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Abstract—Anti-sway control for shipboard marine cranes is
an ongoing control problem. In this paper, a simulation tool was
developed to evaluate anti-sway controllers for a five degree-
of-freedom shipboard gantry crane, actuated as if at sea. The
simulator was developed in MATLAB Simulink and ran in
real-time with controllers operating on a National Instruments
myRIO. A proportional-integral-derivative controller (PID), a
model predictive controller (MPC), a sliding mode controller
(SMC) and a fuzzy logic controller (FLC) were developed to track
a desired trajectory and dampen out payload sway. The con-
trollers were tested both individually and with input commands
shaped by a zero-vibration (ZV), zero-vibration-derivative (ZVD)
and zero-vibration-derivative-derivative (ZVDD) input shaper.

The PID, SMC and FLC controllers were all capable of both
tracking the desired trajectory and dampening payload sway
without disturbances from ship motion, with the more complex
FLC and SMC showing little improvement over the simpler PID.
The MPC was unable to track the desired trajectory without
jumping the actuator deadbands. The addition of input shapers
provided a greater reduction in payload sway at the cost of a
delayed response, with the ZVDD showing the greatest reduction
in payload sway and the corresponding longest delay. Given the
length of the delays however, it is recommended input shaping
only be applied to automated or autonomous crane systems.

As designed, none of the controllers were able to successfully
track the desired trajectory in the presence of ship motion. With
the simulation tool, future work for this system will involve
improving the control response to ship motion disturbances,
operator-in-the-loop testing and hardware deployment.

Index Terms—Marine crane, Gantry crane, Anti-sway control,
Input shaping, PID control, Model predictive control, Sliding
mode control, Fuzzy logic control

I. INTRODUCTION

Gantry cranes are often employed to transport heavy cargo
aboard large ships. As a gantry crane is an under-actuated
system, operator commands and disturbances from ship motion
will result in payload sway. An effective control system for a
shipboard gantry crane should be able to follow the trajectory
specified by the operator and dampen payload sway to prevent
the payload from potentially causing injury or damage.

Crane control has been widely studied in literature, with a
comprehensive review conducted in 2017 by Ramli et al. [1].
Applied specifically to marine cranes, a significant focus of
current research is non-linear and adaptive closed-loop control
systems. In 2017, Qian et al. [2] proposed an adaptive learning
controller for an offshore boom crane, and Ngo et al. [3]

demonstrated the effectiveness of a fuzzy-tuned, sliding mode
controller for an offshore container crane. In 2018, Tuan et
al. [4] used an adaptive neural network sliding mode controller
to control a shipboard container crane. In 2019, Qian et al. [5]
proposed an adaptive tracking controller for shipboard cranes,
and Yang et al. [6] presented a neural network-based adaptive
controller. However, there appears to be no consensus as to
what the preferred control strategy is for shipboard cranes.

Instead of focusing solely on the development of a single
non-linear controller, the present study seeks to evaluate the
performance of multiple controllers spanning a range of both
linear and non-linear control techniques. Four control method-
ologies were selected for the study: A Proportional-Integral-
Derivative (PID) controller, a Model Predictive Controller
(MPC), a Sliding Mode Controller (SMC) and a Fuzzy Logic
Controller (FLC). All of the controllers will be tested on an
identical five degree-of-freedom (dof) gantry crane system,
developed as a simulator to allow real-time control by an
operator for future operator-in-the-loop testing. The base of
the crane will be actuated as if at sea to observe the ability of
each control system to track the desired trajectory and dampen
payload sway in the presence of ship motion. The simulator
will be built in MATLAB Simulink using Simscape Multi-
body and Simscape Desktop Real-Time, and the controllers
developed in LabVIEW Real-Time and deployed to a National
Instruments (NI) myRio.

The addition of input shaping for each control system will
also be explored. In a review conducted by Conker et al. [7],
input shapers prove effective at eliminating vibration in flexi-
ble systems. Applying input shaping to a marine crane, each of
the four feedback controllers will be combined with a zero-
vibration (ZV), zero-vibration-derivative (ZVD) and a zero-
vibration-derivative-derivative (ZVDD) input shaper.

The present study seeks to provide an understanding of
how different control methodologies compare performing anti-
sway control for a shipboard marine gantry crane operating in
a real-time, simulated environment. The use of four distinct
feedback control systems combined with open-loop input
shaping provides insight into the strengths and weaknesses
of different control techniques, and a basis for the future
development of other controller variants.

Section II of this paper provides an overview of the test
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system, including a complete mathematical model of the 5-dof
gantry crane system, the Simscape Multibody model, and the
operation of each controller and input shaper. The controllers
are tuned without the addition of ship motion, then tested with
both input shaping and ship motion. Section III provides the
results of the tuning cases and ship motion study. The paper
concludes in section IV with a summary of the findings.

II. SYSTEM OVERVIEW

Fig. 1 presents a high-level schematic of the simulator. The
system allows an operator to control the simulated gantry crane
in real-time with immediate visual feedback, and dampen any
resulting payload sway. Operator inputs are provided by a USB
joystick; joystick inputs are used to provide trajectories for the
cart, and push button inputs are used to adjust the length of
the cable. The inputs are sent to the myRIO and converted to
desired states for the system. The trajectory error is calculated
using the current states obtained from the Simscape model.
The control action is calculated and sent to the Simscape
model, where immediate visual feedback is provided to the
operator. The use of the Simscape Desktop Real-Time kernel
allows the myRIO to operate in real-time with the Simscape
model at a frequency of 100 Hz.

Fig. 1. High-level schematic of the test system.

A. Mathematical Model of the 5-dof Gantry Crane

To aid in controller development, a mathematical model of
the crane system was derived. Fig. 2 presents the free body
diagram of the gantry crane. The cart with mass m1 has two
translational axes X and Y ; as the cart moves as a function
of time, its positions along the X and Y axes are described
by x(t) and y(t), respectively. A payload with mass m2 is
free to swing beneath in both the XZ and Y Z planes with
sway angles θ(t) and φ(t), respectively. The cart is actuated
by forces Fx(t) and Fy(t) in the X and Y axes, and the
cable length l(t) adjusted by a colinear force Fl(t). The mass
of the gantry rail is given by mrail, and the cable is assumed
massless. When ignoring the pendulum mass m2, the effective
cart mass in the y axis is m1y = m1 + mrail, while the cart
mass in the x axis is simply m1x = m1. Gravity g acts in the
negative Z axis of the inertial frame I .

The Lagrange approach was used to derive the equations of
motion for the gantry crane. As the model has five degrees-of-
freedom, five generalized coordinates are needed. The coordi-
nates were taken as the cart positions x(t) and y(t), the cable
length l(t), and the sway angles θ(t) and φ(t). The position

Fig. 2. Free body diagram of the gantry crane.

vectors for the cart ~pcart and payload ~ppayload were defined
as

~pcart =x(t)̂ı+ y(t)̂+ 0k̂, (1)
~ppayload =[x(t) + l(t) sin(θ(t))]̂ı+ [y(t) + l(t) sin(φ(t))]̂

− l(t) cos(θ(t)) cos(φ(t))k̂. (2)

The Lagrange equation takes the form

d

dt

(
dT

dq̇

)
− dT

dq
+
dV

dq
= Fq (3)

where T and V are the total kinetic and potential energies
of the system, respectively, q is each generalized coordinate
for the system, and Fq is the generalized force corresponding
to coordinate q. The total kinetic energy of the system T is
the summation of the kinetic energies of the cart and payload,
such that

T =
m1x

2
ẋ(t)2 +

m1y

2
ẏ(t)2︸ ︷︷ ︸

Tcart

+
m2

2

(
d~ppayload(t)

dt

)2

︸ ︷︷ ︸
Tpayload

. (4)

As the cart cannot translate in the Z axis, the only source of
potential energy will be due to gravity acting on the payload.
The total potential energy V can then be described as

V = m2gl(t) cos(θ(t)) cos(φ(t)). (5)

Evaluating (3), and for notational simplicity dropping (t) from
all time-varying quantities, the equations of motion can be
expressed in standard form
M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

M51 M52 M53 M54 M55



ẍ
ÿ

l̈

θ̈

φ̈

+


a1

a2

a3

a4

a5

 =


Fx
Fy
Fl
0
0


(6)



where

M11 =m1x +m2 (7)
M22 =m1y +m2 (8)

M33 =m2 sin2(φ) +m2 sin2(θ)

+m2 cos2(φ) cos2(θ) (9)

M44 =m2l
2 cos2(θ) +m2l

2 cos2(φ) sin2(θ) (10)

M55 =m2l
2 cos2(φ) +m2l

2 cos2(θ) sin2(φ) (11)
M13 = M31 =m2 sin(θ) (12)
M14 = M41 =m2l cos(θ) (13)
M23 = M32 =m2 sin(φ) (14)
M25 = M52 =m2l cos(φ) (15)
M34 = M43 =m2l cos(θ) sin(θ)

−m2l cos2(φ) cos(θ) sin(θ) (16)
M35 = M53 =m2l cos(φ) sin(φ)

−m2l cos(φ) cos2(θ) sin(φ) (17)

M45 = M54 =m2l
2 cos(φ) cos(θ) sin(φ) sin(θ) (18)

M12 = M21 =M15 = M51 = M24 = M42 = 0 (19)

and

a1 =2m2 l̇θ̇ cos(θ)−m2lθ̇
2 sin(θ) (20)

a2 =2m2 l̇φ̇ cos(φ)−m2lφ̇
2 sin(φ) (21)

a3 =m2 l̇φ̇ sin(2φ) +m2 l̇θ̇ sin(2θ)−m2lφ̇
2 sin2(φ)

−m2lθ̇
2 sin2(θ)−m2g cos(φ) cos(θ)

−m2lφ̇
2 cos2(φ) cos2(θ)−m2lθ̇

2 cos2(φ) cos2(θ)

− 2m2 l̇φ̇ cos(φ) cos2(θ) sin(φ)

− 2m2 l̇θ̇ cos2(φ) cos(θ) sin(θ)

+ 2m2lφ̇θ̇ cos(φ) cos(θ) sin(φ) sin(θ) (22)

a4 =2m2ll̇θ̇ cos2(θ) +m2gl cos(φ) sin(θ)

−m2l
2θ̇2 cos(θ) sin(θ) +m2l

2φ̇2 cos2(φ) cos(θ) sin(θ)

+m2l
2θ̇2 cos2(φ) cos(θ) sin(θ)

+ 2m2ll̇θ̇ cos2(φ) sin2(θ)

− 2m2l
2φ̇θ̇ cos(φ) sin(φ) sin2(θ)

+ 2m2ll̇φ̇ cos(φ) cos(θ) sin(φ) sin(θ) (23)

a5 =2m2ll̇φ̇ cos2(φ) +m2gl cos(θ) sin(φ)

−m2l
2φ̇2 cos(φ) sin(φ) +m2l

2φ̇2 cos(φ) cos2(θ) sin(φ)

+m2l
2θ̇2 cos(φ) cos2(θ) sin(φ)

+ 2m2ll̇φ̇ cos2(θ) sin2(φ)

− 2m2l
2φ̇θ̇ cos(θ) sin2(φ) sin(θ)

+ 2m2ll̇θ̇ cos(φ) cos(θ) sin(φ) sin(θ) (24)

The equations of motion will be used to derive a linearized
state-space model for the MPC and to derive the control laws
for the SMC. To provide visual feedback for the simulator,
Simscape Multibody was used to implement the gantry crane
model.

B. Simscape Multibody Model

Fig. 3 shows the 3D rendering of the Simscape model. The
visual model represents a cross section of a ship with a beam of
20 metres. Approximate masses for the crane components were
chosen and are presented in Table I. The payload is a small
Zodiac-style watercraft, with a mass of 1770 kilograms [8],
and the initial cable length l0 is 4 metres.

Fig. 3. 3D render of the Simscape model.

TABLE I
CRANE MODEL PARAMETERS

Parameter Value
m1 5000 kg
mrail 10000 kg
m2 1770 kg
l0 4.00 m

Using the parameters presented in Table I, the equations
of motion presented in equations (6)-(24) were simulated and
validated the results of the Simscape model. Deadbands of
±100 N and saturation limits of ±50 kN were added to all
of the external forces to observe their effect on the controller
performance.

C. LabVIEW Controllers

Instead of developing the controllers in Simscape along with
the Multibody model, the controllers were built in LabVIEW
Real-Time and deployed to an NI myRIO to emulate hardware-
in-the-loop control. Having the controllers developed in Lab-
VIEW and operating on a myRIO also provides modularity
to the system, allowing the Simscape simulator to be replaced
with a physical simulator for future studies without redevel-
oping the controllers.

Four controllers were built for the system: a proportional-
integral-derivative (PID) controller, a model predictive con-
troller (MPC), a sliding mode controller (SMC) and a



fuzzy logic controller (FLC). Zero-vibration (ZV), zero-
vibration-derivative (ZVD) and zero-vibration-derivative-
derivative (ZVDD) input shapers were also developed to test
their utility at sway reduction.

1) Proportional-Integral-Derivative Controller: Fig. 4
presents the general block diagram of the PID controller im-
plemented in LabVIEW. To evaluate the control actions uq for
each generalized coordinate q, where q =

{
x y l θ φ

}
,

five PID controllers were built that each attempt to minimize
the error eq

eq = qd − q, (25)

where qd is the desired state for coordinate q. The proportional,
integral and derivative gains corresponding to coordinate q are
KP,q, KI,q and KD,q, respectively, and Ts is the sampling
time.

Fig. 4. Block diagram of the discrete-time LabVIEW PID controller.

To implement anti-sway control, the crane must both at-
tempt to track the desired cart trajectory while also drive the
pendulum sway angles to zero. To minimize both errors with
PID control, Fx and Fy were taken as averages of the control
actions calculated by the corresponding PID controllers. Note
that if the sway angles are measured as shown in Figure 2,
the control actions uθ and uφ should be negated. The control
actions could also be summed instead of averaged, requiring
an update to the PID gains. The final forces applied to the
Simscape model were

Fx =
ux − uθ

2
, (26)

Fy =
uy − uφ

2
, (27)

Fl =ul. (28)

As the gantry crane system is highly non-linear, traditional
linear PID tuning methods such as Root-Locus cannot be
directly applied. For the present study, the gains were heuris-
tically tuned as per section III-A.

2) Model Predicitive Controller: The MPC uses a lin-
earized model of the system to compute optimal control
actions for future timesteps. To obtain a linearized state-space

model of the system, the state vector x and force vector u
were defined as

x =
[
x ẋ y ẏ l l̇ θ θ̇ φ φ̇

]T
, (29)

u =
[
Fx Fy Fl

]T
, (30)

with the equilibrium conditions

x0 =
[
0 0 0 0 4 0 0 0 0 0

]T
, (31)

u0 =
[
0 0 −m2g

]T
. (32)

Decoupling the equations of motion presented in section II-A
and evaluating the Jacobian at the equilibrium position, the
linearized state-space model takes the form

ẋ =Ax +Bu, (33)
ẏ =Cx +Du, (34)

where

A =



0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 m2g

m1x
0 0 0

0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 m2g

m1y
0

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 −g(m1x+m2)
4m1x

0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0
−g(m1y+m2)

4m1y
0


,

(35)

B =

0 1
m1x

0 0 0 0 0 − 1
4m1x

0 0

0 0 0 1
m1y

0 0 0 0 0 − 1
4m1y

0 0 0 0 0 1
m2

0 0 0 0

T ,
(36)

C =


1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0

 , (37)

and D a 5x3 zero matrix. The controller was implemented
using the MPC tools provided in the LabVIEW Control Design
and Simulation Module [9]. As the system operates in real-
time, the future trajectory considered in the MPC’s prediction
horizon is not directly known. Instead, all future values for
the trajectory were set to the desired trajectory at the current
timestep.

3) Sliding Mode Control: As the gantry crane system is
non-linear, a non-linear controller such as an SMC may
provide improved performance over the PID and MPC. In
accordance with Slotine and Li [10], the error vector e is
defined as

e =


x− xd
y − yd
l − ld
θ − θd
φ− φd

 , (38)



where the subscript d denotes the desired state. The sliding
surface s is then defined by

s = ė + λe, (39)

where

λ =


λ1 0 0 0 0
0 λ2 0 0 0
0 0 λ3 0 0
0 0 0 λ4 0
0 0 0 0 λ5

 . (40)

Taking a derivative of the sliding surface, one obtains

ṡ = ë + λė = q̈− q̈d + λė. (41)

Note that the equations of motion developed in section II-A
take the form

M q̈ + a = u, (42)

where

a =
[
a1 a2 a3 a4 a5

]T
, (43)

u =
[
Fx Fy Fl 0 0

]T
. (44)

Solving for q̈ in (42) and substituting the result into (41), the
derivative of the sliding surface is

ṡ = −M−1a +M−1u− q̈d + λė. (45)

Setting ṡ = 0 and solving for the control action u results in

u = M q̈d −Mλė + a. (46)

A discontinuous term kisat
(
s

Φi

)
is added to the end of each

control action ui to reduce chatter as the system approaches
the sliding surface, where ki is a gain and Φi the width of the
saturation region such that

sat
(
s

Φi

)
=

{
s

Φi
if | sΦi | ≤ 1

sgn(s) otherwise
. (47)

For example, consider the first entry in u, u1 = Fx, and
expanding (46) with the additional discontinuous term, one
obtains

Fx =M11

[
ẍd − λ1(ẋ− ẋd)

]
+M13

[
l̈d − λ3(l̇ − l̇d)

]
+M14

[
θ̈d − λ4(θ̇ − θ̇d)

]
+ a1

− k1sat
[
ẋ− ẋd + λ1(x− xd)

Φ1

]
. (48)

4) Fuzzy Logic Control: An alternate approach to non-
linear control, an FLC does not require the derivation of the
equations of motion of the system. Instead, FLC relies on
predefined “rules” to control the system that are based on
a physical intuition of how the system performs. The FLC
built for the gantry crane system was developed based on the
concepts presented in [11]. Fig. 5 shows the block diagram for
the FLC implemented in LabVIEW. The inputs to the FLC are
(25), the state error eq , multiplied by a gain Ge,q , and the rate

Fig. 5. Block diagram of the discrete-time LabVIEW FLC.

of change of the error ėq , multiplied by a gain Gė,q . The output
of the FLC is multiplied by gain Gu,q to provide the control
action.

As with the PID controller, five FLCs are needed to control
the system and dampen payload sway, one for each gen-
eralized coordinate, with the control efforts averaged using
equations (26)-(28).

For each FLC, the universes of discourse for both e and ė
were set to 5, and triangular membership functions were used.
Fig. 6 presents the rule base for all of the FLCs.

Fig. 6. Rule base for each FLC.

D. Input Shaping

A method of open-loop control, input shaping aims to
reduce vibration by shaping the input commands to avoid
exciting the natural frequencies of the system. The input
command sequence is convolved with a series of impulses with
a delay based on the natural frequency of the system. In the
present study input shapers are used to shape the trajectories
sent to the feedback controllers, creating a control system that
combines open and closed-loop control.

1) Zero-Vibration Input Shaper: As presented by
Conker et al. [7], a ZV input shaper uses two impulses, with
normalized amplitudes A1 and A2 applied at timesteps t1 and
t2, and takes the form

ZV =

[
A1 A2

t1 t2

]
=

[ 1
1+K

K
1+K

0 π
ωd

]
(49)

where

K =e
− πζ√

1−ζ2 , (50)



ωd =ωn
√

1− ζ2. (51)

In the present study no damping is considered, resulting in
K = 1 and ωd = ωn. The natural frequency for a simple
pendulum is ωn =

√
g
l . Using the initial pendulum length of

l0 = 4 metres, the ZV impulse sequence becomes[
A1 A2

t1 t2

]
=

[
0.5 0.5
0 2

]
. (52)

2) Zero-Vibration-Derivative Input Shaper: A ZVD input
shaper uses three impulses and takes the form

ZV D =

[
A1 A2 A3

t1 t2 t3

]
=

[
1

1+2K+K2
2K

1+2K+K2
K2

1+2K+K2

0 π
ωd

2π
ωd

]
(53)

where K and wd take the same values as for the ZV input
shaper. The intention of adding an additional impulse is to
make the input shaper more robust to errors identifying the
natural frequency and damping ratio of the system [7].

3) Zero-Vibration-Derivative-Derivative Input Shaper: A
ZVDD input shaper uses four impulses and takes the form

ZV DD =

[
A1 A2 A3 A4

t1 t2 t3 t4

]
=

[
A1 A2 A3 A4

0 π
ωd

2π
ωd

3π
ωd

]
(54)

where

A1 =
1

1 + 3K + 3K2 +K3
, (55)

A2 =
3K

1 + 3K + 3K2 +K3
, (56)

A3 =
3K2

1 + 3K + 3K2 +K3
, (57)

A4 =
K3

1 + 3K + 3K2 +K3
. (58)

The addition of a fourth impulse is meant to further reduce
the sensitivity of the shaper to errors in the natural frequency
and damping ratio [7]. Note the additional impulses for the
ZVD and ZVDD input shapers are further delayed from the
impulses of the ZV. Using the parameters of the present
system, (52) shows the second impulse of the ZV is applied
at t2 = 2 seconds. The third and fourth impulses of a ZVDD
input shaper are applied at t3 = 4 seconds and t4 = 6 seconds,
which will cause the system to have a noticeable delay for the
operator.

III. RESULTS

A. Tuning Trials - No Ship Motion

To tune each controller, trials were performed without ship
motion using the predefined trajectories

ẋd = ẏd =

{
0.3 m/s t < 12 s
0 m/s t ≥ 12 s

, (59)

l̇d =


0 m/s t ≤ 20 s
0.3 m/s 20 < t < 35 s
0 m/s t ≥ 35 s

. (60)

The gains for each controller were tuned heuristically,
reducing the root-mean-square-error (RMSE) between the
payload position and the desired trajectory, while keeping the
sway angles below a maximum of θmax = φmax = 2.5°. As
the MPC behaved differently than the other three controllers
during tuning, the tuned gains and results for the PID, FLC
and SMC are presented first, followed by a discussion on the
MPC.

1) PID, SMC and FLC: The tuned gains for the PID, SMC
and FLC are presented in Tables II, III, and IV, respectively.
It was found through tuning that an integral gain was only
required for the cable length PID controller, and did not
provide an additional benefit for the other PID controllers.

TABLE II
PID CONTROLLER GAINS

KP,x = 5E4 KI,x = 0 KP,x = 5E4
KP,y = 1.5E5 KI,y = 0 KP,y = 1.5E5
KP,l = 1E5 KI,l = 5E4 KP,l = 5E4
KP,θ = 1.5E5 KI,θ = 0 KP,θ = 0
KP,φ = 4.5E5 KI,φ = 0 KP,φ = 0

TABLE III
SMC CONTROLLER GAINS

λ1 = 2 k1 = 1E4 Φ1 = 5
λ2 = 2 k2 = 2E4 Φ2 = 5
λ3 = 5 k3 = 1E5 Φ3 = 1
λ4 = 1 k4 = 0 Φ4 = 1
λ5 = 1 k5 = 0 Φ5 = 1

TABLE IV
FLC CONTROLLER GAINS

Ge,x = 1 Gė,x = 1 Gu,x = 5E4
Ge,y = 1 Gė,y = 1 Gu,y = 1.5E5
Ge,l = 10 Gė,l = 5 Gu,l = 1E5
Ge,θ = 1 Gė,θ = 0 Gu,θ = 1.5E5
Ge,φ = 1 Gė,φ = 0 Gu,φ = 4.5E5

As a basis to compare the performance of the controllers,
the null control case was considered as a controller identical
to the PID controller with all gains related to θ and φ set
to zero. The null controller then provides trajectory control
without direct anti-sway action.

Fig. 7 plots as a function of time the x and y positions of
the payload and the cable length for the PID, SMC and FLC,
as well as the null controller, using the predefined trajectories
(59) and (60), without the addition of ship motion. The RMSE
and maximum sway angles for each controller are presented
in Table V.

As designed the PID, SMC and FLC all successfully track
the trajectory and dampen out payload sway faster than the



Fig. 7. Trajectory tracking performance of the PID, SMC and FLC, along
with the null controller, without the addition of ship motion.

null control case, at the cost of a larger overshoot in x and y.
The PID and FLC provide almost identical performance for
x and y position tracking; considering the inputs to the FLC
are the trajectory error and rate of change of the error, the
FLC is very similar in operation to a PD controller. However,
the lack of an integral term in the current design of the FLC
results in a steady-state error tracking the cable length setpoint.
It was suspected that the non-linear SMC and FLC would
show significant improvement over the PID, however all three
provide a similar level of performance.

2) MPC: Unlike the PID, SMC and FLC, the MPC was
unable to successfully track the desired trajectory due to the
deadbands placed on the actuators. To be able to effectively
tune the MPC, the deadbands had to be jumped. The prediction
and control horizons were tuned to Np = 140 and Nc = 1, and
the output error weight matrix Q for the MPC cost function
tuned to

Q =


3E5 0 0 0 0

0 3E5 0 0 0
0 0 1E11 0 0
0 0 0 1E7 0
0 0 0 0 1E7

 . (61)

Both the rate of change in control action weight matrix R
and the control action error weight matrix N for the MPC
cost function were set to R = N = 0, allowing the MPC to
control the system with no regard for the magnitude or rate of
change of the control action. Additionally, no constraints were
added to the MPC. Table V provides the RMSE and maximum
sway angles for the tuned MPC with the deadbands jumped.

Fig. 8 shows the performance of the MPC controller with
and without jumping the deadbands. Without jumping the
deadbands, the state-space model provides inaccurate predic-
tions for the current state of the system, as any forces within
the deadbands provide a change in state for the state-space
model, but not for the actual system. Note that for the PID,
SMC and FLC the deadbands result in limit cycles as the
system approaches steady state. As the amplitudes of the limit
cycles are on the order of 10−3 metres and smaller, there is
negligible effect on performance.

Fig. 8. Trajectory tracking performance of the MPC controller with and
without jumping the deadbands of all three actuators.

Even with jumping the deadbands, Fig. 8 shows drift in
cable length for the MPC due to the linearized equations of
motion, albeit significantly less drift than without jumping the
deadbands. As the payload swings and the system moves away
from the linearized operating point, the mismatch between the
control action predicted by the linearized MPC and the force



actually required by the non-linear system result in a non-zero
acceleration, causing drift. Woodacre et al. [12] encounter a
similar MPC drift when implementing anti-heave control with
an MPC on a hydraulic winch system, and correct the issue
with a PI controller operating in parallel with the MPC.

TABLE V
RMSE AND MAXIMUM SWAY ANGLES - NO SHIP MOTION

RMSE (m)
Trajectory Null PID MPC SMC FLC

x 0.071 0.062 0.179 0.063 0.062
y 0.075 0.061 0.186 0.071 0.062
l 0.025 0.025 0.676 2.2E-4 0.067

Angle Maximum Sway Angles (°)
θmax 2.71 2.26 1.55 2.27 2.25
φmax 2.87 2.40 1.59 2.39 2.38

B. Input Shaping - No Ship Motion

All four controllers, along with the null controller, were
tested with the addition of a ZV, ZVD and ZVDD input shaper
to observe any improvements in performance. The deadbands
were jumped for the MPC to allow the controller to track the
desired x and y trajectories. Figures 9, 10, 11 and 12 present
the performance of the PID, MPC, SMC and FLC controllers,
respectively, with each input shaper. Table VI presents the
maximum sway angles experienced by the payload during
each trial; as the input shapers cause a delay in response,
all of the controllers showed a significantly increased RMSE
with input shaping. Since the primary objective of the control
system is sway reduction, RMSE will not be used to evaluate
the performance of the input shapers. Note also that input
shaping was only applied to the x and y trajectories; as varying
the cable length does not excite the natural frequency of the
pendulum, the addition of input shaping for the l trajectory
was not found to be beneficial.

TABLE VI
MAXIMUM SWAY ANGLES - NO SHIP MOTION

Input θmax (°)
Shaping Null PID MPC SMC FLC

None 2.71 2.26 1.47 2.27 2.25
ZV 1.41 1.16 0.78 1.28 1.15

ZVD 0.83 0.91 0.59 0.90 0.91
ZVDD 0.76 0.74 0.47 0.72 0.74

φmax (°)
None 2.87 2.40 1.52 2.39 2.38
ZV 1.51 1.18 0.83 1.24 1.17

ZVD 0.75 0.88 0.67 0.74 0.88
ZVDD 0.75 0.75 0.56 0.70 0.74

The addition of an input shaper for each controller signif-
icantly reduced the maximum sway angles, with the ZVDD
showing the greatest reduction in payload sway in every case.
However, input shaping also causes a significant delay in
trajectory response as more impulses are used with each input
shaper. Due to the low natural frequency of the system and
the length of the delays, human operators will have difficulty
controlling the system. Therefore, given the results of the

Fig. 9. Trajectory tracking performance of the PID controller with a ZV,
ZVD and ZVDD input shaper, without disturbances from ship motion.

Fig. 10. Trajectory tracking performance of the MPC with a ZV, ZVD and
ZVDD input shaper, without disturbances from ship motion.



Fig. 11. Trajectory tracking performance of the SMC with a ZV, ZVD and
ZVDD input shaper, without disturbances from ship motion.

Fig. 12. Trajectory tracking performance of the FLC with a ZV, ZVD and
ZVDD input shaper, without disturbances from ship motion.

present study it is recommended that input shaping should only
be deployed for automated or autonomous crane systems.

C. Ship Motion

The four controllers were then tested with 6-axis ship
motion actuating the base of the crane. The ship motion data
was generated with ShipMo3D [13] for sea state 6. The sea
way was modelled with regular waves of the Bretschneider
spectrum using a significant wave height of 5 m and a period
of 2.4 seconds. The ship was the generic frigate included
in ShipMo3D [13], sailing at a speed of 6.000 kt with a
heading of 15.0° into the sea. A summary of the ship motion
is presented in Table VII. The frequency of the roll, pitch and
yaw ship motion was 0.093 Hz.

TABLE VII
SHIP MOTION PARAMETERS

Surge Sway Heave Roll Pitch Yaw
(m) (m) (m) (°) (°) (°)

Maximum 0.993 0.279 1.280 1.920 2.270 0.345
Minimum -0.993 -0.279 -1.280 -1.920 -2.270 -0.345

RMS 0.701 0.197 0.908 1.360 1.600 0.244

Fig. 13 presents the payload position and cable length for
the ship motion trials with the PID, SMC and FLC controllers
without input shaping. Table VIII presents the maximum sway
angles experienced by the payload for the PID, SMC and FLC
for each trial with the addition of a ZV, ZVD and ZVDD input
shaper

TABLE VIII
MAXIMUM SWAY ANGLES - WITH SHIP MOTION

Input θmax (°)
Shaping Null PID SMC FLC

None 5.14 3.73 3.97 3.78
ZV 4.40 3.86 3.90 3.85

ZVD 4.27 3.39 3.50 3.40
ZVDD 4.14 3.26 3.10 3.27

φmax (°)
None 6.78 5.24 5.63 5.24
ZV 3.92 4.04 3.68 4.04

ZVD 3.38 3.51 3.29 3.51
ZVDD 3.39 3.36 3.31 3.37

As designed none of the controllers are able to track the
desired trajectory in the presence of ship motion, and the
addition of anti-sway control appears to cause larger trajectory
errors compared to the null control case. The addition of input
shaping does appear to reduce payload sway in some cases,
however alone is insufficient. The results of the MPC are not
shown, as when tested the system showed substantial drift and
was unable to maintain the payload near the desired trajectory.

It is possible the use of a signal prediction algorithm, such as
developed by McPhee and Irani [14] could provide disturbance
information to the MPC. With a PI controller in parallel to
correct drift, it is possible the MPC could control the system
in the presence of ship motion.



Fig. 13. Trajectory tracking performance of the PID, SMC and FLC controller
with disturbances from ship motion.

IV. CONCLUSION

A simulation tool that allows the examination of the con-
trol to a five degree-of-freedom shipboard gantry crane was
successfully developed. Additionally, the simulator allows
the operator to provide input trajectories and receive visual
feedback of the system through a 3D render of the crane.

A proportional-integral-derivative controller, model predic-
tive controller, sliding mode controller and fuzzy logic con-
troller were all developed for the crane and operate in real-time
on a NI myRIO. The PID, SMC and FLC were all successful
at tracking a desired trajectory and dampening payload sway
without disturbances from ship motion. The MPC was unable
to control the system without jumping the actuator deadbands,
and a PI controller would be needed to correct drift. Addition-
ally, as designed none of the controllers were successful at
tracking the desired trajectory in the presence of ship motion.

Given the results of the present study, it appears that PID
controllers still have use in industrial crane applications. The
results indicate that the additional effort required to develop an
SMC or FLC provides negligible benefit over a PID, despite
the system being non-linear.

The addition of an input shaper showed a significant reduc-
tion in payload sway for all of the controllers, but also showed

a significant delay in system response. Given the results of
the present study, input shaping should only be deployed on
automated or autonomous crane systems.

With the simulation tool developed, future work will focus
on improving the controllers to reduce the payload sway in
the presence of ship motion. A signal prediction algorithm
for an MPC-PI controller could also be explored to improve
the system. Additionally, operator-in-the-loop testing will be
performed and the controllers deployed to a laboratory scale
robotic crane to validate the simulation results.
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