Last updated: December 5, 2019

PART I: Multiple Choice Questions.

1. Consider the following augmented matrix of a system of linear equations:

 $\begin{bmatrix} 1 & 1 & -2 & 2 & 3 \\ 1 & 2 & -2 & 2 & 3 \\ 0 & 0 & 1 & -1 & 3 \\ 0 & 0 & -1 & 2 & -3 \end{bmatrix}$. The system has

a) a unique solution b) no solutions

- c) infinitely many solutions with one free variable
- d) infinitely many solutions with two variables
- e) infinitely many solutions with three variables
- 2. Suppose that A is a 5×5 matrix, det A = 0, and b is a vector in \mathbb{R}^5 .

The matrix equation Ax = b has

- a) exactly one solution b) no solutions
- c) infinitely many solutions with one parameter
- d) either no solution or infinitely many solutions
- e) infinitely many solutions with two parameters

3. Let
$$u_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$, $u_3 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ -2 \end{bmatrix}$, $u_4 = \begin{bmatrix} 1 \\ 2 \\ k \\ -3 \end{bmatrix}$.

For what value of k is the set $\{u_1, u_2, u_3, u_4\}$ linearly dependent?

a)
$$-1$$
 b) -2 c) -3 d) 0 e) 1

4. Let $A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 4 \\ 3 & -6 & k \end{bmatrix}$. For what value of k are the columns of A linearly dependent?

a) 0 **b**)
$$-6$$
 c) 6 **d**) -9 **e**) 9

5. Let
$$A = \begin{bmatrix} -3 & 2 \\ -4 & 5 \end{bmatrix}$$
. What is det A?
a) -15 **b)** -8 **c)** 8 **d)** -7 **e)** 7
 $\begin{bmatrix} 1 & -2 & 3 \end{bmatrix}$

6. Let
$$A = \begin{bmatrix} 0 & 0 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$
. What is det A?
a) 32 **b)** -32 **c)** 16 **d)** -16 **e)** 0

11. Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. What are the eigenvalues of A? **a)** 3 and 1 **b)** 3 and -1 **c)** -3 and 1 **d)** -3 and -1 **e)** 0 and 2

12. $\lambda = 3$ is an eigenvalue for the matrix $A = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 5 & -10 \\ 1 & 0 & 3 & 0 \\ 1 & 0 & 0 & 3 \end{bmatrix}$.

What is the dimension of the eigenspace for $\lambda = 3$?

- **a**) 1 **b**) 2 **c**) 3 **d**) 4 **e**) 0
- 13. Let z = 2 4i. What is the modulus of z?

a) 2 **b)** 4 **c)**
$$\sqrt{5}$$
 d) $\frac{1}{\sqrt{5}}$ **e)** $2\sqrt{5}$

14. Let z = 3 + 4i and w = 1 - 2i. What is $\left| \frac{z}{w} \right|$? **a)** 5 **b)** $5\sqrt{5}$ **c)** $\sqrt{5}$ **d)** $\frac{1}{\sqrt{5}}$ **e)** 1

15. Let
$$u = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$
 and $v = \begin{bmatrix} -1 \\ -1 \\ 2 \\ -1 \end{bmatrix}$. What is the dot product of \mathbf{u} and \mathbf{v} ?
a) -1 **b**) -2 **c**) 0 **d**) 1 **e**) 2

16. Let
$$u = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $v = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$. What is the inner product of **u** and **v**?
a) 1 **b)** 2 **c)** 3 **d)** -1 **e)** 6

17. What is the angle between the vectors $u = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ and $v = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$?

a) 0 **b)**
$$\pi/6$$
 c) $\pi/4$ **d)** $\pi/3$ **e)** $\pi/2$

18. What is the angle between the vectors $u = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$? **a)** 0 **b)** $\pi/6$ **c)** $\pi/4$ **d)** $\pi/3$ **e)** $\pi/2$

19. Which of the following matrices is invertible?

$$\mathbf{a}) \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \quad \mathbf{b}) \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 2 & 3 & 4 \end{bmatrix} \quad \mathbf{c}) \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \mathbf{d}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \mathbf{e}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

20. Let $A = \begin{bmatrix} a & 4 \\ 3 & 2 \end{bmatrix}$. For what value of a is the matrix A not invertible? **a**) 0 **b**) 2 **c**) 3 **d**) 4 **e**) 6

Review Questions for MATH 1107EF Final Exam. Fall 2019 Instructors: Şaban Alaca and Kevin Cheung

PART II: Short Answer Questions.

1. Let
$$T: R^3 \longrightarrow R^2$$
 be a linear transformation defined by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} x - y + z \\ 2x + y - z \end{bmatrix}$.
Find a nonzero vector $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ such that $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Is T onto?

2. Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be a linear transformation defined by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} x-z \\ y-z \end{bmatrix}$. Find a basis for ker(T). Is T one-to-one?

- 3. Suppose that $\begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}^{-1} \mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, where $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Find \mathbf{x} .
- 4. Suppose A is a 2 × 2 matrix such that $A \cdot \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 6 \\ -1 & 3 \end{bmatrix}$. Find A.
- 5. Let A and B be two 4×4 matrices such that det A = 2 and det B = 9. Find det $(3AB^{-1}A^T)$.
- 6. Let $A = \begin{bmatrix} 1 & -3 \\ 2 & 1 \end{bmatrix}$. Find the eigenvalues of A.
- 7. Let $A = \begin{bmatrix} 3 & 4 \\ -4 & 3 \end{bmatrix}$. Find the eigenvalues of A.
- 8. Let $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & -4 & k \\ 0 & -4 & 4 \end{bmatrix}$. Find the value of k for which the rank of A is 2.

9. Write the complex number $\frac{-2+11i}{-3+4i}$ in the form a+bi, where a and b are real numbers.

- 10. Write down the polar form of the complex number z = -2 + 2i.
- 11. You are given that $\lambda = 2$ is an eigenvalue for the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix}$. Determine the eigenspace of A corresponding to $\lambda = 2$.

12. You are given that $\lambda = 3$ is an eigenvalue of the matrix $A = \begin{bmatrix} 5 & 2 & -4 \\ 2 & 5 & -4 \\ 2 & 2 & -1 \end{bmatrix}$.

Review Questions for MATH 1107EF Final Exam. Fall 2019 Instructors: Şaban Alaca and Kevin Cheung

13. Let
$$\mathbf{v_1} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$$
 and $\mathbf{v_2} = \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$.

Write down a vector \mathbf{w} which is orthogonal to both $\mathbf{v_1}$ and $\mathbf{v_2}$.

14. Let
$$\mathbf{u} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$$
. Write down a unit vector in the direction of \mathbf{u} .

15. Let
$$\mathbf{v_1} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} -1\\ -5\\ -1 \end{bmatrix}$.

Suppose that $x = c_1 \mathbf{v_1} + c_2 \mathbf{v_2}$, where c_1 and c_2 are real numbers. Find $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

16. Let
$$v_1 = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 2\\1\\4 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1\\1\\2 \end{bmatrix}$, $v_4 = \begin{bmatrix} 5\\-4\\h \end{bmatrix}$.

Find the value of h for which the vector v_4 is in Span $\{v_1, v_2, v_3\}$.

17. Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & -5 \\ 2 & 0 & 4 \end{bmatrix}$$
. Write down the transpose of A .

18. Let $A = \begin{bmatrix} 2 & k \\ 3 & 4 \end{bmatrix}$. Write down the value of k for which A is symmetric.

19. Let
$$A = \begin{bmatrix} 1 & 2 & -3 \\ -1 & 3 & 1 \\ 4 & 2 & -5 \end{bmatrix}$$
 and let $B = \begin{bmatrix} -1 & 2 & 5 & -3 \\ 4 & -2 & 1 & 6 \\ -2 & 1 & 3 & 2 \end{bmatrix}$

Find the third column of AB.

20. Let
$$u_1 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix}$, $u_3 = \begin{bmatrix} 2\\0\\0\\2 \end{bmatrix}$, $u_4 = \begin{bmatrix} 2\\-1\\-1\\2 \end{bmatrix}$.

Find the dimension of the subspace $H = \text{Span}\{u_1, u_2, u_3, u_4\}$.

Page 5

Review Questions for MATH 1107EF Final Exam. Fall 2019 Instructors: Şaban Alaca and Kevin Cheung

PART III: Long Answer Questions.

1. Find the general solution of the following system of linear equations.

$$x_1 - x_2 + x_3 + 2x_4 = 1$$

$$2x_1 - 2x_2 + 3x_3 + 7x_4 = 4$$

$$3x_1 - 3x_2 + 4x_3 + 9x_4 = 5$$

$$-2x_1 + 2x_2 - x_3 - x_4 = 0$$

2. Find the general solution of the following matrix equation.

$\begin{bmatrix} 1 & 1 & 2 & 2 & 3 \\ 2 & 1 & 4 & 3 & 2 \\ 1 & 0 & 2 & 1 & -1 \\ 1 & 1 & 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 2 & 3 \\ 1 & 4 & 3 & 2 \\ 0 & 2 & 1 & -1 \\ 1 & 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	•
--	--	--	---

3. Let
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & -2 \end{bmatrix}$. Find the inverse of A and the inverse of B .

4. Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
. You are given that $\det(A - \lambda I) = -(\lambda + 1)^2(\lambda - 3)$.

- (a) Find all the eigenvalues of A.
- (b) For each eigenvalue, find a basis for the corresponding eigenspace.
- (c) Find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

5. Let
$$z = \cos(\pi/16) + i\sin(\pi/16)$$
 and $w = 1 - i$.

- (a) Write z^8 in the form a + bi, where a and b are real numbers.
- (b) Write w^{12} in the form a + bi, where a and b are real numbers.
- 6. Find all complex numbers such that $z^3 = -64i$. Express your answers in the form a + bi, where a and b are real numbers.
- 7. Find all complex numbers such that $z^4 = 1$. Express your answers in the form a + bi, where a and b are real numbers.
- 8. Find all complex numbers such that $z^2 + 6z + 11 = 0$.

9. Let
$$A = \begin{bmatrix} 1 & 2 & 1 & 5 \\ 0 & 3 & 0 & 0 \\ 0 & 4 & 1 & 2 \\ 0 & 3 & 1 & 4 \end{bmatrix}$$
. Find the determinant of A .

10. Let
$$A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ -1 & 2 & 4 & 9 \\ 4 & 8 & 0 & -4 \end{bmatrix}$$
. Find a basis for ColA and a basis for NulA.

Verify that the Rank-Nullity Theorem holds for the matrix A.

11. Let
$$A = \begin{bmatrix} 5 & 3 & 1 & 1 \\ 0 & 2 & 2 & 3 \\ 4 & 0 & 0 & 1 \\ 0 & 2 & 1 & 8 \end{bmatrix}$$
, $b = \begin{bmatrix} 0 \\ 0 \\ 3 \\ 8 \end{bmatrix}$ and $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$.

Use Cramer's Rule to solve for x_4 (without solving for x_1, x_2 and x_3) in the matrix equation Ax = b.

12. Let
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
. You are given that $\det(A - \lambda I) = -(\lambda - 1)^2(\lambda - 4)$.

(a) Find all the eigenvalues of A.

(b) For each eigenvalue, find a basis for the corresponding eigenspace.

(c) Find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.