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1. Introduction

Industrial robots are widely used to automate tasks that require high re-
peatability, speed, and flexibility. Despite many advantages, industrial robots
have relatively low accuracy. For manufacturing tasks that require higher ac-
curacy, manual methods are still prevalent and represent a large portion of
manufacturing costs [I]. For example, typical aerospace parts include small
radii, holes, slots and scallops with break sharp edge requirements in the range
of 0.1mm to 1mm [2], which may be difficult to achieve with a robotic solu-
tion. There is extensive demand for robotic solutions to reduce cost, improve
processing time, and mitigate safety hazards in industrial envigonments. For

pose based on the robot parameters and joint varia
includes moving the robot through a series o es
angles along with the end-effector pose.
tion algorithm minimizes the error bet poses and poses that
are estimated using the robot model. & sation step, the identified
parameters are applied to the ro sed in path planning and control,
reducing the pose errors and t

Calibration methods are gen tegorized into open-loop and closed-loop
methods [4]. The open- is performed by measuring the pose of
the end-effector throu asurement device, such as a coordinate
urement arm [6], stereo-vision system [7],
[9, [10, TT]. One approach to closed-loop
d-effector motion and record the joint angles
the constraints to the model results in a set of

step, an optimiza-

effector distan®® from a fixed location using a linear variable distance transducer
(LVDT) [20]. Joubair et al. probed three spheres with known center-to-center
distances [19]. Measurements could be collected by contact sensors, such as
touch probes, or by non-contact sensors attached to the end-effector [21].
While uncalibrated robots typically exhibit positional errors between 5 mm
to 15 mm, calibrated robots often have errors around 1 mm [22]. Including non-
geometrical parameters such as joint flexibility in the model can further improve
the accuracy of calibration to submillimeter range [9]. Global calibrations are
typically performed by collecting measurement data throughout the workspace
and identifying a global parameter set that minimizes error for all measurements.
This global method yields optimal average error over the whole workspace; how-
ever, local positioning errors may be much larger at specific points or subareas.



Consequently, model accuracy may be lower than expected in some regions of
the workspace. Research on error compensation showed that robot models ex-
hibit positional error similarity [23, 24]. In addition, Nubiola et al. [J] showed
that restricting the calibration to a subarea defined by a 0.7m cube reduced
the mean positional error from 0.364 mm to 0.292 mm. Therefore, it is expected
that a local calibration for a subarea of the workspace will have higher accu-
racy than a global calibration [25], which is well-suited for applications where a
smaller, more accurate workspace is required.

The contribution of this work is a method for simultaneously calibrating
robot and tool/sensor frame parameters using robot-mounted measurement de-
vices. The proposed method is flexible in selection of calibratign artifact and
its placement, making the selection of a desired local target space possible.
This method is specifically advantageous in manufacturi ications where
target workspace of the robot is restricted based on workei clamping
options. As the kinematic model is calibrated for a loca. be more
accurate than the global calibration when operatin ¢ rget area. The
use of robot-mounted measurement devices res
peatable measurement process for a local targ

MDH) parameters [26]

Additionally, the current work providggf8
world and tool frames in Modified Deng @
Q¢ e systematic assignment

of frames prevents model singul all@ait is useful for practitioners and

thod to include the

An additional advantag posed method is the ability to calibrate
the entire model withou i e end-effector. Many common methods
require removal of the at specialized sensory equipment may
be attached during ocess. The end-effector may be reattached

world ang @ will be calibrated along with the robot parameters, which
is critid @ ] igh accuracy. Simultaneous calibration of all parameters
ensures t o further error is introduced due to moving the tool/sensor after
calibration.

To demonstrate industrial application, the proposed method is applied to a
case study in which a machining operation is performed by a robot equipped
with a cutting tool and laser profile scanner. The calibration artifacts are stan-
dard 1-2-3 blocks, which are commonly used in machining operations.

In Section the systematic approach for extending the robot model to
include world and tool frames is presented, and the identification process for
local calibration of the extended model is discussed. In Section [3] the model is
applied to an industrial robot equipped with a cutting tool and a laser profile
scanner. The two kinematic chains are calibrated using a common calibration
artifact. Achievable positional accuracy is verified through experimental results
presented in Section 4] and conclusions are stated in Section



2. Calibration Methodologies

The first step in the proposed calibration process is to define a kinematic
model. In practice, the world and tool frames must be included in the model
for calibration.

The key concept of the proposed local calibration is to use robot-mounted
measurement devices to interact with a simple calibration artifact in the target
workspace. The interaction may be through physical contact or measurements
using a non-contact sensor. The joint positions when the robot interacts with
the artifact in different poses and the known dimensions of the artifact are
used for parameter identification. The calibration artifact cag be moved or
reconfigured to create more constraints to improve the calibraj@h; nevertheless,
the constraints should remain within the target workspace

: contact could
e continuity test. For
o desired poses and
joint positions along

The kinematic model of g nipulator is commonly formulated using
[ [27]. The base frame (0) is assigned to

frameM1 to n) are attached to each link.

i@parameters of a link, which describe the

the robot base, and suld
Fig. [ illustrateg

Figure 1: The joint angle 6;, the link offset d;, the link length, a;, the link twist, «;, and the
additional parameter 3; describe the transformation between neighboring links.



link twist «;. Using these DH parameters, the pose of frame ¢ with respect to
frame (i — 1) is written as a transformation matrix,

i_lHi(Qi) = Rot g, Trans, 4, Trans, ,,Roty o, . (1)

A number of researchers have determined the limitations of DH approach and
proposed modifications for the modeling procedure [3]. Specifically for cali-
bration applications, If two consecutive frames have near-parallel z-axes, the
geometric model is poorly defined. Hayati [26] introduced an extra rotation
parameter (§; about the y-axis for this case. The DH parameters and the addi-
tional y-axis rotation parameter are collectively the so-called Modified Denavit-
Hartenberg (MDH) parameters. Using the MDH parameter: e transforma-
tion from frame (i — 1) to frame ¢ is

“~'H,(0;) = Rot, g, Trans, 4, Trans, ., Rot, ROty s,

where the matrix/vector components are defined &

N\

; TCB; S S0;
$B:50; —CBiSa; Co; |»

- CB:iCo; — Sa;56;56;
i
R, =|cp, 50, +5a,58

Ca; CB;
where the notation c, to represent cos(¢) and sin(¢), respec-
tively.

For each join chain, either d; or §; is set to zero. If joints ¢
and (i + 1) ¥is set to zero; otherwise, (3; is zero. Thus, a set
of four independ eters may be selected for each assigned frame. The
overall t at¥@m of an n-DOF robot kinematic chain is

n
OH,(0) =[] " 'Hi (6:), 0 =0; + 6o, (3)
i=1

where 0 is the joint angle and 6, ; is the joint offset due to misalignment of the
home position from the zero joint angles.

2.2. World and Tool Frame Modeling

The MDH approach defines the transformation from the robot base frame to
the end-effector or flange frame (°H,,). However, for path planning, a Cartesian
path is typically defined in the world frame and requires an extra world-to-base
transformation. Similarly, as the path is defined for the tool/sensor frame rather
than the end-effector or flange frame, an extra transformation is required to
define the tool/sensor frame. By introducing two additional transformations,



the kinematic model defines the tool/sensor frame with respect to the world
frame as

"Hp41(0) = “Ho "H,,(0) "Hyy, (4)

where w represents the world frame and (n+1) represents the tool/sensor frame.
These two frames introduce 12 new parameters into the kinematic equations.
However, the total number of parameters N required for a complete forward
kinematic model is defined in [28] as

N =4Ng + 2Np +6, (5)

where Np is the number of revolute joints and Np is the nu
joints in the serial kinematic chain. Therefore, the 12 par
for the definition of the world and tool frames are not ind
parameters. For a 6-DOF robot consisting only of r
parameters are required.
Although many researchers have performed cal
dent parameters in the model, few have defined
only the independent parameters using the D

introduced the Modified Complete and @

of prismatic
ters introduced
of the robot

[30]. Zhaung et al.
ontinuous (MCPC)
( ot modeling including
Parameter set [31]. As the DH no-
ion@hthe world and tool/sensor frames

technique, which is an alternative to D
world and tool/sensor frames with ini
tation is more widespread and thg
is essential in practical applicas

and tool frames while e al parameter set. These parameters are
referred to as the Exte ified Menavit-Hartenberg (EMDH) parameters
herein.

is arbitrarily defined with six parameters or
spect to the base frame (0). However, two of these
parameter Qpendent when considering the calibration model. To select
i Wparameters, the base frame may be positioned anywhere

parameters. \@bese four parameters must take any arbitrary world frame and
align it with the new base frame such that the z-axis is colinear with the joint
axis. These four parameters may be selected as {6y, do, ag, @, So} with either
dg = 0 or By = 0 if the world-frame z-axis is parallel or perpendicular to the
0" z-axis, respectively. This assignment is equivalent to extending the model
parameters by adding an initial ‘revolute joint 0’ to the convention such that

“Hy = Rot, g, Trans, 4, Trans, ,,Rots o,Roty g, (6)

defines the transformation between the world frame and the new base frame.
Similarly, the tool/sensor frame (n + 1) may be arbitrarily defined with six
parameters with respect to the end-effector frame (n). However, four of these
parameters will be dependent when considering the calibration model because



there is no relative motion between the end-effector frame and the tool frame. It
is possible to define an intermediate end-effector frame (n’) with parameter set
105, ., 5,5 a5 oy, B, } that requires only two additional constraints, {0,,41, dn1},
to define the tool/sensor frame (n + 1). Fig. [2] illustrates how the tool/sensor
frame can be defined by two independent parameters from the intermediate
frame n’. The transformation across the n*® joint to the tool/sensor frame is
formulated as

n—1 _
H, = ROtz,(egyn-w;;)TfaHSz,d; Transy a/, ROta:,o/n Roty”g%

!
"H, 1 = Rot, g, , Trans, 4

(7)

ol /sensor frame

n+1 n+17

with either d], = 0 or 3], = 0 to avoid singularities when th

adds a partial set of parameters. Table [I] lists
general n-DOF serial manipulator, including t
The independent parameter vector is gener
EMDH table such that

a € R aeR"™ B e
near-parallel z-axes.

2.8. Measurements

In this sectiox
ment devices a
respective e

etho data collection with robot-mounted measure-
sion of the target workspace for local calibration are

6 DOF
di i dns1
{n-1} |
{0}y g W}re,,,

Figure 2: Intermediate frame assignment to remove the dependent parameters. (Left) Frame
0’ is defined on the z-axis of base frame. (Right) Frame n’ is defined on the z-axis of the
tool/sensor frame.



Measurements from Robot-Mounted Device

Most calibration methods use an external measurement device to detect the
full or partial pose of the end-effector for absolute calibration. However, in
the current work, robot-mounted measurement devices are used for constraint-
based calibration. These devices collect full or partial spatial information while
interacting with a calibration artifact, and the type of artifact defines the con-
straint for calibration. Considering the measurement output as a point in the
sensor/tool frame "*lp,,, the estimated world-frame position is

B!

where the estimated transformation from the world to the

WHn_H is dependent on the parameter vector p. In t ss, the mea-
surement data for calibration consists of the robot join the sensor
output. The sensor output could be a single or a collectio points¥expressed
in the world frame according to @ The data co for two types
of sensors used in this study are discussed.

Many industrial robots are equipped with easurement devices

(10)

ace, the robot-mounted laser scanner

dy ag o Bo

’
OH, b1 T 01 dy ar o1 B
i—1
‘T H; 0o +0; d; a; o B
"Hy O +0n  dy  an o B
"Hpq1 On+1 dnt1 X X X




all collected profiles can be transformed to the world frame to generate a three-
dimensional point cloud representation of any object in the workspace.

The second measurement device discussed herein is the force/torque sensor.
Many applications require measurement of the interaction force between an
object and a robot-mounted tool. Therefore, the robot is equipped with a
force/torque sensor, which can be used to implement a touch-off process to
create physical contact with a calibration artifact. The robot is programmed to
move the tool close to the artifact and then slowly approach the artifact. When
the contact force crosses a designated threshold, the robot stops and the robot
pose is recorded. Each touch-off is considered a partial measurement of the tool
tip location expressed in the tool frame as

-
tpm = [0 0 tm] ’ (11)

where t,, is the tool length.

Local Data Collection

Let the robot workspace 7 C SE(3) be th&Qget 11 feasible end-effector
poses H.. of the form

(12)
where pe. and R.. represent thg ition and orientation of the end-
effector, respectively. Global C@ on is typically performed by collecting
random poses throughout ;

In contrast, local calj specific target subarea of the workspace
L C T. To achieve best alibration should be performed with mea-
surement poses thg e robot poses used in the actual application
as possible. A are typically made of a series of links articu-

pnal errors demonstrate more similarity when the
robot posgf in the joint space rather than the task space [24]. There-
he subset for local calibration should not only restrict
the end-e or orientation. The target workspace L is defined as

£={|:Rge plee:|€7— ‘ REEERd, peeePd}, (13)
where R4 is the desired set of end-effector orientations and P4 is the desired
set of end-effector positions in Cartesian space. For a machining application,
the desired position subset can be defined based on the location of the clamping
system and the maximum size of the workpiece. The position subset P; may
be defined as a cube in Cartesian space as

Pg = {pce = [pz Dy pz] S R3

pIEBI,pyEBy,pZEBZ}, (14)



where B, By, and B, are the allowable real intervals on the z-, y- and z-
coordinates, respectively.

Although industrial robots have high flexibility in achieving desired tool
orientations, certain applications may impose restrictions on tool orientation.
For instance, constant tool orientaion maybe desirable for manufacturing of
sheetmetal parts. Other applications may allow bounded deviation of the tool
axis from a predifined dominant orientation to allow machining more complex
features or creating holes and chamfers. A practical method for defining the
orientation subset R4 is to restrict the tool axis within a cone-shaped space as

Ra = {Ree = [Xee Yee Zee] € 50(3)

cos™! (zeeTzC) <) (15)

2.4. Parameter Identification

The model generated in Section i se of the tool/sensor
frame relative to a world frame. The gog eter identification step
optimize the accuracy

of the generated model. In this sect ¢ gment error and cost func-
tions are defined for both opens ion with full pose measurements
and closed-loop calibration wi )l meaSrements collected using robot-

mounted measurement devi

Open-Loop Calibration

Most calibratiosms
the full or partig -effector frame. For measurement m, the full
pose of the end e with respect to the world frame can be expressed
using a tr

where X,,,, ym and z,, are the orthonormal vectors which represent the orien-
tation of the end-effector, and p,, is the position vector. The position error is
simply defined as
€p = Pm — Pm> (17)
where p,, is the estimated end-effector position.
Assuming small errors between the measurement and model output, orien-
tation error can be directly calculated from the transformations as [32]

1 R . .
eozi(meXmﬁ-meymﬁ-ZmXZm) (18)
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where X,,,, ¥ and z,, are the orthonormal vectors representing the estimated
orientation. The total error for each measured pose is considered as the sum of
the squared Euclidean norms of position and orientation errors such that

em = ||ep||2 + ||eo||2, (19)

where ||e]| is the Euclidean norm operator. If SI units are used, no scaling is
required as the positional error in meters and orientation error in radians are
directly comparable for human-sized arms [4].

Closed-Loop Calibration
The method proposed herein uses robot-mounted measugdfient devices to

collect data about an artifact, which falls under the constr, sed or closed-
loop calibration. A physical or virtual restriction in orkspace is
used to constrain one or more points attached to the to me. The

sharp tip of a
t surfaces or a
he method proposed
s. Any plane k in
mal vector n; and an
r “pm € k is defined as

cone-shaped object, a line presented by intersecfgon
virtual laser projection, a plane, a cylinder, or &

(20)

ment point Vp,, may
is a function of thg

straint equation. The estimated position
p and is calculated according to @ The

gulated as

em =10} Py — di. (21)
By differ ing the error function with respect to the robot parameters and

vertically st3@king all the measurements, the identification Jacobian is defined

as T
_ | %e1  Oez Qe dent
J=[% %2 . Zm . 2 } : (22)

where M is the number of measurements. The Jacobian is used to calculate ob-
servability of parameters [4]. In the identification step, the optimal parameters
p* are identified by

p* =argmin|lel], e=[e1 ex ... en]. (23)
pERN

To evaluate the effectiveness of the proposed methods, their implementation
in a robotic machining application is presented in Section

11



3. Application of Methods

The proposed methods are implemented in the calibration of a robotic ma-
chining system, which includes:

e DENSO VS-6556W 6-DOF manipulator;

¢ 350W NSK spindle with 1/8-inch 2-flute carbide end mill;
e Micro-Epsilon scanCONTROL 2950-50 profile scanner;

e ATI Gamma six-axis force/torque sensor; and

e Vise with locating edges.

Fig. 3| shows a close-up of the spindle, end mill, and varj
imental setup. A variable-helix end mill was selected to

Figure 3: ExpP@imental setup, including (a) the robotic system and end mill, (b) key compo-
nents, and (c¢) wePkpiece with labeled edges.

The experimental machining application is designed to cut the edges of a
sheet metal workpiece to a desired depth of cut. Throughout the process, a
three-dimensional model of the workpiece in the standard STL file format is used
whenever there is a need for geometrical information. This three-dimensional
model is referred to as the STL model. Fig. [ summarizes the process for the
experimental machining application. The steps of the process are described as:

e Load: The workpiece is loaded into a vise.

e Scan: The workpiece is scanned with the robot-mounted laser scanner to
construct a unified point cloud as explained in Section [2.3

12



Forward Kin.
Transform Plan Ideal
Path Path

v
Process Plan Robot I Ki
Parameters Trajectory nverse Kin.

local frame such
depth of cut.

ot Trajectory: A Cartesian trajectory is defined based on the
h and process parameters (i.e., feedrate, etc.). The joint-space
is generated by applying the inverse kinematic model.

Machine: The robot follows the joint space trajectory with kinematic
control to perform the machining operation.

Unload: Finally, the processed workpiece is removed.

A locally-calibrated model of the robot/laser kinematic chain is used to con-

vert the laser scanner output to the world-frame point cloud in the Scan step.
This
the calibration process is discussed in Section [3.1} Similarly, another locally-
calibrated model is used for the robot/tool kinematic chain to convert the lo-
cal/ideal path to the world frame in the trajectory planning step. This model

model is referred to as the Local Robot/Laser Model (LRL Model), and

13



is referred to as the Local Robot/Tool Model (LRT Model), and the calibration
process is discussed in Section To compare the effectiveness of local calibra-
tion, a Global Robot/Tool Model (GRT Model) is calibrated for the robot/tool
chain. The GRT model is discussed in Section [3.4]

3.1. Local Robot/Laser (LRL) Model

The robot is equipped with a laser profile scanner to act as a non-contact
measuring device. The robot/laser model is calibrated by scanning an artifact
and identifying parameters as described in Sections [2.3] and 2:4] Fig. [5] shows
a simplified schematic of the robot with key link dimensions, joint variables 6;,
positive directions of rotation, tool frame ¢, and laser frame I.

For local calibration, the scan path must be defined suc at

n; z, <0,

where z, is the sensor z-axis defined in (16 an

visible in laser field of view. If the orientation -effector is constant,
not all required surfaces are visible. To a wo-segment path is
designed to scan the object with two di tations. Consequently,
the faces that are not visible in the C
segment. The two segments of 3 h can be described as two local
subsets of the workspace acco h position boundaries listed in
Table 2] and desired consta ¢ ons defined as

s2 Roty —7/10 Rot, _9r/10
2,—m/2 Roty /10 Rot, 9x /10, (25)
to the first and second segment respectively.

or cartesian velocity of 4 mms~! which for the
scan freg (e of 100 Hz results in the resolution of 40 pm between

The S@hil#ftion is performed by scanning the calibration artifact, a combi-

-2-3 blocks, in a series of poses within the vise. A 1-2-3 block is
a common tod®made of hardened steel with dimensions 1 x 2 x 3 inch within

Table 2: Position Boundaries for Calibration Measurements

Pa
Model B, [mm] B, [mm] B, [mm)]
LRL 1 660 [—20, 120] 1342
LRL 2 662 [—2,137] 1343
LRT  [580,610]  [-80,50] [1150,1275]
GRT [480,840] [-130, 130} [1060, 1560)

14



0.0002 inch accuracy. Constraints are defined to relate points detected on each
block face to the known/assumed location of each face. Fig. [f] shows several

90

mm
>

Qs created by placing two 1-2-3 blocks together. A frame is assigned
to the vise wip origin at the locating edge. As one of the blocks in each config-
uration is placed against the locating edge, the normal vector and plane offset

Table 3: Surface constraints used in calibration

k 12 3 4 5 6 7 8 9

i k k j k i i j jj
dilinch] 2 4 -3 3 -1 0 -4 -2 0

15



of each constraint face is known based on of the block dimensions. Table [
lists the normal vector nj and the plane offset dj for all the faces used in the
calibration process illustrated in Fig. [f] where i, j and k are the standard basis
of the vise frame.

Each laser profile consists of 1280 points along the laser line projected on the
calibration artifact. Not all the profiles and points are valid measurements as
the projected laser line may not be on the object or partially covering it during
the scan. The points are filtered using bounding boxes defined around the cali-
bration artifact to select the appropriate measurement data set for calibration.
Moreover, relative orientation of scan projection, artifact surface properties and
corner conditions can generate noise/outliers in the measuremgsts. Appropri-
ate outlier rejection methods were used to filter out points t are a certain
threshold away from the assumed artifact surface.

olute joints on links 2 and 3. Moreover, the laser frame 2-
the axis of rotation on link 6 of the robot. Therefor

robot model is of the form presented in wh

and B = [ BG]T. The Jacobian matrix ¢
which indicates that all parameters are j

k=6

|
Config. 3 4\}; Config. 4 4\y

Figure 6: 1-2-3 block configurations used to define absolute coordinate constraints. The
coordinate frame shown in each configuration shows where the blocks are fixed in the locating
edge of the vise and is aligned with the world coordinate frame.

16



As discussed in Section [2.3] selection of the target area for local calibration
affects the level of achievable accuracy. Although the laser scanning path was
designed to approach a small target area in the task space, the two scan segments
could be considered two separate subsets as the orientation of the end-effector
is significantly different for each segment. Including the measurements from
both segments, a model named LRL-1/2 was calibrated; however, as expected,
the accuracy is not satisfactory. Therefore, two separate local models LRL—
1 and LRL—-2 were calibrated for each segment. Hereafter, LRL model is the
combination of both local models as each is used to transform the data collected
in the corresponding segment to the world frame to generate the scan output.

Using the locally-calibrated models, it is possible to scan a wggkpiece, trans-
form the scan data into the world frame, and accurately deterggfie the workpiece
pose via a localization process. This process is briefly disc the following
subsection.

3.2. Localization

Given a scan of the workpiece in the world€am localization process is
performed to find the optimal pose of the warkpid@as
2
VH, = argmin 1 I;“] (26)
HeSE(3) %
where “H, represents the esgint se of the workpiece relative to the world
frame, Vp.; is the i*? poi ld-frame scanned point cloud, and “ps; is
the matching local-fra »TL model that is closest to “p.; after
applying the transforma onvert to the local frame. The optimiza-
tion is performed LAB functions.

plane method used to match points in the cloud
Pin the local frame. For each point pg;, a normal

vector n ed by fitting a plane to the k-nearest-neighbors. These
norma b pared to the normal vectors of the STL model ny; to
match eXggl®int with a corresponding face/plane, and the point is projected

onto the faS@to define the matching point ps ;.

Fig. [§] shoWws an example of the localization process. The STL model is
represented as a square with black edges and the point cloud is shown as red
points. The local frame of the STL model is shown in the center of each image
with labelled z-y-z axes. In the left image, the initial estimate of the pose
yields high point-to-plane errors, which are indicated by the length of the red
lines that join points in the cloud to the matching points on the STL model. In
the right image, the final estimate demonstrates the result of the localization
process as the STL model is closely matched with the point cloud and errors
are minimized.

After the workpiece location is determined, a robot/tool model is required
to perform the machining operation. In the following subsection, the local
calibration of the robot/tool model is discussed.

17



Figure 7: The point-to-plane matching process. For each point in ghe cloud tching point

is identified to calculate the point-to-plane error.

S0t

y [mm]

5018

20

1gh point-to-plane error shown using red lines. Right: Final pose estimate
after localiz¥@&n minimizes the deviation of point cloud from STL surfaces.

3.8. Local Robot/Tool (LRT) Model

To improve machining accuracy, the robot /tool model used for path planning
must also be calibrated. The robot/tool kinematic chain was calibrated using
the touch-off process discussed in Section [2:3] For this specific application, the
local region for collecting measurement data was selected to cover the robot
poses in the actual trajectory used during the machining process. In the case
study addressed here, the parts are made out of sheet metal and are held in a
vise. Tool orientation is commanded to be along the normal vector of the sheet
metal plane. Therefore, the target workspace is defined using for position

18



limits provided in Table 2] and an orientation defined as
Ry ={R4}, Ry =Roty /2. (27)

In the robot/tool chain, only links 2 and 3 have near-parallel revolute joints
and the parameter vector is of the form presented in with
d=[dy di ds dy d5 dg d7]T and B = [f2]. Moreover, the artifact is scanned
with the calibrated LRL Model to determine the absolute measurements and
ensure correspondence between LRL and LRT models that are used in position
sensing and trajectory planning, respectively.

For measurements of the y- and z-faces of the block, the cylindrical surface
of the tool shank is in contact, whereas the tool tip is in conta ith the block
while measuring the xz-face. Therefore, the planar error equ for the y-
and z-faces was modified to include the tool radius as

em:an)m—dk—r, (28)

where 7 is the tool radius.
In the current setup, data was collected for f jons of a 1-2-3 block held
by the vise. A total of 260 measurements weze co d used in parameter

The rank of the Jacobian matrix, ca: fccording to , shows that the
maximum number of observable pargin et Qs . e unobservable parameter
j tool axis. This result is expected

3.4. Global Robot/Tool

To benchmark the ce of Phe local calibration, a global calibration
was first performedgii totrak Certus system with measurement
accuracy of up t tracked the pose of active markers attached
to the end-eff abot’ was guided through a series of poses while the
joint angle corresponding Optotrak data were collected. Two sets of
poses wg pllect the data. The measurement set was collected by
moving ot insifle a 300 mm target cube, which covers the local subset
for LRT Plel defined in while randomly changing the tool orientation.

Lastly, a digWiing probe [33] was used to define the world and tool frame. The
world frame was defined at the locating edges of the vise, and it was identified
by probing the three orthogonal surfaces of the jaws. The tool frame was defined
at the tool base on the spindle and is identified by probing the spindle surface
and tool tip. The measurement error vector was calculated using and was
used in to identify the GRT model parameters.

4. Results and Discussion

In Section [4.1] the calibration results for the globally-calibrated and locally-
calibrated models are presented, and the improvements in accuracy are dis-
cussed. In Section the results of the machining application with the locally-
calibrated models are presented.
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4.1. Calibration Results

The nominal parameter set is reported in Table[d]and consists of the nominal
robot, world-frame, and tool/sensor-frame parameters. The nominal robot pa-
rameters are provided by the manufacturer and are illustrated in Fig. 5] whereas
the world and tool/sensor frame parameters are assigned from manufacturing
drawings of the experimental setup. During calibration, four parameter sets are
identified using the methods described in Section [2| and the achieved accuracy
for each parameter set is discussed in this section.

Using the absolute measurements collected with the Optotrak system, a
global model (GRT) is calibrated with the method described in Section
The identified parameters are reported in Table @l Fig. [0] shgfs the position
and orientation error histogram before and after calibrati The calibrated

e depth errors

calibrated using 1-2-3 blocks as described in
i of the 1-2-3 blocks

of the point cloud with respect to the con

al acguracy of the tool tip, another local model
ed j@Section The identified parameters are

Finally, to improve
(LRT) is calibratedsas

I:I Before Calibration (Nominal) | |

mean: 8.02, std: 1.12

I:I After Calibration (GRT) |
mean: 0.80, std: 0.51

0 rm-rrﬂwm -H‘h_

0 2 4 6 8 10 12

Position Error [mm)]

1500 T T T T T
M Before Calibration (Nominal)
1000+ I:I mean: 1.86, std: 1.16 i
E After Calibration (GRT)
8 I:Imean: 0.36, std: 0.23

Orientation Error [deg]

Figure 9: Positional error before and after the calibration for the global model.
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reported in Table[d] and Table[5]summarizes the average and standard deviation
of errors achieved with this model. For comparison, Fig. shows the error
histogram for the nominal, globally-calibrated and locally-calibrated models for
the measurements collected from touch-off tests on the y and z faces of the 1-
2-3 blocks. The LRT Model shows significant improvement compared with the
nominal and GRT models. The average and standard deviation of errors are
reduced to 0.04 mm and 0.04 mm respectively. The majority of errors are within
+0.2mm and the average tool tip position is successfully corrected.

4.2. Machining Accuracy

To confirm machining accuracy, a series of experiments ag@performed on

mounted laser scanner. The corresponding pomt

LRL model to transform scan profiles to the sing the localiza-

tion process discussed in Section the warkp is determined from
this point cloud. To verify localization acg i machining the coupon
touch—off tests are performed with the he t8ol as described in Sec-
tion [2:3] These tests demonstrate the aiiced acclracy of the LRL and LRT

models, as well as the localizatig oy Fig. [T1] shows the touch-off and
localization errors for a typicalilie . YPositive depth indicates a point
QPO localization. Considering the errors for

and the tool touch-offs? i ift indicates the difference in size between the
actual coupon and4

adjusts the y-d € errors symmetric For these experiments only
the top ed e i

O—H__ ||:|Nominal Modell i
= DN =T S

50F = T T T T T T ]

g [ 0 GRT Model (Global) |
3
0 —I_I_ —I—l_\—| I I I I I I
200 . . . ; ; .
100 —L |C——J LRT Model (Local) | |
0 1 1 1 1 1 1
0 1 15 2 25 3 3.5 4

Distance Error [mm)]

Figure 10: Distance error histogram for Nominal, GRT and LRT models in the 1-2-3 block
touch-off tests.
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coupon does not affect the localization accuracy. As shown in the plot of errors
on the z-edge, the point cloud mean is zero which shows the localized point
cloud has shifted to the center of the top surface.

Table 4: Summary of robot parameter sets for robot/tool models (nominal, global and local)
and robot/laser models (nominal, local-segment 1 and local-segment 2).

Robot/Tool Models  Robot/Laser Models
Parameter Nom  GRT LRT Nom LRL1 LRL 2

o [deg] 90 89.93 90.70 90
0; [deg] -90 -89.48 -89.50 -90
02 [deg] 90 89.75 90.31 90
03 [deg] -90 -89.66 -90.28 -90
04 [deg] 0 1.06 0.47
05 [deg] 0 -0.03 -0.06
06 [deg] -61 -59.88 -59.09
67 [deg] 90 91.08 . -14.56
dy [mm 1564 1561.70 15 .42 1535.88
dy; [mm 335 323.41 31.06 325.13
d3 [mm 3.55 4.20
dy [mm 288.69 291.70
-0.52 -3.31
X X
199.08 190.24
-0.40 0.35
80.75  71.69
-269.12 -261.80
-89.92 -94.87

0 0.14  -3.49 0 1.27  -10.89
0 -0.26 3.83 0 -2.55 0.25

] 0 099 368 81 7048 82.68

cg] 90  89.80 89.81 90 89.43  89.67

ap [deg]  -90 -90.16 -89.86 -90 -89.65 -88.98
vy [deg] 0 -011 001 0 -0.15 -0.31
s [deg] 90 9040 90.39 90  90.31  90.39
oy [deg]  -90 -92.11 -92.18 -90 -91.27 -92.05
s [deg] 90 9177 91.86 90 91.92 91.30
ag [deg] 90 -89.85 -90.08 -0  0.17 -0.76
By [deg] 0 -010 -033 0 -038 -0.15

Be [deg] X x x -0 -0.16 0.21

x Parameter is not applicable.
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Localization Error

100k at Y+ Surface

Laser Points

0] - e

400H

Localization Error

at Z+ Surface
200

Laser Points

0 |
200H ]

Localization Error
at Y- Surface

100

Laser Points

edges. The path is transformed from th/&g
verted to joint angles via the locallygs

different depths of cut
material was removed,
test. Fig. [[3]show;

edge was comp

barely to h@

Table 5: Summary of the errors for calibrated models

Calibrated Error

Nominal Error

[mm)] [mm]
Model mean std mean std
LRL 1/2 -3.58 4.97 -0.22 0.75
LRL 1 -4.14 6.47 -0.00 0.03
LRL 2 -2.62 2.33 0.00 0.06
GRT 1.34 1.21 0.39 0.17
LRT 1.34 1.21 0.04 0.04
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Actual (Meas.)
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o
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Figure 12: The actual (from point cloud means) vs ideal

tool path is designed from the nominal STL model whid@the act®@l workpiece
was slightly smaller in width as discussed above.
After each cut, the coupon is scanned with th
pares the commanded and actual depth of cut
depth is the mean of the point cloud generated scans after each cut.
rs on each data set.
ual depth and the line
representing the commanded value is | Ot the tool positional accu-
racy. The same machining expegffie! performed on seven coupons. We

. Fig. [12] com-

frror. Table [f] summarizes the maximum
cxperiments. The machining accuracy is

commanded depth as the
and mean machining err,

considered the maxim red eor for all the coupons and is less than
0.15 mm.

The point clg n the y-edges shows that the tool does not
engage the wo 5Tnm and 0 mm depth of cut, which confirms that
the actual g he workpiece is slightly smaller than the nominal STL

apth of cut corresponds to the commanded value for the

measured th is on the negative y-edge and is due to the robot/tool model

error.

D

Table 6: Machining errors for the experimental coupons

mean [mm| max [mm]

Y+ Edge 0.07 0.15
7+ Edge 0.08 0.05
Y- Edge 0.07 0.14
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0mm 0.15 mm

Figure 13: Rectangular coupon edges after depth

5. Conclusion

This paper presented a method for ocal calibration of indus-

trial robots with robot-mounted t devices. The developed method-
ology uses locally-calibrated mg lobal models. The calibration
process does not require exter rement devices, and it can be used to
calibrate both the robot/ hot /sensor kinematic chains in any target

artifacts. Local ¢

quently, workpj @

ntly improves model accuracy and, conse-
d machining accuracy in the case study that

for path plan¥®ng. Kinematic control machining experiments were conducted
by executing the desired trajectory in position control mode to machine several
rectangular coupons. The path was planned to gradually cut the coupon edges,
and laser scans were used to quantify the tool tip positional accuracy. The
results demonstrated that a positional accuracy of +0.15 mm could be achieved
for the tool tip using the locally-calibrated models and the process described
herein.

The developed methodology can be extended to different areas of the workspace
by repeating the process and introducing additional local models. For processes
that have higher loads on the end-effector or larger machining forces, joint flex-
ibility may worsen the achievable accuracy. This issue can be addressed by
including the joint stiffness in the robot model.
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