Question 1

Find a vector equation and the parametric equations for the line segment from \((2, 2, 6)\) to \((4, 6, 2)\).

Solution: We have: \(\overrightarrow{OP_0} = (2, 2, 6)\) and \(\overrightarrow{OP_1} = (4, 6, 2)\). Hence,

\[r(t) = (1 - t)(2, 2, 6) + t(4, 6, 2) = (2 + 2t, 2 + 4t, 6 - 4t) \text{ for } 0 \leq t \leq 1. \]

Note that, for \(0 \leq t \leq 1\), the above equation is equivalent to:

\[r(t) = (1 - t)(2i + 2j + 6k) + t(4i + 6j + 2k) = (2i + 2j + 6k) + t(2i + 4j - 4k). \]

The corresponding parametric equations are \(x(t) = 2 + 2t, y(t) = 2 + 4t,\) and \(z(t) = 6 - 4t,\) for \(0 \leq t \leq 1.\)

Question 2

Find parametric equations and symmetric equations for the line through \((5, 1, 0)\) and perpendicular to both \(i+j\) and \(j+k\).

Solution: We have \(P = (5, 1, 0)\) and

\[v = (i+j) \times (j+k) = \begin{vmatrix} i & j & k \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = i - j + k \]

where \(v\) is the direction of the line perpendicular to both \(i+j\) and \(j+k\). Then, the parametric equations are: \(x(t) = 5 + t, y(t) = 1 - t, z(t) = t,\)

and the symmetric equations are: \(x - 5 = \frac{y - 1}{-1} = z\) or \(x - 5 = 1 - y = z.\)
Question 3

Find an equation of the plane through the point $(-2, 8, 10)$ and perpendicular to the line $x(t) = 1 + t$, $y(t) = 2t$, $z(t) = 4 - 3t$.

Solution: Since the line is perpendicular to the plane, its direction vector $\mathbf{v} = (1,2,-3)$ is a normal vector to the plane. An equation of the plane is:

$$1(x - (-2)) + 2(y - 8) - 3(z - 0) = 0 \iff x + 2y - 3z = -16.$$

Question 4

Find an equation of the plane through the origin and parallel to the plane $2x - y + 3z = 1$.

Solution: Since the two planes are parallel, they will have the same normal vectors. So we can take $\mathbf{n} = (2, -1, 3)$ and an equation of the plane is:

$$2(x - 0) - 1(y - 0) + 3(y - 0) = 0 \iff 2x - y + 3z = 0.$$

Question 5

Determine whether the following sets of planes are parallel, perpendicular, or neither. If neither, find the angle between them:

(a) $x + 4y - 3z = 1$, $-3x + 6y + 7z = 0$
(b) $-x + 4y = 2z$, $3x - 12y + 6z = 1$
(c) $x + y + z = 1$, $x - y + z = 1$

Solution: (a) Normal vectors for the planes are $\mathbf{n}_1 = (1, 4, -3)$ and $\mathbf{n}_2 = (-3, 6, 7)$, respectively. Clearly the normals are not parallel, and thus the planes aren’t parallel. However, $\mathbf{n}_1 \cdot \mathbf{n}_2 = -3 + 24 - 21 = 0$, so the normals, and thus the planes, are perpendicular.

(b) Normal vectors for the planes are $\mathbf{n}_1 = (-1, 4, -2)$ and $\mathbf{n}_2 = (3, -12, 6)$, respectively. Since $\mathbf{n}_2 = -3\mathbf{n}_1$, the normals, and thus the planes, are parallel.

(b) Normal vectors for the planes are $\mathbf{n}_1 = (1, 1, 1)$ and $\mathbf{n}_2 = (1, -1, 1)$, respectively. Since the normals aren’t parallel, the planes are not parallel.
Moreover, the planes are not perpendicular because \(\mathbf{n}_1 \cdot \mathbf{n}_2 = 1 - 1 + 1 \neq 0 \). Then the angle between the planes is given by:

\[
\cos \theta = \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1| |\mathbf{n}_2|} = \frac{1 - 1 + 1}{\sqrt{1^2 + 1^2 + 1^2} \sqrt{1^2 + (-1)^2 + 1^2}} = \frac{1}{3}.
\]

Since \(\frac{1}{3} > 0 \), we take the angle to be \(\theta = \cos^{-1}(\frac{1}{3}) \).

Question 6

Let \(x = 4 \cos \theta \) and \(y = 5 \sin \theta \), \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \). (i) Eliminate the parameter to find a Cartesian equation of the curve. (ii) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases.

Solution:

(i) \(\left(\frac{x}{4} \right)^2 + \left(\frac{y}{5} \right)^2 = \cos^2 \theta + \sin^2 \theta = 1. \)

The above is the equation of an ellipse with \(x \)-intercepts \((\pm 4, 0)\) and \(y \)-intercepts \((0, \pm 5)\).

(ii) We obtain the portion of the ellipse with \(x \geq 0 \) since \(4 \cos \theta \geq 0 \) for \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \).
Question 7

For $x = t + \ln t$, $y = t - \ln t$ find $\frac{dy}{dx}, \frac{d^2y}{dx^2}$, and determine for which values of t is the curve concave up.

Solution:

\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{1 - \frac{1}{t}}{t + \frac{1}{t}} = \frac{t - 1}{t - 2} = 1 - \frac{2}{t + 1}.
\]

This implies that:

\[
\frac{d^2y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dx} \right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt} \left(1 - \frac{2}{t + 1} \right)}{t + \frac{1}{t}} = \frac{2}{(t + 1)^2} = \frac{2t}{(t + 1)^3}.
\]

\Rightarrow the curve is CU (concave up) for all $t > 0$.

Question 8

Find the points on the curve $x(t) = 2t^3 + 3t^2 - 12t$, $y(t) = 2t^3 + 3t^2 + 1$ where the tangent is horizontal or vertical.

Solution: We have:

\[
\frac{dx}{dt} = 6t^2 + 6t - 12 = 6(t + 1)(t - 1),
\]

so

\[
\frac{dx}{dt} = 0 \iff t = -2 \text{ or } 1 \iff (x, y) = (20, -3) \text{ or } (-7, 6).
\]

Similarly,

\[
\frac{dy}{dt} = 6t^2 + 6t = 6t(t + 1),
\]

so

\[
\frac{dy}{dt} = 0 \iff t = 0 \text{ or } -1 \iff (x, y) = (0, -1) \text{ or } (13, 2).
\]

Therefore, the curve has horizontal tangents at $(0, 1)$ and $(13, 2)$ and vertical tangents at $(20, -3)$ and $(-7, 6)$.

4
Question 9

Show that the curve $x(t) = \cos t$, $y(t) = \sin t \cos t$ has two tangents at $(0, 0)$ and find their equations.

Solution: We have:

$$\frac{dx}{dt} = -\sin t \quad \text{and} \quad \frac{dy}{dt} = -\sin^2 t + \cos^2 t = \cos 2t.$$

Then $(x, y) = (0, 0) \iff \cos t = 0 \iff t$ is an odd multiple of $\frac{\pi}{2}$.

When $t = \frac{\pi}{2}$ \Rightarrow $\frac{dx}{dt} = -1$ and $\frac{dy}{dt} = -1 \Rightarrow \frac{dy}{dx} = 1$.

When $t = \frac{3\pi}{2}$ \Rightarrow $\frac{dx}{dt} = 1$ and $\frac{dy}{dt} = -1 \Rightarrow \frac{dy}{dx} = -1$.

Therefore, the equations $y = x$ and $y = -x$ are both tangent to the curve at $(0, 0)$.

Question 10

Find the length of the curve $x = e^t \cos t$ and $y = e^t \sin t$ for $0 \leq t \leq \pi$.

Solution: We have $dx/dt = e^t(\cos t - \sin t)$ and $dy/dt = e^t(\sin t + \cos t)$, so that:

$$\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = (e^t(\cos t - \sin t))^2 + (e^t(\sin t + \cos t))^2$$

$$= (e^t)^2(\cos^2 t - 2 \cos t \sin t + \sin^2 t)$$

$$+ (e^t)^2(\sin^2 t + 2 \cos t \sin t + \cos^2 t)$$

$$= e^{2t}(2\cos^2 t + \sin^2 t) = 2e^{2t}.$$
Therefore,

\[L = \int_0^\pi \sqrt{2\cos^2 \theta} \, d\theta = \int_0^\pi \sqrt{2\cos \theta} \, d\theta = \sqrt{2} \left[\sin \theta \right]_0^\pi = \sqrt{2} (\sin \pi - \sin 0) = \sqrt{2} (0 - 0) = 0. \]

Question 11

Sketch the curve of \(r = \cos 2\theta \) and find the area enclosed by one loop of the curve.

Solution: we first sketch \(r = \cos 2\theta, \theta \in [0, 2\pi] \) in Cartesian coordinates. Then we see that as \(\theta \) increases from 0 to \(\pi \), \(r \) decreases from 0 to 1. As \(\theta \) increases from \(\pi \) to \(2\pi \), \(r \) goes from 0 to \(-1\) (the distance from the origin is still 1, but the portion of the curve is now in the third quadrant). The remainder of the curve is drawn in a similar fashion.

To find the area of the region indicated above, we notice that the right loop is between the rays \(\theta = -\frac{\pi}{4} \) and \(\theta = \frac{\pi}{4} \).
Therefore, the area is given by:

\[
\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} r^2 d\theta = \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2 2\theta \, d\theta = \int_{0}^{\frac{\pi}{4}} \cos^2 2\theta \, d\theta
\]

\[
= \int_{0}^{\frac{\pi}{4}} (1 + \cos 4\theta) \, d\theta = \frac{\pi}{8}.
\]

Question 12

If \(f(x, y) = \frac{2x^2y}{x^4 + y^4} \) then does \(\lim_{(x, y) \to (0, 0)} \frac{2x^2y}{x^4 + y^4} \) exist?

Solution: We see that \(f(x, 0) = 0 \) for \(x \neq 0 \) so \(f(x, y) \to (0, 0) \) as \((x, y) \to (0, 0) \) along the \(x \)-axis. However,

\[
f(x, x^2) = \frac{2x^4}{2x^4} = 1 \text{ for } x \neq 0 \text{ so } f(x, y) \to 1 \text{ as } (x, y) \to (0, 0) \text{ along } y = x^2.
\]

Since \(f(x, y) \) has two different limits along two different paths, the limit does not exist.

Question 13

If \(f(x, y) = \frac{x^4 - y^4}{x^2 + y^2} \) then does \(\lim_{(x, y) \to (0, 0)} \frac{x^4 - y^4}{x^2 + y^2} \) exist?

Solution:

\[
f(x, y) = \frac{x^4 - y^4}{x^2 + y^2} = \frac{(x^2 + y^2)(x^2 - y^2)}{x^2 + y^2} = x^2 - y^2 \text{ for all } (x, y) \neq (0, 0).
\]

Since \(f(x, y) = x^2 - y^2 \) is continuous everywhere, we can find the limit now by direct substitution. Therefore, \(\lim_{(x, y) \to (0, 0)} \frac{x^4 - y^4}{x^2 + y^2} = 0. \)
Question 14

Let $f(x, y, z) = z \ln(xy^2z^4)$. Find f_x, f_{xy}, f_{xxy}, and f_{xyz}.

Solution:

$f_x = x \cdot \frac{1}{xy^2z^3} (y^2z^3) + \ln(xy^2z^3) \cdot (1) = 1 + \ln(xy^2z^3)$,

$f_{xy} = \frac{1}{xy^2z^3} (2xyz^3) = \frac{2}{y}$, $f_{xxy} = -\frac{2}{y^2}$, and $f_{xyz} = 0$.

Question 15

If $z = \sin \alpha \tan \beta$, $\alpha = 3s + t$ and $\beta = s - t$, find $\partial z/\partial s$ and $\partial z/\partial t$.

Solution: By the Chain Rule, we have:

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial \alpha} \frac{\partial \alpha}{\partial s} + \frac{\partial z}{\partial \beta} \frac{\partial \beta}{\partial s} = \cos \alpha \tan \beta \cdot 3 + \sin \alpha \sec^2 \beta \cdot 1$$

$$= 3 \cos \alpha \tan \beta + \sin \alpha \sec^2 \beta,$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial \alpha} \frac{\partial \alpha}{\partial t} + \frac{\partial z}{\partial \beta} \frac{\partial \beta}{\partial t} = \cos \alpha \tan \beta \cdot 1 + \sin \alpha \sec^2 \beta \cdot (-1)$$

$$= 3 \cos \alpha \tan \beta - \sin \alpha \sec^2 \beta.$$

Question 16

Let $\cos(x - y) = xe^y$. Find dy/dx.

Solution: Using implicit differentiation on both sides of the equation, we get:

$$-\sin(x - y)(1) - \sin(x - y)(-1)\frac{dy}{dx} = (1)e^y + xe^y\frac{dy}{dx}$$

$$\Rightarrow -xe^y\frac{dy}{dx} \sin(x - y)\frac{dy}{dx} - xe^y\frac{dy}{dx} = \sin(x - y) + e^y$$

$$\Rightarrow \frac{dy}{dx} = \frac{\sin(x - y) + e^y}{\sin(x - y) - xe^y}$$
Question 17

Find the directional derivative of \(f(x, y) = \ln(x^2 + y^2) \) at the point (2, 1) in the direction of \(v = -i + 2j \).

Solution: A unit vector in the direction of \(v \) is:

\[
u = \frac{1}{\sqrt{1 + 4}}(-i + 2j) = -\frac{1}{\sqrt{5}}i + \frac{2}{\sqrt{5}}j,
\]

and,

\[
\nabla f(x, y) = \frac{2x}{x^2 + y^2}i + \frac{2y}{x^2 + y^2}j \quad \Rightarrow \quad \nabla f(2, 1) = \frac{4}{5}i + \frac{2}{5}j.
\]

Therefore,

\[
D_u f(2, 1) = \nabla f(2, 1) \cdot u = -\frac{4}{5\sqrt{5}} + \frac{4}{5\sqrt{5}} = 0.
\]

Question 18

Find the maximum rate of change of \(f(x, y) = \sin(xy) \) at the point (0, 1) and find the direction in which it occurs.

Solution: For this question, we have:

\[
\nabla f(x, y) = y \cos(xy)i + x \cos(xy)j \quad \Rightarrow \quad \nabla f(1, 0) = 0 \cdot i + 1 \cdot j = j.
\]

Then the maximum rate of change is \(|\nabla f(0, 1)| = \sqrt{(1)^2} = 1 \) in the direction \(j \).

Question 19

Let \(C \) be defined by \(r(t) = (t, t^2, t^3) \) where \(t \in [0, 1] \). Evaluate \(\int_C (2x + 9z) \, ds \).

Solution: The tangent vector \(r'(t) = (1, 2t, 3t^2) \) so that

\[
|r'(t)| = \sqrt{(1)^2 + (2t)^2 + (3t^2)^2} = \sqrt{1 + 4t^2 + 9t^4}
\]
and \(f(r(t)) = (2t + 9t^3) \).

Hence,

\[
\int_C (2x + 9z) \, ds = \int_a^b f(r(t)) |r'(t)| \, dt = \int_0^1 (2t + 9t^3) \sqrt{1 + 4t^2 + 9t^4} \, dt
\]

\[
= \frac{1}{4} \int_1^{14} \sqrt{u} \, du = \frac{1}{6} u^{3/2} \bigg|_1^{14} = \frac{1}{6} (14^{3/2} - 1),
\]

where we used the substitution \(u = 1 + 4t^2 + 9t^4 \).

Question 20

Let \(C \) consists of the line segments from \((0, 0, 0)\) to \((1, 2, -1)\) and from \((1, 2, -1)\) to \((3, 2, 0)\). Evaluate \(\int_C (x^2 \, dx + y^2 \, dy + z^2 \, dz) \).

Solution:

\(C_1 \) is the line segment from \((0, 0, 0)\) to \((1, 2, -1)\) so \(r(t) = (1 - t)(0, 0, 0) + t(1, 2, -1) = (t, 2t, -t) \) for \(t \in [0, 1] \). Then parametric equations for \(A \) are

\(x = t, y = 2t, z = -t \) \(\implies dx = dt, dy = 2dt, dz = -dt \), for \(t \in [0, 1] \).

\(C_2 \) is the line segment from \((1, 2, -1)\) to \((3, 2, 0)\) so \(r(t) = (1 - t)(1, 2, -1) + t(3, 2, 0) = (2t, 0, t) + (1, 2, -1) \) for \(t \in [0, 1] \). Then parametric equations for \(B \) are \(x = 2t + 1, y = 2, z = t - 1 \) \(\implies dx = 2dt, dy = 0, dt = dz \), for \(t \in [0, 1] \).

Then, \(\int_C (x^2 \, dx + y^2 \, dy + z^2 \, dz) \)
\[
\begin{align*}
&= \int_{C_1} x^2 dx + y^2 dy + z^2 dz + \int_{C_2} x^2 dx + y^2 dy + z^2 dz \\
&= \int_0^1 t^2 dt + (2t)^2 \cdot 2dt + (-t)^2(-dt) \\
&\quad + \int_0^1 (1 + 2t)^2 \cdot 2dt + (2t)^2 \cdot 2dt + 0 + (-1 + t)^2(-dt) \\
&= \int_0^1 8t^2 dt + \int_0^1 (9t^2 + 6t + 3)dt \\
&= \frac{8}{3} \left[t^3 \right]_0^1 + (3t^3 + 3t^2 + 3t) \bigg|_0^1 = \frac{35}{3}.
\end{align*}
\]

Question 21

Evaluate \(\int_C xy^4 ds\) where \(C\) is the right half of the circle \(x^2 + y^2 = 16\).

Solution: Parametric equations for \(C\) are \(x = 4\cos t\) and \(y = 4\sin t\), for \(t \in [-\frac{\pi}{2}, \frac{\pi}{2}]\). Then,

\[
\begin{align*}
\int_C xy^4 ds &= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (4\cos t)(4\sin t)^4 \sqrt{(4\sin t)^2 + (4\cos t)^2}dt \\
&= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 4^5 \cos t \sin^4 t \sqrt{16(\sin^2 t + \cos^2 t)}dt \\
&= 4^6 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t \sin^4 t \ dt \quad \text{(use the substitution } u = \sin t) \\
&= \frac{4^6}{5} \sin^5 t \bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{2 \cdot 4^6}{5}.
\end{align*}
\]
Question 22

Evaluate \(\int_C \frac{xdy - ydx}{x^2 + y^2} \) counterclockwise around the circle \(C \) centered at \((0, 0)\) of radius \(R \).

Solution: Parametric equations for \(C \) are \(x = R \cos t \) and \(y = R \sin t \), for \(t \in [0, 2\pi] \). Then \(dx = -R \sin t \, dt, \, dy = R \cos t \, dt \), and:

\[
\int_C \frac{xdy - ydx}{x^2 + y^2} = \int_0^{2\pi} \frac{R^2 \cos^2 t \, dt + R^2 \sin^2 t \, dt}{R^2 \sin^2 t + R^2 \cos^2 t} \\
= \int_0^{2\pi} \frac{R^2 (\cos^2 t + \sin^2 t)}{R^2 (\cos^2 t + \sin^2 t)} \, dt \\
= \int_0^{2\pi} \frac{R^2}{R^2} \cdot (1) \, dt \\
= \int_0^{2\pi} dt = 2\pi.
\]

Question 23

Find the work done by the force field \(\mathbf{F}(x, y) = x^2 \mathbf{i} + xy \mathbf{j} \) on a particle that moves once around the circle \(x^2 + y^2 = 4 \) oriented in the counterclockwise direction.

Solution: We parametrize the circle \(C \) as:

\[
\mathbf{r}(t) = 2 \cos t \, \mathbf{i} + 2 \sin t \, \mathbf{j} \quad \Rightarrow \quad \mathbf{r}'(t) = -2 \sin t \, \mathbf{i} + 2 \cos t \, \mathbf{j}, \quad \text{for} \quad t \in [0, 2\pi],
\]

and

\[
\mathbf{F}(\mathbf{r}(t)) = 4 \cos^2 t \, \mathbf{i} + 4 \cos t \sin t \, \mathbf{j}. \quad \text{Therefore,}
\]

\[
W = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = \int_0^{2\pi} (4 \cos^2 t \sin t + 8 \cos^2 t \sin t) \, dt = 0.
\]
Question 24

Determine whether or not $F(x, y) = xe^y\mathbf{i} + ye^x\mathbf{j}$ is a conservative field, and if so, find a function f (scalar field) such that $F = \nabla f$.

Solution: We let $P(x, y) = xe^y$ and $Q(x, y) = ye^x$. Then

$$\frac{\partial P}{\partial y} = xe^y \text{ and } \frac{\partial Q}{\partial x} = ye^x.$$ Since $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$, F is not conservative.

Question 25

Determine whether or not $F(x, y) = e^y\mathbf{i} + xe^y\mathbf{j}$ is a conservative field, and if so, find a function f (scalar field) such that $F = \nabla f$.

Solution: We let $P(x, y) = e^y$ and $Q(x, y) = xe^y$. Then

$$\frac{\partial P}{\partial y} = e^y = \frac{\partial Q}{\partial x} \Rightarrow F \text{ is conservative and there exists a function such that } F = \nabla f.$$ Thus,

$$f_x(x, y) = e^y \Rightarrow f(x, y) = \int e^y\,dx + g(y) = xe^y + g(y)$$

$$\Rightarrow f_y(x, y) = xe^y + g'(y).$$

But $f_y(x, y) = xe^y \Rightarrow g'(y) = 0 \Rightarrow g(y) = C$, where $C = \text{constant}$. Therefore, $f(x, y) = xe^y + C$ is a potential function for F.

Question 26:

Let \mathcal{R} be the region in \mathbb{R}^2 enclosed by $y = \frac{1}{2}x^2$ and $y = 2$. Sketch the region \mathcal{R} and find $\iint_{\mathcal{R}} \sqrt{y}\,dA$.

13
Solution: The region \(\mathcal{R} \) is:

\[
\iint_{\mathcal{R}} \sqrt{y} \, dA = \int_{-2}^{2} \int_{0}^{\frac{1}{2}x^2} \sqrt{y} \, dy \, dx
\]

\[
= \int_{-2}^{2} \left(\frac{2}{3} y^{\frac{3}{2}} \bigg|_{0}^{\frac{1}{2}x^2} \right) \, dx
\]

\[
= \int_{-2}^{2} \left(\frac{2\sqrt{8}}{3} - \frac{2}{3\sqrt{8}} x^3 \right) \, dx
\]

\[
= \left(\frac{2\sqrt{8}}{3} x - \frac{2}{3\sqrt{8}} \cdot \frac{1}{4} x^4 \right) \bigg|_{-2}^{2} = \frac{8\sqrt{8}}{3}
\]

Question 27

Evaluate \(\int_{0}^{3} \int_{0}^{\frac{1}{3}y} e^{x^2} \, dx \, dy \) by reversing the order of integration.

Solution: The region of integration is:
Therefore, by reversing the order of integration, we have:

\[
\int_0^1 \int_{3y}^3 e^{x^2} \, dx \, dy = \int_0^3 \int_0^{x/3} e^{x^2} \, dx \, dy
\]

\[
= \int_0^3 e^{x^2} \left[\frac{x}{3} \right]_0^3 \, dx
\]

\[
= \int_0^3 \frac{x e^{x^2}}{3} \, dx = \frac{1}{6} e^9
\]

\[
= \frac{e^9 - 1}{6}.
\]

Question 28

Evaluate \(\iint_R (x + 2y) \, dA \) where \(R \) is the region between \(x^2 + y^2 = 1 \) and \(x^2 + y^2 = 9 \) above the x-axis.

Solution: Using polar coordinates is the easiest way to solve this problem. The region \(R \) of integration is:

Letting \(x = r \cos \theta, \ y = r \sin \theta, \ r^2 = x^2 + y^2, \) and \(dx \, dy = rdr \, d\theta, \) we get:
\[
\int\int_{R} (x + 2y) \, dA = \int_{0}^{\pi} \int_{1}^{3} r \cos \theta + 2r \sin \theta \, r \, dr \, d\theta
\]
\[
= \int_{0}^{\pi} \int_{1}^{3} r^2 \cos \theta + 2r^2 \sin \theta \, dr \, d\theta
\]
\[
= \int_{0}^{\pi} \left(\frac{r^3 \cos \theta}{3} + \frac{2r^3 \sin \theta}{3} \right)_{1}^{3} \, d\theta
\]
\[
= \int_{0}^{\pi} \frac{26 \cos \theta}{3} \, d\theta + \int_{0}^{\pi} \frac{52 \sin \theta}{3} \, d\theta = \frac{104}{3}.
\]

Question 29

Evaluate \(\iiint_{A} z \, dV \) where \(A \) is bounded by the cylinder \(y^2 + z^2 = 9 \) and the planes \(x = 0, y = 3x, \) and \(z = 0 \) in the first octant.

Solution: The region of integration is:

\[
\iiint_{A} z \, dV = \int_{0}^{1} \int_{3x}^{3} \int_{0}^{\sqrt{9-y^2}} z \, dz \, dy \, dx
\]
\[
= \int_{0}^{1} \int_{3x}^{3} \left(\frac{9 - y^2}{2} \right) dy \, dx
\]
\[
= \int_{0}^{1} \left(\frac{9}{2} - \frac{1}{6} y^3 \right)_{3x}^{3} \, dx = \int_{0}^{1} 9 - \frac{27}{2} x + \frac{9}{2} x^3 \, dx = \frac{27}{8}.
\]
Question 30

Evaluate \(\iiint_{\mathcal{E}} (x^2 + y^2) \, dz \, dy \, dx \), where \(\mathcal{E} = \{(x, y, z) : -2 \leq x \leq 2, -\sqrt{4 - x^2} \leq y \leq \sqrt{4 - x^2}, \sqrt{x^2 + y^2} \leq z \leq 2\} \).

Solution: The projection of \(\mathcal{E} \) onto the \(xy \)-plane is the disk \(x^2 + y^2 \leq 4 \). The lower surface of \(\mathcal{E} \) is the cone \(z = \sqrt{x^2 + y^2} \) and its upper surface is the plane \(z = 2 \). This region is much easier to describe using cylindrical coordinates: \(\mathcal{E} = \{(r, \theta, z) : 0 \leq \theta \leq 2\pi, 0 \leq r \leq 2, r \leq z \leq 2\} \). Therefore,

\[
\iiint_{\mathcal{E}} (x^2 + y^2) \, dz \, dy \, dx = \int_{0}^{2\pi} \int_{0}^{2} \int_{r}^{2} r \, dz \, dr \, d\theta
\]

\[
= \int_{0}^{2\pi} d\theta \int_{0}^{2} r^3 (2 - r) \, dr
\]

\[
= 2\pi \left(\frac{1}{2} r^4 - \frac{1}{3} r^5 \right) \bigg|_{0}^{2}
\]

\[
= \frac{16}{5} \pi.
\]

Question 31

Evaluate \(\iint_{\mathcal{R}} (x + y)^2 \, dx \, dy \), where \(\mathcal{R} \) is the parallelogram bounded by the lines \(x + y = 0 \), \(x + y = 1 \), \(2x - y = 0 \) and \(2x - y = 3 \).

Solution: Letting \(u = x + y \) and \(v = 2x - y \), and using \(u + v = (x + y) + \) \((2x - y) = 3x \) and \(2u - v = (2x + 2y) - (2x - y) = 3y \), we have: \(x = \frac{u + v}{3} \) and \(y = \frac{2u - v}{3} \).

This transformation maps the rectangle \(\Gamma \) onto \(\mathcal{R} \):
The Jacobian is given by:

\[
J(u, v) = \begin{vmatrix}
\frac{\partial}{\partial u} \left(\frac{u + v}{3} \right) & \frac{\partial}{\partial u} \left(\frac{2u - v}{3} \right) \\
\frac{\partial}{\partial v} \left(\frac{u + v}{3} \right) & \frac{\partial}{\partial v} \left(\frac{2u - v}{3} \right)
\end{vmatrix} = \begin{vmatrix}
\frac{1}{3} & \frac{2}{3} \\
\frac{1}{3} & \frac{1}{3}
\end{vmatrix} = -\frac{1}{3}.
\]

Therefore,

\[
\iint_{\mathcal{R}} (x + y)^2 \, dx \, dy = \iint_{\Gamma} u^2 |J(u, v)| \, du \, dv
\]

\[
= \frac{1}{3} \int_0^3 \int_0^1 u^2 \, du \, dv
\]

\[
= \frac{1}{3} \int_0^3 dv \int_0^1 u^2 \, du
\]

\[
= \frac{1}{3}.
\]
Question 32

Let \(\mathcal{R} \) be the hemi-spherical shell which is between the two spheres \(x^2 + y^2 + z^2 = 36 \) and \(x^2 + y^2 + z^2 = 49 \), with \(z \geq 0 \). If the density at \((x, y, z)\) in \(\mathcal{R} \) is given by \(\delta(x, y, z) = 4(x^2 + y^2 + z^2)^{-\frac{1}{2}} \), calculate the mass of \(\mathcal{R} \).

Solution: We will use spherical coordinates to solve this problem. Here is the region of integration:

Hence,

\[
M = \iiint_{\mathcal{R}} 4(x^2 + y^2 + z^2)^{-\frac{1}{2}} dV
\]

\[
= 4 \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \int_6^7 (\rho^2)^{-\frac{1}{2}} \cdot \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta
\]

\[
= 4 \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \int_6^7 \rho \sin \phi \, d\rho \, d\phi \, d\theta
\]

\[
= 4 \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \sin \phi \left(\frac{\rho^2}{2} \right)^{\frac{1}{2}} \bigg|_6^7 \, d\phi \, d\theta
\]

\[
= 26 \int_0^{2\pi} (-\cos \theta) \bigg|_0^{\frac{\pi}{2}} \, d\theta
\]

\[
= 26 \int_0^{2\pi} d\theta = 52\pi.
\]
Question 33

Use Green’s Theorem to evaluate \(\oint_C (1 + 10xy + y^2)dx + (6xy + 5y^2)dy \)
where \(C \) is the square with vertices \((0, 0), (5, 0), (5, 5), (0, 5)\).

Solution: Let \(R \) be the square region enclosed by \(C \) (positively oriented):

\[
\begin{align*}
\text{With } P(x, y) &= 1 + 10xy + y^2 \Rightarrow \frac{\partial P}{\partial y} = 10x + 2y \\
\text{and } Q(x, y) &= 6xy + 5x^2 \Rightarrow \frac{\partial Q}{\partial x} = 6xy + 5x^2,
\end{align*}
\]

we get, by Green’s Theorem,

\[
\oint_C (1 + 10xy + y^2)dx + (6xy + 5y^2)dy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx\, dy
\]

\[
= \int_0^5 \int_0^5 4y \, dx\, dy
\]

\[
= \int_0^5 x \left. 4y \right|_0^5 \, dy
\]

\[
= 20 \int_0^5 y \, dy
\]

\[
= 20 \cdot \frac{1}{2} y^2 \bigg|_0^5 = 250.
\]
Question 34

Use Green’s Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where
$\mathbf{F}(x, y) = (e^x + x^2y)i + (e^y - xy^2)j$ and C is the circle $x^2 + y^2 = 25$ oriented clockwise.

Solution: The region \mathcal{R} enclosed by C is the disk $x^2 + y^2 \leq 25$. Since C is traversed clockwise, $-C$ gives the positive orientation. Moreover,

$P(x, y) = e^x + x^2y \Rightarrow \frac{\partial P}{\partial y} = x^2$

and $Q(x, y) = e^y - xy^2 \Rightarrow \frac{\partial Q}{\partial x} = -y^2$.

Then, by Green’s Theorem, we have:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = -\int_{-C} (e^x + x^2y)dx + (e^y - xy^2)dy$$

$$= -\iint_{\mathcal{R}} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx \; dy$$

$$= -\iint_{\mathcal{R}} (-y^2 - x^2)dx \; dy$$

$$= \iint_{\mathcal{R}} (y^2 + x^2)dx \; dy$$

$$= \int_0^{2\pi} \int_0^5 (r^2) \cdot r \; dr \; d\theta$$

$$= \int_0^{2\pi} d\theta \int_0^5 r^3 \; dr$$

$$= 2\pi \left[\frac{1}{4} r^4 \right]_0^5 = \frac{625}{2} \pi.$$
Question 35

Find an equation of the tangent plane to the surface $\mathbf{r}(u, v) = u^2 \mathbf{i} + 2u \sin v \mathbf{j} + u \cos v \mathbf{k}$ at the point $(1, 0)$.

Solution: We have $\mathbf{r}(1, 0) = (1, 0, 1)$, $\mathbf{r}_u(u, v) = 2u \mathbf{i} + 2 \sin v \mathbf{j} + \cos v \mathbf{k}$, and $\mathbf{r}_v(u, v) = 2u \cos v \mathbf{j} - u \sin v \mathbf{k}$.

So a normal vector to the surface at the point $(1, 0, 1)$ is:

$\mathbf{r}_u(1, 0) \times \mathbf{r}_v(1, 0) = (2 \mathbf{i} + \mathbf{k}) \times (2 \mathbf{j}) = -2 \mathbf{i} + 4 \mathbf{k}$.

Thus an equation of the tangent plane at $(1, 0, 1)$ is:

$-2(x - 1) + 0(y - 0) + 4(z - 1) = 0 \quad \text{or} \quad -x + 2z = 1.$

Question 36

Find the surface area of the part of the hyperbolic paraboloid $z = y^2 - x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

Solution: We have $z = f(x, y) = y^2 - x^2 \Rightarrow \frac{\partial z}{\partial x} = -2x$ and $\frac{\partial z}{\partial y} = 2y$, and $1 \leq x^2 + y^2 = r^2 \leq 4$. Therefore, the surface area is:

$$\iint_{\mathcal{R}} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, dA = \iint_{\mathcal{R}} \sqrt{1 + 4x^2 + 4y^2} \, dA$$

$$= \int_0^{2\pi} \int_1^2 \sqrt{1 + 4r^2} \, r \, dr \, d\theta$$

$$= \int_0^{2\pi} d\theta \int_1^2 \sqrt{1 + 4r^2} \, r \, dr$$

$$= \left[\theta \right]_0^{2\pi} \cdot \frac{1}{12} (1 + r^2)^{3/2} \bigg|_1^2$$

$$= \frac{\pi}{6} (17\sqrt{17} - 5\sqrt{5}).$$

22
Question 37

Find the area of the surface of the helicoid (spiral ramp) with vector equation \(\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k} \) for \(0 \leq u \leq 1, \ 0 \leq v \leq \pi \).

Solution: We have:

\[\mathbf{r}_u(u, v) = \cos v \mathbf{i} + \sin v \mathbf{j} + 0 \mathbf{k} \quad \text{and} \quad \mathbf{r}_v(u, v) = -u \sin v \mathbf{i} + u \cos v \mathbf{j} + 1 \mathbf{k} \]

\[\Rightarrow |\mathbf{r}_u \times \mathbf{r}_v| = |\sin v \mathbf{i} - \cos v \mathbf{j} + u \mathbf{k}| = \sqrt{\sin^2 v + (-\cos v)^2 + u^2} = \sqrt{1 + u^2}. \]

Therefore, the surface area is:

\[
\iint_{\mathcal{R}} |\mathbf{r}_u \times \mathbf{r}_v| dA = \int_0^\pi \int_0^1 \sqrt{1 + u^2} \, du \, dv
\]

\[
= \int_0^\pi dv \int_0^1 \sqrt{1 + u^2} \, du
\]

\[
= \pi \cdot \left(\frac{u}{2} \sqrt{1 + u^2} + \frac{1}{2} \ln |u + \sqrt{1 + u^2}| \right) \bigg|_0^1
\]

\[
= \frac{\pi}{2} \sqrt{2} + \frac{\pi}{2} \ln(1 + \sqrt{2}).
\]

Question 39

Find the flux of the vector field \(\mathbf{F}(x, y, z) = zi + yj + xk \) across the surface \(S \) where \(S \) is the unit sphere \(x^2 + y^2 + z^2 = 1 \).

Solution: We can find a vector function \(\mathbf{r}(u, v) \) for \(S \) via the parametric representation:

\[
\mathbf{r}(\phi, \theta) = \sin \phi \cos \theta \mathbf{i} + \sin \phi \sin \theta \mathbf{j} + \cos \phi \mathbf{k}, \ \ 0 \leq \phi \leq \pi, \ \ 0 \leq \theta \leq 2\pi.
\]

Then, \(\mathbf{F}(\mathbf{r}(\phi, \theta)) = \cos \phi \mathbf{i} + \sin \phi \sin \theta \mathbf{j} + \sin \phi \cos \theta \mathbf{k} \),
\(\mathbf{r}_\phi \times \mathbf{r}_\theta = \sin^2 \phi \cos \theta \mathbf{i} + \sin^2 \phi \sin \theta \mathbf{j} + \sin \phi \cos \phi \mathbf{k}, \) and

\[
\mathbf{F}(\mathbf{r}(\phi, \theta)) \cdot \mathbf{r}_\phi \times \mathbf{r}_\theta = \cos \phi \sin^2 \phi \cos \theta + \sin^3 \phi \sin^2 \theta + \sin^2 \phi \cos \phi \cos \theta.
\]

Therefore, the flux of \(\mathbf{F} \) across \(S \) is:

\[
\int_S \int \mathbf{F} \cdot \mathbf{S} = \int \int_{\mathcal{R}} \mathbf{F} \cdot (\mathbf{r}_\phi \times \mathbf{r}_\theta) \ dA
\]

\[
= \int_0^{2\pi} \int_0^\pi (2 \sin^2 \phi \cos \phi \cos \theta + \sin^3 \phi \sin^2 \theta) \ d\phi \ d\theta
\]

\[
= 2 \int_0^\pi \sin^2 \phi \cos \phi \ d\phi \int_0^{2\pi} \cos \theta \ d\theta + \int_0^\pi \sin^3 \phi \ d\phi \int_0^{2\pi} \sin^2 \theta \ d\theta
\]

\[
= 0 + \int_0^\pi \sin^3 \phi \ d\phi \int_0^{2\pi} \sin^2 \theta \ d\theta
\]

\[
= \left(\frac{1}{3} \cos^3 \phi - \cos \phi \right) \bigg|_0^\pi \left(-\frac{\sin(2\theta)}{4} \right) \bigg|_0^{2\pi}
\]

\[
= \frac{4}{3} \pi.
\]

Question 40

Let \(\mathbf{F}(x, y, z) = xy \mathbf{i} + yz \mathbf{j} + zz \mathbf{k} \) and let \(S \) be the oriented surface that is the part of the paraboloid \(z = 4 - x^2 - y^2 \) that lies above the square \(0 \leq x \leq 1, 0 \leq y \leq 1 \) and has upward orientation. Find the flux of \(\mathbf{F} \) across \(S \).

Solution: For this question, the surface \(S \) is given by the graph \(z = f(x, y) \), so we can think of \(x \) and \(y \) as the parameters. We let

\[
P(x, y, z) = xy, \ Q(x, y, z) = yz, \text{ and } R(x, y, z) = zz.
\]

Furthermore, \(\frac{\partial f}{\partial x} = -2x \) and \(\frac{\partial f}{\partial y} = -2y \).
Therefore,

\[\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_\pi \left(-P \frac{\partial f}{\partial x} - Q \frac{\partial f}{\partial y} + R \right) d\mathbf{A} \]

\[= \iint_\pi (-xy(-2x) - yz(-2y) + zx) d\mathbf{A} \]

\[= \int_0^1 \int_0^1 2x^2y + 2y^2(4 - x^2 - y^2) + x(4 - x^2 - y^2) dy dx \]

\[= \int_0^1 \frac{1}{3} x^2 + \frac{11}{3} x - x^3 + \frac{34}{15} dx \]

\[= \frac{713}{180}. \]

Question 41

Let \(\mathbf{F}(x, y, z) = yz \mathbf{i} + xz \mathbf{j} + xy \mathbf{k} \) where \(S \) is the part of the paraboloid \(z = 9 - x^2 - y^2 \) that lies in the plane \(z = 5 \), oriented upward. Use Stokes' Theorem to evaluate \(\iint_S \text{curl} \ \mathbf{F} \cdot d\mathbf{S} \).

Solution: The plane \(z = 5 \) intersects the paraboloid \(z = 9 - x^2 - y^2 \) in the circle \(x^2 + y^2 = 4 \), \(z = 5 \). This boundary curve \(C \) is oriented in the counterclockwise direction, so the vector equation is:

\[\mathbf{r}(t) = 2 \cos ti + 2 \sin tj + 5k \] for \(0 \leq t \leq 2\pi \). Then,

\[\mathbf{r}'(t) = -2 \sin ti + 2 \cos tj, \]

\[\mathbf{F}(\mathbf{r}(t)) = 10 \sin ti + 10 \cos tj + 4 \cos t \sin tk, \]

and by Stokes' Theorem, we get:
\[
\int_S \text{curl} \mathbf{F} \cdot d\mathbf{S} = \int_C \mathbf{F} \cdot d\mathbf{r} \\
= \int_0^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt \\
= \int_0^{2\pi} (-20 \sin^2 t + 20 \cos^2 t) dt \\
= 20 \int_0^{2\pi} \cos 2tdt = 0.
\]

Question 42

Verify Stokes’ Theorem by:

(a) directly computing the line integral \(\int_C (2yz)dx + (zx)dy + (xy)dz \) where the curve \(C \) is the intersection between the surfaces \(x^2 + y^2 = 1 \) and \(z = y^2 \),

(b) evaluating the line integral by applying Stokes’ Theorem.

Solution: (a) We can parametrize the curve \(C \) by seeing that since the \(x, y \) coordinates lie on the unit circle, we have:

\[\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j} + \sin^2 t\mathbf{k} \text{ for } 0 \leq t \leq 2\pi. \]

\[\Rightarrow \mathbf{r}'(t) = -\sin t\mathbf{i} + \cos t\mathbf{j} + 2\sin t\cos t\mathbf{k}. \]

Taking the vector field

\[\mathbf{F}(x, y, z) = 2yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k} \Rightarrow \mathbf{F}(\mathbf{r}(t)) = 2\sin^3 t\mathbf{i} + \cos t\sin^2 t\mathbf{j} + \cos t\sin t\mathbf{k}, \]

\[\Rightarrow \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = 3\cos^2 t\sin^2 t - 2\sin^4 t. \]

Since \(\int_C Pdx + Qdy + Rdz = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt \), we have:
\[
\int_C (2yz)dx + (xz)dy + (xy)dz = \int_0^{2\pi} 3 \cos^2 t \sin^2 t - 2 \sin^4 t \, dt
\]

\[
= \int_0^{2\pi} \left[3 \left(\frac{\sin 2t}{2} \right)^2 - 2 \left(\frac{1 - \cos t}{2} \right)^2 \right] \, dt
\]

\[
= \int_0^{2\pi} \left[\frac{3 \sin^2 2t - 2 \cos^2 t + 4 \cos 2t - 2}{4} \right] \, dt
\]

\[
= \int_0^{2\pi} \left[\frac{\sin^2 2t + 3 \cos 2t - 2}{4} \right] \, dt
\]

\[
= \int_0^{2\pi} \left[\frac{1 - \cos 4t + 6 \cos 2t - 4}{8} \right] \, dt
\]

\[
= \int_0^{2\pi} \frac{1 - 4}{8} \, dt = -\frac{3\pi}{4}.
\]

where the second last line comes from the fact that \(\int_0^{2\pi} \frac{-\cos 4t + 6 \cos 2t}{8} \, dt = 0 \).

(b): We must choose a surface \(S \) that has \(C \) as its boundary. We can simply choose the part of the surface \(z = y^2 \) that is enclosed within \(x^2 + y^2 = 1 \), that is, \(S = \{(x, y, z) : x^2 + y^2 \leq 1, z = y^2\} \). Furthermore, we can parametrize the surface as:

\[
r(r, \theta) = r \cos \theta i + r \sin \theta j + r^2 \sin^2 \theta k \text{ for } 0 \leq r \leq 1, \ 0 \leq \theta \leq 2\pi,
\]

\[
\Rightarrow \frac{\partial r}{\partial r} = r_r = \cos \theta i + \sin \theta j + 2r \sin^2 \theta k, \text{ and}
\]

\[
\frac{\partial r}{\partial \theta} = r_\theta = -r \sin \theta i + r \cos \theta j + 2r^2 \sin \theta \cos \theta k.
\]

We find \(n \) by calculating \(n = r_r \times r_\theta = -2r^2 \sin \theta j + r k \).

We note that the \(z \) component of the normal vector is positive, so as to point upward, conforming with the counterclockwise orientation of the line integral.
taken before. Furthermore, the curl of \mathbf{F} is:

$$\nabla \times \mathbf{F} = y\mathbf{j} - z\mathbf{k} \Rightarrow \nabla \times \mathbf{F}|_r = r \sin \theta \mathbf{j} - r^2 \sin^2 \theta \mathbf{k}.$$

Then,

$$\nabla \times \mathbf{F}|_r \cdot \mathbf{n} = -3r^3 \sin^2 \theta,$$

and therefore,

$$\int_c \mathbf{F} \cdot d\mathbf{r} = \iint_S \text{curl} \mathbf{F} d\mathbf{S}$$

$$= \iint_S \text{curl} \mathbf{F} \cdot \mathbf{n} \, dS$$

$$= \int_0^{2\pi} \int_0^1 -3r^3 \sin^2 \theta \, dr \, d\theta$$

$$= -\frac{3}{8} \int_0^{2\pi} \sin^2 \theta \, d\theta$$

$$= -\frac{3\pi}{4}.$$

Question 43

Use the Divergence Theorem to evaluate $\iint_S (3\mathbf{i} + 2y\mathbf{j}) d\mathbf{S}$, where S is the sphere $x^2 + y^2 + z^2 = 9$.

Solution: Note that we could parameterize the surface and evaluate the surface integral, but it is much faster to use the Divergence Theorem. Since

$$\text{div}(3\mathbf{i} + 2y\mathbf{j}) = \frac{\partial}{\partial x}(3x) + \frac{\partial}{\partial y}(2y) + \frac{\partial}{\partial x}0 = 5,$$

the divergence theorem gives:

$$\iint_S (3\mathbf{i} + 2y\mathbf{j}) d\mathbf{S} = \iiint_\xi \text{div} \mathbf{F} dV = \iiint_\xi 5dV = 5 \cdot \text{(volume of sphere)} = 180\pi.$$
Question 44

Verify that the Divergence Theorem is true for the vector field \(\mathbf{F}(x, y, z) = x^2 \mathbf{i} + xy \mathbf{j} + z \mathbf{k} \) on the region \(\mathcal{E} \), where \(\mathcal{E} \) is the solid bounded by the paraboloid \(z = 4 - x^2 - y^2 \) and the \(xy \)-plane.

Solution: The following is a sketch of the region \(\mathcal{E} \) and the closed surfaces \(S_1 \) and \(S_2 \):

Now, \(\text{div}\mathbf{F} = 2x + x + 1 = 3x + 1 \), so, by converting to polar coordinates, we get:

\[
\iiint_{\mathcal{E}} \text{div}\mathbf{F} \, dV = \iiint_{\mathcal{E}} (3x + 1) dV
\]

\[
= \int_0^{2\pi} \int_0^2 \int_0^{4-r^2} (3r + \cos \theta + 1) r \, dz \, dr \, d\theta
\]

\[
= \int_0^{2\pi} \int_0^2 r(3r + \cos \theta + 1)(4 - r^2) \, d\theta \, dr
\]

\[
= 2\pi \int_0^2 (4r - r^3) \, dr = 8\pi
\]

Now, on \(S_1 \) the surface is \(z = f(x, y) = 4 - x^2 - y^2 \), \(x^2 + y^2 \leq 4 \), with upward orientation and \(\mathbf{F}(x, y, z) = x^2 \mathbf{i} + xy \mathbf{j} + (4 - x^2 - y^2) \mathbf{k} \). Then,
\[
\iint_{S_1} \mathbf{F} \cdot d\mathbf{S} = \iint_{\pi} \left(-P \frac{\partial f}{\partial x} - Q \frac{\partial f}{\partial y} + R \right) dA
\]

\[= \iint_{\pi} -(-x^2)(2x) - (xy)(-2y) + (4 - x^2 - y^2) dA\]

\[= \iint_{\pi} [(2x(x^2 + y^2)) + 4 - (x^2 + y^2)] dA\]

\[= \int_{0}^{2\pi} \int_{2}^{0} (2r \cos \theta \cdot r^2 + 4 - r^2) r \, dr \, d\theta\]

\[= \int_{0}^{2\pi} (\frac{64}{5} \cos \theta + 4) d\theta\]

\[= 8\pi.\]

On \(S_2\), the surface is \(z = 0\) with downward orientation, so \(\mathbf{F} = x^2 \mathbf{i} + xy \mathbf{j}\), \(\mathbf{n} = -\mathbf{k}\)

\[\Rightarrow \iint_{S_2} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{S_1} 0 \, dS = 0.\]

\[\Rightarrow \iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_1} \mathbf{F} \cdot d\mathbf{S} + \iint_{S_2} \mathbf{F} \cdot d\mathbf{S} = 8\pi = \iiint_{\varepsilon} \text{div} \mathbf{F} \, dV.\]

Question 45

Calculate the flux of \(\mathbf{F}(x, y, z) = xy \sin zi + \cos(xy)j + y \cos zk\) across the surface \(S\), where \(S\) is the ellipsoid \(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.\)
Solution: The easiest way to calculate this is via the Divergence Theorem. Accordingly,

$$\text{div} \mathbf{F} = y \sin z + 0 - y \sin z = 0,$$
so we get:

$$\text{flux of } \mathbf{F} \text{ across } S = \iiint_S \mathbf{F} \cdot d\mathbf{S} = \iiint_\varepsilon 0 \, dV = 0.$$

Question 46

Find the local maximum and minimum and saddle points, if they exist, for the following functions: (a) \(f(x, y) = 9 - 2x + 4y - x^2 - 4y^2 \) (b) \(f(x, y) = x^4 + y^4 - 4xy + 2 \) and (c) \(f(x, y) = e^x \cos y \).

Solution: (a) \(f(x, y) = 9 - 2x + 4y - x^2 - 4y^2 \)

\[f_x = -2 - 2x, \quad f_y = 4 - 8y, \quad f_{xx} = -2, \quad f_{yy} = -8, \quad f_{xy} = 0. \]

Then, \(f_x = -2 - 2x = 0 \Rightarrow x = -1 \) and \(f_y = 4 - 8y = 0 \Rightarrow y = \frac{1}{2} \)

\[\Rightarrow \text{the only critical point is } (-1, \frac{1}{2}). \text{ Then, } D(x, y) = f_{xx}f_{yy} - (f_{xy})^2 = 16 \]
and since \(D(-1, \frac{1}{2}) = 16 > 0 \) and \(f_{xx}(-1, \frac{1}{2}) = -2 < 0, f(-1, \frac{1}{2}) = 11 \) is a local maximum, by the Second Derivative Test.

(b) \(f(x, y) = x^4 + y^4 - 4xy + 2 \)

\[f_x = 4x^3 - 4y, \quad f_y = 4y^3 - 4x, \quad f_{xx} = 12x^2, \quad f_{yy} = 12y^2, \quad f_{xy} = -4. \]

Then, \(f_x = 0 \Rightarrow y = x^3 \) and substitution into \(f_y = 0 \Rightarrow x = y^3 \) gives

\[x^9 - x = 0 \Rightarrow x = 0 \text{ or } x = \pm 1 \]

\[\Rightarrow \text{the critical points are } (0, 0), \ (1, 1) \text{ and } (-1, -1). \text{ Now, by the Second Derivative Test,} \]

\[D(0, 0) = 0 \cdot 0 - (-4)^2 = -16 < 0 \text{ so } (0, 0) \text{ is a saddle point.} \]

\[D(1, 1) = (12)(12) - (-4)^2 > 0 \text{ and } f_{xx}(1, 1) = 12 > 0, \text{ so } f(1, 1) = 0 \text{ is a local minimum.} \]

\[D(-1, -1) = (12)(12) - (-4)^2 > 0 \text{ and } f_{xx}(-1, -1) = 12 > 0, \text{ so } f(-1, -1) = 0 \text{ is also a local minimum.} \]
\((c) \ f(x, y) = e^x \cos y \)

\[\Rightarrow f_x = e^x \cos y, \quad f_y = -e^x \cos y. \]
But, \(f_x = 0 \Rightarrow \cos y = 0 \) or \(y = \frac{\pi}{2} + n\pi \) for an integer \(n \). But \(\sin \left(\frac{\pi}{2} + n\pi\right) \neq 0 \), so there are no critical points.

Question 47

Use Lagrange multipliers to find the maximum and minimum values of the function \(f(x, y) = 4x + 6y \) subject to the constraint \(x^2 + y^2 = 13 \).

Solution: In this question, \(f(x, y) = 4x + 6y \) and \(g(x, y) = x^2 + y^2 = 13 \). Using Lagrange multipliers, we solve the equations \(\nabla f = \lambda \nabla g \) and \(g(x, y) = 13 \), which can be written as:

\[f_x = \lambda g_x \Rightarrow 4 = \lambda 2x \Rightarrow x = \frac{2}{\lambda}, \]
\[f_y = \lambda g_y \Rightarrow 4 = \lambda 2y \Rightarrow y = \frac{3}{\lambda}. \]

But \(13 = x^2 + y^2 = \left(\frac{2}{\lambda}\right)^2 + \left(\frac{3}{\lambda}\right)^2 \Rightarrow 13 = \frac{13}{\lambda^2} \Rightarrow \lambda = \pm 1 \)

\[\Rightarrow f \] has possible extreme values at \((2, 3)\) and \((-2, -3)\).

Since \(f(2, 3) = 26 \) and \(f(-2, -3) = -26 \) the maximum value of \(f \) on \(x^2 + y^2 = 13 \) is \(26 \) and the minimum value is \(-26\).

Question 48

Use Lagrange multipliers to find the maximum and minimum values of the function \(f(x, y, z) = 8x - 4z \) subject to the constraint \(x^2 + 10y^2 + z^2 = 5 \).

Solution: Again, we solve the equations \(\nabla f = \lambda \nabla g \) and \(g(x, y, z) = 5 \), which can be written as:

\[f_x = \lambda g_x \Rightarrow 8 = \lambda 2x \Rightarrow x = \frac{4}{\lambda}, \]
\[f_y = \lambda g_y \Rightarrow 0 = \lambda 20y \Rightarrow y = 0. \]
\[f_z = \lambda g_z \Rightarrow -4 = \lambda 2z \Rightarrow x = -\frac{2}{\lambda}. \]

But \[5 = x^2 + 10y^2 + z^2 = \left(\frac{4}{\lambda}\right)^2 + 10 \cdot 0 \left(-\frac{2}{\lambda}\right)^2 \Rightarrow 5 = \frac{40}{\lambda^2} \Rightarrow \lambda = \pm 2 \]

\[\Rightarrow f \text{ has possible extreme values at } (2,0,-1) \text{ and } (-2,0,1). \text{ Then the maximum value of } f \text{ on } x^2 + 10y^2 + z^2 = 5 \text{ is } f(2,0,-1) = 20 \text{ and the minimum value is } f(-2,0,1) = -20. \]