MATH 4708/5408 Asymptotic Methods of Applied Mathematics Fall 2020

Instructor David Amundsen

Email dave@math.carleton.ca

Office Hours by appt. (online)

Web page http://mathstat.carleton.ca/~dave

Text Advanced Mathematical Methods for Scientists and Engineers

C. Bender and S. Orszag

Springer

Lectures Tuesday and Thursday 8:30-10:00 (online)

Problem Sets There will be four problem sets on a rougly bi-weekly basis.

Grading Problem Sets 30 %

 $\begin{array}{c} {\rm Midterm}~20~\% \\ {\rm Exam}~50~\% \end{array}$

Course Outline

- 1. Approximate Solution of Ordinary Differential Equations (~ 4 Weeks)
 - Review of exact methods. [Ch. 1]
 - Classification of Singular Points. [3.1]
 - Series Solutions around Ordinary and Regular Singular Points. [3.2-3]
 - Series Solutions around Irregular Singular Points. [3.4]
 - Behaviour at Infinity. [3.5]
 - Asymptotic Series and Asymptotic Relations. [3.7-8]
 - Extension to Nonlinear Equations. [Ch. 4]
- 2. Asymptotic Expansion of Integrals (~ 2 Weeks)
 - Elementary approaches. [6.1-3]
 - Laplace's Method. [6.4]
 - Method of Stationary Phase. [6.5]
 - Method of Steepest Descents. [6.6]
- 3. Perturbation Theory ($\sim 4 \text{ Weeks}$)
 - Classification of perturbation problems. [7.1-2]
 - Regular perturbation and Multiple Scale Analysis [11.1-2]
 - Perturbation of eigenvalue problems [7.3]
 - Singular perturbation and Boundary Layer Theory [9.1-6]
- 4. WKB Theory (~ 2 Weeks)
 - Description of WKB Expansion and Validity. [10.1-2]
 - Application to Turning Point and Wave Propagation problems. [10.4-10.6]