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Abstract—Unmanned aerial vehicles (UAVs) are becoming
more prevalent in maritime operations. For safe operation, one
of the key challenges of using UAVs at sea is the relative motion
that exists between the UAV and ship. For perpetual maritime
operations, UAV systems need to be able to land safely on
ocean vessels. Determining a ‘quiescent period’, where the roll
and pitch angles of the ship are below a danger threshold, is
a challenging problem for UAV systems. In general, current
strategies rely on reactive systems and often use sensors on board
the maritime vessel. The scope of the current paper is a proof-of-
concept methodology which uses a signal prediction algorithm to
facilitate safer autonomous UAV-ship landings. This study uses
laser ranging and detecting devices (LIDAR) in conjunction with
a signal prediction algorithm (SPA) to forecast when the ship
motion is within safe landing limits. ShipMo3D was used to
generate twelve trial cases for UAV-ship landings on a 33 m ship.
The results show that with the use of the SPA, the number of
UAV landing attempts was decreased by an average of 2 attempts,
per test case, when compared to a system that did not use an
SPA. Moreover, the results indicate that with revised tuning of
the SPA, the likelihood of a safe landing can be further improved.

I. INTRODUCTION

Unmanned aerial vehicles (UAV) are used for widespread
civilian and military purposes such as surveillance [1], oceano-
graphic data collection [2], wildlife monitoring [3] and search
and rescue [4]. For any vertical take-off and landing (VTOL)
vehicle, ship deck landings present challenges that encompass
both self-induced dynamics and the stochastic nature of ship
motion [5], [6]. Determining safe times to land on a ship
typically relies on the skill of the pilot to account for and
to predict changes in ship motion and pose.

Current UAV-naval systems implement combinations of
GPS, visual systems, and mounted radar and radio frequency
beacons to orient the UAV in relation to the ship deck
[7]. Researchers have examined methods that allow for au-
tonomous flight control, and landings on both stationary and
moving decks. Garratt and Anavatti [8] used a neural network
controller to produce heave trajectories for an unmanned heli-
copter. Hervas et al. [9] developed a landing control algorithm
for unmanned vehicles on moving platforms that controlled
the landing based solely on the relative heave motion between
UAV and ship deck. While their simulations showed the algo-
rithm was effective, the algorithm did not discriminate between
safe landing times nor provide a method for tracking the ship
trajectory. Ngo and Sultan [10] presented a model predictive

control (MPC) design for helicopter shipboard operations in
the presence of ship airwakes and rough seas. While the MPC
method proved to be feasible in simulations, the researchers
did not address the issue of the compatibility of their control
method to other helicopter-ship combinations other than that
which was simulated. A need therefore arises for a method
that is more general for various ships and autonomous crafts.

Determining safe landing times is an important considera-
tion for safe autonomous landings. Scherer et al. [11] were
successful in mapping safe landing zones (LZ) on a ship
deck using three-dimensional scanning Laser Detection and
Ranging (LIDAR) and GPS/inertial navigation systems. Ferrier
et al. [12] used the energy index (EI) to predict quiescent
periods in the ship motion. Determining the EI requires lateral
and vertical velocities and accelerations as well as roll and
pitch displacements and velocities and thus is dependent
on communication between the autonomous craft and ship.
Although prediction of safe landing times is useful, integrating
the prediction into a single autonomous landing system will
require the prediction method to be independent of vessel type
and without the need for ship to UAV communication.

Signal prediction independent of vessel type is currently
used for active heave compensation on ships utilizing towing
winches, allowing the system to actively pay-in or out line to
the towed object to reduce transmitted motion of submerged
equipment [13]. It is hypothesized that a similar motion pre-
diction algorithm used by Woodacre et al. [13] and advanced
by McPhee and Irani [14] could prove beneficial to UAV-ship
landings, thus allowing UAVs to land within specified motion
thresholds.

The authors of this paper provide a proof-of-concept (PoC)
for increasing the success of UAV-ship landings that uses
LIDAR technology for ship tracking and signal prediction to
forecast safe landing times. The proposed system relies on
information to guide the UAV to the LZ and land without any
assistive deck-mounted hardware. The current study does not
focus on the method to guide an UAV to the LZ, rather, the
study focuses on the descent while over the LZ. The landing
descent is achieved without assistive deck-mounted hardware,
however, there are three LIDARs mounted on the UAV which
provide the input for the motion prediction algorithm to
forecast quiescent periods. Quiescent periods are determined
based on the roll and pitch of the ship deck. The ship heave
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motion is monitored for UAV altitude control; however for the
scope of this paper, heave is not considered for predicting safe
landing opportunities.

The PoC uses a model-based approach in the MATLAB
modeling environment, SimScape, and for the ship motion,
time series outputs from ShipMo3D are used. The following
section introduces the formulation and tuning of the signal
prediction algorithm (SPA). The overview of entire PoC sys-
tem model is presented in Section III where the UAV test
platform, flight sequence and control scheme are described.
Section IV describes how the LIDARs are modeled in the
simulation environment for the purpose of detecting the pose
of the ship. Test conditions are presented in Section V and the
generation of ship motion is discussed. Simulation results are
analyzed in Section VI and in Section VII the paper ends with
concluding remarks and future work.

II. SIGNAL PREDICTION ALGORITHM – SPA

In the current application, a signal prediction algorithm
is used to predict future safe landing times in the roll and
pitch motion of the ship. To predict the motion, it is assumed
that both the roll and pitch motion are periodic and can be
decomposed into N sine waves. Using the method advanced
by McPhee and Irani [14], the signal prediction algorithm
is composed of three distinct parts: mode detection, state
estimation and prediction. During mode detection, the mean
values of the different modes, i.e. amplitude, frequency and
phase, are identified via a Fast Fourier Transform (FFT). An
observer is initialized by these mean values and adapts the
signal parameters on-line. The adapted parameters are then
used to predict the motion.

As a function of time, t, the periodic motion s can be
expressed as

s(t) =
N∑
i=1

Ai sin (2πfit+ φi) + v(t) (1)

where N is the number of identified modes, Ai, fi and φi
are the amplitude, frequency and phase of the identified mode
i respectively. The offset term v(t) accounts for any deviation
from the zero mean. For on-line estimation, a discrete Kalman
filter estimates the motion and adapts the parameter vectors
by comparing the measured motion s(t) with the modeled
motion. With the adapted observer parameters Aobs and φobs
in place of Ai and φi, equation (1) is used to forecast the
motion sequence over a prediction horizon PH . Summing
over each mode i at time step k the predicted motion sequence
sPred(tk + PH) is

sPred(tk + PH) =
N∑
i=1

Aobs,i,k sin (2πfi(tk + PH) + φobs,i,k) + v(t)

(2)
The prediction sPred from equation (2) was shown to be
accurate in forecasting ship motion over short-term prediction

horizons up to 3 seconds [14]. For longer prediction horizons,
the error of the predicted signal increases significantly and
should not be used in applications requiring an exact motion
profile. However, when looking at trends in the signal, such as
future amplitudes in the signal for a Go-NoGo state, the SPA
can give useful information over long-term predictions.

A Go-NoGo state is determined given a set of criteria that
defines a desired outcome. When conditions are favorable, a
Go state is output and when conditions are unfavorable, a
NoGo state is output. To tune the SPA for the purposes of
determining a Go-NoGo state based on long-term predictions,
the criteria for outputting a Go state must be described such
that the increasing error associated with longer prediction
horizons is taken into account. Specifically, a Go criterion that
requires the forecast signal to fall within 1 standard deviation
of the mean of the prediction was shown to produce a Go-
NoGo state in agreement to the desired outcome for prediction
horizons up to 10 seconds [14]. In the work described in the
following sections, the same Go criterion is used.

A. SPA Tuning for a Parallel Configuration

For the PoC, both the roll and pitch motion of the ship
are monitored for determining safe landing times i.e. the roll
and pitch angles must fall within threshold values in order for
a Go state to be output and land attempt to be made. Two
SPAs in parallel aid in monitoring the roll and pitch motion
by forecasting each motion independently over the prediction
horizon PH . Considering both signals are expected to differ
in amplitude and frequency, it is important that each SPA is
initialized separately.

Tuning was performed in accordance to McPhee and Irani
[14], however a recursive method for determining the peak
sensitivity parameter for the SPA mode detection was explored
such that the sensitivity parameter can be amended on-line to
better suit each signal with time. The latter is achieved during
the SPA operation where the amplitudes of the incoming
motion signal are monitored and the sensitivity parameter
is assigned and updated based on the maximum amplitude
observed in the signal. The peak sensitivity PS describes the
minimum peak height; a threshold value used by the peak
detection algorithm to determine the dominant peaks in the
FFT spectrum. For the work presented in this paper, PS is
re-evaluated every 5 seconds and is described as

PS =

 0.05 , 0◦ ≤ |s| ≤ 4◦

0.1 , 4◦ < |s| ≤ 10◦

1 , |s| > 10◦
(3)

where |s| is the roll or pitch input to the SPA from equation
(1). The PS parameters in equation (3) were manually input
and future work will be required to refine the PS parameters
based on SPA performance.

III. METHODOLOGY

For the PoC, a quadrotor was chosen which would use the
SPA onboard a UAV to facilitate with landing descent. Quad-
rotors are an established flight platform with well documented
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dynamics and relatively simple actuation and control when
compared to other rotor-craft. The mass moment of inertia,
mass, and flight dynamic characteristics may be manipulated
in SimScape to emulate a specific test vehicle. This study aims
to result in a system independent of the flight vehicle and
transferable to other platforms. The following sections discuss
the UAV, model system control and simulation progression.

A. UAV Platform

The UAV system has a mass of 4 kg and four arms spanning
0.6 m in length. Each arm extends from the center body and
carries a motor which actuates a 0.25 m blade. The motors
are generic DC brushless motors that require a 12 V power
supply. Physical testing of the motors produced an rpm to
thrust relation that is used in the model.

Fig. 1 highlights the control scheme for the UAV. The four
motors are actuated via a motor mixer which delegates motor
power based on the incoming altitude, pitch, roll, and yaw
commands. Altitude is selected via flight sequence logic, and
is maintained through proportional-integral-derivative control
(PID). Yaw is controlled using PID control, although the
current model does not actively alter yaw from its initial
position as quad rotors have the ability to traverse freely
without re-orienting their heading. Pitch and roll have standard
PID controllers with a corrective angular acceleration feed-
forward loop to minimize the oscillatory motion associated
with underactuated systems. Nominal ship tracking is achieved
using two outer loop proportional and integral (PI) controllers
which feed into the roll and pitch controllers. Within the
simulation, the ship tracking controller relies on the X and
Y coordinates from the ship along with the UAV’s X and Y
positions in the world frame. These control schemes allow
the UAV to track the position of the landing zone when the
controller is provided the position as a function of time. Aside
from the ship LZ coordinates, the UAV model is not provided
with any other information from the ship. Future users of the
current work can use their own methods to control the UAV’s
flight dynamics and their methods to track the location of the
LZ.

Fig. 1: Model Control

B. Model Construction and Logic Overview

Fig. 2 is a high-level diagram of the information flow within
the simulator model. The ship motion data is imported into the
simulation work space and applied to the model of the ship
body as a function of time. The UAV is within the same model
and launches a set distance behind the ship. The UAV actively
tracks the position of the ship using the control methods
described. While above the ship, each LIDAR measures the
distance to the deck and relays that information to an algorithm
for ship pose detection. The ship pose detection algorithm
accounts for the position of the UAV in space, the known
orientation of the LIDARs and the magnitude of each LIDAR
reading. Ship pitch and roll angles are then transferred to the
SPA to determine when it is safe to land.

Fig. 2: Model Information Flow

C. UAV Flight Sequence

Fig. 3 highlights the three flight stages:
1) Launch
2) Ship Tracking
3) Landing

Fig. 3: Simulation Flight Sequence

In phase 1, the UAV ascends vertically to its cruising
altitude. The cruising altitude is typically dependent on the
mission of the UAV. The simulations in this work use a
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cruising altitude of 10 m to expedite the landing phase.
The vertical takeoff velocity was conservatively selected as
1 m/s, but it is a parameter which may be adjusted based
on UAV performance. During phase 2, to emulate the LZ
homing, the ship position is continuously relayed to the UAV
tracking algorithm. Operating within predefined pitch and roll
thresholds, the UAV proceeds toward the landing zone while
maintaining its 10 m altitude.

The landing operation, final descent, is highlighted in phase
3 and the logic progression is outlined in Fig. 4. Phase 3 begins
when the UAV is within proximity to the ship. At this point,
the LIDARs power on and the ship pose detection algorithm
sends data to initialize the SPA. During initialization, the UAV
descends to its low hover position of 3 m relative to the deck.
The SPA continually sends a Go or NoGo command based
off of predicted future ship roll and pitch amplitudes. As the
distance between the UAV and the deck decreases, the SPA
prediction horizon PH decreases by the following relationship

PH =

{
Ld

VL
, 5 ≤ Ld

VL

5 , 5 > Ld

VL

(4)

where LD is the UAV’s distance to the ship, and VL is
the landing velocity. A maximum prediction horizon of 5 s
was selected due to the diminishing accuracy of longer SPA
predictions. With a rate of decent of 0.5 m/s the UAV would
take 6 seconds to land if there was no heave motion. However,
in these tests the heave varied by up to 1.5 m resulting in
landing times spanning 3 s to 9 s. Adequate results were
achieved using a maximum prediction horizon of 5 s. To
compensate for undesirable heave motion, future work could
incorporate an SPA to predict heave motion coupled with a
model predictive controller for UAV altitude during landing.
Uncompensated heave motion may lead to dangerous landing
scenarios such as high impact or failed landings. Currently,
when the SPA predicts a Go condition, the UAV will continue
to lower its altitude regardless of heave motion. If a NoGo
condition is predicted, the UAV will return to its low hover
position until a Go command is received.

D. Go-NoGo Command Latching

To remove unwanted fluctuation in the Go-NoGo command
signal, McPhee and Irani [14] proposed a latching algorithm
that latches to a Go or NoGo command. The proposed latching
algorithm evaluates the incoming Go-NoGo commands, deter-
mined by the SPA, and latches to a command if no change is
observed in the Go-NoGo commands over an evaluation inter-
val. Before re-evaluating and re-latching, a latched state will
run for the selected time period, regardless of the incoming
Go-NoGo states.

It is proposed here that the evaluation interval should be
selected based in part on the response of the physical UAV
components, and that the latching period should be selected
based on the UAV’s rate-of-descent. For the purposes of the
PoC, an evaluation interval of 0.4 s and a latching period of
1 s were selected. In practice, physical tests should be used

Fig. 4: Flowchart explaining the logic of the landing sequence
and SPA use

to evaluate both intervals which may change based on UAV
response times and rates-of-descent.

IV. LIDAR SIMULATION

The LIDAR sensors in the model are idealized, where pro-
cess and measurement noise are not addressed. However, this
section will later address noise and the concepts to minimize
signal disruption. Fig. 5 illustrates the notation which will be
used in the following section to derive the output of each
LIDAR. In order to simulate the LIDAR, the location of
each LIDAR as well as the plane of the ship deck must be
found. Three points li:1,2,3 were placed under the UAV as a
reference location for each LIDAR. Points li are represented
using position vectors ~Li with respect to the global coordinate
frame, where i corresponds to either the 1st 2nd or 3rd LIDAR.
Using the cross product between vectors ~Li the normal vector
is found by:

~nL = (~L1 − ~L2)× (~L1 − ~L3) (5)

Vector ~nL is the normalized to form the UAV’s unit normal
vector n̂L. Similarly within the simulation, three points si:1,2,3,
and corresponding position vectors ~Si:1,2,3, were placed on the
deck of the ship. Using the cross product between position
vectors ~Si the normal vector of the ship is found and then
normalized n̂s.

Using the UAV and ship orientation, the simulated LIDAR
outputs must now be found. Through vector addition, an
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Fig. 5: Schematic of UAV and the notation used to derive the
simulated LIDAR outputs

equation which relates the magnitude and direction of the
LIDAR output to its final and initial vectors is

Hin̂L = ~Pi − ~Li (6)

where Hi is the magnitude of the LIDAR output and ~Pi is
the position vector of point pi where the LIDAR intersects
the plane of the ship deck. The shortest distance between a
LIDAR and the plane of the deck di can be found by taking
the dot product between the ship’s normalized unit vector with
any vector originating at the LIDAR and intersecting a known
point on the ship’s plane, thus:

di = n̂S · (~Si − ~Li) (7)

di will always be perpendicular to the plane of the ship
regardless of the pose of the UAV. The same offset may be
expressed in terms of the unknown position vector ~Pi as

di = n̂S · (~Pi − ~Li) (8)

The magnitude of each LIDAR Hi is then found by substi-
tuting equation 6 into equation 8,

Hi =
di

n̂s · n̂L
(9)

In practice, the hardware LIDARS would output Hi. Within
the simulation, the magnitude of the LIDARS has been found
through the above process, the pose of the ship can be now
be determined.

A. Ship Pose Detection

The LIDARs pass their magnitude information Hi into a
separate algorithm which calculates the ship pose based on
variations in the LIDAR outputs and angular pose of the

UAV. This ship pose algorithm would be implemented with
a physical UAV to determine the ship’s deck motion. Fig. 6
illustrates the deck motion in relation to the UAV and notation.
The algorithm works by identifying the three points, pUAVi

,
where the lasers intersects the deck with respect to the UAV.
Without any noise, the points of intersection will be equivalent
to pi from the previous section, but will be found in the
UAV’s coordinate frame. Rotation of the UAV during flight
alters the LIDARs directional vector which initially faces down
[0, 0,−1]. To properly orient the LIDAR vectors during UAV
manoeuvres, the vectors are multiplied by a corresponding
rotation matrix. Following the right hand rule, the UAV pitch
and roll angles are taken from the UAV’s inertial measurement
unit (IMU), where rotations about the x-axis are roll Φ and
and rotations about the y-axis are pitch Θ. The corresponding
rotation matrices are:

Rx(Φ) =

1 0 0
0 cosΦ −sinΦ
0 sinΦ cosΦ

 (10)

Ry(Θ) =

 cosΘ 0 sinΘ
0 1 0

−sinΘ 0 cosΘ

 (11)

Using the above rotation matrices all LIDAR vectors are
properly oriented in the UAV’s coordinate frame. It is then
possible to solve for the position vectors for each LIDAR
PUAVi

in the UAV’s frame

~PUAVi = Rx(Φ)Ry(Θ)(~cHi + ~ki) (12)

where Hiĉ is the vector formed between the LIDARs magni-
tude and the original directional vector for each LIDAR, and
~ki is the LIDAR’s positional offset from the UAV’s center of
rotation.

Similar to equation 5, the unit normal vector of the ship n̂S
is found by normalizing the cross product between ~PUAVi

.
The first index of n̂S is the ship’s roll angle and the third
index is the pitch angle. The ship’s roll and pitch angles
are computed in the UAV’s non-rotating body frame and are
therefore equivalent to the ship’s pitch and roll in the global
frame. These roll and pitch angles are subsequently fed to
their respective SPA. Without LIDAR noise, the normalized
unit vector will be equivalent to n̂s found in the previous
section. The addition of noise complicates the system and the
potential of error increases.

B. LIDAR Selection and Noise

For the PoC, the LIDARs were selected and modeled as
Garmin LIDARlite single pulse LIDARs that have a specified
accuracy of ±2.5 cm at 10 m. The LIDARs were simulated
in idealized circumstances; however as model fidelity is in-
creased, conditions will no longer be ideal with the addition
of noise. With added noise, discrepancies of ±2.5 cm on each
LIDAR will result in large fluctuations in the calculated normal
vector of the ship. Moreover, the smaller the grouping of points
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Fig. 6: Ship pose detection

pUAVi yields greater associated error in the calculated values.
Errors may be minimized by either changing the viewing
angle of the LIDARs or spacing the LIDARs further apart.
Inconsistencies in deck texture will also contribute adversely
to ship pose estimation. Furthermore, the SPA will attempt
to predict a noisy signal unless the input signal is filtered.
Since noise cannot be assumed to be periodic, prediction error
accumulates immediately; hence the noisier the signal, the
more likely it is that the forecast signal will output false Go-
NoGo states. It is therefore important that most noise in the
LIDAR signals be filtered out before sending the signals to
the SPA.

Kalman filters and other filtering techniques are currently
being explored to minimize process noise. If process noise is
not sufficiently reduced in future models and physical testing,
flash LIDARs may be introduced. A flash LIDAR incorporates
a 2D array of photo diode sensors capable of detecting a point
cloud at every time step. A large point cloud allows for a
multitude of normal vectors to be found for the ship. Using
neighbor polling, a technique which compares normal vectors
in a point cloud to each other, and with the increased number
of points, the more likely normal vector for the ship can be
found.

V. SIMULATION TEST CONDITIONS

Using ShipMo3D [15], a 33 m craft was constructed which
is comparable to a medium sized patrol or training vessel. Ship
motion was simulated at three speeds of 6, 8, and 10 kn and at
headings of 15◦, 30◦, 60◦, and 90◦ in a seaway. The seaway
was modelled with a unidirectional Bretschneider spectrum
where the significant wave height was 3.25 m and a peak wave
period of 9.7 seconds. Table I overviews the testing parameters
of the twelve simulation trials. The root mean square (RMS)
value of pitch, roll, and heave was calculated for each trial
and included in Table I.

Two simulations were conducted for each trial, one with
the SPA on and one with the SPA off. The SPA thresholds

TABLE I: TEST PARAMETERS USED IN SIMULATIONS

Generated Ship Motion
Trial Velocity

[kn]
Heading RMS

Pitch
RMS
Roll

RMS
Heave
[m]

1 6 15◦ 2.3◦ 1.8◦ 0.5
2 8 15◦ 2.4◦ 1.9◦ 0.5
3 10 15◦ 2.5◦ 2.0◦ 0.5
4 6 30◦ 2.1◦ 3.5◦ 0.5
5 8 30◦ 2.2◦ 3.9◦ 0.5
6 10 30◦ 2.3◦ 4.2◦ 0.5
7 6 60◦ 1.4◦ 6.5◦ 0.5
8 8 60◦ 1.5◦ 6.9◦ 0.5
9 10 60◦ 1.5◦ 7.4◦ 0.5
10 6 90◦ 0.1◦ 7.7◦ 0.5
11 8 90◦ 0.1◦ 7.7◦ 0.5
12 10 90◦ 0.2◦ 7.7◦ 0.5

were selected from the U.S Coast Guard Ship-Helicopter
Operational Procedures Manual [17]. The Go threshold was
set as 2◦ for pitch and 5◦ for roll. In every simulation the
UAV follows the flight procedure outlined in Fig. 3 having a
high hover altitude of 10 m, and a low hover altitude of 3 m
above the ship deck. For all test cases, the UAV will commit
to landing if the LIDAR output is less than 1 m, regardless of
the ship pose.

VI. RESULTS AND DISCUSSION

Fig. 7 highlights results from Trial 3 with the conditions
outlined in Table I. The first subplot of Fig. 7 shows, as
functions of time, the Go-NoGo state and the distance of the
UAV to the deck of the ship for the cases when the SPA is
active and inactive. The dotted light blue line provides the
UAV distance from the ship deck when the SPA is active,
while the dashed pink line provides the UAV distance from the
ship deck when the SPA is not used. A zero value for the UAV
distance from the ship deck indicates that the UAV has touched
the surface of the ship deck and is considered a landing, the
landings are indicated by a circle in the first subplot of Fig. 7.
In the same subplot, the SPA Go-NoGo output is displayed as
a blue dash-dot line and the instantaneous Go-NoGo, not based
on a prediction, is displaced as a solid green line. A non-zero
value of the Go-NoGo signals indicate a Go state. The next
subplot of Fig. 7 shows, as a function of time, the ship pitch
as a solid line and corresponding NoGo limits, dashed lines.
Similarly, the third subplot of the figure shows the ship roll. In
the global frame and as a function of time, the last subplot of
Fig. 7 plots the ships heave motion with a solid black line, and
the UAVs vertical position for when the SPA is used, dotted
blue line, and when the SPA is not used, dashed pink line.

During the simulation, at t = 33.5 s the UAV reaches the
ship, initiating the recovery phase and activating the LIDARs.
The SPA begins receiving pitch and roll information as soon
as the LIDARs power on. Once centered above the landing
zone, t = 38 s, the UAV proceeds to its low hover position
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of 3 m relative to the ship deck — indicated by the gradual
decreasing value of the UAV altitude in the forth subplot. In
the simulation, the transition from a high hover to a low hover
is not affected by wave action. The number of landing attempts
for the UAV is also recorded for each test case: SPA-on and
SPA-off.

Without the SPA, the UAV landed at t ≈ 58 s, which hap-
pened to be during unsafe conditions due to pitch exceeding
the 2◦ threshold. This landing was preceded by 6 aborted
landing attempts. Although the ship pose detection algorithm
indicated a NoGo condition, the UAV was forced to land as
it was not able to ascend faster than the heave action of the
ship. The ‘forced’ landing could result in damage to the UAV
or the ship. The results of this simulated test case highlight
the potential benefit of the SPA system.

Under the same testing conditions, but using the SPA, the
landing was delayed 13 s, but occurred during a Go condition.
The UAV successfully landed on the 1st attempt, whereas
without the SPA the UAV had 6 failed landing attempts before
ultimately landing in an unsafe condition.

Table II highlights the results of the trials conducted with
the twelve sets of ship motion data. Without the SPA, the
UAV landed within safe ship motion thresholds 83% of the
time compared to 92% with the SPA.

In Trial 8, with the SPA on, following an aborted landing
descent, the UAV had a forced landing due to rising ship
heave coupled with the UAV’s land safe mechanism which
attempts to land the UAV when the distance to the ship is less
than 1 m. Although the overall ship motion was within the
threshold limits, a NoGo condition was the output from the
SPA, resulting in a marginally successful landing. However,
the simulations did not account for impact forces during forced
landings which could adversely effect the UAV. The SPA in the
current implementation has trouble with very low frequency
signals which adversely affected the results of Trial 8. Using
the same axes as Fig. 7, Trial 8 is displayed in Fig. 8, and the
low frequency wave actions are indicated. Although the ship
motion was safe, the SPA predicted the motion would exceed
the Go criteria. It is hypothesized that a recursive method could
be used to tune the SPA for low frequency motion.

The final 10 s of Trial 9 is highlighted in Fig. 9. Trial
9 resulted in the UAV landing during an unsafe condition
when the SPA was used. In Trial 9, the SPA latched onto
a Go command for an extended period of time, as well as
having a delayed Go command. The results in Fig. 9 indicate
the responsiveness of the SPA should be increased and that
the latching time be decreased. A drawback of increasing
the responsiveness is that the SPA is more likely to output
false Go commands which may not fit the prediction horizon
requirements. Furthermore, decreasing the latching time may
lead to fluctuations in the Go-NoGo commands leading to
an increased number in landing attempts. Future work will
examine how to make the SPA more robust for the various
sea states which the system could encounter.

For all trials, using the SPA increased the landing time by
an average of 42 s, but with the added benefit of decreasing

TABLE II: PRELIMINARY RESULTS

SPA Land Safe Land
Trial Attempts Landing Time (s)
1 On 2 3 66.7

Off 3 3 54.7
2 On 4 3 98.8

Off 5 3 57.7
3 On 1 3 65.4

Off 7 7 57.9
4 On 2 3 68.6

Off 3 3 52.4
5 On 7 3 137.7

Off 15 3 85.0
6 On 12 3 200.7

Off 3 7 55.9
7 On 1 3 56.7

Off 4 3 56.6
8 On 4 3* 69.5

Off 6 3 63.1
9 On 8 7 259.7

Off 1 3 57.8
10 On 2 3 71.6

Off 8 3 63.1
11 On 1 3 71.6

Off 8 3 63.1
12 On 1 3 71.6

Off 7 3 63.6

the number of landing attempts by an average of 2 attempts.
Observing only cases where a safe landing occurred, excluding
trials 3, 6 and 9, using the SPA increased the landing time
by an average of 17 s, and decreased the average number of
landing attempts by 4.

VII. CONCLUSION AND FUTURE WORK

The results of the proof-of-concept study show promise of
incorporating the SPA Go-NoGo system on a UAV. When the
SPA only considered the ship’s pitch and roll, the number of
landing attempts decreased, however, the time which was spent
over the landing zone increased. Future work will examine
noise sensitivity on the single point LIDARs and filtering
methods. Although initial research focused on using the SPA
for roll and pitch motion prediction, heave motion has created
a challenging dynamic between the UAV and ship which
must be addressed to ensure safe landings. Future work will
incorporate an additional SPA to predict the ship’s heave
motion and the control of the UAV’s altitude. Within the
simulations, the ‘forced’ landing impact forces between the
UAV and the ship could also be analyzed adding additional
criteria for a safe landing. Further refining of the sensitivity
evaluation function in equation (3) could be performed with
the goal of continual mode detection for the SPA.
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Fig. 7: Simulation Results of Trial 3

Fig. 8: Simulation Results of Trial 8

Fig. 9: Unsuccessful landing attempt using SPA of Trial 9
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