STAT 3559 A: MATHEMATICAL STATISTICS

COURSE OUTLINE

Term: Winter 2020
Instructor: Dr. Natalia Stepanova
Email: nstep@math.carleton.ca
Website: http://culearn.carleton.ca/
Office: 5229 HP
Phone: 613-520-2600 ext. 1272
Office hour: Tuesday 1:30 pm – 2:30 pm, or by appointment

Timetable
The course involves 3 hours of lectures and one-hour tutorial per week. Tutorials will start on the week of January 13, 2020.

Lectures
Tuesday and Thursday, 10:05 am – 11:25 am, ME 3356

Tutorials
Thursday, 1:35 pm – 2:25 pm, UC 279

TA: Simona Sklenar; email: simonasklenar@cmail.carleton.ca

Assignments
There will be five assignments with specific due dates. All assignments count towards the term mark. Late assignments will not be accepted. Due dates for assignments are tentatively scheduled for January 30, February 13, March 5, March 19, and April 2, 2020.

Calculators
Only non-programmable calculators may be used for the midterm test and final exam.

Midterm, final exam and assignments policies
There will be one 80-minute midterm test written in class. The test is scheduled for February 27, 2020. There will be no make-up tests. If you miss the midterm test you will receive a zero unless you provide your instructor with a proper documented reason (e.g., medical), in which case the weight of the midterm test will be shifted to the final exam. The same rule applies to each assignment. Final exam: 3 hours. Time, date, and place TBA by Carleton University.

Grading
Final exam: 50% Midterm Test: 25% Assignments: 25%

Textbook

Notes
1. Assignments and their solutions, problem sets for tutorials, some practice problems, and announcements will be posted on cuLearn. Students should check the course web page on cuLearn on a regular basis.
2. You must obtain at least 50% of total AND at least 50% of the final exam mark to pass the course.

Academic Accommodation

You may need special arrangements to meet your academic obligations during the term. For an accommodation request the processes are as follows:
Pregnancy obligation: write to me with any requests for academic accommodation during the first two weeks of class, or as soon as possible after the need for accommodation is known to exist. For more details visit the Equity Services website http://www2.carleton.ca/equity/accommodation/.

Religious obligation: write to me with any requests for academic accommodation during the first two weeks of class, or as soon as possible after the need for accommodation is known to exist. For more details visit the Equity Services website http://www2.carleton.ca/equity/accommodation/.

Academic Accommodations for Students with Disabilities: The Paul Menton Centre for Students with Disabilities (PMC) provides services to students with Learning Disabilities (LD), psychiatric/mental health disabilities, Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorders (ASD), chronic medical conditions, and impairments in mobility, hearing, and vision. If you have a disability requiring academic accommodations in this course, please contact PMC at 613-520-6608 or pmc@carleton.ca for a formal evaluation. If you are already registered with the PMC, contact your PMC coordinator to send me your Letter of Accommodation at the beginning of the term, and no later than two weeks before the first in-class scheduled test or exam requiring accommodation (if applicable). After requesting accommodation from PMC, meet with me to ensure accommodation arrangements are made. Please consult the PMC website for the deadline to request accommodations for the formally-scheduled exam (if applicable) at http://www2.carleton.ca PMC/new-and-current-students/dates-and-deadlines/. You can visit the Equity Services website to view the policies and to obtain more detailed information on academic accommodation at http://www2.carleton.ca/equity/.

Academic Integrity: The University states unequivocally that it demands academic integrity from all its members. Academic dishonesty, in whatever form, is ultimately destructive to the values of the University. Students who violate the principles of academic integrity through dishonest practices undermine the value of the Carleton degree. Dishonesty in scholarly activity cannot be tolerated. Any student who violates the standards of academic integrity will be subject to appropriate sanctions.

Important dates:

- January 17, 2020: Last day for registration. Last day to change courses or sections for winter and fall term courses.
- January 31, 2020: Last day to withdraw from winter term courses with a full fee adjustment.
- February 14, 2020: April examination schedule available online.
- February 17-21, 2020: Winter break, no classes.
- March 13, 2020: Last day to request formal exam accommodations for December examinations to the Paul Menton Centre for Students with Disabilities.
- April 7, 2020: Last day of winter term classes. Last day for academic withdrawal from winter term courses.
April 13-25, 2020: Final examinations in winter term courses will be held.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Text sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Parametric statistical models. Concept of an estimator: unbiasedness, minimum variance, consistency, and asymptotic normality.</td>
<td>7.1, 8.7, lecture notes</td>
</tr>
<tr>
<td>3</td>
<td>Fisher’s lemma. Confidence intervals: general definition; confidence intervals for the mean and variance of a normal distribution; approximate confidence intervals.</td>
<td>8.3, 8.5, lecture notes</td>
</tr>
<tr>
<td>4</td>
<td>Gamma distribution: definition and properties. Beta distribution: definition and properties.</td>
<td>5.7, 5.8</td>
</tr>
<tr>
<td>5</td>
<td>Notions of statistical model, parameter space, loss function, and decision rule. Comparison of estimation procedures: admissible and inadmissible estimators, minimax estimators, and Bayes estimators (prior and posterior distributions, conjugate families of distributions, explicit form of a Bayes estimator with respect to the quadratic loss function).</td>
<td>7.4, lecture notes</td>
</tr>
<tr>
<td>6</td>
<td>Sufficient statistics: definition, Neyman-Fisher factorization theorem, Rao-Blackwell theorem (improving an estimator by conditioning it on a sufficient statistic); Lehmann-Scheffé uniqueness theorem; UMVU estimators.</td>
<td>7.7-7.9, lecture notes</td>
</tr>
<tr>
<td>8</td>
<td>Method of maximum likelihood: definition of a MLE, invariance property of a MLE, asymptotic properties of a MLE (consistency, asymptotic normality, asymptotic efficiency).</td>
<td>7.5, 8.8, lecture notes</td>
</tr>
<tr>
<td>9</td>
<td>Basic concepts of the Neyman-Pearson approach to hypothesis testing: statistical hypothesis; null and alternative hypotheses; simple and composite hypotheses; acceptance and rejection regions; test procedures; test function; type I and type II errors; level of significance; size of a test; p-value; power of a test; power function of a test.</td>
<td>9.1, lecture notes</td>
</tr>
<tr>
<td>10</td>
<td>Most powerful tests. Families of distributions with a monotone likelihood ratio; uniformly most powerful tests. Generalized likelihood ratio tests for two-sided alternatives.</td>
<td>9.2-9.3, pp. 583-584, lecture notes</td>
</tr>
<tr>
<td>11</td>
<td>Chi-square test of goodness-of-fit for a simple hypothesis. Chi-square test of goodness-of-fit for a composite hypothesis. Chi-square test of independence. Chi-square test of homogeneity.</td>
<td>10.1-10.4</td>
</tr>
<tr>
<td>12</td>
<td>Kolmogorov-Smirnov one-sample tests of goodness-of-fit. Kolmogorov-Smirnov two-sample tests of homogeneity. Sign test for testing hypothesis of no treatment effects and for comparing two different methods of treatment.</td>
<td>10.6, 10.8, lecture notes</td>
</tr>
</tbody>
</table>

Warning: The above weekly schedule is subject to change. Make sure you keep up to date with any changes in order of presentation, etc.