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ABSTRACT 

 

With an outbreak of African Swine Fever (ASF) overseas (Haley & Gale, 2020), Canadian 

pig farmers are rightfully concerned about a potential outbreak in North America. For a virus as 

deadly and contagious as ASF, Canada is using all of its resources to keep our pigs safe (Canadian 

Pork Council (CPC), 2020). Should Canada witness an outbreak of ASF in our pig farms, measures 

are in place to prevent spread and contain the disease in a timely manner (Canadian Food 

Inspection Agency (CFIA), 2019). However, at the centre of an outbreak, when resources are 

running dry, it is vital to have measures in effect to avoid the potentially devastating impact ASF 

could have on our pork industry.  

This paper aims to explore the use of network analysis on pig movements around Canada 

to find a way of reducing spread of ASF should there be an outbreak. In Canada, livestock 

movement reporting is mandatory (CPC, 2020). Using a synthesized dataset based on real pig 

movement reports, we are able to analyse the network using five node-level metrics, namely 

degree, infection chain, betweenness, mean infection potential, and purchase-sales-balance. 

Based on these metrics, this paper also discusses a new metric, degree balance. Using these 

metrics, we can simulate an outbreak and calculate the impact of removing “super-spreaders” 

defined to be premises with high mean infection potential or high betweenness to great success. 

By removing only 10% of premises in the synthesized pig movement network, the number of 

premises infected can be reduced by up to 70%. With these kinds of results, it is clear to see that 

network analysis can drastically assist in the mitigation of an ASF outbreak.  
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1 INTRODUCTION 

 

As defined by the World Organization for Animal Health (OIE), “African Swine Fever (ASF) 

is an infectious disease of domestic and wild pigs of all breeds and ages, caused by the ASF virus 

(ASFV)” (World Organization for Animal Health (OIE), 2019). Since the 1900’s, the disease has 

survived in wild hogs in Africa (Canadian Food Inspection Agency (CFIA), 2019), although in recent 

years, ASF has been discovered in Europe and Asia. In 2007, ASF emerged in the Republic of 

Georgia, and subsequently traveled throughout Europe (Canadian Food Inspection Agency (CFIA), 

2019).The most recent outbreak was detected in China in 2018 (CPC, n.d.), greatly impacting the 

country’s economy (Pitts & Whitnall, 2019), and killing many of its hogs (both domestic and wild). 

ASF then spread to many other countries and is still infecting more pigs around the globe today.  

African Swine Fever Virus is not only highly contagious (CPC, n.d.), it is extremely fatal. 

“(ASF) is arguably the most dangerous swine disease, which threatens wild boar and domestic 

[pig] populations worldwide. The mortality rate is approaching 100%” (Malogolovkin, Sereda, & 

Kolbasov, 2020, p. 27), making it all the more concerning that to this date, there is no known 

vaccine for ASFV.  

In 2019, China lost 440 million pigs, either from pigs being infected or from culling animals 

as an attempt to limit the spread of the disease (Malogolovkin, Sereda, & Kolbasov, 2020). 

Historically, China has been the leading pig producer, accounting for 50% of pigs worldwide (Pitts 

& Whitnall, 2019). Since the outbreak of ASF in August of 2018, 40% of Chinese hogs have died 

(Haley & Gale, 2020), meaning that almost 25% of the world’s hog population has died from the 

disease. In Europe, one million pigs have died since the Georgian outbreak of 2007 (CPC, n.d.).  

It is clear that there is a need to prepare for a potential outbreak in Canada should one 

occur. This paper focuses on the use of network analysis as a potential means of modeling the 

control of the disease within Canada. 
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2 MATERIALS AND METHODS 

2.1 DATA 
 

The data available is based on hog movement data which has been provided by the 

Canadian Pork Council (CPC) to use for this project. The data, referred to as PigTrace, consists of 

both incoming and outgoing reports of hog movements reported by pig farmers across Canada 

from 2017 to the end of 2019. The reports, which farmers are required to report within seven 

days of a movement, contain the date of the event, the premise ID number and premise name of 

the reporting party, the premise ID number of the receiving party, the premise ID number of the 

sending party, the event type (more on this later), and the lot quantity (i.e. the number of pigs in 

the movement). For the majority of cases, pigs in Canada do not have identification tags, and so 

the number of pigs in a particular movement is used. The event type variable is defined as being 

one of the following: move-in, move-out, slaughter, import, export, or what is called “rendering 

or deadstock pickup”. The latter refers to the event of a truck collecting pigs who died before 

slaughter, and all of the movements labelled as such have a lot quantity of zero. The dataset also 

contains other variables such as stakeholder information, licence plate of the truck used to move 

the pigs, and the date the event was reported. Due to the time constraint on this project, these 

variables were not used.  

Although we had access to the PigTrace data, due to confidentiality concerns, we instead 

used a synthesized dataset created by our partners at CPC (2018). Unlike the PigTrace data, the 

dummy dataset only has record of one side of each movement. To assimilate the true dataset, 

the other half of the records were imputed. The date range on the synthesized dataset spanned 

over six years, so we transformed the date range to be within 2018 in order to have sufficient 

data to analyse a temporal network. The cleaning process (described later) was created for the 

true dataset but was then applied to the dummy dataset for completeness.  
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2.2 CLEANING STEP 
 

After consulting with CPC and the Methodology Branch of Statistics Canada, it was 

decided that the cleaning process would consist of three main steps. The first step is to remove 

known duplicates. CPC informed us that one particular abattoir had been reporting movements 

twice – once as a “move-in” event and once as a “slaughter” event. This meant that for that 

particular premise, the number of incoming pigs counted would be doubled. To account for this, 

since there were more move-in events than slaughter events, the data was first sorted to identify 

duplicate rows, then all move-in events which matched a slaughter event were removed. Move-

in events which did not have a match were left in the dataset as they were.  

Next, we set aside import, export, and rendering and deadstock pickup movements. In 

terms of controlling a disease outbreak, imported movements might indicate where an outbreak 

occurred, but since the project is focused on finding potential Canadian hog premises which may 

be infected, the record detailing the import of pigs is not useful. In a similar vein, records of 

exported pigs, while useful in determining where infected pigs may have been sent, does not 

prove useful for the purposes of this project. The rendering and deadstock pickup movements 

are removed for a few reasons. First, since they are reporting deadstock and not live hogs, they 

are all marked as having a lot quantity of zero. Second, in terms of disease transmission, the 

rendering and deadstock pickup trucks are considered to be the end of the chain and are unlikely 

to pass disease on to other premises. Although some similar articles have considered trucks when 

it comes to possible transmission, in the interest of time, this paper only considers farm to farm 

movements as possible modes of transmission.  

The final step of the cleaning process is to sum identical records’ pig counts. We noticed 

by manually looking through the data that there are some movements where, for example, 

Premise A reports sending 60 pigs to Premise B, but B reports receiving two shipments of 30 pigs 

each. This is likely the result of a truck shipping the pigs in two trips on the same day. To account 

for this, we simply found records that matched exactly (i.e. date, truck licence plate, sending and 

receiving premise ID numbers, and event type all match) and created one row with the total 
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number of hogs. This is particularly useful in the next process of linking movements from the 

shipping and receiving ends of the transactions.  

The matching process begins by looking at exact matches. This is defined as an outgoing 

record and an incoming record where both records have the same date, same sending and 

receiving premise ID’s, and same lot quantity. In the PigTrace data from 2017 to 2019, this 

captures roughly 70% of cases. The next step in the matching process is to look at near perfect 

matches. It is worth noting that since the dummy dataset has entirely imputed record matches, 

100% of the dummy records fall under the exact matches category. The following steps in the 

matching process are intended solely for the true dataset.  

The PigTrace data has many cases where the shipping and receiving sides of the same 

movement may be different. While the lot quantity may differ due to a movement being split 

into two truckloads as mentioned earlier, there may also be a difference in incoming and 

outgoing lot quantities due to pigs dying in transport, or slight rounding of one of the reporting 

parties. From consulting with the industry, we learned that it is more likely for incoming 

movements to be exact, since they are paying for each live pig arriving in the truck. There are 

some instances in the data where the outgoing movement may report a lot quantity of say 200 

pigs, but the incoming movement reports a lot quantity of 204 pigs. Based on the above, we may 

assume (provided there is no similar outgoing report of 204 pigs between the two premises in 

question) that the outgoing record rounded their lot quantity. In the event that the outgoing 

quantity is higher than the incoming quantity, we may continue to assume four pigs died in 

transit. Due to these reasons, when matching incoming and outgoing records, provided an exact 

match (as defined above) doesn’t exist, the matching process looks for a record where the date, 

and sending and receiving premise ID numbers match, but the lot quantity may be plus or minus 

up to ten pigs. Note that the number ten was chosen to be something small enough to suggest 

that differences in pig numbers could logically be attributed to the above reasons. This number 

can be easily changed if there is reason to believe another number would be better. It is also 

worth noting that in the case where a particular movement seems to have a match with multiple 

movements, where each potential match has a lot quantity within plus or minus ten, preference 
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is given to movement pairs where the outgoing record has a higher lot quantity than the incoming 

record.  

There may also be cases where a truck leaves on Monday and arrives on Tuesday after 

stopping overnight. Although rare, it is possible for this to occur in such a large country, and so 

the matching process looks for records with a difference in date of one, provided a better match 

doesn’t exist. Given that farmers are permitted a seven-day latency period in reporting, it is 

expected that in some cases, the date may be off due to recall error, and so the process also looks 

for cases where the incoming event is reported one day before the outgoing event, giving the 

converse case priority. Also due to the fact that farmers have up to seven days to report, we can 

assume that there will always be cases where the other side of the record pair has not yet been 

reported. These records will not have a match and will require imputing the second side of the 

report and will be handled later on in the matching process.  

After running the PigTrace data through the matching process, it was found that only 80% 

had a match. For the purposes of disease control, we imputed pairs for the remaining 20% of 

records. As mentioned previously however, we continue to use the synthesized dataset due to 

concerns about confidentiality.  

 

2.3 NETWORK METRICS 
  

One of the most common approaches to developing disease control strategies is to use 

livestock movement data to perform a network analysis (Noremark, et al., 2011). To do this, 

premises sending or receiving pigs are considered nodes (or vertices) of the network, and 

shipments of pigs are considered as edges connecting two nodes. The livestock movement 

network can then be described as an unweighted dynamic network (Kinsley, Perez, Craft, & 

Vanderwaal, 2019), meaning that dates of movements are considered. In the case of pig systems, 

since pigs in Canada do not require identification tags, movement records contain a total number 
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of hogs, which can then be interpreted as the weight of the edge, therefore the pork movement 

network can be described as a weighted dynamic network.  

To describe the movement network, we can look at multiple different metrics. For the 

purposes of this paper, we will look into metrics shown in the literature to be important when 

analysing potential disease outbreaks. In this study, the following metrics were calculated for the 

synthesized dataset: 

i) In-degree and out-degree (Wasserman & Faust, 1994): directed measure of the 

number of contacts with a particular premise. In-degree pertains to the number 

of premises selling pigs to a particular premise, whereas the out-degree pertains 

to the number of premises receiving pigs from a particular premise. An example 

of in- and out-degree is seen in Figure 1. 

ii) Ingoing and outgoing infection chain (Dubé, et al., 2008; Noremark & Widgren, 

2014): directed and temporal measure of the number of direct or indirect contacts 

with a particular premise. Ingoing infection chain includes all premises who may 

Figure 1 - Degree and Infection chain example from Noremark et al., 2011. Premise A has an out-degree of 3 and an outgoing 
infection chain of 7, whereas premise B has an in-degree of 3 and an ingoing infection chain of 7. Note that 𝑡 ≤ 𝑡 ≤ ⋯ ≤ 𝑡 . 
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sell pigs directly or indirectly to a particular premise, whereas outgoing infection 

chain includes all premises who may receive pigs directly or indirectly from a 

particular premise. The temporal aspect ensures that for example in the case that 

premise A ships pigs to premise B after premise B ships pigs to premise C, premise 

A is not counted in the ingoing infection chain of premise C. An example of ingoing 

and outgoing infection chain can be seen in Figure 1. 

iii) Mean infection potential (Rossi, et al., 2017; Kinsley, et al., 2019): a metric 

comparing both ingoing and outgoing infection chain over time as an average of 

the infection potential, defined as follows:  

𝜌 (𝑑) =
𝐼𝐼𝐶 (𝑑)

𝑁 − 1
𝑂𝐼𝐶 (𝑑), 

where 𝐼𝐼𝐶 (𝑑) and 𝑂𝐼𝐶 (𝑑) are ingoing and outgoing infection chains respectively 

for premise 𝑖 on day 𝑑, and 𝑁 is the total number of premises in the network. The 

mean infection potential is then defined as follows: 

𝜌 =
1

𝑚
𝜌 (𝑑), 

where 𝜌 (𝑑) is the infection potential of premise 𝑖  defined above and 𝑚 is the 

infection period of interest. Rossi suggests only considering the infection chain on 

a finite infectious period 𝛾. For our purposes, we will be calculating infection chain 

on date 𝑑 with an infectious period 𝛾 equal to 21 days, as this is the recommended 

length of quarantine from ASF (World Organization for Animal Health (OIE), 2019, 

Article 15.1.9) 1 . Our duration of interest 𝑚  is set to be 284, given that the 

synthesized data covers 344 days in 2018 and an allowance of 30 days at the start 

and end of the data is needed to account for potential boundary effects (Rossi, 

2017).  

iv) Purchase-Sales-Balance (Koeppel, et al., 2018): a bounded measure referring to 

the ratio of pigs purchased to pigs sold, normalized to be between -1 and 1 as 

follows: 

 
1 Although the incubation period for African Swine Fever is 15 days (World Organization for Animal Health (OIE), 
2019, Article 15.1.1), the infectious period is longer to ensure minimal risk.  
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𝐵 =
𝑃 − 𝑆

𝑃 + 𝑆
 

where 𝑃 is the total number of pigs purchased in the time frame of interest and 𝑆 

is the total number of pigs sold in the time frame of interest.  

v) Betweenness (Wasserman & Faust, 1994): a metric describing the frequency that 

a premise is a link appearing on the shortest path between two nodes. In network 

analysis, the term “shortest path” refers to the minimum number of links 

connecting two nodes (Wasserman & Faust, 1994). Betweenness can be 

considered as either a node metric as defined above, or as a network metric called 

group betweenness centralization index (GBCI) (Wasserman & Faust, 1994), 

defined as “the variability in the betweenness of the [premises]” (Noremark, et 

al., 2011, p. 82). In particular, the GCBI can be calculated as follows: 

𝐺𝐵𝐶𝐼 =  
2

(𝑔 − 1) (𝑔 − 2)
𝐵(𝑛∗) − 𝐵(𝑛 ) , 

where 𝑔  is the number of nodes ( 𝑛 ) in the network, 𝐵(𝑛)  indicates the 

betweenness measure for a particular node, and 𝐵(𝑛∗)  is the highest 

betweenness measure of all the nodes in the network (Wasserman & Faust, 1994). 

GBCI is then bounded by 0 and 1.  

2.4 SOFTWARE 
 

To analyse the above metrics, we used the packages “igraph” (Csardi & Nepusz, 2006) and 

“EpiContactTrace” (Noremark & Widgren, 2014) in R (R Core Team, 2020). Specifically, functions 

IngoingContactChain and OutgoingContactChain form the EpiContactTrace package were used to 

calculate the ingoing and outgoing infection chain and the mean infection potential. 

Betweenness and degree were calculated using the functions in igraph. Epidemic simulations 

were calculated with “epinet” (Groendyke & Welch, 2018). Details of the code can be found in 

Appendix A.  
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3 RESULTS & DISCUSSION 

 

The synthesized dataset contained movements of pigs between thirty-nine premises over 

the span of 344 days in 2018. The average size of movement was 213.4 pigs, with a maximum of 

6320 pigs in a movement. Of the 29 premises which send pigs, the average number of outgoing 

movements was 14.21 per premise. The premises sending pigs sold on average 3032 pigs over 

the course of the year. Of the 34 premises receiving pigs, the average number of ingoing 

movements was 12.12 per premise. The premises receiving pigs purchased on average 2586 pigs 

over the course of the year. Five node-level network metrics were calculated for each of the 

premises, including degree, infection chain, betweenness, mean infection potential and 

purchase-sales-balance. In this section, each metric will be discussed, with further details 

provided in Table 1. The network can be seen in Figure 2.  

Figure 2 - Simplified view of the network being analysed. Nodes represent premises 1 
through 39, and edges represent the existence of at least one shipment. 
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The in- and out-degree both averaged at 2.59. It makes sense that they both have the 

same average since the sum of in-degree and out-degree is the same. This is because for every 

link into a premise, there exists a premise with an outgoing link. The in-degree and out-degree 

are both highly skewed to the right, with maximums at 16 and 27 respectively. This pattern is 

also found by Noremark (2011) among both swine and cattle data. In terms of disease control, it 

is important that the in- and out-degrees are highly right skewed since it implies that very few 

premises are “hubs” at which diseases can spread to many different premises.  

As with in- and out-degree, the ingoing and outgoing infection chains will have the same 

averages. The average infection chain is 15.95. Interestingly, the ingoing and outgoing infection 

chains are not right skewed. Although there are a decently large number of premises with low 

infection chains, the medians of the ingoing and outgoing infection chains are 24 and 23 

respectively, implying that there is a significant number of premises with high infection chains. 

With only 39 premises in the network, these numbers represent premises who have direct or 

indirect connections with 61.5% and 59.0% of the premises in the network respectively. The 

maximum values for ingoing and outgoing infection chain are 26 and 32 respectively, associating 

with premises which have direct or indirect connections with 66.7% and 82.1% of the premises 

in the network. These results are contradictory to the swine and cattle networks in Noremark’s 

study (2011), which are highly right skewed. This could have implications on the types of 

Table 1 – Summary of Network Metrics 

 

Measure 0% 25% 50% Mean 75% 100% 

In-Degree 0 1 1 2.59 3 16 

Out-Degree 0 0.5 1 2.59 2.5 27 

Ingoing Infection Chain 0 2 24 15.95 25 26 

Outgoing Infection Chain 0 0.5 23 15.95 25 32 

Betweenness 0 0 0 35.90 15.73 670.57 

Mean Infection Potential 0 0 0 0.014 0.007 0.204 

Purchase-Sales-Balance -1 -0.473 0.612 0.233 0.997 1 
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operations in the network. In Canada, pig premises generally fall into different categories of 

operation types defined with the age of the pigs on a particular premise. For example, premises 

who farrow pigs and keep them until they are weaned are considered farrow-wean operations, 

whereas premises who keep pigs from farrow until they are sent off for slaughter are considered 

farrow-finish operations. In Noremark’s study of pig populations in Sweden, operation types are 

listed as nucleus or multiplier, sow pool, farrow to grower, farrow to finish, and fattening. In 

Canada, operation types include farrow-wean, farrow-grow, nursery, wean-finish, grow-finish, 

farrow-finish, nucleus, gilt development, AI Stud, and abattoir (or slaughterhouse, which should 

be noted is not included in Noremark’s study)2. It is possible that with set operation types, there 

is more movement along a “chain”, thus allowing for premises to have high infection chain while 

maintaining a low degree, or put simply, a premise will have few direct connections but many 

indirect connections. It should also be noted however that the data being analysed here is 

simulated data and another study would have to be made to see if real Canadian data follows the 

same pattern.  

The average premise betweenness was 35.9. However betweenness is highly right 

skewed, as the minimum and median are both 0. The maximum betweenness is 670.57. For a 

network with 39 nodes, a node can appear on a maximum of 703 paths (since there are 741 

combinations of pairs from 39 nodes, and 38 pairs include the particular node of interest as either 

a source or a destination). Thus, the premise with the highest betweenness measure appears on 

95.4% of the possible shortest paths. It is worth noting however that this extreme value is likely 

only to appear in the synthesized data and is not representative of the true pig network. It is 

obvious that premises with high betweenness measures are dangerous when it comes to the 

spread of disease, since they can potentially transfer the disease to other parts of the country or 

region which normally are not connected. In the synthesized network, the premise with the 

highest betweenness measure acts as a central node to many other premises which would 

otherwise not be connected, and thus acts as what is considered a “super-spreader” in terms of 

disease. The group betweenness centralization index (GBCI) of the network is very high at 

 
2 This information was provided to us from the Canadian Pork Council (CPC) via personal communication, May 
2019 
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92.66%, indicating that there is one premise (i.e. the “super-spreader”) which serves as a link 

between most other premises in the network.  

Mean infection potential was calculated in R (R Core Team, 2020) using the code provided 

in Appendix A. The first function calculates the infection potential of each premise on a particular 

day. The second function then calculates the infection potential of each premise for each day in 

a set number of days and calculates an average. In Rossi’s study (2017), it was mentioned that 

there could be boundary effects in the data, and so although a year of data was available, the 

infection potential was computed for 245 days. Rossi also used an infectious period 𝛾 of 14 days 

but considered the effects of choosing values from 3 to 28 days. In Canada, given that pork 

farmers are allowed to report up to seven days after an event3, we allowed for more days to be 

included in our analysis, while still maintaining space to avoid the boundary effects. With 344 

days available in the synthesized data, we were able to remove 30 days from each end, leaving 

an 𝑚 of 284 days in the analysis. We chose 𝛾 to be 21 days based on the World Organization for 

Animal Health’s recommended quarantine time for pigs with African Swine Fever Virus (OIE, 

2019). The mean infection potential was highly skewed, with a minimum and a median of zero, a 

mean of 0.014 and a maximum of 0.204.  

Many researchers have considered the premise operation type when comparing node-

level metrics (Koeppel, et al., 2018; Kinsley, et al., 2019; Noremark, et al., 2011; Thakur, et al., 

2016). Given that the operation type is not necessarily available in the PigTrace data, it is worth 

analysing the ratio of purchases to sales to determine basic operation types. Following the 

suggestion of Koeppel et al. (2018), the purchase-sales-balance defined in section 2.3 will be 

used. Koeppel et al. defined breeding farms as those with a balance of less than -0.5, 

slaughterhouses as premises with a balance of greater than 0.7, and fattening farms as those in 

between. With this approach, 17 out of the 39 premises would be considered slaughterhouses 

and 10 would be considered breeding farms. As seen in the histogram for the purchase-sales-

balance in Appendix B, there are a large number of premises near the extremes (-1 and 1). This 

is likely unrealistic, as there are not as many slaughterhouses in the country as there are breeding 

 
3 This information was provided to us from the Canadian Pork Council (CPC) via personal communication, May 
2019 
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farms. However, these results are likely attributable to the data being synthesized. Overall, the 

purchase-sales-balance had a mean of 0.23 and a median of 0.61.  

While the purchase-sales-balance can be used to estimate the operation types of the 

premises, it can theoretically also be used in congruence with in- and out-degree to get a more 

accurate picture of the prevalence of a particular premise in the network as a whole. While in- 

and out-degree measure the number of premises a node is directly connected to, the purchase-

sales-balance represents the ratio of pigs entering and leaving the premise. Thus, we will define 

a new metric, degree balance, in the same manner as purchase-sales-balance, as follows. 

𝐷𝑒𝑔𝑟𝑒𝑒 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 =
𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒 − 𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒

𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒 + 𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒
 

This metric is a measure of connective traffic bounded between -1 and 1. A value of positive one 

suggests the premise only receives pigs, meaning it is likely to be a slaughterhouse. A degree 

balance of negative one suggests the premise only sells pigs, meaning it is likely to be a farrowing 

operation. Premises with a degree balance near zero indicate premises who have an equal 

number of shipping and receiving partners. Note as well that when a premise has a degree 

balance of 1 or -1, it will also have a purchase-sales-balance of 1 or -1. We can then compare 

degree balance with purchase-sales-balance as seen in Figure 3. The Pearson’s product-moment 

correlation coefficient is 0.87, with a p-value of 6.2 × 10 . The degree balance of the network 

was much more evenly distributed than the purchase-sales-balance. The average degree balance 

was 0.16, and the median was 0.14, where the mean and median for purchase-sales-balance 

were 0.23 and 0.61, respectively. Histograms of both metrics can be found in Appendix B.  

Degree is by definition less than or equivalent to infection chain since infection chain 

contains direct contacts as well as indirect contacts. While they are related, they are not 

necessarily indicative of each other. The Pearson’s correlation coefficient between degree and 

infection chain4 was only 46.53% with a p-value of 2.8 × 10 . When comparing the difference 

 
4 Tests for correlation between in-degree and ingoing infection chain gave the same results as the test between 
out-degree and outgoing infection chain to four decimal places. 
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between infection chain and degree (i.e. the number of indirect connections) with degree (i.e. 

the number of direct connections), the correlation coefficient was even lower, and did not 

disprove the alternate hypothesis that the correlation was not zero. The correlation coefficient 

between in-degree and indirect ingoing connections was 0.19 with a p-value of 0.25 and the 

correlation coefficient between out-degree and indirect outgoing connections was 0.08 with a p-

value of 0.65. These findings are in agreeance with the findings of Noremark (2011).  

Rossi et al. (2017) defines super-spreaders to be farms with a mean infection potential 

above the 95th percentile. It is of interest then to use the metrics described above to identify 

potential super-spreaders in the network. Kinsley et al. (2019, p. 1) mentions that based on their 

simulations, “by targeting farms based on their mean infection potential, we could reduce the 

potential spread of an infectious pathogen by 80% when removing approximately 25% of farms”5. 

With the potential uses for mean infection potential in mind, it is of interest to use this metric as 

 
5 Although it is worth noting that Kinsley et al.’s results for mean infection potential do not agree with neither 
Rossi et al.’s nor our numbers, since Kinsley et al.’s numbers range from 0 to 70, Rossi et al.’s numbers do not 
exceed 0.02, and ours do not exceed 0.2 in the extreme case. 

Figure 3 – Comparing purchase-sales-balance and degree balance shows a near one-to-one correlation 
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well as the other metrics previously discussed to identify super-spreaders and remove them from 

the network in the event of a disease outbreak to mitigate spread early on. In particular, premises 

with high infection chain, high mean infection potential, high betweenness, and degree balance 

and purchase-sales-balance near zero would be very high-risk nodes in the network.  

To try and capture the effect of removing some potential super-spreaders, we ran a 

simulation using the R-package “epinet” (Groendyke & Welch, 2018). From the 39 premises, the 

nodes with the highest 10% mean infection potential were removed from the network. The 

number of infected premises and the entire length of the epidemic was calculated for 50 

simulations once for the full network and once for the network after removing identified super-

spreaders. The number of infected premises dropped on average 30 percentage points when only 

10% of premises were removed, and the entire epidemic lasted on average 7.4 days shorter. The 

95% confidence interval size for the percent of premises infected in the reduced network was 

3.87 percentage points, where the interval size for the percent of premises infected in the full 

model was 3.26, suggesting that a 30-percentage point difference is significant.  

With such positive results from following the methods of Rossi et al. (2017) and Kinsley 

et al. (2019), it was of interest to try removing the premises within the top 10% of a different 

variable. For this, we compared the full network with the network after removing the premises 

with the top 10% betweenness measure. Again, the number of infected premises and the length 

of the epidemic was calculated for 50 simulations. By removing the premises with the highest 

betweenness measure, the number of infected premises dropped by 71-percentage points on 

average, and the length of the epidemic was on average 23.4 days shorter. This is clearly a much 

better metric to use to identify super-spreaders compared to using the mean infection potential. 

The 95% confidence interval size for the average percent of infected premises with the reduced 

network is 1.17, implying that a 71-percentage point difference is significant.  
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4 CONCLUSION 

To summarise, this paper suggests that it is possible to drastically reduce the spread of a 

disease by removing a relatively small number of premises from the network by using network 

metrics to identify super-spreaders. In the event that African Swine Fever (ASF) virus enters 

Canada, removing super-spreaders early could determine whether our pork industry can survive 

an ASF outbreak, or whether such devastating effects seen in the pork industry of China (Haley 

& Gale, 2020) would happen here.  

Moving forward, it is of interest to determine the impact of removing premises with high 

numbers for the other metrics to compare with the impact of using mean infection potential. 

Tests should also be done to determine if combinations of metrics can be used to identify super-

spreaders. In the event of an outbreak, it is important to weigh the economic impact of shutting 

down 10% of premises with the economic results of an outbreak should the super-spreaders not 

be contained. This analysis has not been done for this project.  

Given more time, it would also be of interest to research the impact of other parties in 

the network such as trucks, veterinarians, and feed producers. These larger networks were 

analysed in both Thakur et al. (2016) and Rossi et al. (2017) with the common conclusion that 

other networks, not just the farms networks, need to be considered in the event of an outbreak. 

As mentioned in section 2.1, the data includes a variable for licence plate of the truck used in the 

movement. Due to the way the data was cleaned (in particular the cleaning step of summing total 

movements between two premises in one day), this variable could not be used. By changing the 

method of matching ingoing and outgoing records, it may be possible to use the licence plate 

variable to identify trucks. It is worth noting however that this variable is susceptible to much 

more human error than other variables.  

To continue the results found in this paper, it would be interesting to compare the node-

level metrics among different operation types as has been done in the literature (Koeppel et al. 

(2018); Kinsley et al. (2019); Thakur et al. (2016); Noremark et al. (2011)). The reason this was 

not done in this paper was that the operation types would have to be estimated for the 

synthesized dataset, and any comparisons made would be unreliable. In the real PigTrace 
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dataset, the operation types are known for a sample of the premises. Using the sample data, it 

would be possible to compare node-level metrics among operation types with a higher level of 

accuracy.  

It should be noted that the dataset used for this analysis was entirely fictional, and thus 

cannot definitively represent the real PigTrace data. Using the real data may present different 

challenges on top of the cleaning and matching processes. More research should be done with 

the real data before conclusions regarding an alternative method for controlling disease outbreak 

based on this project are reached. Rather, the purpose of this paper is to shed light on a possible 

supplemental approach to assist the current disease control measures.  

The analysis done in this paper can be applied to more than just ASF in Canadian pigs. 

There is room to apply the results of this paper to other livestock diseases, such as Foot and 

Mouth Disease. Similar ideas discussed in this paper could have an impact on the tracing of 

viruses that affect humans. While there are no reports of human movement, there is growing 

interest in the industry in using cellphone data to track high-traffic areas (Kasson, 2020). It is 

possible that using this information, potential super-spreaders could be detected in a similar way 

to the methods discussed here.   
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APPENDIX A – CODE WRITTEN FOR NETWORK ANALYSIS 
 

#degree and betweenness calculated with igraph, where transfers_graph  

# is an igraph object.  

deg_in<-degree(transfers_graph,mode="in") 

deg_out<-degree(transfers_graph,mode="out") 

btwns<-betweenness(transfers_graph) 

 

#startDate <- max(transfers$date) 

#t.days<-as.integer(max(transfers$date) - min(transfers$date)) 

#PremList <- list of premises in the network 

#n<- length(PremList) 

 

#Ingoing and outgoing infection chain from Noremark & Widgren, 2014 

OGCC<-OutgoingContactChain(transfers,PremList,startDate,t.days) 

IGCC<- IngoingContactChain(transfers,PremList,startDate,t.days) 

 

# mean infection potential based on Rossi et al., 2017:  

rho_d<-function(transfers,d,N,gamma=21){ 

  #calculate infection potential for the ith farm on day d 

  #-transfers is livestock movement dataframe 

  #-N is the total number of premises in the network 

  IIC_d<-IngoingContactChain(transfers,c(1:N),d,gamma) 

  OIC_d<-OutgoingContactChain(transfers,c(1:N),d,gamma) 

   

  rho_d<-IIC_d$ingoingContactChain*OIC_d$outgoingContactChain/(N-1) 

} 
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MIP<- function(transfers,m,first_d,N){ 

  #-transfers is livestock movement dataframe 

  #-m is number of days of interest. (Used 284) 

  #-first_d is the first day of interest.  

  #-N is the total number of premises in the network 

  v<-vector("list",m) 

  for(i in 1:m){ 

    v[[i]]<-rho_d(transfers,first_d+(i-1),N=N) 

  } 

  return(v) 

} 

 

#purchase sales balance based on Koeppel et al., 2018: 

PSB<-function(transfers){ 

  #-transfers is a dataframe of the movement data including: 

  #  -destination: receiving premise ID 

  #  -source:      sending premise ID 

  #  -d:           date of shipment 

  #  -n:           number of pigs in the shipment 

  P<- transfers %>% group_by(destination) %>% summarise(pigs_in = 
sum(n,na.rm=T)) 

  S<- transfers %>% group_by(source)      %>% summarise(pigs_out= 
sum(n,na.rm=T)) 

 

  PSB<- (P - S)/(P + S) 

} 
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APPENDIX B – HISTOGRAMS AND SCATTERPLOTS OF NETWORK METRICS 
 

 

 



25 
 

 

 Pearson's product-moment correlation 
 
t = 3.1976, df = 37, p-value = 0.002837 
alternative hypothesis:   true correlation is not equal to 0 
95 percent confidence interval: 0.1755717 0.6808684 
sample estimates:   0.4653124  

 

 

 Pearson's product-moment correlation 
 
t = 3.1971, df = 37, p-value = 0.002841 
alternative hypothesis:   true correlation is not equal to 0 
95 percent confidence interval: 0.1754992 0.6808283 
sample estimates:   0.4652538 
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 Pearson's product-moment correlation 
 
t = 1.1708, df = 37, p-value = 0.2492 
alternative hypothesis:   true correlation is not equal to 0 
95 percent confidence interval:  -0.1345253  0.4761360 
sample estimates:    0.1890144  
 

 

 Pearson's product-moment correlation 
 
t = 0.45997, df = 37, p-value = 0.6482 
alternative hypothesis:   true correlation is not equal to 0 
95 percent confidence interval: -0.2459659  0.3818357 
sample estimates:   0.07540287  


