Instructor: Şaban Alaca, HP 4364
E-mail: SabanAlaca (at) cunet (dot) carleton (dot) ca
Tel: 613-520-2600 x2235

Calendar Description: Algebraic number fields, bases, algebraic integers, integral bases, arithmetic in algebraic number fields, ideal theory, class number.

Prerequisite: MATH 3158 or permission of the School

Lectures: Tuesdays and Thursdays 8:30 - 10:00 am in DT 1006

Office hours: TBA

Grading scheme:

1. Assignments (30%): There will be three assignments to be handed in during the term. The exercises may contain some computations requiring the use of a programming language.

2. Presentation (30%): Students will select up to three research papers of their choice (relating to algebraic number theory and/or its applications) and consult with me for approval. Each student will study their chosen paper(s) in depth and prepare a presentation of approximately 30 minutes to the class. Presentations must include an introduction/overview of the chosen paper(s), background content, why the paper(s) is/are of interest, an in-depth explanation of the research contribution of the paper(s), and possible extensions of the work.

 Students will prepare electronic slides and e-mail them to me one day before their presentation. The grading will be based on the student’s overall presentation quality and their ability to answer questions from the instructor and students.

 Presentations will take place during the last three weeks of classes.

3. Final Exam (40%): There will be a take-home final exam, details of which will be announced in class.

Academic accommodations: Students who would like to request academic accommodations due to religious obligations, pregnancy or disabilities should inform the instructor as soon as possible.
A selection of topics from the following chapters of the textbook will be covered:

Chapters 1, 2 and 3: Review of Integral Domains, Euclidean Domains and Noetherian Domains
Chapter 4: Elements Integral over a Domain
Chapter 5: Algebraic Extensions of a Field
Chapter 6: Algebraic Number Fields
Chapter 7: Integral Bases
Chapter 8: Dedekind Domains
Chapter 9: Norms of Ideals
Chapter 10: Factoring Primes in a Number Field
Chapter 11: Units in Real Quadratic Fields
Chapter 12: The Ideal Class Group
Chapter 14: Applications to Diophantine Equations

Depending on our progress, we may cover additional topics from the textbook or other resources.