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Computation of Value-at-Risk and Related Optimization

Ximei Zhang

Abstract

The paper is based mainly on introducing VaR and exploring its optimization portfolio by enhancing

consumption level subject to required VaR and budgets. The concrete process of deriving the

expressions of VaR for specific cases we set in the background will be made, which gives a basic

notion and a better grasp of the definition of VaR. Furthermore, this paper will also involve

the introduction to CVaR and some basic knowledge about bonds and stocks in the aspect of

mathematics. We also analyze the results running from MATLAB to make further illustrations.

1 Introduction

VaR as a risk measurement method is widely used in various financial institutions, which is a

percentile of a potential loss distribution. In other words, VaR itself is the expected maximum

possible portfolio loss for a given confidence level and a certain holding period under normal

market volatility. VaR, however, does not control scenarios exceeding Var [1]. There are two

essential parameters need to know before introducing the concept of VaR: the holding period of

the portfolio and the confidence level. The holding period is relative to the liquidity of assets and

has a profound influence on VaR. Precisely, the stronger the asset liquidity, the shorter the holding

period. Conversely, the weaker the asset liquidity, the longer the holding period. Furthermore,

the choice of confidence level reflects the maximum loss acceptable to investors. The higher the

confidence level, the greater the probability that the loss of the portfolio is less than VaR. That is,

the less likelihood that VaR model will fail to predict the occurrence of extreme events.

CVaR also known as expected shortfall (ES) is a risk measurement technique superior to VaR

proposed by Rockafellar and Uryasev [10], which accounts for losses exceeding VaR and hence

depicts the risk in extreme tails. Hence, VaR and CVaR refer to different parts of the distribution

[7]. From the statistical perspective, CVaR is actually the conditional expectation of losses over

VaR.

The portfolio in the context involves two kinds of investment assets including bonds and stocks.

A bond is a debt security (or a loan) that an investor makes either to a government agency or to
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a corporation. The borrower promises to pay the lender interest at regular intervals and to repay

the principal at the end of the loan. A stock is a type of ownership security representing a share in

a cooperation. Importantly, geometric Brownian motion (GBM), which is a stochastic process in

continuous time where the logarithm of a random variable follows a Brownian motion, now is used

in financial mathematics and modelling stock prices.

This paper includes four sections in total. The first part introduces the formulas of bonds and

stocks as well as their corresponding expressions of rate of return. Based upon the expressions of

rate of return, we will construct two portfolios to be used to estimate VaR and CVaR in the next

section. The first portfolio merely considered the return on investments in bonds and stocks. The

other one still has regard to expenditure on consumption in addition to this. In the third section,

we will introduce the process of deriving the expressions of VaR and CVaR on the basis of the

two portfolios we constructed before. Finally, we will discuss how to distribute assets to enhance

traders’ consumption level with constraints on required VaR and budgets as far as possible.

2 Basic Notions of VaR and CVaR

2.1 Constructing a portfolio with a bond and a stock

2.1.1 Expressions of bond prices

In order to introduce a formula for the price of a bond at the end of t (t > 0) years P(t) and explain

its associated parameters, we consider a bond with an effective compound interest rate r, and P(t)

can be expressed as

P (t) = P (0)(1 + r
n)nt (1)

where P(0) is the present value; n is the number of periods in a year; nt is the number of periods

in the term of the bond.[13]

Remark:

If n = 1, this is a bond with an annually interest rate;

If n = 2, this is a bond with a semi-annually interest rate;

If n = 4, this is a bond with a quarterly interest rate.
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Analysis for rate of bond with single period

For simplifying, we consider the single period under the following assumptions.

• The holding period is one year (t=1)

• Consider an annual interest of r for the bond, compounded annually (so, nt = 1 since n = 1)

under the above assumptions P(t) = P(0)(1+r), and the return in percentage is equal to

Rbond = p(t)−p(0)
p(0) = p(t)

p(0) − 1 = r (2)

• Consider an annual interest of r for the bond, compounded semiannually (so, nt = 2 since n = 2)

under the above assumptions P (t) = P (0)(1 + r
2)2, and the return in percentage is equal to

Rbond = p(t)−p(0)
p(0) = p(t)

p(0) − 1 = (1 + r
2)2 − 1

• Consider an annual interest of r for the bond, compounded quartely (so, nt = 4 since n = 4)

under the above assumptions P (t) = P (0)(1 + r
4)4, and the return in percentage is equal to

Rbond = p(t)−p(0)
p(0) = p(t)

p(0) − 1 = (1 + r
4)4 − 1

2.1.2 Expressions of stock prices

According to Dunbar [12] and Dmouj [14], now, we suppose that the formula of the daily stock

closing price follows a geometric Brownian motion (GBM) defined by

S(t) = S0e
Y (t) = S0e

σB(t)+µt (3)

where t is the unit interval for time (one day here); S0 = S(t = 0) is the initial value invested

to the stock; St is the stock closing price of the day; Y (t) = σB(t) + µt, for t > 0 is a Brownian

motion (BM) with drift coefficient µ (instantaneous rate of return on a riskless asset) and standard

deviation σ (volatility) and {B(t), t > 0} is a standard BM. Hence, let Z(t) represent the standard

normal distribution,

Z(t) = B(t)√
t
∼ N(0, 1) since B(t) ∼ N(0, t) with σ = 1

Define the daily stock return in percentage is Rstock = S(t)
S0
− 1 = eY (t) − 1.

Note: GBM is a non-negative variation of BM.

Definition: Mathematically, a BM (A.K.A. Wiener process) is a continuous time random walk,

{B(t), t > 0} is a BM (process) satisfying the following properties:

1. B(t=0)=0 with probability 1;
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2. {B(t), t > 0} has stationary and independent increments;

• Stationarity: For all 0 < s < t,, the increment B(t)-B(s) corresponds to a normal

distribution with mean 0 and variance t-s;

• Independent increments: For non-overlapping intervals [ si, ti] , the random variables

B(ti)−B(si) are independent of each other.

3. B(t) ∼ N(0, σ2t), for every time t > 0.

If σ = 1, the process is called a standard BM. Hence, B(t)
σ is a standard BM.

Further remarks: For a large n, let Sn denote the stock closing price at day n.Now, let Xn = Sn
Sn−1

be the stock price changes in percentage

⇒ Sn = XnSn−1 = XnXn−1Sn−2 = ... = XnXn−1 ... X1S0

Note: X1 ... Xn are independent and identically random variables by the property of Markov

process. Next, we take the natural logarithm of both sides of Snequation and obtain the formula

of logSn

⇒ logSn =
∑n

i=0 logXi + logS0, where
∑n

i=0 logXi ≈ Y (t) ∼ N(µt, σ2t). Now, raising a base e to

the power of both sides, we get the initial formula of GBM again

Sn = S0e
Y (t) = S(t)

But it is noteworthy the S(t) here represents the price of some stock at year t if we set n = 252 (

because the trading days for one year are usually 252 days). Therefore, we can conclude that the

annually stock closing price also follows a GBM.

2.2 An Introduction to Value at Risk

This section gives definition of VaR and explores the prerequisites for calculating VaR, as well as

derives its expression under the condition of meeting prerequisites.

According to Saita [9], we know that Value-at-Risk (VaR) is the maximum loss in amount (dollar) or

percentage for a desired confidence level 1−α within a certain holding period (t). Mathematically,

the VaR with confidence level (1− α) ∈ (0,1) denoted by V aR1−α is a positive number:

P ( V0 − V > V aR1−α) = α (4)

or alternatively,
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P ( V0 − V 6 V aR1−α) = 1− α (5)

As a more intuitive and specific description of the definition of VaR, Kisiala [10] stated several

equivalent interpretations:

• V aRα is the minimum loss that will not be exceeded with probability α.

• V aRα is the α-quantile of the distribution of loss.

• V aRα is the smallest loss in the (1− α)× 100% worst cases.

• V aRα is the highest loss in the α× 100% best cases.

An example to calculate VaR

Next, we consider a relatively simple model to derive the expression of VaR based upon its definition.

Suppose Y is normally distributed with mean µ and variance σ2 :

V = V0(1 + Y ), for V0 known and µ > 0, σ2 <∞

Substitute V = V0(1 + Y ) into equation (1), we get

P (−V0Y > V aR1−α) = α since V0 − V = V0 − V0(1 + Y ) = −V0Y > 0

⇒ p(−Y > V aR1−α
V0

) = α

⇒ p(Y < −V aR1−α
V0

) = α for Y ∼ N(µ, σ2)

Note: −V aR1−α
V0

< 0 since both of V aR1−α and V0 are positive here. Therefore, y ∈ (−∞, 0) for

each y ∈ Y .

and we can create a new random variable Z such that Z = Y−µ
σ ∼ N(0, 1) is the standard normal

distribution.

⇒ P (Z <
−
V aR1−α

V0
−µ

σ ) = α

⇒ P (Z < −V aR1−α − µV0

σV0
) = α

⇒ −[ (V aR)1−α + µV0]
σV0

= Φ−1(α)

where Φ−1(•) is the inverse cumulative standard normal distribution.

⇒ (V aR)1−α + µV0

σV0
= −Φ−1(α)
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⇒ V aR1−α = −Φ−1(α)V0σ − µV0 = −( Φ−1(α)V0σ + µV0 )

where the value of V0 and σ are always positive; the percentage drift µ could be either positive or

negative.

Note: V aR1−α should be positive number, so the value of Φ−1(α)V0σ+µV0 is negative. Φ−1(α) 6 0

if α 6 0.5 There are three values of α are commonly considered: 0.10, 0.05, and 0.01. Hence, the

values of Φ−1(α) we need are usually negative.

Example: Now consider a $100 portfolio and suppose that the trader wants to estimate the

maximum potential loss at 95% confidence level. He estimates that µ = 0.05 and σ = 0.2 on a

annually basis. Then V aR0.95 = −(−1.645× 100× 0.2 + 0.05× 100) = $27.9.

The potential loss, obviously, depends upon µ and σ for a given confidence level (1 − α) within a

certain trading period. By Rockafellar and Uryasev [9], the random variable X representing loss

follows a Normal distribution with mean µ and variance V0
2σ2.

−X ∼ N(V0µ, V0
2σ2)

It can be easily understand that, if X ∼ N(µ, σ2)

V aR1−α(X) = µ+ Φ−1(α)σ (6)

So, the standard deviation σ representing the volatility is proportional to VaR.

This is an approach to calculate VaR of a portfolio with single asset for which asset return (i.e.,

loss = negative return) is a normal distribution. Similarly, VaR for a portfolio with multi-assets

can be also expressed as V aR1−α(Y ) = µ+ Φ−1(α)σ, where the asset return Y is jointly normally

distributed, both of the percentage drift µ and the percentage volatility σ are constant and derived

from the historical data. We have an introduce of the computations of drift µ and volatility σ of

stocks in the part of Appendix.

2.2.1 Computation of VaR for 2 cases

In this section, we will construct two model to estimate VaR: the first one is based on the portfolio

that merely considers return on investments in bonds and stocks; the second one still has regard

to expenditure on consumption in addition to this.
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Before deriving the expressions of VaR, one point worth mentioning here is the background in the

context. In this paper, we suppose that the holding period is 1 year and also, there are 3 given

confidence levels: 90%, 95% and 99% used to test models and make further illustrations. Moreover,

the rest of variables still need to be fixed to estimate the models we need include the initial value

of a portfolio V0 = $1000; the annually interest rate r = 0.05; the drift and volatility of stocks on

an annual basis are 0.15 and 0.2 respectively.

Case 1: Now, consider a trader with initial asset V0 decides to split his assests into two portions

with weights β and 1 − β (0 6 β 6 1), and returns R at the end of the holding period (one year)

in mathematical expression is

R = (1− β)V0Rbond + βV0Rstock

= (1− β)V0r + βV0(eY (t) − 1)

= V0r − βV0(r + 1− eY (t))

= V − V0

Then, suppose return is non-positive. That is,

R = V0[ r − β(r + 1− eY (t))] 6 0

⇒ r − β( r + 1− eY (t)) 6 0 since V0 > 0

⇒ r
r+1−eY (t) 6 β 6 1

This is the prerequisite satisfying R = V − V0 6 0. So, the loss equation we set before

V0 − V = −V0Y > 0, for Y ∼ N(µ, σ2).

For r
r+1−eY (t) 6 β 6 1, the return function R = V0r − βV0(r + 1 − eY (t)) = V − V0 6 0.

Then,V0 − V = βV0(r + 1− eY (t))− V0r = V0[β(r + 1)− βeY (t) − r] > 0. Now, we substitute this

equation V0 − V into equation (1) and get,

P ( V 0 − V > V aR1−α ) = α

⇒ P ( V0[β(r + 1)− βeY (t) − r] > V aR1−α ) = α

⇒ P ( β(r + 1)− βeY (t) − r > V aR1−α
V0

) = α

⇒ P ( −βeY (t) > V aR1−α
V0

+ r − β(r + 1) ) = α
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⇒ P ( eY (t) < (r + 1)− r
β −

V aR1−α
βV0

) = α

⇒ P ( Y (t) < ln[ (r + 1)− r
β −

V aR1−α
βV0

] ) = α where Y (t) = σB(t) + µt

⇒ P ( B(t) <
ln[ (r+1)− r

β
−V aR1−α

βV0
] −µt

σ ) = α where B(t) ∼ N(0, t), for t > 0

⇒ P ( Z(t) <
ln[ (r+1)− r

β
−V aR1−α

βV0
] −µt

σ
√
t

) = α

for
ln[ (r+1)− r

β
−V aR1−α

βV0
] −µt

σ
√
t

= Φ−1(α), after some computations, we get the expression of V aR1−α

with a constraint r
r+1−eY (t) 6 β 6 1

V aR1−α = V0[β(r + 1)− r − βeΦ−1(α)σ
√
t+µt] (7)

where the initial value V0 and the effective compound interest rate r are known. Now, suppose α

is given and we can find V aR1−α for the different cases of different given µ and σ. Both of values

have been set and fixed in this paper.

Scenario for case 1: Consider a portfolio with $1000 and suppose that the trader wants to

estimate the maximum potential loss at 90%, 95% and 99% confidence level, where µ = 0.15 and

σ = 0.2 on an annual basis, the annually interest rate of bond, compounded annually (n=1) is 5%

and here t = 1.

Prerequisite for estimating VaR: On the basis of definition of VaR mentioned above, the

constraint β should be r
r+1−eY (t) 6 β 6 1. From MATLAB code, we get the desired value of β

when VaR is equal to zero:

α 0.01 0.05 0.10

betaDesired 0.1561 0.2338 0.3314
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Importantly, the constraints of β of different preferred confidence levels for different traders are:

•β > 0.1561 at a confidence level of 99%

•β > 0.2338 at a confidence level of 95%

•β > 0.3314 at a confidence level of 90%

Based upon the definition of VaR and to make our research be meaningful, the value of β needs to

satisfy β > 0.3314. This is due to the fact that VaR brings down with the increase in confidence

level. Consequently, for β > 0.3314, there is always a negative return (V aR > 0) at any confidence

level from 90% to 99%. Therefore, we set β = 0.35 and β = 0.50 in the next analysis, as well as

the corresponding VaR shows as following:

These data running from MATLAB are a strong proof of deduction of β constraints. For β =

0.35 (approximate to 0.3314), VaR at 90% confidence level is 2.80, which is also very close to

zero. Furthermore, both of VaR and the constraint of β varies with the investors’ confidence level.

Precisely, if investors are willing to take on a relatively great risk, they will assign more asset to

stock. Conversely, they will assign more asset to bond. This conclusion will be also supported by
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Value at Risk

α β=0.35 β=0.50

0.01 62.14 110.20

0.05 24.85 56.93

0.10 2.80 25.43

Table 1: VaR for different values of α and β

the relationship between investors’ expected return and the value of β, which will show at the next

subsection.
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From the above figure, it is obviously to know that

• There is a negative relationship between VaR and the value of α, which implies that VaR is

proportional to confidence level (1−α). As the figure and the output from MATLAB code shown,

if this investor puts 35% assets of this portfolio into stock ( β = 0.35), there are 95% and 99%

chances he won’t lose more than $56.93 and $25.43 respectively at the end of one year.

• There is a positive relationship between VaR and the value of β and hence under the condition of

the same level of confidence level α, VaR for β = 0.50 is definitely greater than the case of β = 0.35.

Case 2: Continue to another cases that the consumption is considered and accounts for c (0 6
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c 6 1). Let the proportion of investment in stock stay at level β and that of bond, we use (1-c-β)

instead of (1-β). Then, as the same processes calculating VaR shown before, we firstly write out

the return equation

R = (1− c− β)V0Rbond + βV0Rstock − cV 0

= (1− c− β)V0r + βV0(eY (t) − 1)− cV 0

= V0[ r − c(r + 1)− β(r + 1− eY (t))]

= V − V0

Prerequisite for estimating VaR: Now we need to find a relationship between β and c satisfying

V0[ r − c(r + 1)− β(r + 1− eY (t))] 6 0⇒ r−(r+1)c
r+1 6 r=(r+1)c

r+1−eY (t) < β 6 1⇒ r
1+r 6 β + c 6 1

Note that the lower bound of β+c is larger than r
1+r , however. Hence, the actual restriction of

β+c, in fact, should be approximately 2r
1+r 6 β + c 6 1.

We will have a negative return as well as V0 − V = V0[ c(r + 1) + β(r + 1 − eY (t)) − r)] =

V0[ (β + c)(r + 1)− βeY (t) − r] > 0. Substituting V0 − V into equation (4), we get

P ( V 0 − V > V aR1−α ) = α

⇒ P ( V0[ (β + c)(r + 1)− βeY (t) − r] > V aR1−α ) = α

⇒ P ( −βeY (t) > V aR1−α
V0

+ r − (β + c)(r + 1) ) = α

⇒ P ( eY (t) < 1
β [(β + c)(r + 1)− r − V aR1−α

V0
] ) = α

⇒ P ( Y (t) < ln{ 1
β [(β + c)(r + 1)− r − V aR1−α

V0
]} ) = α Y (t) = σB(t) + µt

⇒ P ( B(t) <
ln{ 1

β
[(β+c)(r+1)−r−V aR1−α

V0
]}−µt

σ ) = α where B(t) ∼ N(0, t), for t > 0

⇒ P ( Z(t) <
ln{ 1

β
[(β+c)(r+1)−r−V aR1−α

V0
]}−µt

σ
√
t

) = α

where
ln{ 1

β
[(β+c)(r+1)−r−V aR1−α

V0
]}−µt

σ
√
t

= Φ−1(α) after some computations, we have

V aR1−α = V0[ (β + c)(r + 1)− r − βeΦ−1(α)σ
√
t+µt] (8)
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Scenario for case 2: Substituting V0 = $1000, r = 0.05, t = 1, µ = 0.15, and σ = 0.2 into equation

(8), all of data and plots show as follows. It is noteworthy that the proportion of asset assigned to

stock β, in this case, need to satisfy 0.095 ≈ 2×0.05
1+0.05 = 2r

1+r 6 β + c 6 1. We analyze the changes in

VaR by setting c = 0.048 β=0.048 and c = 0.20, β=0.15

Value at Risk

α β=0.048; c=0.048 β=0.15; c=0.20

0.01 15.78 208.06

0.05 10.67 192.08

0.10 7.64 182.63

Table 2: VaR for different values of α, β and c
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From Table 2 with β = 0.15 and c = 0.20, emphasized on the weights spent on consumption (c)

is 20%, that is $200. Then there is a 99% chance that the trader will lose equal to or less than

$208.06, which implies that the trader has a 99% confidence that his loss will not exceed $8.06 for

the part of investment in stocks. Similarly, there will be a minimum gain of $7.92 and $17.37 at α

= 0.05 and 0.10 levels.
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2.2.2 Computation of Expected Return

In order to have a clear view of the relationship between the proportion of investment in stocks β

and the expected return, we obtain their linear relationship and plot it by MATLAB.

As Saita[12] and Dmouj[14] demonstrated, a Brownian motion with drift denoted by Y (t) =

σB(t) + µt. Its distribution in any length t satisfies the normal distribution with mean µt and

variance σ2t. Considering the stochastic differential equation (SDE)

dY (t) = σdB(t) + µdt (9)

where dB(t) represents the change of Brownian motion over an infinitesimal time interval. Y(t) can

be negative so that it can be used to describe the rate of return. While the stock price S(t) = S0e
Y (t)

is always positive. Then dS(t) is the amount of change in the stock price in infinitesimal intervals,

dS(t)
S(t) is the rate of return during this interval. So

dS(t)
S(t) = σdB(t) + µdt = dY (t)

⇒ dS(t) = σS(t)dB(t) + µS(t)dt

This is called It
−
o dirft-diffusion process.

Set f(t) = ln(S(t)), and ∂f(t)
∂S(t) = 1

S(t) ,
∂2f(t)

∂S(t)2 = − 1
S2(t)

, ∂f(t)
∂t = 0

df(t) = dln(S(t))

= ( ∂f(t)
∂S(t)σS(t))dB(t) + (∂f(t)

∂t + ∂f(t)
∂S(t)µS(t) + 1

2
∂2f(t)

∂S(t)2σ
2S2(t))dt

= ( 1
S(t)σS(t))dB(t) + ( 1

S(t)µS(t) + 1
2(− 1

S2(t)
σ2S2(t))dt

= σdB(t) + (µ− 1
2σ

2)dt (10)

Then, we can rewrite the geometric Brownian motion:

S(t) = S0e
(µ−σ

2

2
)t+σB(t) (11)

⇒ E[S(t)] = E[S0e
(µ−σ

2

2
)+σB(t)] = S0e

(µ−σ
2

2
)tE[eσB(t)] = S0e

(µ−σ
2

2
)te

σ2

2
t = S0e

µt

⇒ E[R] = E[V0(r − β(r + 1) + βeY (t))] = V0(r − β(r + 1) + βV0E[eY (t)]

= V0(r − β(r + 1) + βV0e
µt = V0[r − β(r + 1− eµt)] (12)
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β Expected return

0.1 61.18

0.2 72.37

0.5 105.92

Table 3: The relationship between β and ER
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Above plot gives us a clear view that the expected return is proportional to β. This implies the

more investors put on stock, the higher return they expected. At the same time, traders have to

bear a relatively great risk, however.

2.2.3 Analysis of different trading periods

Now, we try to analyze the changes in VaR and CVaR for different holding period of this portfolio.

The tables and plots illustrate those variance in detail.

Note: It is important to note that rate of bonds will change with the increases in holding period

t. From equation (1), we have for t =1, Rbond = r = 0.05

for t = 2, Rbond = (1 + r
1)1×2 − 1 = (1 + 0.05

1 )2 − 1 = 0.1025

for t = 3, Rbond = (1 + r
1)1×3 − 1 = (1 + 0.05

1 )3 − 1 ≈ 0.1576
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Value-at-Risk

α t=1 t=2 t=3

0.01 208.06 178.51 142.47

0.05 192.08 156.22 114.49

0.10 162.63 142.26 96.65

Table 4: VaR for β = 0.15, c=0.20
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The above results depicts that VaR has a positive trend associate with trading periods. VaR drops

off but with the growth of holding period of portfolio. In addition, if confidence level was fixed, an

increase in holding period of a portfolio bumps VaR up as well. It is easily and intuitively to see

from the plot shown above . Hence, for traders who are preferring small risks, they can choose a

relatively long holding period.

2.3 An Introduction to Conditional Value at Risk

Conditional Value at Risk (CVaR) also known as Expected Shortfall (ES), Average Value-at-Risk,

or Tail Conditional Expectation is a measure that can be used to calculate the average size of losses

in the worst α region of the given distribution. The term of conditional value-at-risk was stated by

Rockfellar and Uryasev [10]. Consider the case that ES is measured with the same confidence level

15



(1− α) as the VaR that we mentioned at the beginning. Then, its mathematical expression is

CV aR1−α := E[V0 − V |V0 − V > V aR1−α] (13)

which is in case that P (V0−V > V aR1−α) = α = 1−F(V0−V )(V aR1−α). Note that the loss V0−V

is positive and so the return function we set before is R = V − V0 = −(V0 − V ) < 0. Hence,

CV aR1−α can also be expressed as

CV aR1−α := E[R|R < −V aR1−α < 0] (14)

Based on the Acerbi’s Integral Formula [11], we can have another expression of CVaR by solving

the following integral formul

CV aR1−α := E[V0 − V |V0 − V > V aR1−α]) = 1
α

∫ 1
1−α V aR1−βdβ

= 1
α

∫ α
0 V aR1−βdβ (15)

Computation of CVaR for Example:

On the basis of the conclusion from example, we have if X is the loss distribution and follows a

normal distribution with mean µ and variance σ2, and V aR1−α(X) = Φ−1(α)σ. As well as the

example at the beginning gives us −X ∼ N(V0µ, V0
2σ2) since V aR1−α(X) = −(Φ−1(α)V0σ+µV0).

So we are going to compute its equation of CV aR1−α(X). By definition and Uryasev et al.[3], we

have,

CV aR1−α(X) = E[X|X > V aR1−α(X)]

=
∫∞
−∞ (V0 − V )dF 1−α

X (V0 − V )

where F 1−α
X (V0 − V ) = P (V0 − V > V aR1−α(X))

= P (V0 − V > −V0µ− V0σZ)

= P (Z >
(V 0−V )+V0µ
−V0σ

)

= 1− Φ(
(V 0−V )+V0µ
−V0σ

) = α

⇒ Φ(
(V 0−V )+V0µ
−V0σ

) = 1− α

where Φ(·) is a cumulative standard normal distribution. We can then deduce that

V aR1−α(X) = V0 − V = −Φ−1(1− α)V0σ − V0µ

where Φ−1(·) is the inverse cumulative standard normal distribution. Then, by Acerbi’s Integral
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Formula, CV aR1−α(X) = 1
α

∫ 1
1−α V aR1−β(X)dβ. Now, we can rewrite above equation by using

the previous result.

CV aR1−α(X) = 1
α

∫ 1
1−α−(Φ−1(1− β)V0σ − V0µ)dβ

= 1
α

∫ 1
1−α−Φ−1(1− β)V0σdβ − 1

α

∫ 1
1−α V0µdβ

= 1
α

∫ 1
1−α−Φ−1(1− β)V0σdβ−V0µ

To solve the integral part of
∫ 1

1−α−Φ−1(1− β)V0σdβ, we use the change of variable introducing

y = Φ−1(1 − β), 1 − β = Φ(y) ⇒ β = 1 − Φ(y), dβ = −φ(y)dy, where φ(y) = 1√
2π
e−

y2

2 is the

standard normal density function.

⇒
∫ 1

1−α−Φ−1(1− β)V0σdβ =
∫ Φ−1(1)

Φ−1(1−α)
−yV0σ(−φ(y))dy

=
∫∞

Φ−1(1−α) yV0σφ(y)dy

=
∫∞

Φ−1(1−α) yV0σ
1√
2π
e−

y2

2 dy

= V0σ√
2π

∫∞
Φ−1(1−α) ye

− y
2

2 dy

= V0σ√
2π
{−e−

y2

2 |
∞

Φ−1(1− α)

= V0σ
1√
2π
e−

(Φ−1(1−α))
2

2

= V0σφ(Φ−1(1− α))

We can get the expression of CV aR1−α(X) as follows

CV aR1−α(X) = 1
α

∫ 1
1−α−Φ−1(1− β)V0σdβ − V0µ = 1

α [V0σφ(Φ−1(1− α))] = −V0µ+V0σ
φ(Φ−1(1−α))

α

α VaR CVaR

0.01 315.27 383.04

0.05 178.97 262.54

0.10 106.31 201.00

Table 5: VaR & CVaR
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From table 3, it can be concluded that, VaR and CVaR both decreases with the climb in confidence

level. Moreover, at the same confidence level, CVaR is strictly greater than VaR, because VaR and

CVaR .This is also a further illustration of the definition of VaR.

2.3.1 Computation of CVaR for 2 cases

Case 1: From equation(7), V aR1−α = V0 [β(r + 1)− r − βeΦ−1(α)σ
√
t+µt]

where Φ−1(α)σ
√
t+ µt = σ

√
tZ + µt = Y (t) ∼ N(µt, σ2t), for Z ∼ N(0, 1)

Now, to compute CVaR, we use the formula of VaR P (V0 − V > V aR1−α) = α

⇒ P (V0 − V > V aR1−α) = P (V0 − V > V0 [β(r + 1)− r − βeΦ−1(α)σ
√
t+µt])

= P (V0 − V > V0 [β(r + 1)− r − βeσ
√
tZ+µt])

= P (βV0e
σ
√
tZ+µt > V0 [β(r + 1)− r]− (V0 − V ))

= P (eσ
√
tZ+µt > 1

β [β(r + 1)− r]− 1
βV0

(V0 − V ))

= P (σ
√
tZ + µt > ln

{
1
β [β(r + 1)− r]− 1

βV0
(V0 − V )

}
)

= P (Z >
ln
{

1
β

[β(r+1)−r]− 1
βV0

(V0−V )
}
−µt

σ
√
t

)
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= 1− Φ(
ln
{

1
β

[β(r+1)−r]− 1
βV0

(V0−V )
}
−µt

σ
√
t

) = α

where Φ(·) is a cumulative standard normal distribution. We can then deduce that the V aR1−α

under the condition V0 − V > V aR1−α is

V aR1−α = V0 − V = −βV0{eΦ−1(1−α)σ
√
t+µt + r

β − (r + 1)}

= −βV0{eΦ−1(1−α)σ
√
t+µt} − V0r + βV0(r + 1)

whereΦ−1(·) is the inverse cumulative standard normal distribution. By Acerbi’s Integral Formula,

we have

CV aR1−α = 1
α

∫ 1
1−α V aR1−udu (16)

Now, we can rewrite CVaR using the previous result,

CV aR1−α = 1
α

∫ 1
1−α (−βV0{eΦ−1(1−u)σ

√
t+µt} − V0r + βV0(r + 1))du

= 1
α(−βV0e

µt)
∫ 1

1−α {e
Φ−1(1−u)σ

√
t}du+ 1

α

∫ 1
1−α−V0r + βV0(r + 1)du

= 1
α(−βV0e

µt)
∫ 1

1−α {e
Φ−1(1−u)σ

√
t}du− V0r + βV0(r + 1)

To solve the integral part of
∫ 1

1−α e
Φ−1(1−u)σ

√
tdu, we need to use a change of variable introducing

y = Φ−1(1− u) ⇒ 1− u = Φ(y) ⇒ du = −φ(y)dy, where φ(y) = 1√
2π
e−

y2

2 is the standard normal

density function

∫ 1
1−α e

Φ−1(1−u)σ
√
tdu =

∫ Φ−1(1)
Φ−1(1−α)

eyσ
√
t(−φ(y))dy = − 1√

2π

∫∞
Φ−1(1−α) e

− y
2

2 eyσ
√
tdy

= − 1√
2π
{
√
π√
2
e
σ2t
2 erf(y−σ

√
t√

2
)|

∞

Φ−1(1− α)
}

where erf(z)= 2√
π

∫ z
0 e
−t2dt = 2Φ(z

√
2)− 1

= 1
2e

σ2t
2 (2Φ(y − σ

√
t)− 1)|

Φ−1(α)

−∞

= e
σ2t
2 {Φ(Φ−1(α)− σ

√
t)}

⇒ CV aR1−α = 1
α(−βV0e

µt)
∫ 1

1−α {e
Φ−1(1−u)σ

√
t}du− V0r + βV0(r + 1)

= 1
α(−βV0e

µt)e
σ2t
2 {Φ(Φ−1(α)− σ

√
t)} − V0r + βV0(r + 1) (17)
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This result can be supported by the proposition of CVaR formula for the log-normal distribution

[16]. For the log-normal distribution the CVaR @ α can be calculated as CVaR = 1−eµ+σ2

2
Φ(Φ−1(α)−σ)

α

with VaR @α equal to 1 − eµ+Φ−1(α)σ. This is equivalent to that for the log-normal distribution,

CV aR1−α = eµ+σ2

2
Φ(Φ−1(α)−σ)

α with V aR1−α = eµ+Φ−1(α)σ

We test the model of CVaR using the same values of β as testing the model of VaR of case 1. Thus,

set beta=0.35 and β=0.50, we then obtain results from MATLAB showing as follows:

β=0.35

α VaR CVaR

0.01 62.14 78.43

0.05 24.85 47.60

0.10 2.80 30.29

Table 6: VaR vs CVaR

β=0.50

α VaR CVaR

0.01 110.20 133.47

0.05 56.93 89.43

0.10 25.43 64.71

Table 7: VaR vs CVaR
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By analyzing table 5 and the plots shown above, we can have results that is consistent with the

conclusions of example. In addition, CVaR is the measure estimating risk that is more sensitive to

the value of β (assets assigned to stocks in percentage) than VaR. All of tables and plots give us a

clear view that the difference between the values of VaR and CVaR gradually expands with declines

in confidence level. This is due to the fact that VaR and CVaR refer to different part of the given

distribution. Furthermore, we have concluded that from above analysis that VaR has a positive

relationship with confidence level, as well as by the definition of CVaR, which is equal to conditional

expectation of losses exceeding VaR. Intuitively, the smaller VaR, the greater expectations losses

over VaR.

Case 2: Repeating the same procedures as case 1, we obtain the equation of CVaR for case 2:

CV aR1−α = 1
α(−βV0e

µt)e
σ2t
2 {Φ(Φ−1(α)− σ

√
t)} − V0r + (β + c)V0(r + 1) (18)
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β=0.048; c=0.048

α VaR CVaR

0.01 15.78 18.01

0.05 10.67 13.78

0.10 7.64 11.41

Table 8: VaR vs CVaR

β=0.15; c=0.20

α VaR CVaR

0.01 208.06 215.04

0.05 192.08 201.83

0.10 182.63 194.41

Table 9: VaR vs CVaR
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The results shown above are consistent with the conclusions we made in case 1. One other point

worth mentioning here is that VaR at level α=0.10 is 7.64 with β=c=0.048 (β + c ≈ 2
21). So the

deduction above with respect to the constraints of β+c where VaR > 0 is feasible.
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3 Portfolio Optimization

3.1 Background for optimal portfolio

In this section, we refer to Gaivoronski and Pflug [2], Cid, Soler and Blanco [4], and conclude that

the optimal portfolio can be obtained by the two main processes:

1. Constructing objective function and explore or setting the constraints of required equations

or variables for the questions we are exploring.

2. Minimizing or maximizing objective function subject to constraints on required formulas

or variables.

The objective of portfolio optimization is to deal with the problem of asset allocation in this paper

and it can generally be illustrated as

min or max f(x)← objective function

subject to g(x) > 0← constraints

x ∈ D ←definition domain

3.2 Model Construction

This section focuses mainly on enhancing the consumption level as far as possible. We define a

utility function regarding for consumption level.

maxc u(c) = cγ , for 0 < γ < 1

subject to V aR(β,c)
V0

6 w where 0 < w < 1

V aR(β, c) > 0,

0 < β, c < 1

3.3 Scenarios for Portfolio Optimization

As a further illustration of our model, we consider an example of w = 15%. Furthermore, we set γ =

0.8 and utility function is u(c) = c0.8. Now we discusse the first constraint V aR(β,c)
V0

6 w by three

confidence levels 90%, 95% and 99%. After some computations, we get the first constraints,

1050c + 320.408β 6 200, for α = 0.01

1050c + 213.87β 6 200, for α = 0.05

1050c + 150.854β 6 200, for α = 0.10
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This is equivalent to Ac + Bβ 6 200, where A = [1050 1050 1050]
′
and B = [320.408 213.87 150.854]

′

The second constraint is

k 6 β + c 6 1 (19)

where k is a constant but varies with the changes in confidence level.

This example next will be extended to two cases:

1.The trader don’t want to take a large risk. It can be explained that the loss 15% we assumed in

the background is the maximum acceptable for them. Consequently, they hope that there is only

1% possibility of loss exceeding 15% of the total.

2. The trader is willing to take a larger risk. In other words, it is good for them if they have 90%

or 95% confidence level that the maximum loss is 15%.

We next construct the optimization model for the first-case scenario

maxc u(c) = c0.8

subject to 1050c+ 320.408β 6 200

0.24 6 β + c 6 1,

where =0.24≈ 0.1561+0.2338+0.3314
3 . Recall that the numbers 0.1561, 0.2338 and 0.3314 are the values

of β when VaR = 0 for case 1.

c (the proportion

of consumption)

β(weight assigned

to stock)

0.1687 0.0713

Table 10: Optimization for VaR 6 15% with the highest confidence level 99%
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c = 0.1687, β = 0.0713

α VaR CVaR

0.01 149.98 153.30

0.05 142.38 147.02

0.10 137.89 143.49

Table 11: Optimization Test for V aR 6 15% with the highest confidence level 99%

For c = 16.87% and β = 7.13%, it is obviously shown that VaR for α = 0.01 is approximately $150

because of the negligible investment in stock.

Comparing with the model of optimization for the two-case scenarios, this one (confidence level =

95%) is differ from the second constraints of the first one.

maxc u(c) = c0.8

subject to 1050c+ 213.87β 6 200

0.2338 6 β + c 6 1
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c (the proportion

of consumption)

β(weight assigned

to stock)

0.1794 0.0544

Table 12: Optimization for VaR 6 15% with the highest confidence level 95%

c = 0.1794, β = 0.0544

α VaR CVaR

0.01 155.80 158.33

0.05 150.00 153.54

0.10 146.58 150.85

Table 13: Optimization Test for V aR 6 15% with the highest confidence level 95%

Table 15 gives us a clear view that traders will be with 95% confidence level that their maximum

loss is $150 when consumption and assets invested in stock take up 17.94% and 5/44% respectively.

The model of optimization at 90% confidence level is

maxc u(c) = c0.8

26



subject to 1050c+ 150.854β 6 200

0.3314 6 β + c 6 1

c (the proportion

of consumption)

β(weight assigned

to stock)

0.1668 0.1646

Table 14: Optimization for VaR 6 15% with the highest confidence level 90%

c = 0.1668, β = 0.1646

α VaR CVaR

0.01 177.88 185.54

0.05 160.34 171.04

0.10 149.97 162.90

Table 15: Optimization Test for V aR 6 15% with the highest confidence level 90%
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To sum up, there is a 90% chance that the losses will not exceed $149.97 when traders’ consumption

level accounts for 16.68% , the investment in stock and bond approximately achieve up to 16.46%

and 66.86%. Because asset in stock, in this case achieves up to 16.46%, the likelihood of high

returns on stock is desired to expect. Thus, this part of assets can be used for consumption.

Comparing with the CVaR for the 3 cases with different optimization model, it can be clearly seen

that the difference of VaR and CVaR are quite small. More importantly, after some calculations by

hand, we obtained that the mean of the difference of the three optimal portfolios are 4.52, 3.45 and

10.43 respectively. Precisely speaking, the values of β which represents risk experience a decrease

and a relatively significant increase, so does the differences between VaR and CVaR. Thus, we

can conclude that CVaR is more sensitive to the changes in β (the weights of stock). In addition,

With these values at hand for comparison purposes, it is crucial to note that the consumption level

(values of c) for the three cases are quite close, while the changes in assets invested in stock (values

of β) are relatively great.

4 Conclusion

For the portfolio with 2 assets of bonds and stocks, we have obtained the distinct formulas of VaR

and CVaR in the two cases that whether the expenses on consumption is considered. We can then

get the corresponding values of different confidence level (1 − α) from MATLAB. These results

are consistent with the concepts of VaR and CVaR: CVaR strictly lies above VaR at the same

confidence level on the plot. Intuitively, VaR and CVaR are in inverse ration with confidence level

of traders. Moreover, both of VaR and CVaR increase if there is a climb in the value of β (assets

invested into stock in percentage). CVaR, however, is more sensitive to the estimation error than

VaR. In the light of the different values in percentage of β and c after optimizing, we found that,

with an alteration in α, there is no significant fluctuations in the value of c comparing with the

relatively great changes in β.
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5 Appendix

5.1 Stock price as a Markov process

As mentioned above, S(t) = S0e
Y (t) for t > 0 is a GBM and let it represents the present state

(price) and {S(u), 0 6 u < t} denote the process before time t, S(t+h) is the future (next) state,

where h > 0 is the length of time interval between two consecutive trading periods expressed in

yearly. Then

S(t+ h) = S0e
Y (t+h) = S0e

Y (t)+Y (t+h)−Y (t)

= S0e
Y (t)eY (t+h)−Y (t)

= S(t)eY (t+h)−Y (t)

It is clearly that the future state {Y (t+h)−Y (t)} is independent of the past state {S(u), 0 6 u < t}

and only depends on the present state S(t). In other words, the current value of the process contains

all the information needed to make predictions about the future. Hence, GBM is a Markov process.

[12]

5.2 Computation of volatility and drift

There are two types of volatility, one is backward looking and the other is forward looking. The

former one is calculated from historical data, and the latter is derived from the Black-Scholes (B-S)

option pricing model based on the current option price. We focus mainly on exploring the algorithm

of Backward looking. [14]

Backward looking volatility:

We define

n+1 : number of observations;

St: stock closing price at the end of time t;

τ : the length of interval in year (τ = 1
n).

The daily log return on day i denoted by Ri is

Ri = ln( Si
Si−1

) i = 1, ..., n

The mathematical expression of daily volatility is usually expressed as

σdaily =

√
1

n−1

∑n
i=1 (Ri −

−
R)

2
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Or alternatively, √
1

n−1

∑n
i=1Ri

2 − 1
n(n−1)(

∑n
i=1Ri)

2

where
−
R = 1

n

∑n
i=1Ri. In general, there are n = 252 trading days for one year, so τ = 1

252 and the

annualized volatility σannual =
σdaily√

τ
= σdaily

√
252.

Drift

By equation (18), we have the annualized drift = µ
τ −

1
2σ

2

5.3 Code for MATLAB

Code for case 1

% fix the values needed in VaR equation

% fix the values needed in VaR equation

V0=1000; r=0.05; mu=0.15; sigma=0.2;t=1;

alpha = 0.01; alpha1 = 0.05; alpha2 = 0.10;

beta = 0:0.1:1;

k_alpha=icdf(’normal’,alpha,0,1);

k_alpha1=icdf(’normal’,alpha1,0,1);

k_alpha2=icdf(’normal’,alpha2,0,1);

VaR = V0*(beta*(r+1)-r-beta*exp(sigma*sqrt(t)*k_alpha+mu*t));

VaR1 = V0*(beta*(r+1)-r-beta*exp(sigma*sqrt(t)*k_alpha1+mu*t));

VaR2 = V0*(beta*(r+1)-r-beta*exp(sigma*sqrt(t)*k_alpha2+mu*t));

plot( beta,VaR,beta,VaR1,beta,VaR2,’.-’),legend(’\alpha=0.01’, ’\alpha=0.05’, ’\alpha=0.10’,’Location’,’NorthWest’),xlabel(’\beta’),ylabel(’VaR’),axis([0 1 -50 300])

grid on;

fprintf(’beta VaR\n’);

y = [beta; VaR];

fprintf(’%f %f\n’, y);

fprintf(’beta VaR\n’);

y = [beta; VaR1];

fprintf(’%f %f\n’, y);
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fprintf(’beta VaR\n’);

y = [beta; VaR2];

fprintf(’%f %f\n’, y);

betaDesired = interp1(VaR,beta,0,’spline’)

betaDesired1 = interp1(VaR1,beta,0,’spline’)

betaDesired2 = interp1(VaR2,beta,0,’spline’)

beta VaR

0.000000 -50.000000

0.100000 -17.959217

0.200000 14.081566

0.300000 46.122350

0.400000 78.163133

0.500000 110.203916

0.600000 142.244699

0.700000 174.285482

0.800000 206.326266

0.900000 238.367049

1.000000 270.407832

beta VaR

0.000000 -50.000000

0.100000 -28.613038

0.200000 -7.226075

0.300000 14.160887

0.400000 35.547849

0.500000 56.934812

0.600000 78.321774

0.700000 99.708736

0.800000 121.095699

0.900000 142.482661
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1.000000 163.869624

beta VaR

0.000000 -50.000000

0.100000 -34.914559

0.200000 -19.829118

0.300000 -4.743676

0.400000 10.341765

0.500000 25.427206

0.600000 40.512647

0.700000 55.598088

0.800000 70.683530

0.900000 85.768971

1.000000 100.854412

betaDesired = 0.1561

betaDesired1 = 0.2338

betaDesired2 = 0.3314

% fix the values needed in VaR equation

V0=1000; beta=0.35; r=0.05; mu=0.15; sigma=0.2;t=1;

beta_H=0.5;

alpha = 0:0.01:0.1;

k_alpha=icdf(’normal’,alpha,0,1);

% eqaution of VaR with beta = 0.35

VaR = V0*(beta*(r+1)-r-beta*exp(sigma*sqrt(t)*k_alpha+mu*t));

subplot(2,2,1)

plot(alpha,VaR,’r’),xlabel(’\alpha’),ylabel(’VaR’),title(’VaR for \beta=0.35’),axis([0.01 0.1 0 100])

% equation of VaR with beta = 0.5

VaR_H = V0*(beta_H*(r+1)-r-beta_H*exp(sigma*sqrt(t)*k_alpha+mu*t));

subplot(2,2,2)

plot(alpha,VaR_H,’b’),xlabel(’\alpha’),ylabel(’VaR’),title(’VaR for \beta=0.5’),axis([0.01 0.1 0 200])
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subplot(2,1,2)

plot(alpha,VaR,alpha,VaR_H,’.-’),legend(’\beta=0.35’, ’\beta=0.5’), xlabel(’\alpha’),ylabel(’VaR’),axis([0 0.1 0 600])

fprintf(’alpha VaR\n’);

y = [alpha; VaR];

fprintf(’%f %f\n’, y);

fprintf(’alpha VaR\n’);

y = [alpha; VaR_H];

fprintf(’%f %f\n’, y);

alpha VaR

0.000000 317.500000

0.010000 62.142741

0.020000 47.834211

0.030000 38.342976

0.040000 30.983553

0.050000 24.854368

0.060000 19.534283

0.070000 14.790092

0.080000 10.478173

0.090000 6.503348

0.100000 2.799044

alpha VaR

0.000000 475.000000

0.010000 110.203916

0.020000 89.763159

0.030000 76.204252

0.040000 65.690790

0.050000 56.934812

0.060000 49.334690

0.070000 42.557274
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0.080000 36.397390

0.090000 30.719068

0.100000 25.427206

Code for case 2

alpha = 0.01:0.01:0.1;

k_alpha=icdf(’normal’,alpha,0,1);

var = @(V0,beta,c,r,t,k_alpha,mu,sigma) V0*((beta+c)*(r+1)-r-beta*exp(sigma*sqrt(t)*k_alpha+mu*t));

VaR = var(1000,0.01,0.05,0.05,1,k_alpha,0.15,0.2);

VaR_H = var(1000,0.02,0.10,0.05,1,k_alpha,0.15,0.2);

subplot(2,2,1)

plot(alpha,VaR,’r’),xlabel(’\alpha’),ylabel(’VaR’),title(’VaR for \beta=0.01, c=0.05’),axis([0.01 0.1 0 10])

subplot(2,2,2)

plot(alpha,VaR_H,’b’),xlabel(’\alpha’),ylabel(’VaR’),title(’VaR for \beta=0.02, c=0.10’),axis([0.01 0.1 50 70])

subplot(2,1,2)

plot(alpha,VaR,alpha,VaR_H,’.-’),legend(’\beta=0.01,c=0.05’, ’\beta=0.02,c=0.10’), xlabel(’\alpha’),ylabel(’VaR’),axis([0.01 0.1 0 100])

fprintf(’alpha VaR\n’);

y = [alpha; VaR];

fprintf(’%f %f\n’, y);

fprintf(’alpha VaR_H\n’);

y = [alpha; VaR_H];

fprintf(’%f %f\n’, y);

alpha VaR

0.010000 5.704078

0.020000 5.295263

0.030000 5.024085

0.040000 4.813816
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0.050000 4.638696

0.060000 4.486694

0.070000 4.351145

0.080000 4.227948

0.090000 4.114381

0.100000 4.008544

alpha VaR_H

0.010000 61.408157

0.020000 60.590526

0.030000 60.048170

0.040000 59.627632

0.050000 59.277392

0.060000 58.973388

0.070000 58.702291

0.080000 58.455896

0.090000 58.228763

0.100000 58.017088

Code for example

alpha = 0:0.01:0.1;

k_alpha=icdf(’normal’,1-alpha,0,1);

k_alpha1=icdf(’normal’,alpha,0,1);

Phi_z = normpdf(k_alpha,0,1);

var = @(V0,mu,sigma,k_alpha1) -(k_alpha1.*V0*sigma+mu*V0);

cvar = @(V0,mu,sigma,Phi_z,alpha) -V0*mu+V0*sigma*Phi_z./alpha;

VaR = var(1000,0.15,0.2,k_alpha1);

CVaR = cvar(1000,0.15,0.2,Phi_z,alpha);

plot(alpha,CVaR,alpha,VaR,’.-’),xlabel(’\alpha’),ylabel(’CVaR & VaR’),legend(’CVaR’,’VaR’),axis([0.01 0.1 100 400])
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fprintf(’alpha CVaR\n’);

y = [alpha; CVaR];

fprintf(’%f %f\n’, y);

fprintf(’alpha VaR\n’);

y = [alpha; VaR];

fprintf(’%f %f\n’, y);

alpha CVaR

0.000000 NaN

0.010000 383.042844

0.020000 334.181359

0.030000 303.613009

0.040000 280.868870

0.050000 262.542562

0.060000 247.076551

0.070000 233.622613

0.080000 221.665566

0.090000 210.868062

0.100000 200.996664

alpha VaR

0.000000 Inf

0.010000 315.269575

0.020000 260.749782

0.030000 226.158722

0.040000 200.137214

0.050000 178.970725

0.060000 160.954719

0.070000 145.158206

0.080000 131.014312

0.090000 118.151007

0.100000 106.310313
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Code for Expected Return

V0=1000; r=0.05; mu=0.15; t=1;

beta=0:0.1:1;

E_R = V0*(r-beta.*(r+1-exp(mu*t)));

plot(beta,E_R),xlabel(’\beta’),ylabel(’Expected Return’),axis([0 1 50 180])

grid on;

fprintf(’beta E_R\n’);

y = [beta; E_R];

fprintf(’%f %f\n’, y);

beta E_R

0.000000 50.000000

0.100000 61.183424

0.200000 72.366849

0.300000 83.550273

0.400000 94.733697

0.500000 105.917121

0.600000 117.100546

0.700000 128.283970

0.800000 139.467394

0.900000 150.650818

1.000000 161.834243

Code for different holding periods

alpha = 0:0.01:0.1;

k_alpha=icdf(’normal’,alpha,0,1);

z = k_alpha-sigma*sqrt(t);

Phi_z = normcdf(z,0,1);

var = @(V0,beta,c,r,t,k_alpha,mu,sigma) V0*((beta+c)*(r+1)-r-beta*exp(sigma*sqrt(t)*k_alpha+mu*t));

VaR = var(1000,0.15,0.2,0.05,1,k_alpha,0.15,0.2);
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VaR1 = var(1000,0.15,0.2,0.1025,2,k_alpha,0.15,0.2);

VaR2 = var(1000,0.15,0.2,0.1576,3,k_alpha,0.15,0.2);

plot(alpha,VaR,alpha,VaR1,alpha,VaR2,’.-’),xlabel(’\alpha’),ylabel(’VaR’),legend(’t=1’,’t=2’,’t=3’),title(’\beta=0.15,C=0.20’),axis([0.01 0.1 80 220])

fprintf(’VaR VaR1\n’);

y = [VaR; VaR1];

fprintf(’%f %f\n’, y);

fprintf(’%f %f\n’, VaR2);

VaR VaR1

317.500000 283.375000

208.061175 178.513047

201.928948 170.108055

197.861276 164.429366

194.707237 159.970633

192.080444 156.220812

189.800407 152.939492

187.767182 149.992818

185.919217 147.297981

184.215720 144.799888

182.628162 142.459873

247.560000 142.475504

132.068631 124.937654

119.284557 114.494527

110.276803 106.468829

102.969700 99.712088

96.648615

Code for CVaRcase1

V0=1000; mu = 0.15; sigma = 0.2; t=1; r=0.05;

beta=0.35; beta_H = 0.5;
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alpha = 0:0.01:0.1;

k_alpha=icdf(’normal’,alpha,0,1);

z = k_alpha-sigma*sqrt(t);

Phi_z = normcdf(z,0,1);

sum = Phi_z;

VaR = V0*(beta*(r+1)-r-beta*exp(sigma*sqrt(t)*k_alpha+mu*t));

VaR_H = V0*(beta_H*(r+1)-r-beta_H*exp(sigma*sqrt(t)*k_alpha+mu*t));

CVaR = -sum.*(beta./alpha)*V0*exp(mu*t)*exp((sigma^2)*t/2)-V0*r+beta*V0*(r+1);

subplot(2,2,1);

plot(alpha,CVaR,alpha,VaR,’.-’),xlabel(’\alpha’),ylabel(’CVaR & VaR’),legend(’CVaR’,’VaR’),title(’\beta=0.35’),axis([0.01 0.1 0 100])

CVaR_H = -sum.*(beta_H./alpha)*V0*exp(mu*t)*exp((sigma^2)*t/2)-V0*r+beta_H*V0*(r+1);

subplot(2,2,2);

plot(alpha,CVaR_H,alpha,VaR_H,’.-’),xlabel(’\alpha’),ylabel(’CVaR & VaR’),legend(’CVaR’,’VaR’),title(’\beta=0.50’),axis([0.01 0.1 0 200])

subplot(2,1,2)

plot(alpha,CVaR,alpha,CVaR_H,’.-’),legend(’\beta=0.35’, ’\beta=0.50’), xlabel(’\alpha’),ylabel(’CVaR’),axis([0.01 0.1 0 200])

fprintf(’VaR CVaR\n’);

y = [VaR; CVaR];

fprintf(’%f %f\n’, y);

fprintf(’VaR_H CVaR_H\n’);

y = [VaR_H; CVaR_H];

fprintf(’%f %f\n’, y);

VaR CVaR

317.500000 NaN

62.142741 78.427851

47.834211 66.387568
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38.342976 58.540908

30.983553 52.539317

24.854368 47.599070

19.534283 43.355635

14.790092 39.607849

10.478173 36.232196

6.503348 33.147039

2.799044 30.295424

VaR_H CVaR_H

475.000000 NaN

110.203916 133.468358

89.763159 116.267954

76.204252 105.058439

65.690790 96.484739

56.934812 89.427242

49.334690 83.365193

42.557274 78.011213

36.397390 73.188852

30.719068 68.781484

25.427206 64.707749

Code for CVaRcase2

alpha = 0:0.01:0.1;

k_alpha=icdf(’normal’,alpha,0,1);

z = k_alpha-sigma*sqrt(t);

Phi_z = normcdf(z,0,1);

var = @(V0,beta,c,r,t,k_alpha,mu,sigma) V0*((beta+c)*(r+1)-r-beta*exp(sigma*sqrt(t)*k_alpha+mu*t));

VaR = var(1000,0.048,0.048,0.05,1,k_alpha,0.15,0.2);

VaR_H = var(1000,0.15,0.2,0.05,1,k_alpha,0.15,0.2);

cvar = @(beta,c,V0,mu,Phi_z,alpha,z,sigma,t,r) -Phi_z.*(beta./alpha)*V0*exp(mu*t)*exp((sigma^2)*t/2)-V0*r+(beta+c)*V0*(r+1);
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CVaR = cvar(0.048,0.048,1000,0.15,Phi_z,alpha,z,0.2,1,0.05);

CVaR_H = cvar(0.15,0.2,1000,0.15,Phi_z,alpha,z,0.2,1,0.05);

subplot(2,2,1)

plot(alpha,CVaR,alpha,VaR,’.-’),xlabel(’\alpha’),ylabel(’CVaR & VaR’),legend(’CVaR’,’VaR’),title(’\beta=0.048,c=0.048’),axis([0.01 0.1 5 20])

subplot(2,2,2)

plot(alpha,CVaR_H,alpha,VaR_H,’.-’),xlabel(’\alpha’),ylabel(’CVaR & VaR’),legend(’CVaR_H’,’VaR_H’),title(’\beta=0.15,c=0.20’),axis([0.01 0.1 170 220])

subplot(2,1,2)

plot(alpha,CVaR,alpha,CVaR_H,’.-’),legend(’\beta=0.048,c=0.048’, ’\beta=0.15,c=0.20’), xlabel(’\alpha’),ylabel(’CVaR’),axis([0.01 0.1 0 300])

fprintf(’CVaR VaR\n’);

y = [CVaR; VaR];

fprintf(’%f %f\n’, y);

fprintf(’CVaR_H VaR_H\n’);

y = [CVaR_H; VaR_H];

fprintf(’%f %f\n’, y);

CVaR VaR

NaN 50.800000

18.012962 15.779576

16.361724 13.817263

15.285610 12.515608

14.462535 11.506316

13.785015 10.665742

13.203058 9.936130

12.689076 9.285498

12.226130 8.694149

11.803022 8.149031

11.411944 7.641012
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CVaR_H VaR_H

NaN 317.500000

215.040507 208.061175

209.880386 201.928948

206.517532 197.861276

203.945422 194.707237

201.828173 192.080444

200.009558 189.800407

198.403364 187.767182

196.956655 185.919217

195.634445 184.215720

194.412325 182.628162

Optimization code

clc

clear

fun=@(x)-x(1).^0.8+x(2)-x(2);

x0 = [0.02,0.10];

A = [1050,213.87

1,1

-1 -1];

b = [200

1

-0.2338];

[x,fval] = fmincon(fun,x0,A,b);

fprintf(’%f %f\n’, x)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the optimality tolerance,

and constraints are satisfied to within the default value of the constraint tolerance
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0.179394 0.054408

Optimization plot

v = 0:0.001:1; % plotting range from 0 to 1

[x,y] = meshgrid(v); %get 2-D mesh for x and y

cond1 = 1050*x+320.408*y < 200; % check conditions for these values

cond2 = x+y < 1;

cond3 =-x-y < -0.24;

cond1 = double(cond1); % convert to double for plotting

cond2 = double(cond2);

cond3 = double(cond3);

cond1(cond1 == 0) = NaN; % set the 0s to NaN so they are not plotted

cond2(cond2 == 0) = NaN;

cond3(cond3 == 0) = NaN;

cond = cond1.*cond2.*cond3; % multiply the two condaces to keep only the common points

surf(x,y,cond)

view(0,90),xlabel(’consumption’),ylabel(’\beta’)% change to top view
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