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Abstract— This paper presents a continuously differentiable
friction model based on the Quinn regularization of the
Coulomb model in order to improve numerical performance
for simulating dynamic systems using implicit ODE solvers.
The implementation of the friction model for simulations of5

cable-pulley and cable-winch contact is demonstrated using the
nonlinear Absolute Nodal Coordinate Formulation. Frictional
contact between the cable and a dynamic surface is imple-
mented using a Lagrange multiplier formulation. Examples of
simple a capstan and a motorized pulley system are provided10

to demonstrate the stick-slip behavior of the model and the
performance improvement over the original Quinn model,
respectively. Using the ODE solver ode15s, the computation time
was reduced by factors of 4.5 to 18.8 depending on the model
parameters. The proposed model can be used to model and15

verify the behavior of dynamics systems in control applications.

I. INTRODUCTION

Accurate simulation of mechanical systems often requires
incorporating the dissipative and sticking effects due to20

friction. Implementing friction in numerical simulations can
be difficult due to its discontinuity at zero velocity. Many
approaches for modeling friction have been developed in-
cluding continuous velocity-dependent models such as the
Dahl [1] and LuGre [2] models, which are simple to imple-25

ment in simulations but do not capture the sticking behavior.
Elastic or bristle friction models permit an elastic pre-sliding
displacement in the sticking phase [3], however they tend to
be inefficient due to their complexity and oscillatory behavior
[4]. Regularizations of the classical Coulomb friction model30

have been developed by Karnopp [5] and Quinn [6] in order
to balance accuracy and numerical performance, while also
preserving the desired sticking behavior.

In particular, Quinn [6] proposed a continuous regulariza-
tion of the Coulomb model to eliminate chattering behavior35

exhibited by discontinuous models such as the Karnopp
model [5]. However, due to fact that the model is not con-
tinuously differentiable, one may encounter poor numerical
performance using implicit ODE solvers which require the
computation of the Jacobian of the external forces. Thus, a40

contribution of this work is a modified model, referred to as
the Continuously Differentiable Quinn (CDQ) model, which
ensures differentiability of the friction force over the entire
domain.

The proposed model can be used in place of the Quinn45

model and other Coulomb regularizations to simulate the
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behavior of dynamic systems which exhibit stick-slip behav-
ior such as robot joints, actuators and clutches. Simulations
could then be used to develop and tune control algorithms in
order to avoid undesirable behavior. Additionally, the friction 50

model may be suitable for nonlinear model-based control
methods such as Internal Model Control in which smoothness
of the dynamic model is required [7].

One potential application is for simulating the cable-
surface interactions in winch and pulley systems. The friction 55

model can be used to simulate dynamics variations in the ca-
ble strain and contact forces. A simulation of these behaviors
can then inform the development of control algorithms in
order to mitigate undesirable behavior such as “bird-caging”
due to detachment of the cable from the winch surface. The 60

model can also be used to improve towed and vertical Active
Heave Compensation systems [8], [9].

The authors previously developed a simulation [10] -
[12] of cable-pulley and cable-winch systems utilizing the
Absolute Nodal Coordinate Formulation (ANCF) to model 65

the cable dynamics. The previous model did not include
tangential friction, thus the second contribution of this work
is an implementation of stick-slip friction between the cable
and winch surface for ANCF cable elements. The proposed
approach utilizes Lagrange multipliers to determine the mag- 70

nitude of the force required to enforce the desired stiction
behavior.

The next section contains a description of the Coulomb
model of friction along with the Karnopp, Quinn and CDQ
regularizations. Section III describes the ANCF cable model 75

and the implementation of the friction force. In Section IV,
simulations are performed to examine the model behaviors
for simple systems and the computational performance of
each friction model are compared. The paper ends with
concluding remarks in Section V. 80

II. FRICTION MODELLING

The classical model of friction or the Coulomb model
comprises two cases, sliding and sticking. In the sliding case,
the relative velocity v between the two surfaces is non-zero
and the friction force Ff is 85

Ff = −µFN sgn(v), (1)

where µ is the friction coefficient and FN is the normal force.
In the sticking state, the relative velocity is equal to zero and
the friction force is

Ff = −min(µFN , |Feq|)sgn(Feq), (2)
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(a) Coulomb (b) Karnopp (c) Quinn (d) Continuously Differentiable
Quinn (proposed)

Fig. 1: Surface plots of (a) Coulomb model, (b) Karnopp model, (c) Quinn model, and (d) proposed Continuously
Differentiable Quinn model with α = 0.9 and β = 1.1. The curve at v = 0 is shown as a solid blue line.

where Feq is the sum of all other forces acting on the body
in the direction tangential to the surface. Fig. 1a illustrates90

the Coulomb friction model and the relationship between Ff ,
Feq and v. The blue line represents the friction force curve
at zero velocity from (2). At a non-zero velocity the friction
force is independent of the applied forces Feq and has a
constant magnitude, depending only on the direction of the95

sliding velocity v.
In a dynamic simulation, the sliding velocity v will not

reach an exact value of zero due to limited numerical pre-
cision, thus implementations of stick-slip friction typically
utilize a regularization of the Coulomb model, such as the100

Karnopp model [5]. Using the same axes as before, Fig. 1b
illustrates the Karnopp friction model where a finite region
−ε ≤ v ≤ ε is defined in which the velocity is treated as
having a value of zero. Thus, the friction force is defined

Ff =

{
−Feq, if |v| ≤ ε
−µFN sgn(v), otherwise.

(3)

The numerical solution of dynamics problems utilizing the105

Karnopp friction law can be difficult due to the discontinuity
of the model at |v| = ε resulting in chattering, or repeated
transitions between sticking and slipping states. In order to
address this shortcoming of the Karnopp model, various con-
tinuous definitions of the friction force have been developed.110

To eliminate the discontinuity in the Karnopp model,
Quinn [6] proposed a new regularization of the Coulomb
friction model which has the form

Ff =

−
µFN v̄

ε
, if |v̄| ≤ ε

−µFN sgn(v̄), if |v̄| > ε
(4)

where

v̄ =

v +
εFeq
µFN

, if |Feq| ≤ µN

v + εsgn(Feq), if |Feq| > µN.

(5)

Fig. 1c illustrates the Quinn model along the v, Feq and Ff115

axes. The discontinuities of the Karnopp model are removed,

while the behavior of the Coulomb model at zero velocity,
represented by the solid blue line, is preserved exactly. A
shortcoming of Quinn’s model is that it is not continuously
differentiable, due to the piece-wise definitions of the friction 120

force Ff and velocity parameter v̄. The slope discontinuities
can make numerical solution of the equations of motion dif-
ficult when using implicit time-stepping algorithms, such as
MATLAB’s ODE suite [13], as the Jacobian of the external
forces may become undefined due to the slope discontinuity. 125

Thus, a modifications to Quinn’s model is proposed in the
following section in order to ensure the friction force is
continuously differentiable in the entire domain.

A. Proposed Regularization

Equivalent to the form of the Quinn friction model in 130

equation (4), a proposed alternate form is written as

Ff = −µFNh(v̄/ε), (6)

where h(v̄/ε) is a piece-wise linear sigmoid function given
by

h(x) =

{
x, if |x| ≤ 1

sgn(x), otherwise.
(7)

Using equation (7), the equation for the modified velocity v̄
can also be written 135

v̄ = v + εh(Feq/µFN ). (8)

In order to make a continuously differentiable friction
model, a modification to the Quinn model is proposed by
replacing the piece-wise linear sigmoid function h(x) with
a smooth sigmoid function defined

h(x) =


x, if |x| ≤ α
p1(x), if α < x < β

p2(x), if − α > x > −β
sgn(x), if |x| ≥ β

(9)

where α and β are parameters which define the boundaries 140

of the linear and nonlinear regions and p1(x) and p2(x) are
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cubic polynomial functions satisfying p1(α) = −p2(−α) =
α, p1(β) = −p2(−β) = 1, p′1(α) = p′2(−α) = 1, and
p′1(β) = p′2(−β) = 0. Fig. 2 illustrates the proposed sigmoid
function along with the piece-wise linear function used in145

Quinn’s model along with the boundaries of the piece-wise
segments.

In the region −α ≤ x ≤ α, the proposed sigmoid function
is identical to the original piece-wise function. Thus, the
sticking behavior of the Coulomb friction model, where the150

friction force exactly opposes the externally applied forces, is
preserved in the region |Feq|/µFN < α. Furthermore, in the
limit as α → 1 and β → 1, the proposed model converges
to the original Quinn model. Fig. 1d illustrates the proposed
friction model with α = 0.9 and β = 1.1. Note that at zero155

velocity, the friction force saturates at a velocity smaller than
the Coulomb force magnitude. As the system begins to slip
and the sliding velocity increases the force quickly converges
to the desired magnitude.

To examine the behavior of the proposed friction model160

and demonstrate its potential applications, the Quinn and
CDQ friction models are implemented in a previously de-
veloped simulation of a flexible cable using nonlinear ANCF
finite elements.

III. ANCF CABLE MODEL165

The cable model used to examine the proposed friction
model utilizes the Absolute Nodal Coordinate Formulation
[14] with each element comprising two nodes. Fig. 3 illus-
trates the ANCF element where the shape of the element
is defined as a function of the parameter p ∈ [0, L] by170

a cubic Hermite spline. Four vectors make up the element
degrees of freedom: the Cartesian (absolute) position of each
node r(0) and r(L) and a slope vector tangent to the cable
centerline at each node rp(0) and rp(L), where rp = ∂r/∂p.
The coordinates of an internal point on the element can175

be obtained by interpolating between the nodal coordinates
using a cubic shape function matrix S(p),

r(p) = S(p)q = [x y z]T . (10)

where L is the unstretched cable length, q is the vector of
generalized coordinates given by

q =
[
r(0)

T
rp(0)

T
r(L)

T
rp(L)

T
]T

(11)

Fig. 2: Smooth sigmoid function (solid) and piece-wise linear
sigmoid function (dashed)

Fig. 3: Illustration of a planar ANCF element.

and the shape function S(p) is 180

S(p) =


(
1− 3ξ2 + 2ξ3

)
I(

ξ − 2ξ2 + ξ3
)
I(

3ξ2 − 2ξ3
)
I(

−ξ2 + ξ3
)
I


T

. (12)

where ξ = p/L is the arc parameter normalized by the
element length and I is an identity matrix.

The generalized Newton-Euler equations are given for a
single element as

Mq̈ + Qint −Qext −Qc = 0, (13)

where M is the mass matrix, Qint is a generalized internal 185

force vector, Qext is a generalized external force vector and
Qc is a constraint force. The internal force comprises the
axial and transverse elastic forces and a damping force. The
external force is the sum of the gravitational self-weight and
the normal contact force. The constraint force will be used 190

to enforce the stiction behavior of the surface contact. The
definitions of each force is described in the following section.

A. Mass Matrix and Internal Forces

Using a variational mass lumping approach the mass
matrix M is derived directly from the element kinetic energy 195

[14] and is given by

M =
∂2K

∂q̇∂q̇
=

∫ L

0

ρAS(p)
T
S(p)dp, (14)

where K is the kinetic energy of the element, ρ is the cable
density and A is the cable cross-sectional area.

Similarly, the elastic forces Qe are derived from the strain
energy U of the element [15] and are given by 200

Qe =
∂U

∂q
=

∫ L

0

[
EAε

∂ε

∂q
+ EIκ

∂κ

∂q

]
dp, (15)

where E is the Young’s modulus of the cable material, A is
the cross-sectional area, I is the second moment of area, ε is
the longitudinal strain, and κ is the curvature of the element.
The element curvature can be approximated by [15]

κ ≈ |rpp|. (16)

For the longitudinal strain ε, Berzeri and Shabana [15] 205

suggest the Green-Lagrange strain defined as

ε =
1

2

[(
∂r

∂p

)2

− 1

]
=

1

2

[
(Spq)T (Spq)− 1

]
. (17)
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The internal damping force Qd serves to include internal
energy dissipation as well as improve the numerical stability
of the simulation. The damping force is based on a Rayleigh
dissipation function R representing one-half of the power210

dissipated during the motion given by

R = 1/2

∫ L

0

c(ṙp · ṙp)dp, (18)

where c is a damping parameter and ṙp is the rate of change
of the slope vector. Thus, energy is dissipated when the cable
undergoes bending or axial deformations. The damping force
can be written as215

Qd =
∂R

∂q̇
= c

∫ L

0

STp Spdp q̇. (19)

The integral in equation (15) is evaluated using a five point
Guassian quadrature at each time step, whereas the integrals
in equations (14) and (19) are constant and are evaluated
symbolically at the start of the simulation.

B. External Forces220

The external force vector Qext is the sum of the gravita-
tional force Qg and the normal contact force QN .

The gravitational force is determined by integrating over
the length of the element

Qg = ρA

∫ L

0

STgdp, (20)

where ρA is the mass per unit length and g is the gravity ac-225

celeration vector. As with the mass matrix, the gravitational
force is constant and the integral is evaluated symbolically.

The normal contact force, in contrast, is concentrated at
the first node of each element and is given by

QN = S(0)TFN , (21)

where FN is a point force determined using a elastic penalty230

contact model. In the penalty method, the node is allowed to
penetrate into the surface. The contact force is then defined
as a function of the relative penetration δ. This work utilizes
the Hunt-Crossley contact model [16] where the surface is
represented as a nonlinear spring-damper and the contact235

force FN is

FN = kNδ
n(1 +Dδ̇)uN , (22)

where uN is the unit vector normal to the sheave surface at
the point of contact, kN is the contact stiffness, δ is the
relative penetration of the node into the surface, D is a
contact damping coefficient and n is a positive constant. For240

planar cable-winch or cable-pulley contact, the penetration δ
is

δ =

{
||r− r0|| −R, if ||r− r0|| < R

0, otherwise,
(23)

where R is the radius of the winch or pulley.

The magnitude of the contact force FN = ||FN || is used
to determine the magnitude of the tangential friction force as 245

described in Section II. The implementation of the tangential
friction force in the ANCF model is described in the next
section.

C. Friction Force

The friction forces are incorporated in the model in the 250

form of an acceleration constraint using a method proposed
by Udwadia and Kalaba [17] to calculate the magnitude
of the constraint force. In the Udwadia-Kalaba method, a
constraint of the form

A(q, q̇, t)q̈ = b(q, q̇, t) (24)

is defined. The force Qc applied to the system in order to 255

satisfy the acceleration constraint is defined by introducing
a vector of Lagrange multipliers λ such that

Qc = −ATλ. (25)

The Lagrange multipliers are obtained by substituting q̈ =
A−1b from equation (24) and the definition of the constraint
force from equation (25) into equation (13). The Lagrange 260

multipliers are thus

λ =
[
AM−1AT

]−1
(Aa− b) , (26)

where a is the associated accelerations of the unconstrained
system,

a = M−1 (Qext −Qint) . (27)

To implement the tangential friction using the Udwadia-
Kalaba, the following acceleration constraint equation, which 265

relates the axial acceleration of the node to the tangential
surface acceleration, is proposed:

tTS(0)q̈− at = 0, (28)

where S(0)q̈ is the acceleration of the node, t is the unit
tangent vector aligned with the cable’s longitudinal axis,
and at is the tangential acceleration of the surface at the 270

contact point. The constraint can be put directly in the form
of equation (24) with A = tTS(0) and b = at.

Once the vector of Lagrange multipliers is obtained, they
are modified according to the friction models described in
Section II in order to allow for the sliding behavior. Since 275

the Lagrange multiplier represents the magnitude of the force
in violation of the constraint, it can be substituted for the
external force Feq . The normal force FN is obtained from the
magnitude of the penalty force determined by equation (22).
Finally, the magnitude of the friction force Ff calculated 280

from equation (6), is then substituted for −λ in equation
(25).

For a cable-winch system, the surface acceleration is given
by

at = ω̇R, (29)
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where ω is the rotational velocity of the winch and R is the285

winch radius. The sliding velocity v is determined from

v = tTS(0)q̇− ωR. (30)

In this work, the winch acceleration ω̇ is determined from
a desired time-varying setpoint θd(t) using a PD control law,

ω̇ = kp(θd − θ) + kd(ωd − ω), (31)

where kp and kd are constant gains and θ is the angular
position of the winch, measured from the vertical axis. In the290

following section, simple cable-winch systems are simulated
to examine the behavior of the friction implementation.

IV. SIMULATIONS AND RESULTS

To demonstrate the behavior and performance of the
ANCF implementation and to compare the proposed friction295

model with the Quinn model, two scenarios are examined.
First, a fixed drum or capstan with forces applied to the cable
ends is simulated to demonstrate the stick-slip behavior of
the friction model. Second, a rotating pulley is simulated
and the computational performance of the proposed model300

is compared with the Quinn model. The simulations are
performed in MATLAB. The ODE solver used for the
simulations is the implicit, adaptive solver ode15s.

The cable parameters used for this analysis were taken
from previous work [10] and are listed in Table I.305

TABLE I: Simulation parameters.

Parameter Value
Winch radius, R 0.25 m

Contact penalty, kN 5× 106 N/m
Contact damping parameter, D 1 Ns/m

Contact exponent, n 1.5
Coefficient of friction, µ 0.25

Friction regularization coefficient, ε 0.01 m/s
Cable longitudinal stiffness, EA 9.2× 106 N

Cable cable bending stiffness, EI 0.7 Nm2

Cable density, ρ 5.8× 10−3 kg/m3

Scenario I: Capstan (Static Surface)

In the first scenario, the winch is fixed with disparate
loads applied to the two ends of the cable. The winch thus
functions as a capstan, where the friction serves to resist the
load applied to one end of the cable. Fig. 4a illustrates the310

system consisting of a cylindrical drum supporting a cable
with loads F1 and F2 applied to the two cable ends. The
capstan equation gives the ratio between the load F2 and the
holding force F1 at the point of slipping

F2/F1 = eµφ, (32)

where µ is the coefficient of friction and φ is the wrap angle315

of the cable around the drum. For the system shown in Fig.
4a, the wrap angle has a nominal value of φ = π. With a
coefficient of friction of µ = 0.25, the maximum ratio before
slipping occurs is thus 2.19.

(a) (b)

Fig. 4: Diagram of (a) capstan system and (b) motorized
pulley system.

In order to demonstrate the ability of the friction imple- 320

mentation to capture the desired stick-slip behavior, tests are
performed by fixing the holding force F1 and varying the
loading force F2, until the cable begins to slip. For these
tests, the holding force F1 was set at 98.1 N. Fourty elements
were used for the simulations. For the CDQ friction model, 325

the friction parameters α and β were selected such that
β = 2 − α. Simulations were performed with α values of
0.5, 0.75, 0.9, 0.95 and 0.99.

Table II summarizes the results of the simulations. For the
Quinn friction model, the cable began to slip at a force ratio 330

of 2.24, while the proposed model slipped at a ratios between
1.52 and 2.22. As expected, the proposed model sustains
a lower amount of force, as the force saturates at a value
smaller than the Coulomb force µFN , whereas the Quinn
model saturates at the Coulomb force. As the parameter 335

α is increased and the CDQ model converges towards the
Quinn model, the force ratio increases. It is also noteworthy
that the Quinn model overestimates the slipping point. This
error is likely due to nonlinearity in the normal contact force
distribution that are not considered in the capstan equation. 340

Fig. 5 shows the contact force distribution as a function of
the contact angle of a 20, 40, and 60 element ANCF model
and the linear assumption used in the capstan equation. The
capstan equation considers only a linear distribution of the
contact force, however in the ANCF simulation the contact 345

force is nonlinear due to the bending stiffness and elastic
definition of the normal forces. As the number of elements
in the model increases, the amplitude of the variations
diminishes, however the nonlinearity cannot be removed
entirely. The ANCF model therefore will not exactly replicate 350

the slipping behavior predicted by the capstan equation.

Scenario II: Motorized Pulley (Dynamic Surface)

The second scenario shown in Fig. 4b consists of a rotating
pulley with a small mass attached to both ends of the cable.
The desired rotation of the winch as a function of time θd(t) 355

is selected to follow a cycloidal profile with amplitude a =
π/4 and simulation time τ = 10 s and can be written as

ω(t) =
t

τ
− a

2π
sin(2πt/τ). (33)

Fig. 6 shows the simulated displacement of one of the
masses for the Quinn model and the CDQ model with α =
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Fig. 5: Contact force distribution as a function of contact
angle for the ANCF model with varying number of elements
and linear model.

Scenario 1 Scenario 2
Model Force Ratio Comp. Time (s) RMS Error (m)
Quinn 2.24 22804 –

CDQ (α = 0.99) 2.22 5029 2.30× 10−5

CDQ (α = 0.95) 2.16 1938 3.82× 10−5

CDQ (α = 0.90) 2.08 1741 5.74× 10−5

CDQ (α = 0.75) 1.80 1428 7.94× 10−5

CDQ (α = 0.50) 1.52 1216 1.64× 10−4

TABLE II: Simulation results. RMS error for Scenario 2 is
calculated relative to the Quinn friction model.

0.9 as a function of time. Table II summarizes the results for360

all simulations. The results obtained using the CDQ model
are effectively identical to the Quinn model, with RMS errors
ranging from 2.3× 10−5 to 1.6× 10−4; however, the Quinn
model required a computation time of 22804 s using ode15s,
while computation times for the proposed model ranged from365

only 1216 to 5029 s, an improvement by a factor of 4.5 to
18.8.

Fig. 6: Vertical displacement of load for motorized pulley
simulation.

V. CONCLUSION

In this paper, a method was proposed for incorporating
stick-slip friction models in simulations of cable-pulley and370

cable-winch interactions. In addition, a continuously differ-
entiable regularization of the Coulomb friction model was

proposed. The results of this study demonstrate the feasibility
of the proposed approach. In addition, an improvement in the
performance (in terms of computation time) of the proposed 375

model over the standard Quinn model by a factor of at
least 4.5 was demonstrated for a simple test case using
the implicit ODE solver ode15s. Future work will focus on
implementing the friction model in a full scale simulation
of a shipboard winch system [10]. Alternative ODE solvers 380

may also be examined and implemented in order to improve
the computational performance. Finally, the proposed model
should be validated using experimental measurements for
critical applications.
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