}.
13. Let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$.

Write down a vector \mathbf{w} which is orthogonal to both $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$.
14. Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$. Write down a unit vector in the direction of \mathbf{u}.
15. Let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{x}=\left[\begin{array}{l}-1 \\ -5 \\ -1\end{array}\right]$.

Suppose that $x=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}$, where c_{1} and c_{2} are real numbers. Find $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$.
16. Let $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right], v_{2}=\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right], v_{3}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right], v_{4}=\left[\begin{array}{r}5 \\ -4 \\ h\end{array}\right]$.

Find the value of h for which the vector v_{4} is in $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
17. Let $A=\left[\begin{array}{rrr}1 & 2 & 0 \\ 3 & 2 & -5 \\ 2 & 0 & 4\end{array}\right]$. Write down the transpose of A.
18. Let $A=\left[\begin{array}{ll}2 & k \\ 3 & 4\end{array}\right]$. Write down the value of k for which A is symmetric.
19. Let $A=\left[\begin{array}{rrr}1 & 2 & -3 \\ -1 & 3 & 1 \\ 4 & 2 & -5\end{array}\right]$ and let $B=\left[\begin{array}{rrrr}-1 & 2 & 5 & -3 \\ 4 & -2 & 1 & 6 \\ -2 & 1 & 3 & 2\end{array}\right]$.

Find the third column of $A B$.
20. Let $u_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right], u_{2}=\left[\begin{array}{r}1 \\ -1 \\ -1 \\ 1\end{array}\right], u_{3}=\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 2\end{array}\right], u_{4}=\left[\begin{array}{r}2 \\ -1 \\ -1 \\ 2\end{array}\right]$.

Find the dimension of the subspace $H=\operatorname{Span}\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$.

Review Questions for MATH 1107EF Final Exam. Fall 2019
Page 6
Instructors: Şaban Alaca and Kevin Cheung

PART III: Long Answer Questions.

1. Find the general solution of the following system of linear equations.

$$
\begin{aligned}
& x_{1}-x_{2}+x_{3}+2 x_{4}=1 \\
& 2 x_{1}-2 x_{2}+3 x_{3}+7 x_{4}=4 \\
& 3 x_{1}-3 x_{2}+4 x_{3}+9 x_{4}=5 \\
& -2 x_{1}+2 x_{2}-x_{3}-x_{4}=0
\end{aligned}
$$

2. Find the general solution of the following matrix equation.
$\left[\begin{array}{rrrrr}1 & 1 & 2 & 2 & 3 \\ 2 & 1 & 4 & 3 & 2 \\ 1 & 0 & 2 & 1 & -1 \\ 1 & 1 & 2 & 2 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$.
3. Let $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$ and $B=\left[\begin{array}{rrr}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & -2\end{array}\right]$. Find the inverse of A and the inverse of B.
4. Let $A=\left[\begin{array}{rrr}1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$. You are given that $\operatorname{det}(A-\lambda I)=-(\lambda+1)^{2}(\lambda-3)$.
(a) Find all the eigenvalues of A.
(b) For each eigenvalue, find a basis for the corresponding eigenspace.
(c) Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.
5. Let $z=\cos (\pi / 16)+i \sin (\pi / 16)$ and $w=1-i$.
(a) Write z^{8} in the form $a+b i$, where a and b are real numbers.
(b) Write w^{12} in the form $a+b i$, where a and b are real numbers.
6. Find all complex numbers such that $z^{3}=-64 i$. Express your answers in the form $a+b i$, where a and b are real numbers.
7. Find all complex numbers such that $z^{4}=1$. Express your answers in the form $a+b i$, where a and b are real numbers.
8. Find all complex numbers such that $z^{2}+6 z+11=0$.
9. Let $A=\left[\begin{array}{llll}1 & 2 & 1 & 5 \\ 0 & 3 & 0 & 0 \\ 0 & 4 & 1 & 2 \\ 0 & 3 & 1 & 4\end{array}\right]$. Find the determinant of A.

Instructors: Şaban Alaca and Kevin Cheung
10. Let $A=\left[\begin{array}{rrrr}1 & 2 & 0 & -1 \\ -1 & 2 & 4 & 9 \\ 4 & 8 & 0 & -4\end{array}\right]$. Find a basis for $\operatorname{Col} A$ and a basis for Nul A.

Verify that the Rank-Nullity Theorem holds for the matrix A.
11. Let $A=\left[\begin{array}{llll}5 & 3 & 1 & 1 \\ 0 & 2 & 2 & 3 \\ 4 & 0 & 0 & 1 \\ 0 & 2 & 1 & 8\end{array}\right], b=\left[\begin{array}{l}0 \\ 0 \\ 3 \\ 8\end{array}\right]$ and $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$. Use Cramer's Rule to solve for x_{4} (without solving for x_{1}, x_{2} and x_{3}) in the matrix equation $A x=b$.
12. Let $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$. You are given that $\operatorname{det}(A-\lambda I)=-(\lambda-1)^{2}(\lambda-4)$.
(a) Find all the eigenvalues of A.
(b) For each eigenvalue, find a basis for the corresponding eigenspace.
(c) Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.

