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Abstract

A common type of crane found aboard many ships, knuckle boom cranes are complex, underac-
tuated dynamic systems, and anti-sway control of such cranes is an important research problem
for both operational efficiency and safety. This paper addresses the deficiency of research in
anti-sway control for high degree of freedom (DOF) shipboard cranes by developing a dynamic
model and anti-sway control system for a seven-DOF shipboard knuckle boom crane, mounted
aboard a vessel that experiences six-DOF ship motion.gl'he dynamic model is intended to pro-
vide fidelity beyond what is typically seen in literag€, including the mass and inertia of the
hydraulic actuators, sheaves and winch, along wi ernal actuator dynamics and a realistic
cable fall angle.

The crane’s kinematics are derived usin s d transformation matrix approach
and with dual quaternions, with the latter pro
time deployment. Using the kinemati of motion of the seven-DOF knuckle boom

sway trajectory modifier is com nonlineal” sliding mode controller, built using the
equations of motion of the crane. trajectory optimizer is used to track the desired,
time-varying trajectory wi S h motor, and the boom, jib and extension ac-
tuators. Tested in si six-DOF motion at sea state 6, the system with
self-tuning disabled
between the desired an¥ & paylod@®positions across the x and y trajectories. Allowing the

2 to self-tune provided a 74% reduction in RMSE under the same

control system was also shown to be robust to parameter uncertainties,
errors in the simulated crane ranging between +20%, the maximum in-
MSE found was only 6.3%; with self-tuning disabled, the maximum increase
was 56%.

1. Introduction

Shipboard cranes play an important role in many maritime operations, and given the potential for operation at high
sea states it is important to develop a control system that can maintain the position of the payload despite ship motion.
However, cranes are underactuated systems and have more degrees of freedom (DOF) than can be controlled. For a
shipboard knuckle boom crane, such as the one shown in Figure 1, the base, boom, jib and extension are fully actuated
by the slew motor and hydraulic actuators, however the payload is free to swing and its exact position cannot by directly
controlled in three dimensional space. Therefore, anti-sway control for cranes is an important and challenging control
problem that has attracted the interest of researchers over the past several decades.

For a comprehensive review of general anti-sway control strategies, see Ramli et al. [24], who in recent years
have been leaders in the field of input-shaping approaches to anti-sway crane control [23, 25]. A review of anti-sway
control systems specific to shipboard cranes was published in 2020 by Cao and Li [5], who concluded that further
work is needed to consider system disturbances, robustness to uncertainties and a more practical examination with
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time-varying trajectories. Cao and Li also conclude that most existing research focuses on control of simplified two-
DOF or three-DOF dynamic models for planar, two-dimensional cases, and that limited work has been performed for
3-dimensional cases with higher DOF cranes.

Some researchers who have considered anti-sway control for higher-DOF cranes include Kim and Park [14], who
in 2017 considered a linearized model of a five-DOF container crane. In 2018, both Wang et al. [28] and Tysse and
Egeland [26] developed control systems for a simplified model of a shipboard knuckle boom crane, without including
the mass and inertia of the hydraulic actuators. In 2019 and 2020, Kim and Hong [16] and Kim [15] considered a four-
DOF offshore container crane, developing both an adaptive sliding mode controller and a continuous sliding mode
controller. Also in 2019, Maghsoudi et al. [17] considered a five-DOF gantry crane, a developed a neural-network
based input shaper to provide sway reduction.

To address the sparse research in anti-sway control for time-varying trajectories and higher-DOF crane systems,
Martin and Irani [18] considered a five-DOF shipboard gantry crane, perturbed by six-DOF ship motion to compare
several anti-sway control strategies, and furthered their work by considering a six-DOF shipboard knuckle boom crane
[19] (pre-print), with a dynamic model that included the mass and inertia of the hydraulic actuators, as well as inter-
nal actuator dynamics. An anti-sway control system was developed for both cranesghat required both a generalized
trajectory modifier, designed to provide anti-sway compensation, along with a s le controller to allow the crane
to track the modified trajectory [19]. To develop a suitable controller, it was t while the industry-standard
crane it was unable to ade-
quately control the six-DOF knuckle boom crane. The knuckle boom crane requi iffar sliding-mode controller
(SMC) [19]. The SMC is a powerful controller that can address the s s required for shipboard cranes,
however to implement a sliding-mode controller on a shipboard knskle dynamic model of the crane is
required.

Dynamic modeling of knuckle boom cranes has receive
pair of papers published in 2013, Bak and Hansen [2, 3] de
knuckle boom crane used in pipe handling. Focusing g

researchers in the past decade. In a
ami® model and control system for a hydraulic
Yraulic control system, the crane considered
ll did not incorporate any anti-sway control. In 2018,
Tysse and Egeland [26] modeled a six-DOF ship ickle B®Om crane using screw theory and investigated the
interaction between ship motion and pendu nd in 2019 [27] developed an anti-sway controller using a
Lyapunov-based pendulum damping and ontrol system. In a series of papers between 2018 and 2020,
Cibicik and Egeland [6, 8, 7] extended t -DOF knuckle boom crane model to include the mass and
inertia of the hydraulic actuators, andg he reaction forces experienced at the base of the crane during
operation, as well as the effect of § 19, Wojcik et al. [1] developed a dynamic model for a six-DOF
knuckle boom crane using the 4@ afanroach that includes the masses and inertias of the actuators, but did not
examine anti-sway control.

Given existing resea
a general seven-DOF s nuckle®voom crane with an extendable jib, a common feature on many cranes [12, 13,
22]. The dynamic model Tifftended to have higher fidelity than typically seen in the literature, and includes the mass
and inertia of the hydraulic aS8@ator cylinders and rods, the mass and inertia of the sheaves and winch, a realistic cable
fall angle and internal actuator dynamics. The actuator responses are estimated with first-order transfer functions, and
include deadzones with saturation limits. The equations of motion are derived using the Lagrange approach, and the
kinematics of the crane developed using both transformation matrices and dual quaternions to compare computational
efficiency. By providing a comprehensive dynamic model, developed in the current work, future researchers will be
able to examine more shipboard crane operations and controller developments.

Additionally in the current work, anti-sway control is implemented on the simulated seven-DOF knuckle boom
crane using a robust, generalized trajectory modification strategy with novel self-tuning parameters. The crane system
is controlled with a SMC which utilize the crane’s equations of motion. Furthermore, a new nonlinear trajectory
optimizer is proposed to allow the overactuated crane tip to track the desired, time-varying trajectory.

The work herein addresses some of shortfalls and the suggested future research directions of Cao and Li [5];
specifically, higher degree of freedom systems, physical characteristics of shipboard cranes, time-varying trajectories,
and system robustness. Thus, our paper contributes to the body of knowledge by providing a

1. sophisticated kinematic model of a seven-DOF knuckle boom crane in both a dual quaternion and transformation
matrix form,
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2. comprehensive method to dynamically determine the cable length on the crane and the appropriate cable-fall
from the final sheave to the payload,

3. nonlinear trajectory optimizer which allows the crane to track time-varying trajectories, and

4. a self-tuning trajectory modification strategy for robust anti-sway control.

These contributions address many of the knowledge deficiencies or future research directions in the anti-sway control
of shipboard cranes identified by Cao and Li [5].

The paper is organized such that Section 2 provides an overview of the seven-DOF knuckle boom crane considered
in this work, and presents the coordinate frames assigned to each link using the Denavit-Hartenberg (DH) convention.
Section 3 presents the dynamic model of the crane, where the kinematics are derived using both transformation matrices
and dual quaternions. In Section 4 anti-sway control is implemented using the trajectory modifier, nonlinear trajectory
optimizer and an SMC. Additionally, the simulation parameters and configurations is highlighted. Section 5 presents
the results of four operational scenarios where disturbances and uncertainties are considered through the course of
several case studies. The paper concludes with a summary of the results in Section 6.

2. The Seven-DOF Knuckle Boom Crane

Figure 1 shows a rendering of the seven-DOF knuckle boom crane whi
crane is modeled as fourteen rigid bodies connected by revolute and prismatic
my and is free to rotate with respect to the ship deck coordinate fram
driven by a slew motor with inertia J, that provides a torque z,. The
boom actuator, which has a cylinder mass m;; and a rod mass my, an a force F,. Likewise the jib has a mass
m, and is articulated by the jib actuator, which has a cylin d mass m,, and produces a force F,.
The jib can extend, actuated by a force Fj;, and the jib extgfl 28s a m3§ m;. The cylinder mass of the extension
ded in m3. The payload has a mass m,,, and

1s the s of the current work. The
hnts. The'@se of the crane has a mass
ground for a land-based crane),
ss m; and is articulated by the

the mass of all the cables is ignored. Attached to thggs@ winch with mass m,,,, which provides a torque 7, to
raise and lower the payload via the cable. Also at g1 is the boom sheave (sheave 0), which has a mass
mgq. The jib sheave (sheave 1) has a mass mg; g ed to the jib, and the final sheave (sheave 2) has a mass m,,

uckle boom crane: the base rotates an angle 6, actuated
istance d;, actuated by the force Fj, and the jib actuator rod
translates a distance d,, actuated
and the cable length is adjusteg

Vith sway angles 8¢ and ;. Therefore, the degrees of freedom 6, d;,
hile the sway angles 64 and 6, are unactuated. Figure 3 shows the dimensions

2.1. Coordinate Frame ASSignment

To derive the kinematics of the knuckle boom crane coordinate frames must be assigned following the right-hand
rule and are shown in Figures 4, 5 and 6. Using the Denavit-Hartenberg (DH) convention, a transformation from frame
i to frame j can be described by four parameters,

e Link Length a; - The distance along the X; axis between the Z; and the Z; axes.

e Link Twist a; - The rotation about the X ; axis required to align the Z; axis with the Z; axis.
e Joint Distance d; - The distance along the Z; axis between the X; and X axes.

e Joint Angle 0; - The rotation about the Z; axis required to align the X; axis with the X; axis.

As the DH convention requires coordinate frames to be assigned along links in series, the kinematics of the knuckle
boom crane is divided into three serial chains: the main kinematic chain, mapping the deck coordinate frame to the
payload through the main components of the crane; the boom actuator kinematic chain, mapping the deck coordinate
frame to the boom actuator rod; and the jib actuator kinematic chain, mapping the deck coordinate frame to the jib
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Figure 1: A 3D render of the knug
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actuator rod. A separat tic chain for the jib extension actuator is not required as the extension is included in
the main kinematic chain.
Note that in Figures 4, 5 6 some angles are denoted with a negative sign, as the positive sense of each angle

should be directed along the Z axis of the corresponding coordinate frame using the right-hand rule.

2.2. Main Kinematic Chain

Figure 4 shows the coordinate frames assigned to the main kinematic chain, where the origin coordinate frame is
the deck coordinate frame (XY Z)[, and Table 1 summarizes the associated DH parameters. The coordinate frame
(XY Z); can be reached by a rotation of 6, about the Z}, axis, a translation of /, along the Z}, axis followed by a
rotation of —90° about the X axis. The coordinate frame (XY Z), can be reached from the (XY Z),; frame by a
rotation of 6 about the Z, axis, followed by a translation of /| along the X, axis. The tip of the jib (XY Z); can then
be reached by a rotation of 8, about the Z, axis, followed by a translation of /, along the X5 axis.

The tip of the jib extension (XY Z), can then be reached by a translation of d; along the X, axis, where dj is
the displacement of the extension actuator. Thus, the extension actuator is included in the main kinematic chain.
Considering Figure 4b, a rotation of —90° about the Z, axis followed by a translation of /, along the X5 axis aligns
with coordinate frame (XY Z)s. Coordinate frame (XY Z)g, located at the tip of the final sheave can be reached follow
a rotation of 65 about the Z5 axis an a translation of r, along the X, axis.

In Figures 4b and 4c, the tip of the final sheave is modeled as a universal joint. The coordinate frame (XY Z); is
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Figure 2: The seven degrees of freedom of the knuckle bo rotation angle of the base 6, the actuator
extensions d, and d,, the jib extension d;, the cable re 0. @hd the sway angles 6 and 0;.

w

Table 1
DH Table - Main Kinematic Chain

a; o d; 0,
0 -90° I 0,
I 0 0 0,
I, 0 0 0,
dy 0 0 0
Iy 0 0 -90°
5-6 r 0 0 05
617 0 9° O s
7-38 0 0 0 0,
8—-9 Iy 0 0 0

defined as a rotation of f¢ about the Zg axis, followed by a rotation of 90° about the X5 axis. The coordinate frame
(XY Z)g is then defined as a rotation of 85 about the Z axis. Finally, the payload coordinate frame (XY Z)q is reached
following a translation of /g along the Xq axis. To articulate the main kinematic chain, separate kinematic chains for
the boom and jib actuators.

2.3. Boom Actuator Kinematic Chain

Figure 5 shows the coordinate frames assigned to the boom actuator kinematic chain, and Table 2 summarizes the
DH parameters. The coordinate frame (XY Z),,; is reached following the rotation of 6, about the Zj axis, then a
rotation of —90° about the X, axis. (XY Z),, can then be reached following a rotation of 8,; about the Z,; axis and
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Figure 3: The main dimequired to parameterize the knuckle boom crane.

a translation of /,; along the X, axis, where

Iy =4/ (Ip1 )% + Uy )% (D

The coordinate frame (XY Z),; can then be reached following a rotation of 8, about the Z,, axis and a translation of
l;, along the X5 axis. Finally, coordinate frame (XY Z),, can be reached by a translation of d; along the X, axis.

2.4. Jib Actuator Kinematic Chain

Figure 6 shows the coordinate frames assigned to the jib actuator kinematic chain, and Table 3 summarizes the DH
parameters. Starting at (XY Z);, coordinate frame (XY Z),; can be reached following a rotation of 8,.; about the Z;
axis and a translation of /,; along the X, axis, where

et = /U1 = Ly + U )2 @)
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(a) The coordinate frames 18 Q atic chain.

\.\. Z7’ ZS YS
Y
X, T\ Xy
0;
\.
(b) A view of the final sheave in the (X Z); plane. (c) A view of the final sheave in the (Y Z), plane.

Figure 4: The coordinate frames assigned to the main kinematic chain of the knuckle boom crane. Note that some angles
are denoted with a negative sign, as the positive sense of each angle should be directed along the axis of the corresponding
coordinate frame using the right-hand rule.

The coordinate frame (XY Z),, can then be reached following a rotation of 8, about the Z,; axis and a translation of
[, along the X, axis. Finally, (XY Z)_.; can be reached by a translation of d, along the X5 axis. Table 3 provides
the corresponding DH parameters for the jib actuator kinematic chain.

The coordinate frames assigned to the main chain, boom actuator chain and jib actuator chain are required to derive
the kinematics of the knuckle boom crane, which will be needed to derive the equations of motion of the crane and
implement the sliding mode controller.
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le boom crane. Note that some angles

are denoted with a negative sign, as the positive sense of eaci8 irected along the axis of the corresponding

coordinate frame using the right-hand rule.

Table 2
DH Table - Boom Actuator Kine in
rame Transform | a; o d o
D - bl 0 -90° 0 @,
bl - b2 Ly 0 0 6,
b2 — b3 Ly 0 0 6,
b3 — b4 d, 0 0 o0
Table 3
DH Table - Jib Actuator Kinematic Chain
Frame Transform | a; o d; 6,
1 —cl l, 0 0 6,
cl = c2 l, 0 0 6,
c2 - c3 d 0 0 0
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Figure 6: The coordinate frames
are denoted with a negative sign;
coordinate frame using the Lginsha

actu inematic chain of the knuckle boom crane. Note that some angles
meassnse of each angle should be directed along the axis of the corresponding
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3. Dynamic Modeling

Implementation of model based control such as a sliding mode controller requires the equations of motion of the
crane, which in turn require kinematic expressions for each rigid body. In Section 3.1 the kinematics of the crane will
be derived using transformation matrices, and in Section 3.2 the kinematics will be derived with dual quaternions.
Sections 3.3 and 3.4 detail the correction for the gravity vector and the cable fall angle, respectively, and Section 3.5
presents the derivation of the equations of motion using the Lagrange approach.

3.1. Kinematics with Transformation Matrices
A transformation matrix ’ T; provides a mapping between coordinate frames i and j using a 3 X 3 rotation matrix
iR ; and 3 x 1 translation vector ip ;» combined into a 4 X 4 matrix

; ' . 3

Consider the four DH parameters presented in Section 2.1; g; is a translatioalonSghe X f axis, a; a rotation about
the X; axis, d; a translation along the Z; axis and ¢; a rotation about the Z; 38 There using the standard x and
z rotation matrices the transformation from frame i to frame j expressed in D

[cos(§,) —sin(§;) 0 0 olft o 0o o

iT = sin(f;) cos(@;) 0 O 0jjo 1 0 0

J 0 0 1 0 offo 0 1 af

| 0 0 0 1 1110 0 0 1
[cos(9,) —sin(8;) cos(a;)

i _ | Sin(@;)  cos(8;) cos(a;)

Ty = 0 sin(a;) @
| O 0

providing a general mapping of the four ametegs to the corresponding transformation matrix / T;. Using the

DH parameters presented in Tabl
i back to the deck coordinate fra i Appendix A. Note that the DH parameters are defined in terms of

intermediate joint angles 6, 6,, d 0,,, and expressions relating each intermediate angle to the actuator
extensions d; and d, are

As the Lagrange ap ed to derive the equations of motion of the seven-DOF knuckle boom crane,
the velocities of each c¢ ‘mass i are required. Given that the last column of PT; contains the relative position

vector Pp;, the last column¥ghthe time derivative of the transformation matrix will provide the 3 X 1 relative velocity
vector P p;,

(&)

—~
]
P—‘F.l
——
Il
o]
=
- o O O

where (") denotes a derivative with respect to time. To obtain the angular velocities of each centre of mass, the velocity
transformation matrix V; can be found by multiplying the time derivative of the transformation matrix by the inverse
of the transformation matrix,

DVi — DT}DTi_l — i i , (6)
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where Pw; is the 3 x 3 angular velocity tensor,

0 _D(a’z)i D(wy)i
Po; = | Pl@,); 0 Py )

Therefore, the 3 x 1 angular velocity vector @, containing the angular velocities of centre of mass i with respect to
the deck coordinate frame can be built as Dc’éi = [P(wx)i D(wy)i D((uz)i]T.
The winch will also have an angular velocity 6, directed in the Z,, axis, given by
. g+
f,=-—< 8)
rw

where /g is the length of cable from the tip of the sheave to the payload, and /.. is the total length of cable running from
the tip of the sheave back to the winch, calculated using the crane geometry in Appgndix C. Therefore, 8, must be
mapped to the deck coordinate frame and added to ?@,,,. The angular velocity ten «» corresponding to 6, is given
by,

&)

Pa,=PR,-Q, PR] \ D ) (10)

x)w + D(Qx)w
(@) +P(Q)), ¢ (1)
P@)y + P Q)

0 —Hw(r,—”j) 0 0 —ow(:—;) 0

Q= ew(%) o] Qui=|a, (’r—W) 0 o] Qu=|a, (:—W) 0 0
0 1 2

0 0o 0 0 0o 0 0 0 0

12)

While the use of transformation matrices is a standard in the robotics community, another arguably more efficient
method of deriving the kinematics of multi-body robots [10] are dual-quaternions.

3.2. Kinematics with Dual Quaternions

Quaternions were first proposed by Hamilton [11] as a way of representing the pose of an object using three
parameters to define the orientation of a line in space, and a fourth to represent a rotation about that line. Dual-
quaternions are hypercomplex extensions of quaternions introduced by Clifford [9] that contain information about
both the orientation of a rigid body as well as its displacement.

A quaternion g can be written as a 4-tuple (g, 41, 45, g3), where gy is a scalar and the elements ¢, g, and g3 form
a3 x1vector g = qi+ ¢+ q3 k. Translation information can be included by adding a dual component € ( po + 1_5) to
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the quaternion to create a dual quaternion Q,
Q=qy+q+e(p+7). (13)

The vector p is defined as p = p;i + pof + p3lAc, and e is defined such that €2 = 0. The dual quaternion Q is then an
8-tuple given by O = (gq. 41, 42 43, P> P1» P2- P3)-

Transformations between rigid bodies can be described using concatenations of dual quaternions. To multiply two
dual quaternions, the dual quaternion product is used,

0, ® Oy = qio.ap) + Gav) + € (P0.asy + Pany) - (14)
where,
4(0,ab) =9(0.0)9(0.6) ~ Ga (CYb)T , (15)
d(ab) =90.0)9 * 90.6)9a + da X Gp> (16)
P(0.ab) =P0.0)90.6) — Pa (ﬁb)r + 40.0)P0.0) — Ga (f%)T an
Pab) =90.0)Pb + P0.5)da + 9a X Pb + P0.0) 9> + d0@aPa + Pa R (18)

Once coordinate frames have been assigned and the DH parameters
can be generated in a straight-forward manner. The link length a; ig a
a rotation about the X; axis, the joint distance d; a translation alon$gghe
Therefore, a transformation from frame i to frame j can be by
of the four DH parameters a, a, d and 6,

g the X [ axis, the link twist a;
xis and §; a rotation about the Z; axis.
ternions, each corresponding to one

‘Q;,=1+[0 0 0] +gf (19)

0, =cos () +| @ e(0+[0 0 o), (20)

‘Q;4=1+]0 + @21
0,4 =cos (% sin(2)] +e(0+[0 0 0]), (22)
Therefore, the complete dual g ing the transformation from frame i to j expressed in terms of the
DH parameters is,
j =in,9 ® in,d ® in,a ® in,a, (23)
=qo;; +q;; + € (pO,ij + ﬁij) ’ 24
where,
doj =cos | 5 Jcos{ ).
T
(5)sin(%)
cos (5 )sin( 3
. 0; a;
q4;; = sm(; sm(;) , (26)
in (& %
sin ( 3 5

%) cos(%)—aicos <%> sin(%), (27)
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0. i . 0; ;
a,-cos( )cos(%)—d,&m(;)cos(%)
Pii=q 4 Sin( i>COS<%> +d; cos (%) sin(%) . (28)

. 0; . a; 9; L4
—a; sm(;)sm(;) +a’icos<2)cos<2)

Equations (24)-(28) are therefore analogous to equation (4), expressing the transformation from frame i to frame
J as a function of the four DH parameters. Using the DH parameters presented in Tables 1, 2 and 3, dual quaternions
DO, were defined relating each centre of mass i back to the deck coordinate frame, and are given in Appendix D.
Each dual quaternion contains information about both the rotation and translation of the centre of mass with respect
to the deck. To extract only the translational component, the product between the dual quaternion 2Q; and the inverse

T

. . -1
rotation quaternion (D 0, r) where,

PO, =gy, + G + €(po; + B (29)

(0,,) " =qo; G +e(0+[0 0 0]), (30)
thus, dual quaternion product between 2Q; and (P Q,»’,)_1 gives

-1
Po,® (P0;,)” =1+[0 0 0]+ , (31)
where Pp; contains the deck frame position of centre of mass jg@s an J vector in the deck coordinate frame.
The velocity of each centre of mass ? 5,- can be then found g taki derivative of p; with respect to time,
(32)
To calculate the angular velocity of each ¢ ss, derivatives can be taken of the rotational components of
the dual quaternion. Given the dual quate ; =W+ 4 + €(py; + P;), the required derivatives are,
(33)
. d ()
7. = , 34
4 PP (34)
The angular velocity ve ” can then be found by multiplying through the inverse of the rotation quaternion,
P&; = do (=) + d0,4i + 4 X (=) (35)

Note as was the case when deriving the kinematics with the transformation matrices, the winch and sheaves each have
their own angular velocity related to the velocity of the cable. The winch angular velocity tensor ,,, equation 9, was
rotated into the deck coordinate frame using equation 10, giving an angular velocity vector @, as,

Da)w = qO,w(_aw) + q(),w‘_iw + ‘_iw X (_aw) + [D(Qx)w D(Qy)w D(Qz)w] (36)

where PQ,, = 900+ G + €(Po 1 + P,p)- The same procedure, equations (29)-(36) must also be applied to the sheaves
to obtain Qg ; (, in the dual quaternion form. Since the kinematics of the crane have been derived with respect to the
deck coordinate frame rather than the world coordinate frame, the gravity vector for the deck coordinate frame must
be determined.

3.3. Gravity Vector Correction
As the mass and inertia of the ship are not considered in the equation of motion derivation, it is therefore convenient
to derive the dynamics of the knuckle boom crane treating the deck coordinate frame as the origin frame. However,
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since the gravity vector is aligned with the Zy;, axis rather than the Z, axis, the gravity vector must be rotated into the
(XY Z)p frame. The ship rotates about the world frame by three angles; using the Yaw-Pitch-Roll rotation sequence,
the first rotation can be taken about Zy, axis by a yaw angle ¥, with a positive sense defined as a rotation of the bow
to port. The second rotation can be taken about the X+ axis by a pitch angle @, with a positive sense defined as the
bow tipping down. The third rotation can be taken about the Yy, axis by a roll angle ®,., with a positive sense defined
as the port side up. The three consecutive rotation matrices can then be defined as

[cos(¥)) sin(¥,) 0

"'Ry =|sin(¥,) cos(¥,) O, (37)
| 0 0o 1
" _1 0 O
YT Ry =0 cos(®,) —sin(®,)], (38)

_0 sin(d)p) cos(d)p)

» [ cos(-0®,) 0 sin(—-6,)
w RW” = O 1 0 s (39)
—sin(=0,) 0 cos(—0,)

where the angle 0, is negated as the positive sense of the rotation is defineSf@ccordin marine standards and is
reversed compared to traditional robotic and aerospace convention.

Therefore a point in the deck coordinate frame pj, = [px, p P mapped to a point in the world

coordinate frame Py, = [Pew Pow P z,W]T by,

By = [W’RW] [W” p (40)

(41)

v R T - . .
pvity vector gy, = [O 0 g] to a vector gp in the deck coordinate

As it is desired to map the ¥ :
(41) should be used. Note that the inverse of any rotation matrix is simply it’s

frame, the sequence giveng
transpose, giving,

" T " T ’ T
§D=[W RW”] [W RW’] [W RW] gw>

sin(®,) cos(P,)g
= sin(®,)g . (42)
cos(®,) cos(®p)g

Along with the corrected gravity vector, a more accurate cable fall angle 65 must be developed.

3.4. Cable Fall Angle

Typically, a cable fall is modeled as a universal joint at a fixed location on the final sheave [1, 7, 28]. However,
with both the ship and crane in six-DOF motion relative to the world frame, the cable fall location on the final sheave
is dynamic and not simply a fixed point. Thus, to improve the dynamic model beyond the current literature, a more
accurate cable fall angle is developed.

The payload hangs below the final sheave by a rigid cable of length /g, attached to a universal joint located at
coordinate frame (XY Z)q. Given the natural tendency of the cable and payload to align with the gravity vector, the
fall angle 5 will change due to both the current crane position and the ship’s orientation to ensure the X axis lies
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(a) The fall angle when X is aligned with X .

(b) The fall angle when X is in plane with (XY, .
Figure 7: The cable fall angle should take into account both the crane’s position and ship’s orientation.
parallel to the (XY')y, plane.

Figure 7a shows the case where 05 only considers the current cr:
always parallel with the X axis,

ane positioNgads, is sct such that the X, axis is
Os, = 2 — 0 amlds. (43)
2
A more realistic situation is shown in Figure 7b where Q Sisin
the true fall angle should consider the ship’s orientatiguain 3

ead parallel to the plane (XY)y,. Therefore,
ion to the current crane orientation. The additional
ame, achieved using the rotation matrix sequence

" RW/] [W’” RW//] ,

component 65, can be found by first rotating X¢ j
defined given in equation (40),

or

which maps a rotation from the

(44)
deg back to the world frame. Note that X is defined in the same
plane as X g, and therefore mus through the angle 6, about the Z, axis,
cos(fy) —sin(dy) O
DRy =|sin(@y)) cos@,) Of. (45)
0 0 1
Therefore, expressing the X, =@¢1 0 0] T vector in the world coordinate frame can be accomplished by first rotating
X to the deck frame, followed by a rotation to the world frame,
1

0

[c(®,)c(¥)) + 5(8,)s(P,)s(¥,)]| c(8,) — c(@,)s(¥,)s(6,)
=1 [c(©,)s(¥,) — 5(0,)s(®,)c(¥))| c(6p) + c(P,)c(¥)s(0) ¢ -
5(0,)c(®@,)c(By) + s(P,)s(6)

(46)
where cos() and sin() are abbreviated c() and s(), respectively. The angle 85, can then be found by taking a dot product
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between the © Xy, and the vector Z, = [0 0 I]T,

05, =% —cos™ (°Xyy « Zy) (47)
=% —cos™! [ sin(®,) cos(®,) cos(dy) + sin(®,) sin(6y)] (48)

Therefore, the fall angle 05 is given by
05 = 65, + 05, (49)

With the kinematics derived and consideration made for the gravity vector, cable routing and fall angle, the dynamic
equations of motion can be formulated.

3.5. Equations of Motion
With the complete kinematics of the seven-DOF knuckle boom crane derived usi

and dual quaternions, the equations of motion can be obtained to allow control of
Lagrange approach, the crane is modeled with 14 centres of mass, so the Lagra;

14 14
L= Z K; - Z U,
i=0 i=0

where for rigid body i, K; and U; are the kinetic and potential energ& ively. The kinetic energy for each body

both transformation matrices
crane using an SMC. Using the
is given by,

(50)

can be written as

1 2 ) -

K; = 3m; (B, - -0, (51
where m; is the mass of rigid body i and P I, is th¢@ atrix @ rigid body i transformed into the deck coordinate
frame,

(52)
Note that the kinetic energy of the
1 A \2
Ko =37, (N6y)~. (53)

where N is the gear rd @ en the dhgular velocity of the slew motor
gear w,;,, attached to the of the crane, N = wg,,,,/®
The potential energy U; 8

lew and the angular velocity of the ring

ring*
igid body i can be written as

U =m - Ep)" - Pp. (54)

The equations of motion of the knuckle boom crane can then be derived using the Lagrange equation,

(L) _2L_y, (55)
dt \ 9q Jaq

where q = [6’0 dy dy dy 6, 6 6’7]T are the seven degrees of freedom of the knuckle boom crane, and

F=|[-Nt, F, F. F; 7, 0 O]T is the 7 x 1 vector of applied forces. Taking the required derivatives, the
equations of motion take the form

Mi+a=F, (56)

where M is the 7 X 7 nonlinear mass matrix, and a is a 7 X 1 nonlinear vector.
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As a control system for a real crane will operate on hardware and in real-time, it is desirable to keep the equations
of motion of the crane as concise as possible to reduce the computation time of the sliding control law, which must
calculate M, a and a each time-step. To compare efficiency, expressions for M, a and a were calculated with both the
transformation matrix kinematics, presented in Section 3.1, and with the dual quaternions developed in Section 3.2.
Both sets of equations were derived using Maple, and after utilizing the Maple simplify and collect commands and
converting to MATLAB code, the dual quaternions provided code that was 30% shorter than with the transformation
matrices. The complete equations of motion calculated with the dual quaternions are provided as a supplementary
file, along with instructions for usage and deployment. As a contribution to the field, the derivations outlined in this
section can assist future researchers and industrial practitioners to examine seven-DOF cranes. With the equations of
motion now derived, a model-based control system for the anti-sway compensation of the knuckle boom crane can be
implemented.

4. Control and Simulation

The control problem considered, is to maintain the payload at a desired position
operator provides a desired trajectory x,, y; and z, for the crane tip, expressed in ¢
and a desired cable length /,. For the knuckle boom crane model developed i
considered to be coincident with (XY Z)g.

To provide a virtual crane simulator to act as a digital twin for a physica
knuckle boom crane was built in MATLAB/Simulink using the Si
shown previously in Figure 1. The digital twin is actuated by the

respect to the ship deck. The
eck coordinate frame (XY Z),,
rk, the tip coordinate frame is

m crane, the seven-DOF
dy toolbox, with the 3D render
otor, and hydraulic actuators,
t while the equations of motion were
built to accurately represent the digital twin, some element i the SMC and equations of motion,
sted in real-time with a fixed sampling
equations of motion used in the SMC. To
facilitate the testing, the SMC and control algorithmgg¥ ented on a National Instruments real-time controller

returned to the real-time controller via the Tt

Figure 8 shows the overall structure o tem. The desired trajectory vector X, is first modified by a
Pinodified trajectory vector X,,,. The modified trajectory is
then converted into an actuator setpoigtve i nonlinear trajectory optimizer, described in Section 4.2. The

SMC described in Section 4.4,
Actuator dynamics describedd

ations of motion of the crane to provide a control action vector u.
en applied to convert the control actions u into force inputs F, for the
be written as

(Xa Ya za lg O O]T’ (57)
[ Yam Zam lim Oam 07.dm)| " (58)
A =60y dig drg d3g Oug Osu 97,d]T7 (59
uz[ul uy uy uy us 0 O]T, (60)
F,=|t, F, F. F; 7, 0 0], 61)
a=1[6, d; dy dy 6, 65 6] . (62)

The following subsections detail the operation of each component of the control system.

4.1. Self-Tuning Anti-Sway Trajectory Modification

As proposed in [19], anti-sway control can be introduced by modifying the desired trajectory before the control
actions are calculated. Consider the case shown in Figure 9; if the tip of the crane, indicated by the small black circle is
positioned at the point x,, the payload will not reach the desired position, indicated by the dashed lines due to rolling
motion of the ship. However, if the tip of the crane is positioned at the point x,,, the natural tendency of the payload
to align with the gravity vector will allow the payload to reach the desired position. The trajectory modification system

I. Martin and R. Irani.: Preprint submitted to Elsevier Page 17 of 44



Dynamic Modeling and Self-Tuning Anti-sway Control of a Seven Degree of Freedom Shipboard Knuckle Boom Crane

NI myRio MATLAB Simulink
- - - - - - -------------------T---T---T-T-T-T777 | r 777777777777777 |
| ) |
| Xy Trajectory Xim | Trajectory 4s | Sliding Mode | 'u | Actuator |
! Modifier | Optimizer | Controller | | Dynamics :
T3 R |
‘ F,
} !
g || Digital |
| Twin |
| |
|

Figure 8: The overall structure of the knuckle boom crane control system.

Figure 9: The trajectory modification strate small black circles represents the crane tip, coordinate frame
(XY Z), and the white circles represent th al position of the tip and payload is represented by the thin,
solid lines, and the desired position of the d represented by the thick, dashed lines.

used in [19] for a six-DOF knuc y adapted to the notation of this paper is
Xam = Xg + ld tan(@r), (63)
Yam = Yq + 14 tan(®)), , (64)
Zam = 24> (65)
Lim = la (66)
am = cos(@,) cos(®,)’
06,dm = ®r + eoffsew (67)
97,dm = q)p + ¢affset’ (68)

where ©, and @, are the ship’s current roll and pitch angles, and 6, 7., and @, 1 s, are only needed to ensure 6g 4,
and 60 ;,, are measured with respect to the Z, axis. This trajectory modification system provided an 84% reduction
in the payload tracking root-mean-square-error (RMSE) for the six-DOF knuckle boom crane used in [19].

For the present work, the same trajectory modification system was used. Given how the cable fall angle 65 has
been modeled to align the X axis with the (XY)y, plane, the angle ¢ 4,, should always equal /2 to align with the
gravity vector; therefore, the offset angles 6,/ ., and ¢, f ., can be written as

T
Hoffset =5 - G')r’ (69)
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v Actual

-

Ew gp 8w 8p

(a) The case where both the signs of tan(®,) and the  (b) The case where th
position error e, are the same. The desired payload sition error e, are no

position is represented by the thick dashed line, while  position is represe
the actual payload position is represented by the thin  the actual payload po
solid line. solid line.

Figure 10: The cases considered when developing the self-tuning traj\ o

¢offset (70)

When applying the trajectory modification [19 ven F knuckle boom crane, it was found in simulation
trials that the x,,, and y,,, trajectories provided P& ormance compared to the results obtained with the original
six-DOF knuckle boom crane—which does i€k jib extension. Note that a significant difference in operation
in the calculation of the actuator setpoint vector q, from
x-DOF crane is fully actuated, the actuator setpoints can be

computed directly using the inversg owever, for the seven-DOF knuckle boom crane the crane tip

is overactuated, and the proposg @

Xgm = Xg + (1 + &)1, tan(®,), (71)

Yam = Ya + (1 + &)l tan(®,), (72)

Zgm = Zg + &, (73)
ly

lym = —————+¢,. (74)

cos(0,) cos(tbp) +

For the dimensionless scaling gains &, and &), first consider the case shown in Figure 10a; if the payload is pulled
too far along the X, axis, then the error between the actual and desired payload positions will be a positive error e,,
matching the positive sign of tan(®,). The modified trajectory x,,, should therefore be reduced to align the payload
with the desired position. Likewise, if the payload error e, is negative, as in Figure 10b, then the trajectory x,,, should
be increased to align the payload with the desired position. Upon initialization, &, = &, = 0 and equations 71-74 are
equivalent to 63-66. With units of length, the self-tuning offsets &, and &; are added to reduce the effect of uncertain
mass parameters; if the crane components or payload are heavier than predicted by the SMC, the desired trajectories
z4 and [ ; can be offset by a distance proportional to the error e, and e; between the actual and desired trajectories. The
four self-tuning parameters can be calculated as

I. Martin and R. lIrani.: Preprint submitted to Elsevier Page 19 of 44



Dynamic Modeling and Self-Tuning Anti-sway Control of a Seven Degree of Freedom Shipboard Knuckle Boom Crane

-0, ifsgn(e,) =sgn(tan(®,)) and &, > &, .,
& =€ +40, ifsgnle,) # sgn(tan(®,)) and &, < &, 0y » (75)
0 otherwise

—o, ifsgn(e)) =sgn(tan(®,)) and &, > &, .,

g = ;+< o, ifsgn(e,) # sgn(tan(®,) and &, < &, .. » (76)

0 otherwise

! €,0; if gz min < 52 < 52 max
=£ + ’ e 77
b =6 {0 otherwise 7)
if & pin < & <

fl =§l/ + e10[ 1 él,mm. él gl,max , (78)

0 otherwise
where the (') designation indicates the gains from the previous timestep, and Rud o, are the growth rates. To

ensure stability of the control system, bounds are added to each gain, &, i, /ma
limit the modified trajectories x;,,, Y4m> Zam a0d I4,,. The bounds should be se d to ensure the tip trajectory does
not grow too large; for the present work, the bounds were selected as = 0.5, & max = Eymax = 1.5,
Eomin = Spmin = —land &, = & iy = 1. As noted in Figur tput of the trajectory modifier must be
converted to actuator setpoints using a nonlinear trajectory optis

4.2. Nonlinear Trajectory Optimization
The desired position of the payload is expressed as X4, ¥4 and z ;4 along the X p, Y, and Z, axes, along

for the crane tip given in equations (71)-(73), the

desired position of the tip coordinate frame (XY the deck is given by x,,,,, y,,, and z,,,. However,
since the tip is actuated by four independen: oviding forces/torques 7,, Fy, F, and F,, the corresponding
actuator setpoints to track the desired traj directly calculated using the inverse kinematics of the crane.

Instead, the trajectory can be generat ¥ a noplinear optimization function. In this work, an optimizer based
on the Gauss-Newton method is us w e form
Xip1 = X; + 6, (79)
where
5 =—x V)] £, (80)

and the vector x = [HO,dm didm  Dram d3,dm]T contains the desired actuator setpoints to track the trajectory x,,,,
Yam and z,,,, and i corresponds to the current iteration of the optimization. The nonlinear system of equations f(X) is
to be minimized such that f(x) = 0.

To generate the system of equations f(x), the forward kinematics of the crane can be solved by taking the elements
in the first three rows and last column of the transformation matrix PTy, giving the position of coordinate frame
(XY Z), with respect to the deck coordinate frame, Pxg, Pyc and Pz as

Dxe =11 =[[(;~2 sin(0s) + d3 + 1) cos(0,) + (ry cos(0s) + 1) sin(6,) + 1| cos(6;)
+ [(r2 cos(fs) + I4) cos(6,) — (rp sin(fs) + d; + 1) sin(02)] sin(Hl)] cos(6y), (81)
Pye = £, =[[(r2 sin(0s) + d3 + 1) cos(0,) + (ry cos(0s) + 1) sin(6,) + 1| cos(6;)

+ [(r2 cos(fs) + 14) cos(8,) — (rp sin(0s) + d; + 1) sin(@z)] sin(6, )] sin(6y), (82)
Dzg = f3 =[(=ry sin(0s) — d3 — 1) cos(8;) + (=1 cos(8s) — 1) sin(8,) — ] sin(6,)
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+ [(r2 cos(fs) + I4) cos(0,) — sin(0,)(r, sin(fs) + d5 + 12)] cos(60y) + [ (83)
Another condition to consider is the minimization of the change of each actuator setpoint between timesteps,
45 = Oogm =00 4p)” + ram = d} 4,)* + Ay g = d) 4, ) + (d3 g = d5 ) (84)

where the (') designation refers to the optimized actuator setpoints from the previous timestep. By minimizing f,
the optimizer reduces the likehood of sudden changes in the actuator setpoints. Therefore, the system f(x) can be
expressed as

J1=%X4m =0
Jf2=Yam =0
X) = 85
f=172 "0 (85)
f4=0
Considering Equation (79), 6 acts as a velocity, providing a 4 X 1 vector 6 = 0y O3 54]T that describes
the change in actuator setpoint between each timestep. To avoid rapid change uator setpoints, velocity limits

T .
Spax = [51,max 02 max 03 .max 54’max] were introduced such that

6; if |6;
=1 A (86)
sgn(6;) - 6j max Ot

where j = 1,2, 3,4. The optimization function can be run fogfcr ber'of iterations i,,,,, or until the norm of
¥In this work, the threshold was chosen to
be 1 mm to avoid excessive computation. To avoid the gve of direct action of the crane’s components,

4.3. Actuator Dynamics
To estimate hydraulic actuator dynamj

form
m (87)
s+b;’
where s is the Laplace v the force or torque applied by actuator i on the crane, corresponding to F; = 7,
F, = F,, F. U, (s) is the control effort supplied by the SMC, and b; > 0 are constants
therefore, the performa ach actuator is governed by a first-order response with a time constant 7; = 1/b
Converting equation (87) t8§tate space form,
y=—>by+u, (88)
F, =by, (89)
where y is the state vector, b = diag[by, by, b3, by, bs, bg, b;] a diagonal matrix, and F, =

[Fl F, F; F, F5 0 0] " is the vector of applied forces.

Before the forces F, are applied to the digital twin, deadzones of +100 N and 100 Nm are applied to each actuator,
along with saturation limits of +50 kNm for both the slew motor and winch motor, +600 kN for the boom actuator,
+200 kN for the jib actuator and +100 kN for the jib extension actuator.

4.4. Sliding Mode Control

As previously found [19], a PID controller was incapable of controlling a six-DOF knuckle boom crane due to the
nonlinear dynamics. Thus, a stable sliding mode controller was developed for the six-DOF knuckle boom crane with
a final control law

u=y+by+bla, +u, (90)
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where,
u; = — kgsat (®,s,), ©1)
u, = — kgsat (®ys,) , (92)
y=b"'(Mi, — Mié+a). (93)

Modifying the six-DOF SMC for the current seven-DOF crane, we can say that the matrices
ky = diaglky 1. ko ko3 KoasKosskaookols kp = diaglkp,kpo.kpskpakps kge ksl @p =
diag[@a’l N q)a’z, d)a’:;, q)a’4, q)a’s, q)(l,6’ (I)a,7] and (Dﬂ = dlag[q)ﬂ’l N d)ﬂ,Z’ (I)/i,3’ (I)ﬁ,4’ @ﬂ,s, Qﬂﬁ’ q)ﬂ,7] are constant,
diagonal gain matrices, with the vectors s; and s, given by,

s; =€+ Je, 94)
S, =—uy, 95)

where A = diag[A,, 4,, 43, A4, 45, Ag, 47] is a constant, diagonal gain matrix, and thggfror vector e is

[ 60 - GO,dm
dl - dl,dm

dy —dy 4
e=|dy—dyg (96)
A benefit of control with an SMC is robustness to uncerta nd paPameter variations due to the addition of the

4.5. Simulation and Time-Varying

Within the current work, simulation 1z. The desired time-varying trajectories were selected as,

0.lm/s t<12s

, 97
0 m/s t>12s
02m/s t<12
_ m/s s’ 98)
0 m/s t>12s

0 m/s t<20s
[;=40.1m/s 20<t<35s. (99)
0 m/s t>35s

The ship motion used in the simulations corresponded to sea state 6, and was generated with ShipMo3D, a validated
software package [20, 21]. Table 4 lists the RMS of the ship motion for each degree of freedom. The sea way was
modeled with regular waves of the Bretschneider spectrum using a significant wave height of 5 metres and a period
of 12.4 seconds. The ship used was the generic frigate included in ShipMo3D, sailing at a speed of 6.000 kt with a
heading of 15.0° into the sea. The frequency of the ship’s roll, pitch and yaw motion was 0.093 Hz.

The gains for the SMC and trajectory optimizer were tuned to reduce the RMSE error in the payload trajectory
tracking and are provided in Appendix E, along with the inertial and geometric properties used in the simulation. The
initial configuration of the crane was set to , = 0°, d; = 0.5 m, d; = 0.5 m, d; = 0 m, and a cable length /g = 4 m,
corresponding to a winch rotation 6, = 25.2 rad, or 12.6 m of total cable. To test the effectiveness of the proposed
modelling and anti-sway system, several simulation studies were performed.
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Table 4
Ship Motion Parameters

Surge Sway Heave Roll  Pitch  Yaw
(m)  (m) (m) ) ) )
RMS | 0.701 0.197 0.908 1.360 1.600 0.244

5. Simulation Studies

Four scenarios were examined in simulation, all tracking the trajectories given in equations (97)-(99) in the presence
of the six-DOF, sea state 6 ship motion. The first scenario featured no additional disturbance, while in the second
scenario a 0.5 second impulse was applied on both the x and y axes of the payload. The third scenario examined the
effect of uncertain actuator dynamics and mass values on the system’s performance, and the fourth scenario examined
the behavior of the self-tuning parameters.

5.1. Scenario 1: No additional disturbance
Figure 11 shows the performance of the seven-DOF knuckle boom cr

the anti-sway trajectory modifier; the solid line with circle mark
anti-sway trajectory modifier, but with static gains &, £, &,
of the system with the self-tuning anti-sway trajectory moda
provides a reduction of 63% in RMSE between the desira
and y trajectories. The change in RMSE in the z and
considered negligible. With self-tuning enabled,
73% across the x and y trajectories compared td

trajectories are on the order of millimetres and are
ajectory modifier provides an average reduction of
manc® without the trajectory modifier. Figure 12 shows
demonstrates the effectiveness of the self-tuning anti-sway
e the y trajectory is primarily actuated by the slew motor,
the x trajectory is primarily actuated by 1b acgualor and the jib extension, and is susceptible to the optimizer
switching between favouring one ag

5.2. Scenario 2: Added Di

To test the system againg &ldlisturbances, a 5 kN force was applied to the payload along both the x and y axes
for 0.5 seconds. Tracking ; given in equations (97)-(99), Figure 13 shows the response of the system both
with and without the a ajectory modifier, and both with and without the self-tuning enabled; the disturbance
is applied at t = 50 seco and the RMSE is calculated from 60-100 seconds. Figure 14 shows the performance
of the system between 60-10@geconds of the simulation. While the disturbance initially causes large errors in the
payload position, the control system significantly dampens the oscillations after 10-15 seconds. Considering only the
payload position RMSE from 60 to 100 seconds, the addition of the anti-sway trajectory modifier provides an average
reduction in RMSE of 55% across the x and y trajectories compared to the performance without the trajectory modifier.
Allowing the anti-sway trajectory modifier to self-tune provides an average reduction in RMSE of 77% between the x
and y trajectories compared to without the trajectory modifier.

5.3. Scenario 3: Uncertain Actuator and Mass Parameters

In the previous scenarios, the model parameters used in the SMC were identical to the parameters in the digital
twin. Practically, the masses of the crane components may not be exactly known, and added mass may be present in the
form of piping, electrical boxes and paint; additionally, the time constants of the actuator transfer functions may not be
identified accurately. To test the robustness of the self-tuning anti-sway control system to such uncertainties, the mass
and elements of the inertia matrices of every rigid body in the digital twin were varied from +20% compared to the
baseline (or ideal) case. The time constants of the actuator transfer functions were also varied from -20%, representing
actuators with a faster response time than the baseline case, up to +20%, representing actuators with a slower response
time than the baseline case. For each test, the parameters were only changed in the digital twin; the SMC calculated
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the control action using only the parameters from the baseline case. The remaining test conditions are the same as
those used in scenario 1.

Table 5 shows the percent change in RMSE, averaged across all four trajectories, as the parameters in the digital
twin were varied away from the baseline case. The black numbers represent the percent change in RMSE when the
anti-sway trajectory modifier self-tuned, while the grey numbers in brackets represent the percent change in RMSE
with static gains in the trajectory modifier. The relatively consistent bracket values in each column of Table 5 show that
the SMC alone is robust to errors in the actuator time constants. However, the relatively consistent black values across
each row show that the self-tuning anti-sway trajectory modifier provides substantial improvements in performance
due to errors in the mass parameters—a maximum error of 6.3% across all test cases, compared to the maximum error
of 56% with static gains.

5.4. Scenario 4: Examination of the Self-Tuning Parameters

To demonstrate the strength of allowing the anti-sway trajectory modifier to self-tune, the left-hand side of Figure 15
shows the temporal evolution of the self-tuning gains &, and &, with the nominal trajectory given in equations 97-99 for
four cases: in the first case, both the SMC and digital twin use the ideal parameters; igghe second case, the digital twin
has a +20% error in both the mass/inertial parameters and actuator time constants;4ffthe third case, both the SMC and
digital twin use the ideal parameters, while the same disturbance used in scenaig plied to the payload at t = 50
seconds; in the fourth case, the digital twin has a +20% error in both the i i rameters and actuator time
constants, and with the disturbance applied at ¢+ = 50 seconds. The right-han
of the self-tuning offsets &, and &, for the same four scenarios. Withi
of £, and &, is quite pronounced; the variation is related to the tim

te (at approximately ¢ > 60 seconds) all
#c. In the disturbance tests, a small deviation
appreciable deviation is noticed in the &,. To help
bmed view of the evolution of &,. The deviation of
odifier reduce undesired payload motion, as seen in scenario

in only a small deviation between the gain values of the ideal

visualize the deviation the left-hand side of Figurg
£, due to the disturbance helped the anti-sway j#a;

case.
The right-hand side of Figures 134an

bance was applied at t = 50 secopd®; theis pensated with a relatively rapid change in both &, and &;, shown
by the large spikes. For the cas ¢ 0%’ parameter errors, &, and & compensated for the additional mass by
self-tuning away from the idgal zc’@ulue, redUcing the effect of the extra mass on system performance. The combined

actions of the self-tuning
for the time-varying tr4
A final series of test

ers S, &, and & resulted in the noticeable improvement in the system performance

e performed to further highlight the ability of the self-tuning parameters to improve
system performance with tif@svarying trajectories. The first test removed the time-varying trajectory completely,
commanding the crane to maintain the payload’s initial position, while the second, third and fourth tests multiplied the
trajectories given in equations (97)-(99) by 0.5, 1.0 (the nominal trajectory) and 1.5, respectively. The performance
with each trajectory was evaluated both with the ideal parameters in the digital twin and with +20% error in the
mass/inertial parameters and actuator time constants. Table 6 provides the mean and standard deviation of all four
self-tuning parameters for each test, along with the average RMSE across all four trajectories, both with the self-tuning
anti-sway trajectory modifier and without any trajectory modification for comparison. The rows of Table 6 show a
significant change in the mean values of the £, and &, gains, indicating the system was compensating for the various
trajectories, while the &, and &; offsets remain relatively constant. Evaluated over the final 50 seconds of each test,
the means of each gain remain fairly constant given the relatively small standard deviations. For the tests with +20%
parameter error, the mean values of the offsets &, and &, self-tune to compensate for the extra mass, while and the gains
¢, and &, remain relatively unchanged from the ideal case. The results indicate that &, and &, primarily compensate
for variations in the trajectory, while &, and &; primarily compensate for variations in the system parameters. The self-
tuning gains provided up to a 92% reduction in the average RMSE compared to the performance without anti-sway
trajectory modification, with a minimum reduction of 77%—still a considerable improvement.
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Table 5

Percent change in average RMSE across all four trajectories with uncertain mass parameters and actuator time constants
7,. The black numbers represent the percent change in RMSE with self-tuning enabled for the anti-sway trajectory modifier,
while the gray numbers in brackets represent the percent change in RMSE with self-tuning disabled (static gains).

Percent Change in RMSE Percent Change in Mass and Inertial Parameters
vs Baseline with Self-Tuning < Lighter Baseline Heavier —
(Without Self-Tuning) —20% -10% 0% +10% +20%
D —20% || +6.3% (+55%) +3.1% (+40%) —0.1% (+25%) —1.9% (+44%) —4.9% (+56%)
Percent | Faster —10% || +3.4% (+53%) 43.1% (+40%) +02% (+25%) —1.8% (+44%) —4.71% (+56%)
Change | Baseline 0% +3.5% (+53%) +3.1% (+4()‘é) ——— (+25%) =2.0% (+44%) —4.7% (+56%)
in T, Slower — +10% || +3.4% (+53%) +3.2% (+40%) +0.4% (+25%) —2.1% (+44%) —4.5% (+56%)
l +20% || +3.7% (+53%) +3.2% (+4()‘ ) +0.4% (+25%) =2.1% (+44%) —4.4% (+56%)

Table 6
The mean and standard deviation of the four self-tuning parameters for t
with the corresponding RMSE averaged across all four trajectories. T

t time-varying trajectories, along
erfo oth with the ideal mass/inertial
ror in these parameters. No Trajectory
, 0.5 Trajectory refers to a trajectory
e trajectory given in equations (97)-(99),

and 1.5 Trajectory refers to a trajectory that is one-and-a-
obtalned with the self tuning anti- -sway traJectory mo daf No Anti-Sway refers to results obtained without any
00 seconds, and the means and standard deviations
were evaluated over the final 50 seconds.

Ideal digital twin: No errors in parameters or actuator time constants

0.5 Nominal 1.5
rajectory Trajectory Trajectory
Self-Tuning Parameter Mean + std Mean + std Mean + std
3 + 0.689 £0.008  0.631 £0.007  0.593 +0.007
g, 009  1.085+0010  1.070+0.010  1.071 +0.009
g, 0.001 +£0.001  0.000+0.001  0.000+0.002  0.001 +0.005
0.001 +£0.000 —0.001 +0.000 —0.001 +0.000 —0.001 + 0.000
R
Average (No Sway) 0.060 m 0.071 m 0.084 m 0.099 m
Average (Anti- ) 0.005 m 0.008 m 0.013 m 0.019 m
% Reduction 92% 89% 85% 81%
+20% error in the mass/inertial parameters and actuator time constants in the digital twin
No 0.5 Nominal 1.5
Trajectory Trajectory Trajectory Trajectory
Self-Tuning Parameters Mean + std Mean + std Mean + std Mean + std
&, 0.805 + 0.015 0.668 + 0.009 0.632 +0.011 0.610 = 0.022
' 1.118 + 0.009 1.095 +0.010 1.084 + 0.010 1.086 + 0.009
&, 0.072 + 0.002 0.072 £0.002  0.071 £0.0021  0.077 = 0.0079
& —0.009 +£0.000 —0.009 +£0.000 —0.009 +0.000 —0.009 + 0.000
RMSE
Average (No Anti-Sway) 0.080 m 0.091 m 0.104 m 0.119 m
Average (Anti-Sway) 0.009 m 0.007 m 0.012 m 0.028 m
% Reduction 89% 92% 88% 77%
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Figure 11: Tracking performance of the 7-DOF knuckle boom crane both with and without self-tuning anti-sway trajectory
modification. No Anti-Sway refers to performance without the anti-sway trajectory modifier, Anti-Sway (Static) refers
to performance with the anti-sway trajectory modifier but without self-tuning (static gains), while Anti-Sway (Self-Tune)
refers to performance where the anti-sway trajectory modifier utilizes self-tuning. RMSE was calculated only using data
after the first 5 seconds of the simulation to allow for initialization.
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Figure 12: The final ten seconds of the no-disturbance simulation, showing the improvement in tracking with the self-tuning

anti-sway trajectory modifier.
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Figure 13: Tracking performance of the 7-DOF knuckle boom crane in the presence of a 5 kN disturbance applied at a
simulation time of 50 seconds for a duration of 0.5 seconds. No Anti-Sway refers to no anti-sway trajectory modification,
Anti-Sway (Static) refers to with the anti-sway trajectory modifier but with static gains, and Anti-Sway (Self-Tune) refers
to the self-tuning anti-sway trajectory modifier. The dashed line indicates the time at which the disturbance is applied to

the payload.
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Figure 14: The final forty seconds of the disturbance simulation, showing the disturbance rejection performance of the

self-tuning anti-sway trajectory modifier.
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Figure 15: The evolution of the self-tuning gains &, £, &, and ¢ over an extended 200 second test for cases with and
without the applied disturbance for a crane system with ideal parameters and a +20% parameter error.
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Figure 16: The evolution of the self-tuning gains &, £, &, and & between 50 and 100 seconds for cases with and without
the applied disturbance for a crane system with ideal parameters and a +20% parameter error.
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6. Conclusion

In this paper a dynamic model and anti-sway control system are developed for a seven-DOF shipboard knuckle
boom crane, helping to address the lack of research in anti-sway control for high-DOF shipboard cranes. The dynamic
model was developed to improve the model fidelity beyond what is typically seen in literature and includes the mass and
inertia of the actuators, sheaves and winch, internal actuator dynamics and a realistic cable fall angle. The equations
of motion of the dynamic model were derived using the Lagrange approach to provide stable control of the seven-DOF
knuckle boom crane with an SMC. The kinematics of the knuckle boom crane were derived using both the standard
transformation matrix approach as well as with dual quaternions. When computed using Maple, the equations of motion
code for the dual quaternions was 30% shorter than the code produced using the transformation matrices, reducing the
computational cost of the SMC when deployed to hardware.

To provide anti-sway control, a self-tuning anti-sway trajectory modifier was developed for the crane and imple-
mented in combination with the SMC. A nonlinear trajectory optimizer was built to allow the crane to track the desired
trajectory using all five actuators. When tested with six-DOF ship motion, it was found through simulation that with
static gains, the anti-sway trajectory modifier provided a 63% reduction in RMSE betwyeen the desired and actual pay-
load positions averaged across the x and y trajectories, compared to the performa ithout the anti-sway trajectory
modifier. With self-tuning enabled, the anti-sway trajectory modifier showed a duction in RMSE across the x

and y trajectories compared to the case without the modifier. Applying a 5 ce force in both the x and y
directions to the payload, the anti-sway trajectory modifier with static gains S eduction in RMSE com-
pared to without the modifier, while with self-tuning enabled showed hon in RMSE compared to without
the modifier.

To test the robustness of the self-tuning anti-sway control syste s/inertial parameters and actuator time
constants of the digital twin, the stand-in for a physical k ere varied by +20% away from the
baseline values used by the SMC in the anti-sway control i -tuning enabled, the maximum increase
in RMSE averaged across all four trajectories was only 6.3 aseline performance, while with self-tuning
disabled and the gains held static, the maximum incrg oe RMSE was 56%. When tested with different time-
varying trajectories, the self-tuning anti-sway trg Slyshowed up to a 92% reduction in average RMSE
compared to the case without the modifier; the eduction in RMSE was 77%, corresponding to a simulation
with +20% error in both mass/inertial para tuator time constants, and with the fastest trajectory tested

The results therefore indicate that th system for the seven-DOF shipboard knuckle boom crane
built using a self-tuning trajectory modifie is highly effective at reducing undesired payload motion along
time-varying trajectories, and is rq disturbances and parameter uncertainties.
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A. Position Kinematics with Transformation Matrices

Using the DH parameters presented in Tables 1, 2 and 3, transformation matrices between each coordinate frame
can be populated with equation (4). For the main kinematic chain, the transformation matrices are

cos(g) 0O —sin(6y) O
sin(y) O cos(fy) O
0 -1 0 Iy
0 0 0 1

T = , (100)
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T, =

T, =

o
=3
|

[ cos(0,)
sin(8,)
0
0

[ cos(6,)
sin(6,)
0
0

cos(fy)

| sin(6,)

0
0

cos(6,)

_ Sin(ebl)

0
0

cos(0y,)
sin(0y,)
0
0

—sin(é;)
cos(6,)
0
0

—sin(6,)
cos(6,)
0

=)

oSO OO O~ O

0 —sin(fy)
0 cos(6;)

-1 0
0 0

—sin(@,;) O

cos(0,) O

0 1

0 0

—sin(@,) O

cos(0y) O

0 1

0 0

I, cos(6)]
[, sin(6;)
0 ,
l .
I, cos(6,) |
1, sin(6,)
0 ,

1

atic chain the transformation matrices are

0
0
ol
1
Iy cos(0y)
Iy sin(fp)
0 )
1 .
lyp c08(0y,)
Iy sin(By,)
0 ,
1

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)
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[1 0 0 4,
01 0 O
b3 _
Ty = 00 1 0 (112)
|0 0 0 1
Finally for the jib actuator kinematic chain the transformation matrices are
[cos(6,,) —sin@,;) O 1, cos(d,)]
1 _|sin(6,;) cos@.;) O [.sin(@,)
Ta=| "y 0 1 o | 13)
| 0 0 0 1 ]
[cos(6,,) —sin(@,,) 0 1., cos(6,,)]
cl _ Sin(9c2) COS(002) 0 ch Sin(9c2)
TCZ - 0 0 1 0 > (1 14)
0 0 1 ]
[1 0 0 d,
01 0 O
c2 _
Ta=[o 0 1 o a1s)
|0 0 0 1
With transformation matrices defined between the joints in the gguc e, the kinematics of the centres

of gravity of each rigid body can be defined. Using the geometry sh
can be written with respect to (XY Z); as

ure 3, the centre of gravity of the base

(116)

Likewise the centres of gravity of the boopd#ib
(XY Z); and (XY Z),, respectively, as

aj
100 -1,
0 1 -1
2Tcogl = 0 0 < Tcog2 =
0 0

can be written with respect to coordinate frames (XY Z),,

0 0 _lcog2,x 100 _16’083»"

0 0 _lcogZ,y 4 — 0 10 _lcog3,y

1 oo | Tew=lo o1 o | U7
0 1 0 00 1

The centres of gravity of t inch and the boom sheave with respect to coordinate frame (XY Z), and the jib sheave
with respect to (XY Z); are by

100 Iy, 10 0 Iy, 100 I,
01 0 —I 01 0 —I 01 0 —I
2 — w,y 2 — 50,y 3 — sl,y
To=looo1 o] ™=loo1 o =loo1 o (118)
000 1 000 1 000 1

Note that the centres of gravity of the final sheave and the payload are located at coordinate frames (XY Z)s and
(XY Z)q, respectively. The centres of gravity of the boom actuator cylinder with respect to (XY Z),; and the boom
actuator rod with respect to (XY Z),, are

-l

1 00 cogbl 1 00 cogh?2
3 o1 0 o " o1 0 o0
T =10 0 1 0 |° Tes=l0 0 1 o0 (119)
0 0 O 1 0 0 O 1
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The centres of gravity of the jib actuator cylinder with respect to (XY Z),, and the boom actuator rod with respect to
(XY Z)5 are

—I -1

1 00 cogcel 1 00 cogc2

> o1 0 o ; o1 0 o0

¢ Tcogcl 1o 0 1 0 > ¢ Tcach 1o 0 1 0 (120)
0 0 O 1 0 0 O 1

Therefore, the transformation matrices describing the kinematics of each centre of gravity with respect to the deck
coordinate frame can be written as concatenations of the transformation matrices given in equations (100)-(120),

DTcagO =DT1 1Tcog0’ (121)
DTcagl =DT1 1T22Tcogl’ (122)
DTcagZ =DTI 1T22T33Tcog2’ (123)
DTcag3 =DT] 1T22T33Tcog3’ (124)
°1, ="T,'1,°T,, (125)
BT =PT,' Ty’ T, (126)
Ty ="' T’ 1T, (127)
P, =P\ Ty’ T T, T, (128)

j (129)

(130)

(131)

(132)

(133)

The knuckle boom S@ancd® actuated with the slew motor, rotating the base by an angle 6, and the hydraulic
actuators extending distan8@§ d, d, and d;. However, the kinematics of the knuckle boom crane are derived using
intermediate angles 6, 6,, 0,79, 0,1 and 0,,; expressions must be derived relating each intermediate angle to the
actuator extensions d; and d,.

Figure 17 shows the geometry required to express 6, 6, and 6, in terms of the actuator extension d;. The
intermediate lengths b; and b, are given as

b, =\/1[§1’x + (o = Ly )2 (134)

— 2 2
by =/, +12, . (135)

With application of cosine law, the angles 6, 6, and 6, can be written as

b2 + b2 — (d; + 1)? l l
0, =Z _cos! L 4 i — tan™! <$> — tan™! <ﬂ> ) (136)
2 2b, by lo=1p1 2 Lpa
[
0y = —tan™! ( bl’z> ) (137)
bl,x
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10 - lhl.z

lb],x

Figure 17: The geometry required to determine the intermediate an 0,, and 0,,.

Figure 18: The geometr d to determine the intermediate angles 6,, 6,, and 0,,.
b+ (dy + 1,y)* — b? l
0y =—m— 0, +cos™ [ - 4 ) 4 cos™! <ﬂ> (138)
2bi(dy + 1) by

Figure 18 shows the geometry required to express 6,, 6,; and 8., in terms of the actuator extension d,. The
intermediate lengths ¢; and c; are given as

_ 2 2

¢ = lcl’x + lcl’y, (139)
_ 2 2

¢ =\lG, G, (140)
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The angles 6,, 6, and 8, can then be written as

2, 2 2

cc+ce;—(dr+1.5) l )
0, = —cos™ [ 1—2 27 ) _tan”! < CI’y> —tan~! ( 63’y> , (141)

261C2 lcl,x 163,x
1 lcly

0, =0, +tan~' [ —2 ), (142)

11 - lcl,x

i 4 (dy+ 1) = c? i
0,=—2 —tan”! <$> +cos! [ 2 2 2 ) + tan™! < Clx) . (143)
2 11 - lcl,x 2cl(d2 + 1c2) lcly

Note that 6, is a function of d; while 6, and 8., are only functions of d,.

C. Cable Length

The length of cable by which the payload is hung below the final sheave is
running from the tip of the final sheave back to the winch /. is only a functi
geometry shown in Figure 19, the length of the cable / ., spanning the wincla ahd bo
calculating the intermediate length 12 o

en by Ig. The additional cable
he crane geometry. Using the
heave can be found by first

o =\/ (i = 10, + (g (144)
leo =\/(l£0)2 —(rw 3 (145)
and the cable entry angle a is given by
-1
ap = cos™ oy 0y S‘”) . (146)
- lsO,x

Likewise, using the geometry show

found by first calculating intermedi a

0 s1’
=\l + Loy (147)
I =\/(lz — L P+ (148)
The intermediate angle y, intermediate length ’”;1 can then be calculated as
1 lsl,y 1 lsO,y
yi1=r+6,—tan " | ————— ) —tan" | — |, (149)
12 - lsl,x lsO,x
I _ ! \2 ! \2 ! g
I, _\/(lso) + ()7 =211 cos(yy), (150)
giving the cable length /| as
o =\ = (g = 2. (151
The cable exit angle f, and entry angle a; are given by
I+ )P =)? ! l
fo=—Z +cos™! [ =2 el ) ptan! (22 ) sint [ <L), (152)
2 201 Iy I
50" cl 24 cl
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Figure 19: The geometry required to calculate the cable length between the winc he first sheave.

late the cable length across the knuckle joint.

U2+ =P =1y ro—r
: 2116111 0 ) —tan™! <—l > ’x> —tan™! Ol, =) (153)
slel sLy cl

and the lengths of cable wrapped around the sheaves /.;, and [, are

le1g = rolag = Bp)s (154)
leip = r(a) = By). (155)

Using the geometry shown in Figure 21, the length of the cable / , spanning the jib can be found by first calculating
the intermediate length //,,

122 =\/(IS1,X + d3)2 + (lsl,y - l4,y)2’ (156)

I =\/(1;2)2 —(r = 1), (157)
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Figure 21: The geometry required to calculate the cable length along the

and the cable exit angle f; is given by

’
p; = cos™! < 1

The length of cable /.,, wrapped around thgffp shea given by

Ly~ lay l“) (158)
lsl,x + d3

e = ﬁl_%+05>- (159)

Therefore, the total length o
by

ing along the crane from the tip of the sheave back to the winch is given

14 =lcO+lcl +lcla+lclb+lc2+102m (160)

which is a function of two ees of freedom, the jib angle 6,, which in turn is a function of the acutator extension
d,, and the jib extension lengti®t/;.

D. Position Kinematics with Dual Quaternions

Using the coordinate frames in Figures 4, 5 and 6, along with the DH parameters presented in Tables 1, 2 and
3 for the main kinematic chain, boom actuator kinematic chain and jib actuator kinematic chain, respectively, dual
quaternions representing the transformations between each coordinate frame can be built using equations (24)-(28).
For the main kinematic chain, the dual quaternions are

T T
—ﬁcos<9—°> loﬁ sin<9—°>
V2 by \2/5 92 V2 by 3/5 20
bo, =—5-cos <?> +9-5 sin<7°> +e| == sin (10?> +9 o5 cos (7‘)) , (161)
2 - 0 2 4
%m (7(’) lo%cos(go)
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C \NT ( 0 NT
llcos<71>

0
0
1y _ 1 0 .
Qz—cos<7>+< N 0+‘lls1n(%‘)
Sln(;) 0

- 7 7
g , T
I, cos <7>

1 _2 >. 9
lzsm(z)

0

\'g

)

>

Y

2 2 0
Dle =—COS< 0)+ —ﬁsin<0—°> +e|0+40 ,
2 2 2 2 0
V2 . (0
TSll’l(?)
T \T
0 lblcos<%)
b9, =cos <il> + 0 +e[0+1 lsin(@> g
(%) %

(162)

(163)

(164)

(165)

(166)

(167)

(168)

(169)

(170)

(171)
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T T
0 lbzcos<eﬁ)
O 0 2
szb3=cos — |+ +el0+4/ <in O , (172)
2 s'n(eﬁ b2 7
1 > 0
T T
0 d,
Bo,=1+30¢ +el0+{0% |, (173)
0 0

And for the jib actuator kinematic chain, the dual quaternions are

( 0 NT
0 =°°S<%>+‘ ot (174)
sin <9L1>
g 2 P
le _ 902
2 =cos | —= + 1 (175)
T
0
20,5 =1+70¢ +¢c|0+1 04 (176)
0
Dual quaternions can also be defined relating of mas¥ of each rigid body to one of the coordinate frames,
0 (O + [_lcagO,x lcogOy O]) > 177)
Olg e (O + [_lcagl,x leogty 0]) ) (178)
te (0 + [_lcoglx —leogay 0]) ) (179)
0] te (0 + [_lcag3 x _lcag3,y O]) > (180)
0 0 +e(0+[~Tux —luy 0]), (181)
0 0 +e(0+[~lyox —lsoy 0]). (182)
0 0 +e(0+ Ly —Lay 0]), (183)
P0ogp1 =1+ [0 0 0] +€(0+[~leyer O 0]), (184)
MQogir =1+ 1[0 0 0] +€(0+ [~Lopgrr O 0]), (185)
CzQCOgd =1+ [O 0 0] te (O+ [_lcogcl 0 0]) > (186)
C3QC‘7802 =1+ [O 0 O] te (O+ [_lcogd 0 O]) > (187)

Concatenating the dual quaternions provides a dual quaternion relating the transformation of each centre of gravity
with respect to the deck coordinate frame,

20,000 ="01' 0 .o40- (188)
0,051 ="01'02%Q g1 (189)
P02 =01'0,°05° 00 (190)
DQcog3 =DQ11Q22Q33Qcog3’ (191)
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?0,=0,'0,’0,. (192)
DQso =DQ11Q22Q50, (193)
Lo, =0,'0,°05°0,, (194)
Lo, =P0,'0,°05°0,*0s, (195)
20, =0,'0,°05°0,*05°04°0,7 05" 0,, (196)
PO g1 zDlelebeZQBbchogbl’ (197)
DQcogbZ :DleblQbeZQb3b3Qb4b4Qcogb2’ (198)
P0.oger :DQIIQCIC1QC262Qcogcl’ (199)
DQcogcl :DQI1Qc161Q0262Qc303Qcog62' (200)

Note that as with transformation matrices, a dual quaternion product is non-commutative, and each expression
must be evaluated from left to right.
The rotation matrices between the deck coordinate frame and centre of m area also required to rotate the
inertia matrices into the deck coordinate frame. Given a dual quaternion , 41> 49243, Py P1> P2> P3), the

D
1
corresponding rotation matrix P R, is
GG —a-4 24190 - 9095) a3)
PR =| 2Aq1+a0s) 93— i +a; Qe QD - Da) |- (201)
24193 = q09) 204041 iefiads) o b — D 45

E. Simulation Properties and Gains

The geometric and inertial properties of the
sliding mode controller are presented in Table 8. onlinear trajectory optimizer, k = 1, i,,,, =5, and 8 ., =
0 max = 03.max = O4.max = 0-001. For the trgi fifier, e, = €, = 0.0001, €, = ¢, = 0.01, & iy = & pin = 0.5,

éx,max = gy,max = 1'5’ gz,min = ‘fl,min =
b3:b4=b5=10.
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Table 7
Knuckle Boom Crane Model Parameters

Geometric Inertial
Parameter Value Parameter Value
Iy 4m my 5000 kg
I 4 m m 3000 kg
I, 3m m, 2000 kg
Ly x 0.8 m m 1500 kg
Ly. 1m my, 500 kg
Loy s 1m my = mg 250 kg
Ly 0.5m mg, 500 kg
loix 2m m, 1770 kg
Ly 0.5 m my, = my, 1000 kg
sy 2m my, = my, 1000 kg
ls, 0.5 m Lo 7083.33 k

570.31 kgm?
33.85 kgm?
33.85 kgm?
62.50 kgm?
5.21 kgm?
5.21 kgm?
7.81 kgm?
3.125 kgm?
Lot = Lier 40 kgm?
Iyyw=1,. 900 kgm?
Izz,bl = Izz,cl 900 kgm2
Towor = Tixer 10 kgm®

I =10 650 kgmz
Izz,bl = Izz,cl 650 kgm
N 4

Table 8
Knuckle Boom Crane SMC Controller Gains

A 20 [ k,, B5E5]|®,, 10|k, 1E5]| ®,, 1E4
A 20 | k,, B5E5|®,, 10 |k, 1E5 | ®,, 1E4
Ay 20 | k,y B5E5 | ®,; 10 | kyy; B5E4 | @, 1E4
A, 20 | k., 1E5 | ®,, 10 | k,, 1E4 | ®,, 1E4
As 20 | k,s 1E4 | @5 1 | kys 1E4 | @,5 1E4
A 20 | kg O | @, O |kye O | @y O

A 20 | kg O | @, O | ke O | @ O
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