
Application of Pseudo-Symbolic Dynamic
Modeling (PSDM) in the Modeling &

Calibration of a 6-DOF Articulated Robot

Steffan Lloyd ∗ Rishad Irani ∗ Mojtaba Ahmadi ∗

∗ Carleton University, Ottawa, ON, K1S 5B6, Canada
(e-mails: {steffan.lloyd, rishad.irani, mojtaba.ahmadi}@carleton.ca)

Abstract: This paper describes the modeling, calibration, and benchmarking of the pseudo-
symbolic dynamic modeling (PSDM) method on a Denso VS-6556G manipulator outfitted
for robotic deburring purposes. PSDM is a numerical dynamic modeling method that allows
for fast real-time evaluation and returns the dynamic model in regressive form, allowing for
straightforward model calibration. An overview of the PSDM method is given, and the model
derivation for the Denso manipulator is demonstrated. This model is calibrated experimentally,
along with a joint actuator model and LuGre friction model for each joint. The calibration is
highly accurate, capturing 98–100% of the motor, gravity, and friction effects, while the high-
speed acceleration fitting captures 81–99% of the observed torque effects. Benchmarking of the
PSDM model shows it to be significantly faster than the reverse Newton-Euler algorithm.

Keywords: Nonlinear system identification, software for system identification, identification
and control methods, robotic manipulators

1. INTRODUCTION

Accurate dynamic modeling of robotic manipulators is
essential for control system design, simulation, motion
planning, state estimation, manipulator design, and much
more. Classically, the dynamic model of an n-link manip-
ulator is represented with the differential equation

τ = D(q) q̈ + C(q, q̇) q̇ + G(q), (1)

where q is the generalized joint coordinates, D(q) is the
mass matrix, C(q, q̇) q̇ is a vector of Coriolis and centrifu-
gal terms, and G(q) is the gravity vector. Evaluation of
this model is a function of the 10n parameters of masses,
centers of gravity, and moments of inertia of each linkage,

X =

[
m1 rx1 ry1 rz1 Ixx1 Iyy1 Izz1 Ixy1 Ixz1 Iyz1
: : : : : : : : : :

mn rxn ryn rzn Ixxn Iyyn Izzn Ixyn Ixzn Iyzn

]
. (2)

Typically, these inertial parameters are not known, and as
such, the dynamic model cannot be leveraged accurately in
any useful manner. A key result in the dynamic modeling
of manipulators, however, is that (1) is known to be linear
with respect to a set of ` base inertial parameters θb, and
as such, it is possible to rearrange into regressor form,

τ = Y(q, q̇, q̈)θb, (3)

where Y(q, q̇, q̈) is the n × ` manipulator regressor. The
inertial parameter vector θb contains all the information
minimally required to calibrate the dynamic model; how-
ever, due to constrained motion between joints, will have
fewer entries than X, such that ` ≤ 10n. In this form,
with experimental knowledge of τ, q, q̇ and q̈, one can

? This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC) grants RGPIN-
2017-06967, RGPIN-2015-04169, and CRDPJ 514258-17. Support for
Steffan Lloyd was provided by NSERC CGS-D.

use linear system identification techniques to identify θb
and calibrate the dynamic model.

Many methods have been proposed to compute the dy-
namic model efficiently. Lagrangian methods (Uicker,
1969) return the model symbolically; however, they scale
extremely poorly to higher degrees of freedom (DOF),
with complexity O(n4). Moreover, the model is returned in
canonical form as in (1), but rearrangement into regressor
form is nontrivial. Perhaps the most common method
is the recursive Newton-Euler (RNE) method proposed
by Luh et al. (1980), which has linear complexity O(n)
but requires full knowledge of the inertial parameters X,
and thus is difficult to calibrate experimentally. However,
modifications of the RNE algorithm, proposed by Atkeson
et al. (1986), allow rearrangement into regressor form while
maintaining linear complexity O(n). These algorithms can
be categorized into either numerical or symbolic algo-
rithms. Numerical algorithms such as the RNE method
work “out of the box” and can provide results using only
the kinematic and inertial parameters of the kinematic
chain, without a derivation step. Conversely, symbolic
algorithms, such as the Lagrangian approach, require a
complex derivation step, but can eliminate redundant
terms and simplify calculations. For industrial robots, the
number of links is typically small (six or seven joints), and
as such, these simplifications can result in lower evaluation
time than numerical algorithms even though the algorithm
complexity is higher (Lloyd et al., 2021a). However, these
symbolic programs typically struggle with the complex
derivations required and lack robustness — relying on
algorithms that use significant memory and can fail or give
sub-optimal results. Moreover, common symbolic software
such as Maple or Mathematica require expensive licenses
to use, which practically limits access to their use.

PREPRIN
T

Recently, Lloyd et al. (2021a) proposed a new approach to
dynamic modeling called Pseudo-Symbolic Dynamic Mod-
eling, or PSDM. The PSDM method is a middle ground
between symbolic and numerical methods. It is completely
numerical, relying solely on standard linear algebra oper-
ations. However, it is able to perform simplifications and
reductions typically only possible using symbolic software.
Additionally, the derivation step is significantly faster and
more reliable than with symbolic software, and the derived
model is returned in regressor form, allowing for straight-
forward calibration. The resulting dynamic model is en-
coded numerically in matrix form, which allows symbolic-
style manipulations to be performed on the model using
standard linear algebra operations. Thus, the model is flex-
ible to use and manipulate, allowing for highly optimized
real-time code generation and forward dynamic modeling.

The goal of the current work is to demonstrate the utility
of the PSDM method in the modeling, calibration, and
real-time use of a dynamic model for a Denso VS-6556G,
6-DOF articulated robot for use in deburring applications.
An overview of the PSDM method is given, and the deriva-
tion of the PSDM model is completed for the Denso ma-
nipulator. A procedure to calibrate this model is proposed
and demonstrated over a series of experimental tests. The
calibration also includes identifying the torque constants of
the robot actuators, and a LuGre dynamic friction model
for each joint. This article represents the first experimental
validation of the PSDM method, quantifying the accuracy
of the resulting models and comparing their real-time
speed against other state-of-the-art methods. This paper
is organized as follows. Section 2 summarizes the PSDM
method and demonstrates its application to our deburring
robot. Motor and friction models for the dynamic cali-
bration are also introduced. Section 3 presents an exper-
imental approach to calibrate the derived model. Finally,
Section 4 demonstrates the speed benefits of PSDM over
existing algorithms.

2. PSEUDO-SYMBOLIC DYNAMIC MODELING

The PSDM method (Lloyd et al., 2021a) is a new method
of deriving, representing, and computing the dynamic
model of a serial kinematic chain. It is not directly based
on either the Lagrange or Newton-Euler formulations of
dynamics. PSDM is motivated by the observation, proven
to be true for all serial kinematic chains in Lloyd et al.
(2021a), that the equations of motion, when expanded out
fully, take on an exceedingly regular form. The torque in
a given joint i can be shown to be the sum of p terms

τi = θ1 υ1(q) a1(q̇, q̈) + · · ·+ θp υp(q) ap(q̇, q̈), (4)

where, for each jth summation function,

• θj is a lumped inertial parameter consisting of some
combination of the original inertial parameters X,
• υj(q) is a member of the set of functions known as

the geometric multiplier functions of order 2 of the
manipulator, which are formed from the trigonomet-
ric relationships of each joint angle qi. Practically,
for an articulated robot, this means that υj(q) is the
product of one function from the set

Z(2)
qi =

{
1, sin(qi), cos(qi), sin(qi) cos(qi), cos2(qi)},

for each of the n joints in the manipulator, such that,

υj(q) =
∏n

i=1
ζ(qi), ζ(qi) ∈ Z(2)

qi . (5)

For prismatic joint robots, this definition is slightly
modified – see the complete definition by Lloyd et al.
(2021a) for full details.
• aj(q̇, q̈) is a function in the set of acceleration func-

tions of the manipulator — in other words, aj(q̇, q̈)
is either one of the n joint accelerations a(q̈) = q̈i,
the

(
2
n

)
Coriolis accelerations a(q̇) = q̇iq̇j , the n cen-

trifugal accelerations a(q̇) = q̇2i , or the single gravity
acceleration, a = g.

This observation is leveraged in PSDM since it is possible
to assemble a complete list of all the possible combi-
nations of υj(q) aj(q̇, q̈) for a given manipulator. If the
corresponding inertial parameters θj are selected correctly,
this list of functions, when summed together, could exactly
represent the equations of motion of the robot. Moreover,
this list could be represented in regressor form as

τ(q, q̇, q̈)T = [υ1a1 · · · υpap]

[
θ1,1 · · · θ1,n

: :
θp,1 · · · θp,n

]
= y(q, q̇, q̈) Θ, (6)

where y(q, q̇, q̈) is a 1 × p regressor matrix, and Θ is an
p × n matrix of various lumped inertial parameters —
themselves all implicitly functions of X.

Typically an exhaustive list of all possible combinations of
functions is highly redundant. The PSDM method corrects
this by reducing the function list, as in (4), in a two-
step numerical process. The first step in this process is to
remove all redundant functions from the list. Redundant
functions can be identified because in a regression for Θ of
(6), knowing y(q, q̇, q̈) and τ(q, q̇, q̈), the corresponding
row of Θ will be identically zero. Moreover, this regression
can be done using synthetic, maximally exciting random
samples by computing y(q, q̇, q̈) at randomly generated
poses and computing the corresponding torques τ(q, q̇, q̈)
using any numerical algorithm such as the RNE algorithm.
After this elimination step, the model will still be in the
same form as (6), except that the number of functions
p will be the minimum number of functions required
to exactly represent the inverse dynamic model of the
manipulator, and as such, the model is “simplified.”

The second reduction step seeks to reduce the p×n inertial
matrix Θ into a single `-vector of base inertial parameters
θb. This reduction is performed via a secondary numerical
process that identifies n pairs of reduction matrices Pi ∈
Rp×` and Bi ∈ R`×p, for each joint i = 1, . . . , n, such that

θb = Bi θi, PiBi = I, (7)

where θi is the ith column of Θ, such that the torque in
each joint i, i = 1, . . . , n, can be rewritten as

τi = yp(q, q̇, q̈)θp,i = yp(q, q̇, q̈) Pi Bi θp,i

=
[
yp(q, q̇, q̈) Pi

]
θb. (8)

Furthermore, if we form the matrix Y(q, q̇, q̈) ∈ Rn×` as

Y(q, q̇, q̈) ,

[
yp(q, q̇, q̈) P1

:
yp(q, q̇, q̈) Pn

]
(9)

then (8) can be reformulated more compactly as

τ = Y(q, q̇, q̈)θb. (10)

PREPRIN
T

The process of deriving the reduction matrices Pi and Bi

is omitted from the current work for brevity. The process
is accomplished using a secondary numerical analysis,
again using the RNE method to “sample” the linear
relationship, then performing a QR decomposition to
analyze dependencies between the inertial parameters. The
reduction matrices are not unique and can be related
by any similarity transformation by a non-singular p × p
matrix. However, the method proposed by Lloyd et al.
(2021a) ensures that the resulting matrices are highly
sparse, thus maximizing the efficiency of the model.

Once these reduction matrices have been found, the PSDM
derivation is complete. Eq. (8) is in simplified, regressor
form and can be calibrated experimentally via appropriate
selection of the `-vector of base inertial parameters θb.

2.1 Derivation for the Denso VS-6556G Manipulator

In the current work, we are concerned with the dynamic
modeling of a Denso VS-6556G manipulator, outfitted for
robotic deburring as shown in Fig. 1, and whose kinematic
parameters are given in Table 1. The implementation of
the PSDM algorithm is quite complex, and indeed many
additional checks and simplifications go into the derivation
process that there is not space in the current paper
to discuss. However, the PSDM algorithm has already
been implemented in Lloyd et al. (2021a) and is readily
used with only a few lines of Matlab code. Using the
PSDM.deriveModel function in the provided codebase, the
derivation steps run sequentially, and the function returns
the simplified model in a few seconds. The result is two
arrays that completely describe the PSDM model — a
5n× p integer array E, which numerically encodes the list
of minimal functions that make up the variable yp(q, q̇, q̈),
and a p×`×n array P, of the model’s n reduction matrices.

For the Denso VS-6556G manipulator, we run the deriva-
tion function with the following input settings:

• Drive inertias are included in the analysis for all links,
denoted as Imi, i = 1, . . . , n;
• Tool inertial properties are excluded since the tool

can be properly weighed and calibrated separately.
• Link 6 is nearly massless, and as such, all inertial

parameters on this link are assumed to be zero.
• Links 4 and 5 have lower weight and are highly sym-

metrical. This symmetry means that certain inertial
values are known to be negligible, and rx5, Ixz4, Iyz4,
Ixy5, Ixz5, and Iyz5 are assumed to be zero.

The derivation runs in approximately 3 seconds, and the
PSDM algorithm identifies p = 1318 minimal functions in
the model and ` = 32 base inertial parameters θb. This
model is too large to list here; however, it is provided
within the supplementary files for this paper, available
online with the PSDM Github repository, for those wishing
to use or reproduce our results (Lloyd et al., 2021b).

2.2 Motor & Friction Models

The derived PSDM model above captures the gravity
and inertial effects of the multi-body linkage, relating
the torques in the joints to the resulting accelerations.
However, two additional models are required to use this

dynamic model practically. The first is a motor model
to correctly relate the measured motor currents to joint
torques (as the Denso manipulator does not have joint
torque sensors), and the second is a model to estimate the
joint friction forces from bearing, seals, and gearboxes.

Motor Model The Denso VS-6556G robot can report the
set-points of the actuator currents in its joints, and these
can be used to measure torque in the joints. In the current
work, we assume the dynamic relationship between current
and torque (i.e., the inductance) to be negligible and use
the standard linear relationship

τ = diag(Kt) i, (11)

where i is a vector of the joint currents, and Kt is a vector
of the effective torque constant of actuators (after any
motion conversion due to gearboxes or belts).

Friction Model To accurately model the dynamics of the
Denso robot, friction must be taken into account. This
robot features heavy-duty seals to prevent the ingress of
water and dust, and these seals create large friction forces
in the joints. Additionally, these seals deflect during opera-
tion, and the forces they impart are history-dependent. We
use the LuGre friction model proposed by Canudas de Wit
et al. (1995) to model these complex friction forces. The
LuGre model treats the friction contact akin to the bristles
of a comb. For small displacements, the bristles deflect
as a spring, and “bounce back” if the force is removed.
However, for larger displacements, the bristles deflect, then
slide. The LuGre model introduces a dynamic state zi into
the model to track the state of friction in each joint, which
describes the mean bristle deflection. The dynamics of this
state are described by the first-order differential equation

żi = q̇i −
∣∣q̇i∣∣zi/gi(q̇i), (12)

Table 1. Denso VS-6556G DH parameter list

Joint angle Link offset Link length Link twist

1 q1 132 mm 75 mm −π/2 rad
2 q2 0 mm −270 mm 0 rad
3 q3 0 mm −90 mm π/2 rad
4 q4 295 mm 0 mm −π/2 rad
5 q5 0 mm 0 mm π/2 rad
6 q6 80 mm 0 mm 0 rad

x0x0

y0y0
z0z0 o0o0

x1x1

y1y1
z1z1

o1o1

x2x2

y2y2
z2z2o2o2

x3x3

y3y3

z3z3

o3o3

x4x4

y4y4

z4,z4,y5y5
x5x5

z5z5

o4,o5o4,o5

x6x6 y6y6

z6z6

o6o6

xtxt

ytyt

ztzt
otot

Deburring spindleDeburring spindle

CableCable
harnessharness

Fig. 1. The Denso VS-6556G outfitted with a spindle and
force sensor for deburring applications.

PREPRIN
T

where gi(q̇i) is a positive definite function describing the
macro friction effects in joint i and can be tailored to the
application. In the current work, the Stribeck (1903) model
is used, such that

gi(q̇i) =
1

σ0i

[
Fci +

(
Fsi − Fci

)
e−
∣∣q̇i/vsi∣∣2], (13)

where σ0i is the bristle stiffness, Fci is the Coulomb (dry
friction) constant, Fsi is the static friction constant, and
vsi is the transition velocity (where static friction forces
transition to dynamic friction forces). The friction torques
can then be computed as the sum of the bristle bending
and damping torques, plus the viscous friction effects, as

τfric,i = σ0i zi + σ1i żi + Fvi |q̇i|dvi sign q̇i, (14)

where Fvi is the viscous friction constant, and dvi is a
shape parameter that allows the viscous friction curve to
be warped to better fit the observed friction over a broader
range of speeds (Olsson, 1996). With this model, small
displacements will behave like a spring-damper system
with constants σ0i and σ1i, and large displacements will
tend asymptotically towards σ0i gi(q̇i) sign q̇i.

3. DYNAMIC MODEL CALIBRATION

In Section 2, models were derived to describe the inertia,
gravity, motor, and friction effects of a Denso manipulator.
However, these models cannot be properly leveraged with-
out model calibration. This calibration is divided into four
separate steps, which allows for specialized experiments
to be designed at each identification step that maximally
excite the selected calibration parameters. As such, the
dynamic equation divided up as

τ = diag(Kt) i = τgrav + τfric + τiner + τee, (15)

where the end-effector torque, τee, is the torque induced
by the known end-effector mass properties (from CAD).

3.1 Motor Calibration

The first step is to calibrate the motor models, by finding
the n parameters Kti as in (11). To accomplish this, we
run each joint through a full sweep of its joint range, at a
constant velocity, in the forward and reverse directions,
as well as with and without a mass of known weight
attached to the end-effector. Because the effects of friction
are assumed to be the same in both joint directions, we can
effectively eliminate the effects of friction by averaging the
observed currents in the positive and negative directions.
Then, by adding a known mass to the end-effector, we
can induce a known load into the joint, and by comparing
to the nominal (massless) case, we remove the effects
of gravity. By keeping speeds and accelerations low, we
remove the inertial effects. Thus, (15) reduces to

diag(Kt)(iw − inom) = J(q)T fw (16)

where iw is the current with the added mass and inom
without, J(q) is the manipulator Jacobian, expressed
in world frame, and fw is the wrench imparted by the
calibration weight. This wrench can be computed for a
mass mw, center of gravity rw, gravity vector g, and
rotation matrix (from world to tool frame) R(q) as

fw =

[
mw g

R(q) rw × (mw g)

]
. (17)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Fig. 2. The observed and predicted motor torques.

Testing was done individually in a pose designed for each
joint to ensure that the calibration mass was fully observ-
able by the target joint. Three masses were used, ranging
from 1.2 to 3.5kg. For each test, the currents i and joint po-
sitions q were collected. The data was filtered non-causally
with a zero-phase shift, 8th-order Butterworth filter with a
4 Hz cutoff frequency implemented via Matlab’s filtfilt
function. The data was divided into training and validation
sets with an 85/15% split before using (16) to solve for Kt

using linear least squares. The resulting values are shown
in Table 2, and the regression data is shown in Fig. 2.
The accuracy of the fits is given in Table 3 and shows
the calibration was successful, with the model capturing
nearly 100% of the observed effects via the R2 metric.

3.2 Gravity Calibration

The next step taken in the calibration process is identifying
the gravity terms of the PSDM model. These terms are
identified separately from the rest of the dynamic model
since they are easier to test than the inertial parameters,
are more significant to the model’s accuracy, and can be
tested at low velocities. Extraction of the gravity model
using PSDM is straightforward since the model is given
organized by the acceleration type of each summation
term, so one simply needs to filter out the columns of
Y(q, q̇, q̈) which use the acceleration function aj = g.
This reduction yields the reduced gravity regressor matrix
Ygrav(q). This regressor will only allow observation of a
small subset of θb, which in our case is nine parameters,
denoted as θb,grav. Similar to the previous section, testing
is done both forward and backward, and the resulting
currents are averaged to remove the effects of friction.
Testing is done at joint velocities high enough to be outside
the static friction regime, but slow enough that inertial
effects can be neglected. Thus, (15) reduces to

τ = τgrav + τee

diag(Kt) i = Ygrav(q)θb,grav + J(q)T fee, (18)

where fee is the wrench imparted by the end-effector due
to gravity, and since the full inertial properties of the tool
are known, this can be computed as in (17).

Calibration trajectories for the experiment are generated
pseudo-randomly by simultaneously jogging each joint at
a constant, slow velocity through its full joint range for
an extended period of time, then back again along the
same path. Joint 6 was removed from the analysis since,
as mentioned in Section 2, the final link was assumed to be
effectively massless. In this paper, we generated separate

PREPRIN
T

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Fig. 3. Sample of observed and predicted gravity joint
torques on validation set.

trajectories to identify gravity parameters of the lower
“base” joints (1–3) and the upper “wrist” joints (4–5). This
separation was done to mitigate collision issues during
testing and prevent scaling issues during the least-squares
fit. Data was collected and filtered at 4 Hz, similarly to
Section 3.1, and divided into training and validation with
an 85/15% split. Regression was then done using (18). The
resulting identified parameters are shown in Table 4, and
the accuracy of the fit on the validation sets is given in
Table 3. Again, this identification step was highly accurate,
capturing nearly 100% of the observed effects using the
R2 metric for the base joints and 95%/98% for the wrist
joints. This accuracy can also be observed in Fig. 3, which
plots the observed and predicted torques over a sample
of the validation data set. The wrist joints do exhibit
lower relative accuracy; however, it should be noted that
the magnitude of these torques is significantly lower than
the base joints, and the effect on the model is also lower.
Furthermore, the nonlinear disturbing effects of the cable
harness (see Fig. 1), not included in the gravity model,
affect the wrist joints more than the base joints.

3.3 Friction Calibration

To test friction, we treat each joint individually and run
the joint through a series of sine wave motions with
varying size, ranging from small amplitudes, allowing the
pre-sliding effects to be captured, to large amplitudes,
capturing the effects near the speed limits of the robot.
By actuating joints individually, centrifugal and Coriolis
effects are zero, and so long as joint accelerations are not
excessive, these can be neglected as well. Then, the torque
breakdown in (15) can be arranged to isolate friction as

τfric = τ− τgrav − τee

= diag(Kt)i−Ygrav(q)θb,grav − J(q)T fee. (19)

In our friction model, seven parameters must be identified
per joint: the Coulomb friction Fci, the static friction
Fsi, the transition velocity vsi, the viscous constant Fvi,
the viscous friction shape parameter dvi, and finally, the
LuGre pre-sliding stiffness and damping, σ0i and σ1i.

The robot is run through the calibration trajectories, and
joint speed is computed using a central difference approx-

imation to avoid phase shift, e.g., q̇i[k] = qi[k+1]−qi[k−1]
2T

Table 2. Identified motor & friction parameters.

Kti Fci Fsi vsi Fvi dvi σ0i σ1i[
Nm
A

]
[Nm] [Nm] [mrad

s

] [
Nms
rad

] [
kNm
rad

] [
kNms
rad

]
1 36.1 9.59 12.5 14.4 23.7 0.61 288 22.8
2 40.3 8.86 9.92 20.1 28.7 0.62 250 21.2
3 24.4 6.20 7.77 32.0 10.7 0.73 130 19.2
4 17.9 3.59 4.00 210 2.38 0.63 5.36 8.91
5 14.6 2.39 2.67 81.1 4.50 0.59 35.9 13.9
6 5.42 1.60 1.53 10.4 1.61 0.74 13.0 10.3

(where T is the sample time). Data is filtered with zero-
phase shift as before, but with a higher cutoff frequency
of 40 Hz. Frictional torque at each time step was then
computed using (19). Data is split into training/validation
with an 85/15% split. Fitting the friction terms cannot
be done linearly, as with the earlier sections. Instead, the
following two-step procedure is followed. At high velocities,
where q̇i � vsi, the pre-sliding effects are negligible and
can be ignored, reducing the model to

τfric,i ≈
(
Fci + Fvi|q̇i|dvi

)
sign q̇i. (20)

Isolating the high-speed samples from the data, Fci, Fvi,
and dvi can be fit for each joint. In the current work, this
fitting is done using a trust-region nonlinear least squares
method, as implemented by Matlab’s lsqnonlin function.
The pre-sliding parameters Fsi, vsi, σ0i, and σ1i are then
fit using the derivative-free Nelder-Mead simplex method
(Lagarias, Jeffrey et al., 1998), implemented via Matlab’s
fminsearch method, with a cost function that simulates
the LuGre dynamic equations, (12) to (14), over the entire
dataset, then computes the frictional torque and returns
the sum of square error over all samples. The resulting
friction coefficients are given in Table 2, and the model
accuracy in validation is given in Table 3. The calibration
captures 98–99% of the observed friction effects by the
R2 metric. A sample of the model performance on the
validation set is shown in Fig. 4. This plot shows the model
accurately capturing the friction torques in high-velocity
cases, where viscous effects dominate, but also in the pre-
sliding regime, where hysteresis effects are large.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Fig. 4. Sample of observed and predicted frictional torques
in validation dataset.

PREPRIN
T

Table 3. Validation accuracy of calibrated mo-
tor, gravity, friction & inertial models.

Motor Gravity Friction Inertial All‡

RMSE R2 RMSE R2 RMSE R2 RMSE R2 R2

1 0.24 1.00 0.30 1.00 2.16 0.99 2.16 0.78 0.99
2 0.46 1.00 0.41 1.00 3.06 0.98 2.79 0.84 0.97
3 0.35 1.00 0.55 1.00 0.61 1.00 3.02 0.35 0.86
4 0.06 1.00 0.13 0.98 0.52 0.99 0.95 0.05 0.91
5 0.12 1.00 0.18 0.95 0.49 0.99 0.55 0.40 0.96
6† 0.04 1.00 0.16 — 0.27 0.99 0.90 0.06 0.81

RMSE is the root mean squared error, reported in Nm.
† R2 value for link 6 gravity model is not reported since the inertial

properties of link 6 are assumed negligible.
‡ As evaluated on a high-acceleration, high-speed path. Slow-speed

performance would be closer to the gravity performance.

3.4 Inertial Calibration

The final step to the dynamic calibration is identifying
the terms of the dynamic model required to calibrate the
torque components related to centrifugal, Coriolis, and
joint accelerations. In this step, the inertial torques τiner

must be estimated by using the existing motor, gravity,
and friction models, substituted into (15). We define
Yiner(q, q̇, q̈) and θb,iner ∈ R23 as the complements of
Ygrav(q) and θb,grav, such that the remaining parameters
of θb not already identified during the gravity calibration
can be determined as the solution to the linear equation,

τ− τgrav − τfric − τee = Yiner(q, q̇, q̈)θb,iner. (21)

In this paper, we generate trajectories for the identification
of (21) with a sum of three sine waves along each joint,

qi(t) =
∑3

k=1
Aik sin(ωikt+ φik), (22)

where the amplitudes Aik, frequencies ωik, and phases φik
were found through a nonlinear optimization process to
maximize the condition number of the regressor matrix
Y∗iner(q, q̇, q̈), formed by vertically stacking Yiner(q, q̇, q̈)
for all samples in the trajectory, while staying within the
position, speed, and acceleration limits of the joints,

min
Aik,ωik,φik

cond
[
Y∗iner(q, q̇, q̈)

]
,

such that |qi| < qlim,i, |q̇i| < q̇lim,i, |q̈i| < q̈lim,i. (23)

This problem was optimized using a genetic algorithm,
implemented via Matlab’s ga function. A sample of the
resulting amplitudes, frequencies, and phase shifts are
shown in a sample of this trajectory in Fig. 5. A total of
1492 seconds of data was recorded. Speed and acceleration
estimates were obtained through central difference estima-
tion, as with the friction modeling. The data was filtered as
earlier at a cutoff of 15 Hz. An 85/15% split of training and
validation data was used. The model parameters were then
obtained through the linear least-squares solution to (21).
These are listed in Table 4, and the validation accuracy
of the model is given in Table 3. Finally, a sample of
the model predictions is shown in Fig. 5. We note that
the accuracy of this fit is lower than the previous models.
The first reason for this is a stackup of errors. In isolating
the inertial torques in (21), the errors from all previous
models are compounded, giving a lower accuracy in this
final calibration step. The second reason is that the inertial
torques are less observable than the other model effects.
Even though the current testing methodology collected
data while driving the actuator joints near their speed

Fig. 5. Top: Sample of the calibration trajectory followed
for acceleration testing. Bottom: Sample of observed
and predicted torques during acceleration testing.

and acceleration limits, the inertial effects were still small
relative to the gravity and friction effects. This difference
was especially true for the wrist joints, whose torques are
dominated by frictional and end-effector effects. However,
this low observability also means that inertial effects have
a small effect on the accuracy of the combined model, such
that the full model remains accurate. It is suspected that
much of the remaining error is due to the nonlinear effects
of the cable harness, which are not included in the model.

4. MODEL BENCHMARKING

In addition to providing a simplified model in regressor
form, a significant advantage of the PSDM method is its
ability to generate fast real-time code and perform forward
dynamic modeling efficiently. To demonstrate this, we per-
form CPU benchmarks on the derived robot model. PSDM
model code is provided by the real-time code generation
functionality provided by the codebase in (Lloyd et al.,
2021a). We provide two algorithms for comparison: the re-
verse Newton-Euler algorithm by Luh et al. (1980), which
notably does not return the model in regressive form and
thus is challenging to calibrate effectively, as well as the
regressive form of the Newton-Euler algorithm by Atkeson
et al. (1986), which is slower, but does return the model in
regressive form as with the PSDM algorithm. Note as well
that, unlike the PSDM algorithm, that neither of these
algorithms directly allows for forward dynamic modeling
— in both cases, the forward dynamic model is computed
by evaluating the inverse model n times with unit acceler-

PREPRIN
T

Table 4. Identified inertial parameters θb.

Estimate Equation†

Gravity Parameters
θ1 7.42 kg m1 + m1rx1/a1 −m2rx2/a2
θ2 0.566 kgm m1rz1 + m2rz2 + m3ry3
θ4 5.46 kg m2 + m2rx2/a2 −m3rx3/a3
θ5 −0.0632 kgm m2ry2
θ11 4.1 kg m3 − (m3rz3 −m4ry4)/d4 + m3rx3/a3
θ12 3.38 kg (m3rz3 −m4ry4)/d4 + m4 + m5

θ19 −0.0165 kgm m4rz4 + m5ry5
θ20 −0.0179 kgm m4rx4
θ27 0.0793 kgm m5rz5

Inertial Parameters
θ3 2.06 kgm2 Im1 + Iyy1 + Ixx2 + Ixx3 + Ixx4 + Izz5 +

m1(a12 + rx12 + rz12 + 2a1rx1) +m2(ry22 +
rz22 − a12rx2/a2) + m3(ry32 + rz32 −
d4rz3) + m4(ry42 + rz42 − d4ry4) + m5ry52

θ6 2.82 kgm2 2m2ry22 + Im2 + Ixx2 − Iyy2 + Izz2

θ7 2.66 kgm2 m2rx22 + m2a2rx2 + m2ry22 + Im2 + Izz2

θ8 0.0177 kgm2 Iyz2 −m2ry2rz2

θ9 0.1 kgm2 Ixz2 −m2(a2rz2 − rx2rz2)−m3a2ry3

θ10 −0.236 kgm2 Ixy2 −m2rx2ry2

θ13 −0.0952 kgm2 2m4(ry42 − d4ry4 + rz42) + 2m3(rz32 −
d4rz3) + 2m5ry52 + Ixx3 + Iyy3 − Izz3 +
2Ixx4 + 2Izz5

θ14 −0.0443 kgm2 m3(rx32 +a3rx3 + rz32−d4rz3) +m5ry52 +
m4(ry42−d4ry4 + rz42) + Iyy3 + Ixx4 + Izz5

θ15 0.0397 kgm2 Ixz3 −m3rx3rz3

θ16 −0.0199 kgm2 Ixy3 −m3(a3ry3 − rx3ry3)

θ17 −0.0123 kgm2 Iyz3 −m3ry3rz3

θ18 0.561 kgm2 Im3

θ21 −0.0573 kgm2 2m4rz42 + 2m5ry52 + Ixx4 + Iyy4 − Izz4 +
2Izz5

θ22 −0.0474 kgm2 −m4(rx42 + rz42) + m5ry52 + Ixx4 −
Izz4 + Izz5

θ23 −0.0172 kgm2 Ixy4 −m4rx4ry4

θ24 0.00447 kgm2 m4ry4rz4

θ25 −0.0704 kgm2 m4rx4rz4

θ26 0.0838 kgm2 Im4

θ28 −0.00706 kgm2 Ixx5 − Iyy5 − Izz5

θ29 0.00694 kgm2 m5rz52 + Iyy5

θ30 −0.00622 kgm2 m5ry5rz5

θ31 0.092 kgm2 Im5

θ32 0.0306 kgm2 Im6

† Equations for each regression parameter are matched from a
separate symbolic analysis. This analysis is beyond the scope of
the current paper, but the equations are given for reference.

ation on each joint to build up the mass matrix, then an
additional time to evaluate the centrifugal, Coriolis and
gravity torques, before solving for the joint accelerations
(Lynch and Park, 2017). More efficient formulations are
possible; however, these comparisons are beyond the scope
of the current work. All algorithms are coded in C-code.

Table 5 lists CPU benchmarks on the current PSDM
model, in forward and inverse dynamics, and compares
this to the regressive reverse Newton-Euler algorithm.
Results are averaged over 106 samples on randomly gen-
erated states. In all cases, the PSDM algorithm signifi-
cantly outperforms the RNE algorithms by a full order of
magnitude or more. This difference is because while the
RNE algorithm solves the general dynamics problem, the
PSDM model has been simplified during the numerical
simplifications described in Section 2. It avoids computing

Table 5. Real-time evaluation speeds.

Inverse Model Forward Model

PSDM 0.40 µs 0.63 µs
RNE 6.00 µs 19.9 µs
RNE (Regressive Form) 17.2 µs 112 µs

Testing done on a laptop computer with an Intel i5-8259U CPU.

redundant terms and takes advantage of model simplifica-
tions due to joint alignments and zero-value inertial terms.
This increased efficiency is highly desirable in cases where
the dynamic model must be evaluated very rapidly, such
as in real-time control scenarios, high-fidelity simulations,
model-based observers such as Kalman filters, or any com-
bination thereof (such as model-based predictive control).

5. CONCLUSION

This paper gives a step-by-step procedure for the deriva-
tion and full calibration of a robotic manipulator using
the PSDM algorithm, including actuator and frictional
modeling. The presented calibration was highly accurate,
capturing nearly 98–100% of the motor, gravity, and fric-
tion effects, and while the high-speed acceleration fitting
was less accurate, the overall model still captured 81–99%
of the observed torque effects. Benchmarking of the derived
PSDM model showed it to be significantly faster than
the reverse Newton-Euler algorithm, allowing for more
flexibility in how the model is used.

REFERENCES

Atkeson, C.G., An, C.H., and Hollerbach, J.M. (1986).
Estimation of inertial parameters of manipulator loads
and links. Int. J. Rob. Res., 5(3), 101–119. doi:
10.1177/027836498600500306.

Canudas de Wit, C., Olsson, H., Astrom, K., and Lischin-
sky, P. (1995). A new model for control of systems with
friction. IEEE Trans. Automat. Contr., 40(3), 419–425.
doi:10.1109/9.376053.

Lagarias, Jeffrey, C., Reeds, James, A., Wright, Margaret,
H., and Wright, Paul, E. (1998). Convergence properties
of the nelder–mead simplex method in low dimensions.
SIAM J. Optim., 9(1), 112–147.

Lloyd, S., Irani, R., and Ahmadi, M. (2021a). A numeric
derivation for fast regressive modeling of manipulator
dynamics. Mech. Mach. Theory, 156, 104149. doi:
10.1016/j.mechmachtheory.2020.104149.

Lloyd, S., Irani, R., and Mojtaba, A. (2021b). Github
Pseudo-Symbolic Dynamic Modeling repository. URL
https://github.com/CarletonABL/PSDM.

Luh, J.Y.S., Walker, M.W., and Paul, R.P.C. (1980). On-
line computational scheme for mechanical manipula-
tors. J. Dyn. Syst. Meas. Control, 102(2), 69–76. doi:
10.1115/1.3149599.

Lynch, K. and Park, F. (2017). Modern robotics: mechan-
ics, planning and control. Cambridge Univ. Press, USA.

Olsson, H. (1996). Control systems with friction. Dep.
Autom. Control. Lund Inst. Technol., 1045(October),
172. doi:10.1103/PhysRevE.51.6235.

Stribeck, R. (1903). Die wesentlichen Eigenschaften der
Gleit- und Rollenlager.

Uicker, J.J. (1969). Dynamic behavior of spatial linkages.
J. Eng. Ind., (February), 251–265.

PREPRIN
T

