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Abstract
Payload sway for shipboard cranes represents a significant safety concern for deck personnel.
In this paper, a generalized trajectory modification strategy is presented that can be applied to
a variety of different types of shipboard crane to allow the payload to maintain its desired posi-
tion with respect to the ship deck in the presence of six degree-of-freedom (DOF) ship motion,
and therefore appear stationary to deck personnel. Initially developed for a five DOF shipboard
gantry crane, both a de facto proportional-integral-derivative (PID) controller and a sliding mode
controller (SMC) are shown in simulation to be successful at tracking the modified trajectory.
The PID controller shows a 64% reduction in the root-mean-square-error (RMSE) between the
desired and actual payload positions with the addition of the trajectory modifier, and the SMC
shows a 74% reduction.

The trajectory modifier is then applied to a six-DOF shipboard knuckle boom crane, with a
dynamic model developed to include the mass and inertia of the actuators. The PID controller
only shows a 38% reduction in RMSE and struggles to successfully track the trajectory due to
the highly nonlinear dynamics of the knuckle boom crane. The SMC controller shows an 82%
reduction in RMSE and appears capable of maintaining the desired payload position with the
addition of the trajectory modifier.

To further extend the dynamicmodel of the knuckle boom crane, first-order transfer functions
are applied to govern the response of each actuator. A state-of-the-art sliding mode controller is
developed to provide stable control of the system, and shows an 84% reduction in RMSEwith the
addition of the trajectory modifier. The results therefore indicate that trajectory modification is
highly effective at dampening payload sway for shipboard cranes, provided a suitable controller
can be developed to allow the crane to accurately track the modified trajectory.

1. Introduction
Precise control of the payload for any crane is an important control problem; unexpected payload motion creates

a hazard for anyone working nearby or may cause damage to either the payload itself or the surroundings. However,
as cranes are underactuated, nonlinear systems, stable control of the payload can be a challenging task, and has thus
attracted significant attention from the research community. In this paper, a generalized approach to anti-sway control
for shipboard cranes is presented and applied to both a shipboard gantry crane and a shipboard knuckle boom crane.

In a review published in 2017, Ramli et al. [28] explore the many approaches researchers have taken to improve
crane control systems, both shipboard and land-based, to which the reader is referred for a more rigorous overview
of crane control strategies. As cranes are nonlinear systems, nonlinear controllers are favored by some researchers as
they can often remain effective beyond the operating range of a well tuned, linear controller. A plethora of nonlinear
control strategies exist that have been explored by researchers, such as sliding mode control, adaptive control, robust
control, fuzzy logic control, and neural networks.

Since 2017 further developments have been made in general crane control, particularly with a focus on neural
networks. In 2018, Frikha et al. [6] proposed an adaptive, neuro-sliding mode controller for a planar, three degree-
of-freedom (DOF) gantry crane, and showed in simulation the system was able to track a desired trajectory with a
varying cable length. Ramli et al. [27] proposed an neural-network based input shaper for a similar three-DOF gantry
crane, where the input shaper parameters were tuned in real-time by a neural network, trained with particle swarm
optimization. Singh and Agrawal [30] developed a fractional model predictive controller for a two-DOF gantry crane,
and Zhang et al. [39] proposed a terminal sliding mode controller that used an observer to estimate disturbances. In
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2019, Maghsoudi et al. [17] applied a neural-network based input shaper to a five-DOF gantry crane and showed
significant sway reduction.

For shipboard cranes, in addition to the tracking control problem of land-based cranes the crane base itself moves
with the ship, further exciting the payload. Particularly in high sea states where deck operations are already dangerous,
unexpected payload motion creates a serious hazard. Researchers have taken an interest in shipboard crane control
over the past several decades, and have developed several approaches to anti-sway control. In 2001, Henry et al. [8]
created a time-delayed feedback controller capable of maintaining a desired ocean-frame (or world-frame) position of
the payload for a planar offshore boom crane, and was expanded to a rotary boom crane by Masoud [19]. In 2002,
Agostini et al. [1] also developed a control system capable of maintaining the world-frame position of the payload for a
rotary boom crane. In 2004, Spathopoulos and Fragopoulos [31] apply a Linear Quadratic Regulator (LQR) to provide
anti-sway control for an offshore boom crane.

In 2005, Suthakorn and Parker [34] developed an anti-sway controller for the offshore boom crane, and considered
only pitch and yaw motion of the ship. In 2011, Ngo et al. [20] considered a four-DOF container crane and developed
an anti-sway controller using a PD controller and a trajectory modifier to maintain the payload’s world-frame position,
followed by a sliding-mode controller in 2012 [21]. Also in 2012, Fang and Wang [4] considered the planar offshore
boom crane and developed controllers to maintain the payload’s position with respect to both the world-frame and
the deck of the ship using a form of trajectory planning, and provide experimental validation in [5]. In 2013, Ismail
and Ha [10] developed a second-order sliding mode controller for the planar offshore boom crane and a rotary boom
crane [9]. In 2014, Chu et al. used an energy dissipation method for anti-sway control on a simplified knuckle boom
crane, however the crane was not tested with the addition of ship motion [2].

In recent years, the focus of shipboard crane research has been on robust and adaptive controllers. In 2015, Ismail et
al. [11] developed a robust sliding mode controller for a planar offshore container crane, designed to handle uncertain
disturbances such as wind gusts. Ngo et al. [23, 22] developed a fuzzy-tuned sliding mode controller for a three-DOF
offshore container crane, and Qian and Fang [24] developed a nonlinear learning controller for the planar offshore
boom crane. In 2017, Qian [25] created an adaptive learning controller for the planar offshore boom crane, and Kim
and Park [13] developed a linear controller for a linearized five-DOF container crane. In 2018, Qian [26] developed
an adaptive learning controller for the three-DOF container crane, Sun et al. [32] developed an energy-based nonlinear
controller for the planar boom crane, and Lu et al. [16] developed a nonlinear controller for the three-DOF boom
crane. Both Wang et al. [36] and Tysse and Egeland [35] developed control systems for a simplified model of a
shipboard knuckle boom crane, without including the mass and inertia of the hydraulic actuators. In 2019, Sun et
al. [33] developed a controller for the three-DOF container crane using an observer to obtain velocity feedback, and
Kim and Hong [14] developed an adaptive sliding mode controller for the four-DOF offshore container crane. Yang et
al. [37] developed a neural-network based adaptive controller for the planar offshore boom crane, Lu et al. [15] applied
nonlinear coordination control to the same planar boom crane. Also in 2019, Martin and Irani [18] investigated various
linear and non-linear control strategies for a five-DOF shipboard gantry crane. In 2020, Ramli et al. [29] applied a
predictive input shaper to a two-DOF planar overhead crane, and Guo and Chen [7] developed a fault-tolerant fuzzy
robust controller for a 2-DOF planar shipboard gantry crane considering roll motion of the ship.

Given the abundance of existing controllers, the objective of this paper is not to propose a new adaptive or robust
nonlinear controller for a simplified model of a specific shipboard crane. Rather, the work in this paper builds off
the work performed in [18], and seeks to generalize marine crane control by considering more complex dynamic
systems than are typically studied, specifically a five-DOF shipboard gantry crane and a six-DOF shipboard knuckle
boom crane mounted aboard a ship actuated by full six-DOF ship motion. Both cranes will also incorporate nonlinear
characteristics, such as actuator deadzones and saturation.

Therefore, the contribution of this paper to the current state-of-the-art is the development and generalization of
marine crane control systems applied to a more realistic dynamic system than is typically studied, and therefore more
suitable for real-world applications and deployment. Additionally, given the majority of existing research has focused
on maintaining the payload’s position with respect to the world frame, this paper will address the control problem of
maintaining the payload’s position with respect to the ship deck.

Section 2 presents the dynamic model of the five-DOF gantry crane. Both a de facto proportional-integral-
derivative (PID) controller and a sliding mode controller (SMC) are implemented to provide anti-sway control in
the presence of ship motion, and a generalized trajectory modification strategy presented to improve anti-sway control
for the crane. Section 3 presents the dynamic model for the six-DOF knuckle boom crane, where the model includes
the masses and inertias of all the major crane components, including the actuators. A first-order transfer function is
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Figure 1: A 3D render of a �ve-DOF shipboard gantry crane spanning the mission bay of a frigate, generated with MATLAB
Simscape.

also applied to each actuator to simulate actuator dynamics. A de facto PID and a standard SMC are developed that do
not compensate for the actuator dynamics, along with a state-of-the-art SMC that accounts for the actuator dynamics.
The trajectory modifier is applied and the performance evaluated, and Section 4 presents the conclusions of the work.
The equations of motion for the gantry crane are provided in the Appendix, and the equations of motion of the knuckle
boom crane are available as MATLAB code.

2. Five-DOF Gantry Crane
A shipboard gantry crane is a common and practical system, with dynamics that are relatively simple compared

to other cranes. The gantry crane was simulated using MATLAB Simulink, and Figure 1 shows the 3D render of the
crane, intended to represent a cross section of a frigate with an interior gantry crane spanning the mission bay. The
ship itself can move with respect to the indicated world frame (XYZ)W with six degrees of freedom, and Figure 1
shows the positive directions for surge, sway, heave, roll, yaw and pitch. The deck coordinate frame (XYZ)D, wherethe subscript D denotes “deck”, is fixed to the ship at the center of the mission bay, level with the gantry crane cart,
and represents the origin for the gantry crane cart. The cart coordinate frame (XYZ)C , where the subscript C denotes
“cart”, can translate with displacements x(t) and y(t)with respect to (XYZ)D. Note that a positive surge points towardsthe bow, while the positive YW , YD and YC axes point to the stern. Gravity acts in the negative ZW axis.

In this paper, the problem considered is to maintain a desired position for the payload with respect to the ship
deck coordinate frame (XYZ)D, preventing relative motion of the payload within the mission bay that may cause the
payload to collide with either deck personnel or equipment.
2.1. Gantry Crane Equations of Motion

Figure 2 shows the free body diagram of the gantry crane. The cart coordinate frame (XYZ)C translates with
degrees of freedom x(t) and y(t), with motion restricted in theZC axis. The cable can be extended to length l(t) below
the cart, and the payload can swing with angles �(t) and �(t) in the (XZ)C and (Y Z)C planes, respectively.

The five degrees of freedom can be combined into a generalized coordinate vector q,
q =

[

x(t) y(t) l(t) �(t) �(t)
]T , (1)

and forces Fx(t), Fy(t) and Fl(t) act on the x(t), y(t) and l(t) directions, respectively. Expressed as
[

{̂ |̂ k̂
]T vectors
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Figure 2: The free body diagram of the �ve-DOF shipboard gantry crane. The equations of motion were derived with
respect to the �xed deck coordinate frame (XYZ)D.

the positions of both the cart and payload are,
p⃗cart =

[

x y 0
]T , (2)

p⃗payload =
⎡

⎢

⎢

⎣

x + l sin(�)
y + l sin(�)

−l cos(�) cos(�)

⎤

⎥

⎥

⎦

. (3)

For notational simplicity the function of time notation (t) is dropped from all time varying quantities, and any
parameters that are constant in time will be specified. The equations of motion were derived using the Lagrange
approach consistent with [18], however the gravity vector was rotated into the deck coordinate system (XYZ)D to
determine the potential energies. Using the Tait-Bryan yaw-pitch-roll rotation sequence, the world frame gravity
vector g⃗W =

[

0 0 g
]T becomes g⃗D,

g⃗D =
⎡

⎢

⎢

⎣

g sin(Θr) cos(Φp)
g sin(Φp)

g cos(Θr) cos(Φp)

⎤

⎥

⎥

⎦

, (4)

in the deck coordinate frame (XYZ)D, where Θr and Φp correspond to the ship’s roll and pitch angles, respectively.
The potential energies of the cart Pcart and payload Ppayload are then

Pcart = m1xg sin(Θr) cos(Φp)x + m1yg sin(Φp)y (5)
Ppayload = m2g⃗TD ⋅ p⃗payload (6)

The equations of motion take the form
⎡

⎢

⎢

⎢

⎢

⎣

M11 M12 M13 M14 M15
M21 M22 M23 M24 M25
M31 M32 M33 M34 M35
M41 M42 M43 M44 M45
M51 M52 M53 M54 M55

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

ẍ
ÿ
l̈
�̈
�̈

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

a1
a2
a3
a4
a5

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

Fx
Fy
Fl
0
0

⎤

⎥

⎥

⎥

⎥

⎦

, (7)
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Figure 3: Trajectory modi�cation strategy for the (XZ)D plane of the shipboard gantry crane. The actual position of the
cart and payload is represented by the thin, solid lines, and the desired position of the cart and payload represented by the
thick, dashed lines.

or, in a more compact notation,
M q̈ + a = u, (8)

where a is a nonlinear vector and u is a vector of the applied forces. The entries for the mass matrix M and the
nonlinear vector a are provided in Appendix A.
2.2. Trajectory Modification

Noting the last two rows of equation (7), the gantry crane is underactuated and the sway angles of the payload are
uncontrollable. However, the natural tendency of the payload is to reach a stable equilibrium with the gravity vector,
acting in the negative ZW direction, a behavior that is exploited in the proposed trajectory modifier.

Consider Figure 3, which illustrates the actual and desired states of the gantry crane in the (XZ)D plane. In the
figure, the ship has rotated about the YW axis by a roll angle Θr, and the operator has commanded the payload to reach
a desired position xd along the XD axis. The current, actual position of the cart is x, and the actual sway angle of the
payload is �. To ensure the payload remains at the desired position xd , the cart can be commanded to reach a position
xdm, the modified desired x position, with a desired payload angle of �d . The desired distance in theZD axis specified
by the operator is ld .In this paper, it is desired to maintain the payload position relative to the ship deck coordinate frame (XYZ)D.Therefore, the payload is desired to maintain the position xd , at a distance ld perpendicular to the gantry rail in order
for the payload to appear stationary with respect to any deck personnel. Using a similar approach in the (Y Z)D plane,
and measuring the ship’s current roll and pitch angles with inclinometers or IMUs, the cart can then be commanded to
follow the modified trajectories xdm and ydm

xdm = xd + ld tan(Θr), (9)
ydm = yd + ld tan(Φp), (10)

where Θr and Φp are the ship’s current roll and pitch angles, respectively. To maintain the correct z axis position with
respect to the deck, the modified cable length ldm is given by

ldm =
ld

cos(Θr) cos(Φp)
. (11)

As the payload will naturally attempt to reach a vertical equilibrium with the gravity vector in the (XYZ)W frame,
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the desired sway angles will correspond to the pitch and roll angles of the ship
�d = Θr + �offset, (12)
�d = Φp + �offset, (13)

where �offset and �offset are only required to ensure the sway angles are measured with respect to the ZC axis, see
Figure 2. Since for the gantry crane � and � are measured with respect to the ZC axis, �offset = �offset = 0.
Additionally, depending on the positive direction of the ship’s roll and pitch angles the signs of equations (12) and (13)
will change to correspond to the positive directions of � and � shown in Figure 2.

To test the effectiveness of the trajectory modification strategy controllers were developed to allow the gantry crane
to track the modified trajectories.
2.3. Controllers for the five-DOF Gantry Crane

The proportional-integral-derivative (PID) controller and sliding mode controller (SMC) developed in [18] were
chosen to evaluate the benefits of the trajectory modification strategy.
2.3.1. Proportional-Integral-Derivative (PID) Controller

The PID controller is built using five separate PIDs, each attempting to minimize the error ePID in one of the five
degrees of freedom,

ePID =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ePID,x
ePID,y
ePID,l
ePID,�
ePID,�

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

xdm − x
ydm − y
ldm − l
�d − �
�d − �

⎤

⎥

⎥

⎥

⎥

⎦

. (14)

Each PID controller provides a control effort u, corresponding to the degrees of freedom (x, y, l, �, �). Since the
sway angles cannot be directly controlled, the control efforts are combined to incorporate anti-sway action,

Fx =
ux − u�
2

, (15)
Fy =

uy − u�
2

, (16)
Fl = ul. (17)

Note the signs in equations (15) and (16) correspond to a � and � measured as shown in Figure 2.
2.3.2. Sliding Mode Controller (SMC)

The SMC controller uses the equations of motion of the crane to provide the control action. The error vector e for
the SMC is defined with the opposite sign to ePID,

e = −ePID =

⎡

⎢

⎢

⎢

⎢

⎣

x − xdm
y − ydm
l − ldm
� − �d
� − �d

⎤

⎥

⎥

⎥

⎥

⎦

. (18)

The sliding surface s is then defined as
s = ė + �e, (19)

where � = diag[�1, �2, �3, �4, �5] is a constant diagonal gain matrix. The derivative of the sliding surface is
ṡ = ë + �ė = q̈ − q̈d + �ė. (20)
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Substituting the equations of motion for the five-DOF gantry crane (8) into (20) gives
ṡ = −M−1a +M−1u − q̈d + �ė, (21)

where setting ṡ = 0 gives the control action
u =M q̈d −M�ė + a − ksat(Φs), (22)

where a robust control term ksat(Φs) is added with constant diagonal gain matricies k = diag[k1, k2, k3, k4, k5] and
Φ = diag[Φ1,Φ2,Φ3,Φ4,Φ5]. The saturation function is defined as

sat (Φs) =
{

Φs if |Φs| ≤ 1
sgn(s) otherwise . (23)

To show the stability of the SMC, consider V1 as a Lyapunov function candidate,

V1 =
1
2
sT s, (24)

which will be positive definite (p.d) for det(�) > 0. Taking the time derivative of V1 and noting equation (21) one
finds,

V̇1 = sT ṡ (25)
= sT

[

−M−1a +M−1u − q̈d + �ė
]

. (26)
Substitution of the control law u from (22) into (26) gives

V̇1 = −ksT sat(Φs) (27)
For stability, V̇1 must be negative definite (n.d). Note that given the definition of the saturation function provided

in equation (23) one can write,
|sat(Φs)| ≤ |sgn(s)|, (28)

resulting in,
V̇1 ≤ − k|s| < 0. (29)

Therefore, if det(k) > 0, V̇1 will be n.d, and by Lyapunov’s direct method the SMC is stable.
With the PID and SMC developed to control the gantry crane, the anti-sway performance with the addition of the

trajectory modifier could be evaluated.
2.4. Performance with the Modified Trajectory

All simulations were performed in the presence of ship motion generated in ShipMo3D [3] at sea state 6. Table 1
lists the RMS of the ship motion for each degree of freedom. As given in [18], the sea way was modeled with regular
waves of the Bretschneider spectrum using a significant wave height of 5 metres and a period of 12.4 seconds. The
ship used was the generic frigate included in ShipMo3D, sailing at a speed of 6.000 kt with a heading of 15.0° into the
sea. The frequency of the ship’s roll, pitch and yaw motion was 0.093 Hz.

The geometric and inertial parameters are provided in Appendix B. A dead-zone of ±100 N and a saturation limit
of ±50 kN was placed on each actuator, and all simulations were run at 100 Hz. For all test cases with the gantry crane
the desired trajectories for the payload were defined as

ẋd = ẏd =

{

0.3 m/s t < 12 s
0 m/s t ≥ 12 s , (30)
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Table 1

Ship Motion Parameters

Surge Sway Heave Roll Pitch Yaw
(m) (m) (m) (°) (°) (°)

RMS 0.701 0.197 0.908 1.360 1.600 0.244

RMSE (m)
No Mod 0.177
With Mod 0.069

RMSE (m)
No Mod 0.171
With Mod 0.056

RMSE (m)
No Mod 0.006
With Mod 0.008

Figure 4: Payload position of the PID controller on the �ve-DOF gantry crane both with and without the modi�ed
trajectories for the cart, where �No Mod� refers to without trajectory modi�cation, while �With Mod� refers to with
trajectory modi�cation.

l̇d =

⎧

⎪

⎨

⎪

⎩

0 m/s t ≤ 20 s
0.1 m/s 20 < t < 35 s
0 m/s t ≥ 35 s

. (31)

Each controller was tested both with and without trajectory modification; if trajectory modification was used, each
trajectory was modified using equations (9)-(13) before being sent to the each controller. Figures 4 and 5 show the
payload position for the PID and SMC controllers, respectively, both with and without trajectory modification. Each
figure also provides the root-mean-square-error (RMSE) between the desired payload position xd , yd and ld and the
actual payload position, evaluated across the entire duration of each test. The gains for each controller were tuned
heuristically to reduce the RMSE while avoiding chatter; the chosen gains are provided in Appendix C.

With the addition of the trajectory modifier the PID controller saw a 64% average reduction in RMSE across the
x and y trajectories, while the SMC saw a 73% average reduction. The SMC provides a slight improvement in RMSE
over the PID, however unlike the PID the SMC requires the equations of motion of the crane.

Both controllers saw an increase in RMSE for the cable length with the trajectory modification, as with the modifier
each controller had to track a more complex trajectory. However, given the cable length RMSEs are all several orders
of magnitude below the RMSEs for the x and y trajectories, the performance loss is not considered significant.
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RMSE (m)
No Mod 0.146
With Mod 0.042

RMSE (m)
No Mod 0.176
With Mod 0.045

RMSE (m)
No Mod 2E-4
With Mod 0.004

Figure 5: Payload position of the SMC on the �ve-DOF gantry crane both with and without the modi�ed trajectories for
the cart, where �No Mod� refers to without trajectory modi�cation, while �With Mod� refers to with trajectory modi�cation.

2.5. Generalization of the Trajectory Modification Strategy
Given the effectiveness of simply modifying the cart trajectory in Figures 4 and 5, it is possible other marine cranes

can be controlled in a similar way if the coordinates are correctly defined. The strategy can be summarized in three
steps:

1. Select a point on the crane that can be considered analogous to the gantry crane cart. The point must be fully
actuated.

2. Obtain pitch and roll angular measurements of the ship with inclinometers or IMUs.
3. Using the pitch and roll measurements, control the position of the selected point on the crane using equations

(9)-(13).
A six-DOF knuckle boom crane will next be considered to demonstrate the applicability of the trajectory modifi-

cation strategy.

3. Six-DOF Knuckle Boom Crane
The six-DOF knuckle boom crane was selected as it is both common in industry and has dynamics that are sig-

nificantly more complex than the five-DOF gantry crane. The masses and inertias of both the hydraulic cylinders and
rods are included in the dynamic model. Two cases of the knuckle boom crane will be considered, the first treating
the actuators as ideal force sources, and the second including a first-order transfer function for each actuator to model
internal dynamics.
3.1. Dynamic Model

Figure 6 shows a render of the knuckle boom crane with the locations of each centre of gravity (CoG), the locations
of the applied forces and the location of the deck coordinate frame (XYZ)D. A slew motor rotates the base of the
crane with a torque �a, and the boom and jib actuators produce forces Fb and Fc , respectively. The winch provides a
force Fl to adjust the cable length. The main kinematic chain is comprised of the base with mass m0, the boom with
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mb1

mb2
m0

m1

m2

mc1
mc2

mp

Ja

�a

Fb

Fc

Fl

XD

YD

ZD

Figure 6: A 3D render of the knuckle boom crane with the locations of each centre of gravity, the applied forces and the
deck coordinate frame (XYZ)D.

mass m1 and the jib with mass m2. The payload has mass mp and the slew motor has a mass moment of inertia Ja.The boom actuator is comprised of two components, a cylinder with mass mb1 and a rod with mass mb2. Similarly the
jib actuator has a cylinder with mass mc1 and a rod with mass mc2. Along with a mass, each component has an inertia
matrix I located at each CoG.

Figure 7 shows the six degrees of freedom of the knuckle boom crane. The ZB axis of the base coordinate frame
(XYZ)B can rotate about the ZD axis of the deck coordinate frame (XYZ)D by an angle �0, actuated by the slew
motor. The boom actuator can extend a distance d1 colinear to the central axis of the cylinder and rod, and likewise thejib actuator can extend a distance d2. The cable length has a length l3, and the payload swings with two sway angles
�3 and �4, defined according to the rules of the Denavit-Hartenberg (DH) convention. An additional coordinate frame
(XYZ)T is defined on the tip of the jib, with each axis XT , YT and ZT parallel to the corresponding deck coordinate
frame axes XD, YD and ZD, respectively. The six degrees of freedom are summarized in the vector q,

q =
[

�0 d1 d2 l3 �3 �4
]T . (32)

Figure 8 shows the dimensions needed to fully define the geometry of the knuckle boom crane. The DH method
was used to derive the kinematics of the knuckle boom crane, and Figure 9 shows the coordinate frames used in the
main kinematic chain. Six coordinate frames are needed to translate from the deck coordinate frame (XYZ)D to the
payload coordinate frame (XYZ)6; coordinate frame (XYZ)1 follows from a −90° rotation about the XD axis, a
translation of l0 along the ZD axis, and a rotation �0 about the ZD axis. Coordinate frame (XYZ)2 follows from a
rotation �1 about theZ1 axis and a translation l1 along theX2 axis. Coordinate frame (XYZ)3 follows from a rotation
�2 about the Z2 axis and a translation l2 along the X3 axis. A coordinate frame (XYZ)4, not shown in Figure 9,
follows from a 90° rotation about theX3 axis and a rotation �3 about theZ3 axis. The coordinate frame (XYZ)5, alsonot shown follows from a rotation �4 about the Z4 axis, and the final payload coordinate frame (XYZ)6 follows froma translation l3 along the X5 axis.
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�0XD

XB

YDZD,B
YB

XT

YT

ZT
d1

d2

l3
�3

�4

Figure 7: The six degrees of freedom of the knuckle boom crane are the rotation angle of the base �0, the actuator
extensions d1 and d2, the cable length l3 and the sway angles �3 and �4.

Therefore, the relationship between the deck coordinate (XYZ)D and the payload coordinate frame (XYZ)6 canbe expressed with a concatenation of transformation matrices,
DT6 = DT1

1T2
2T3

3T4
4T5

5T6, (33)
where each transformation matrix is fully defined in Appendix D. Note that the angles �1 and �2 used in the DH
derivation can be defined in terms of the actuator extensions using the crane geometry, also given in Appendix D.

Both the boom and jib actuators were given similar DH treatments, and ultimately transformation matrices were
derived relating each CoG back to the deck coordinate frame, allowing the equations of motion to be derived using the
Lagrange method. The complete derivation is provided in Appendix D. The equations of motion take the form given
in equation (8) with a 6 × 6 mass matrixM , a 6 × 1 nonlinear vector a and a 6 × 1 force vector u.
3.2. Application of the generalized trajectory modification strategy

To apply the proposed trajectory modification strategy the coordinate frame for the tip of the jib (XYZ)T was
chosen to be analogous to the cart coordinate frame (XYZ)C of the gantry crane. The position of the tip of the jib is
fully actuated with the slew motor and the two actuators, completing the first step stated in section 2.5. For the second
step, as with the gantry crane pitch and roll measurements of the ship can be obtained using either inclinometers or
IMUs.

To complete the third step, a controller must be developed to control the position of the tip coordinate frame.
However, the position of (XYZ)T is typically not directly measured; the feedback measurements obtained from the
crane are the slew angle �0, the actuator extensions d1 and d2, the cable length l3 and the sway angles of the payload.
To obtain the position of the tip from the feedback measurements the forward and inverse kinematics of the crane must
be solved.
3.2.1. Forward and Inverse Kinematics

The transformation matrix for the crane tip with respect to the ship deck is
DT3 = DT1

1T2
2T3 =

[DR3 Dr3
0 1

]

, (34)

where DR3 is a rotation matrix and Dr3 a position vector. Evaluating Dr3, the x, y and z position of the crane tip withrespect to the ship deck is

Dr3 =
⎡

⎢

⎢

⎣

x
y
z

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

cos(�0)
[

l2 cos(�1 + �2) + l1 cos(�1)
]

sin(�0)
[

l2 cos(�1 + �2) + l1 cos(�1)
]

l0 − l1 sin(�1) − l2 sin(�1 + �2)

⎤

⎥

⎥

⎦

. (35)
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l0

l1
l2

l3(t)

lCoG,0

lCoG,1

lCoG,2

lb1x

lb1z

lb2

d1(t)

lb4x
lb4y

lCoG,b1

lCoG,b2

lc1y

lc1x

lc2

lCoG,c1 d2(t)

lCoG,c2

lc3x

lc3y

Figure 8: Geometry of the knuckle boom crane. All dimensions are constant in time except for the actuator extensions d1
and d2 and the cable length l3.

If the crane tip is analogous to the cart on the gantry crane, the desired trajectories xd , yd and zd will be specified interms of the crane tip position. To convert the desired tip position into actuator position setpoints, the inverse kinematic
must be solved to express the desired actuator positions �0,d , d1,d and d2,d in terms of the desired tip positions xd , ydand zd . Solving the system of equations in 35, the inverse kinematic expressions can be derived as

�0,d = atan2(yd , xd), (36)
d1,d =

√

a21 + b
2
1 − 2a1b1 cos(Γ1) − lb2, (37)

d2,d =
√

a22 + b
2
2 − 2a2b2 cos(Γ2) − lc2, (38)

where
� = − 2l1

[

xd cos(�0,d) + yd sin(�0,d)
]

, (39)
� =2l1(zd − l0), (40)
 =l22 − l

2
1 − l

2
0 − z

2
d + 2zdl0

−
[

xd cos(�0,d) + yd sin(�0,d)
]2 , (41)
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XD

YD
ZD

X1

Z1

Y1

X2

Z2

Y2

X3

Z3

Y3

X6

Y6

Z6

l0

l1

l2

l3

−�1
�2

�3

�4

�0

Figure 9: The coordinate frames for the main kinematic chain of the knuckle boom crane.

� =
√

�2 + �2, (42)

�1,d =atan2
⎛

⎜

⎜

⎝


�
,−

√

1 −
2

�2

⎞

⎟

⎟

⎠

− atan2(�, �), (43)

�2,d =atan2
[

(

l0 − l1 sin(�1,d) − zd
)

, (xd cos(�0,d)

+ yd sin(�0,d) − l1 cos(�1,d))
]

− �1,d , (44)

Γ1 =
�
2
− �1,d − tan−1

(

lb1x
l0 − lb1z

)

− tan−1
( lb4y
lb4x

)

, (45)

Γ2 =� − �2,d − tan−1
( lc1y
lc1x

)

− tan−1
( lc3y
lc3x

)

(46)

where a1, a2, b1 and b2 are constant geometric parameters defined in Appendix D and atan2(⋅) is the four quadrant
inverse tangent function.

Therefore as with the gantry crane, equations (9)-(11) can then be used to modify the x, y and l trajectories to
account for the ship roll and pitch angles, and each trajectory converted to actuator setpoints using the inverse kinematic
relations given in equations (36)-(46). For the z trajectory no modifications are performed, therefore zdm = zd .
3.2.2. Sway Angles for the PID Controller

Instead of using the angles �3 and �4 for the sway angle measurements, the angles � and � shown in Figure 10 may
be used as they act in the (XZ)T and (Y Z)T planes, respectively. Using � and � as the sway angles and measuring
the ship’s roll and pitch angles with respect to the deck coordinate frame (XYZ)D, the trajectory modification equa-
tions (12) and (13) can be used to obtain the desired sway angles �dm and �dm for the PID controller. Note that �offsetand �offset are not required for the PID as both sway angles are measured with respect to the ZT axis.
3.2.3. Sway Angles for the SMC Controller

For the SMC controller, the equations of motion must be implemented directly to obtain the control law. As a
result of using the DH convention to assign the coordinate systems, the sway angles appear in the equations of motion
as �3 and �4, not � and �. Therefore, to apply trajectory modification to the sway angles for the SMC, the ship roll
and pitch angles must be measured with respect to the rotating base coordinate frame (XYZ)B , illustrated in Figure 7.
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XT

YT
ZT

�

�

Figure 10: Sway angles � and � measured with respect to the tip coordinate frame (XYZ)T .

Additionally, �3 must be corrected by the offset
�3,offset =

�
2
− �1 − �2, (47)

to align �3 = 0° with the vertical direction. Therefore, for the SMC the modified trajectories �3,dm and �4,dm are
�3,dm = Θr + �3,offset (48)
�4,dm = Φp. (49)

No offset is required for �4,dm as it is already measured with respect to the correct axis.
3.3. Control System Overview

Figure 11 presents an overview of the knuckle boom crane control system, where xd is the vector of desired payloadpositions with respect to the ship deck, xdm is the vector of modified desired trajectories and qdm is the vector of desired
trajectories converted to slew angle and actuator extensions using the inverse kinematics, equations (36)-(46). The
control action u is computed at the actuator level, and the measured states of the crane q converted to deck coordinates
x using equation (35). For the SMC, each vector is defined as

xd =
[

xd yd zd l3,d �∗3,dm �∗4,dm
]T
, (50)

xdm =
[

xdm ydm zdm l3,dm �∗3,dm �∗4,dm
]T
, (51)

qdm =
[

�0,dm d1,dm d2,dm l3,dm �∗3,dm �∗4,dm
]T
, (52)

u =
[

�a Fb Fc Fl 0 0
]T , (53)

q =
[

�0 d1 d2 l3 �∗3 �∗4
]T , (54)

x =
[

x y z l3 �∗3 �∗4
]T , (55)

where ∗ denotes variables that change if using the PID controller; for the PID, � and �dm replace �∗3 and �∗3,dm, respec-tively, while � and �dm replace �∗4 and �∗4,dm, respectively.
3.4. PID Controller

As with the five-DOF gantry crane a separate PID controller is used to control each degree of freedom. The PID
error vector for the knuckle boom crane is the errors in each actuator setpoint, as well as the errors in the sway angles
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Figure 11: High level schematic of the knuckle boom crane control system.

� and �:

ePID =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ePID,�0
ePID,d1
ePID,d2
ePID,l3
ePID,�
ePID,�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�0,dm − �0
d1,dm − d1
d2,dm − d2
l3,dm − l3
�dm − �
�dm − �

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (56)

The inverse kinematic relations given in equations (36)-(46) are used to convert ePID,� and ePID,� to errors at the
actuator level, where ePID,� is assumed to be an error in the XT axis and ePID,� an error in the YT axis. It is assumed
there is no error in the ZT axis. Mapping the sway angle errors to the actuator level, ePID,� and ePID,� are replaced
with errors ePID,�,�0, ePID,�,d1 and ePID,�,d2.Therefore, seven PID controllers are used to compute control actions corresponding to ePID,�0, ePID,d1, ePID,d2,and ePID,l3, as well as ePID,�,�0, ePID,�,d1 and ePID,�,d2, resulting in control actions u�0, ud1, ud2, ul3, u�,�0, u�,d1 and
u�,d2. The control actions are then be combined to provide the final actuator forces,

u =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�a
Fb
Fc
Fl
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u�0+u�,�0
2ud1+u�,d1
2ud2+u�,d2
2
ul3
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (57)

As the PID controller is a linear controller, a nonlinear SMC was also developed to evaluate any improvement in
tracking performance.
3.5. Sliding Mode Controller (Without Actuator Dynamics)

The SMC derived in this section will be referred to as the ideal SMC, as it does not include any compensation for
additional actuator dynamics.

The ideal SMC was built assuming each actuator had no internal dynamics, and that each force could be treated
as an ideal force source, as was the case for the gantry crane. Therefore, since the equations of motion of the knuckle
boom crane take the same form as for the gantry crane, the sliding control laws could be derived in an identical way,
giving

u =M q̈d −M�ė + a − ksat (Φs) , (58)
where � = diag[�1, �2, �3, �4, �5, �6], k = diag[k1, k2, k3, k4, k5, k6] are constant gain matrices, and the SMC error
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Figure 12: The addition of the actuator dynamics into the crane control system.

vector e is given by

e =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�0 − �0,dm
d1 − d1,dm
d2 − d2,dm
l3 − l3,dm
�3 − �3,dm
�4 − �4,dm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (59)

Note that since the sliding control law takes the same form as for the gantry crane, for which the SMC was shown
to be stable, the SMC for the knuckle boom crane will also be stable.

In order to provide stable control with the inclusion of actuator dynamics, the compensated SMC was developed.
3.6. Sliding Mode Controller (Including Actuator Dynamics)

The SMC derived in this section will be referred to as the compensated SMC, as it includes compensation for the
additional actuator dynamics. It was developed using a backstepping procedure inspired by the work of Yao in [38].

To enhance the accuracy of the dynamic model, a first-order transfer function was applied to govern the response
of each actuator,

Fi(s)
Ui(s)

=
bi

s + bi
, (60)

where s is the Laplace variable and Fi the force or torque applied by actuator i on the crane, corresponding to F1 = �a,
F2 = Fb, F3 = Fc and F4 = Fl. Ui(s) is the control effort supplied by the controller, and bi > 0 is a constant. Figure 12shows the actuator dynamics inserted into the control system shown in Figure 11, where Fa = [F1, F2, F3, F4, 0, 0]T .To ensure the SMC remains stable with the addition of the actuator dynamics the control law must be updated.
Converting equation (60) into state-space form,

̇ = −b + u, (61)
Fa = b, (62)

where  is the new state vector and b = diag[b1, b2, b3, b4, b5, b6]. Consider the sliding function s1 such that s1 = s,
with s defined in equation 19. The time derivative ṡ1 of s1 is

ṡ1 =M−1uv −M−1a − q̈d + �ė, (63)
where uv is a virtual control action,

uv = Fa + u1 (64)
= b + u1, (65)

where
 = b−1

(

M q̈d −M�ė + a
)

, (66)
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and u1 is the robust control action given by
u1 = −k�sat

(

Φ�s1
)

, (67)
where k� = diag[k�,1, k�,2, k�,3, k�,4, k�,5, k�,6] and �� = diag[��,1, ��,2, ��,3, ��,4, ��,5, ��,6] are constant gain matri-
ces.

We define a second error variable s2 = −u1 = Fa − uv. Considering equation (61), the time derivative ṡ2 of s2 isgiven by
ṡ2 = Ḟa − u̇v (68)
= ḃ −

(

ḃ + u̇1
) (69)

= b (−b + u) − ḃ − u̇1. (70)
Setting ṡ2 = 0 and solving for the control action u,

u = ̇ + b + b−1u̇1 + u2, (71)
where u2 is a second robust control action,

u2 = −k�sat
(

Φ�s2
)

, (72)
where k� = diag[k�,1, k�,2, k�,3, k�,4, k�,5, k�,6] and �� = diag[��,1, ��,2, ��,3, ��,4, ��,5, ��,6] are again constant gain
matrices. The p.d Lyapunov function is defined as

V2 =
1
2
s1T s1 +

1
2
s2T s2. (73)

Following substitution of the control laws, the time derivative V̇2 simplifies to
V̇2 = s1T u1 + s2T u2, (74)

where, by the same logic provided in section 2.3.2,
V̇2 ≤ − k�|s1| − k� |s2|. (75)

Since V̇2 is n.d, the control system is stable by Lyapunov’s direct method.
3.7. Simulation Results

All simulations were run at 100 Hz. The desired trajectories for the payload were selected as

ẋd = ẏd =

{

0.1 m/s t < 12 s
0 m/s t ≥ 12 s , (76)

żd =

{

0.2 m/s t < 12 s
0 m/s t ≥ 12 s , (77)

l̇d =

⎧

⎪

⎨

⎪

⎩

0 m/s t ≤ 20 s
0.1 m/s 20 < t < 35 s
0 m/s t ≥ 35 s

. (78)

Note that the initial position of the payload, x0, y0 and z0 corresponds to the position of the payload with actuatorrest positions �0 = 0°, d1 = d2 = 0.5 m and an initial cable length l3 = 4 m. Additionally, for all tests a dead-zone
of ±100 N was placed on each actuator, along with saturation limits of ±50 kNm for the slew motor, ±500 kN for the
boom actuator, ±100 kN for the jib actuator and ±100 kN for the winch motor.
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RMSE (m)
No Mod 0.173
With Mod 0.094

RMSE (m)
No Mod 0.201
With Mod 0.043

RMSE (m)
No Mod 0.026
With Mod 0.029

RMSE (m)
No Mod 0.003
With Mod 0.004

Figure 13: Tracking performance of the PID controller for the knuckle boom crane without additional actuator dynamics,
both with and without the trajectory modi�er.

The same ship motion data was used as in the gantry crane tests, corresponding to sea state 6. The gains used in
the simulations were tuned heurstically to reduce the RMSE and avoid chattering (provided in Appendix C).
3.7.1. Performance without the Actuator Dynamics

Figure 13 shows the trajectory tracking performance of the PID controller without the actuator dynamics, both
with and without the addition of the trajectory modifier. While the trajectory modifier provides an average reduction in
RMSE of 38% across the x, y and z trajectories, the PID struggles to follow the modified trajectory due to the nonlinear
dynamics of the knuckle boom crane.

Figure 14 shows the trajectory tracking performance of the ideal SMC without the actuator dynamics, both with
and without the trajectory modifier. The trajectory modifier provides an average reduction in RMSE of 82% across the
x, y and z trajectories, demonstrating the superior performance of the SMC over the PID at maintaining the payload’s
position with respect to the ship deck.
3.7.2. Performance with Actuator Dynamics

Figure 15 shows the performance of the compensated SMC controller derived in Section 3.6 with the first-order
transfer functions applied to each actuator and bi = 10, corresponding to a time constant of 0.1 seconds. Both the PID
controller and the ideal SMC were found to be unstable with the addition of the actuator dynamics. The compensated
SMC however was stable and saw an average reduction in RMSE of 84% across the x, y and z trajectories with the
addition of the trajectory modifier. The results indicate actuator dynamics must be considered to ensure the design of
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RMSE (m)
No Mod 0.138
With Mod 0.016

RMSE (m)
No Mod 0.160
With Mod 0.020

RMSE (m)
No Mod 0.014
With Mod 0.004

RMSE (m)
No Mod 0.002
With Mod 0.004

Figure 14: Tracking performance of the ideal SMC controller for the knuckle boom crane without additional actuator
dynamics, both with and without the trajectory modi�er.

a stable controller.

4. Conclusion
In this paper, a generalized control strategy given in equations (9)-(13) was developed that allows a crane with a

suitable controller to provide anti-sway control when mounted aboard a ship. The approach of the generalized control
strategy is to modify the desired trajectories specified by the operator using the ship’s roll and pitch angles, measured
from either IMUs or inclinometers. The modified trajectories exploit the payload’s natural tendency to reach a stable
equilibrium with the gravity vector, and provided a suitable controller is used to control the crane the payload will
appear to remain stationary with respect to the ship deck in the presence of ship motion. The trajectory modifier was
generalized to allow deployment to various marine cranes.

Initially developed for a five-DOF shipboard gantry crane, both a PID and SMC were successfully used to track
the modified trajectory, showing a 64% and 74% reduction in RMSE between the desired and actual payload positions
with the use of the trajectory modifier. Applying the generalized trajectory modifier to a six-DOF knuckle boom crane,
the SMC was again successful at tracking the modified trajectory showing an 82% reduction in RMSE. The PID only
showed a 38% reduction for the knuckle boom crane and struggled to track the modified trajectory due to the nonlinear
dynamics of the knuckle boom crane.

Tomodel actuator dynamics, first-order transfer functions were applied to each actuator. A stable SMCwas derived
to control the system with the addition of the actuator dynamics and showed an 84% reduction in RMSE with the
addition of the trajectory modifier.
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RMSE (m)
No Mod 0.104
With Mod 0.015

RMSE (m)
No Mod 0.147
With Mod 0.018

RMSE (m)
No Mod 0.061
With Mod 0.014

RMSE (m)
No Mod 0.038
With Mod 0.007

Figure 15: Tracking performance of the compensated SMC with the addition of actuator dynamics, both with and without
trajectory modi�cation.

The results show that if a controller can be built that allows a shipboard crane to successfully track the modified
trajectory, the crane can be made to maintain the payload at the desired position relative to the ship deck. The require-
ment on the controller is that it allows the crane to accurately track the modified trajectory; for the gantry crane, either
a linear PID or the nonlinear SMC were sufficient at tracking the trajectory, whereas for the knuckle boom crane only
the SMC could accurately track the trajectory.
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A. Gantry Crane Equations of Motion
The entries for the equations of motion of the gantry crane are

M11 = m1x + m2 (79)
M22 = m1y + m2 (80)
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M33 = m2
[

cos2(�) cos2(�) − cos2(�)

− 2 cos2(�)
]

(81)
M44 = − m2l2

[

(

cos2(�) − 1
)

cos2(�)

− cos2(�)
]

(82)
M55 = − m2l2

[

(

cos2(�) − 1
)

cos2(�)

− cos2(�)
]

(83)
M13 =M31 = m2 sin(�) (84)
M14 =M41 = m2l cos(�) (85)
M23 =M32 = m2 sin(�) (86)
M25 =M52 = m2l cos(�) (87)
M34 =M43 = m2l cos(�) sin(�) sin

2(�) (88)
M35 =M53 = m2l cos(�) sin(�) sin

2(�) (89)
M45 =M54 = m2l2 cos(�) cos(�) sin(�) sin(�) (90)
M12 =M21 =M15 =M51 =M24 =M42 = 0 (91)

and
a1 = 2m2 l̇�̇ cos(�) − m2l�̇2 sin(�)

+ g(m1x + m2) sin(Θr) cos(Φp) (92)
a2 = 2m2 l̇�̇ cos(�) − m2l�̇2 sin(�)

− g(m1y + m2) sin(Φp) (93)
a3 = − m2

[

l
(

�̇2 + �̇2
)

cos2(�) + 2l̇�̇ cos(�) sin(�)

− l�̇2
]

cos2(�) +
[

− 2m2 l̇�̇ sin(�) cos2(�)

+
[

2m2l�̇�̇ sin(�) sin(�)

− m2g cos(Θr) cos(Φp)
]

cos(�)

+ 2m2 l̇�̇ sin(�)
]

cos(�) + m2l�̇2 cos2(�)

+ 2m2 l̇�̇ sin(�) cos(�)
+ m2g sin(�) sin(Θr) cos(Φp)

− m2g sin(�) sin(Φp) − m2l
(

�̇2 + �̇2
) (94)

a4 =
[

− 2m2ll̇�̇ cos2(�) + m2l2
(

�̇2 + �̇2
)

cos(�) sin(�)

+ 2m2ll̇�̇
]

cos2(�) + m2l
[

− 2l�̇�̇ sin(�)

+ g cos(Θr) cos(Φp) sin(�)
+ 2l̇�̇ cos(�) sin(�) sin(�)

+ 2l�̇�̇ cos2(�) sin(�)
]

cos(�) + m2l
[

2l̇�̇ cos2(�)
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Table 2

Gantry Crane Model Parameters

Parameter Value

m1 5000 kg
mrail 10000 kg
m2 1770 kg
l0 4.00 m

− l�̇2 cos(�) sin(�) + g cos(�) sin(Θr) cos(Φp)
]

(95)
a5 = m2l

[

− 2l̇�̇ cos2(�) + 2l̇�̇

+ 2l�̇�̇ cos(�) sin(�)
]

cos2(�)

+
[

m2l
2 (�̇2 + �̇2

)

cos2(�) sin(�)

+ 2m2ll̇�̇ cos(�) sin(�) sin(�)

+ m2l
[

− g sin(Φp) − l�̇2 sin(�)
]

]

cos(�)

+ m2l
[

g cos(�) sin(�) cos(Θr) cos(Φp)

− 2l�̇�̇ cos(�) sin(�) + 2l̇�̇ cos2(�)
]

(96)

B. Model Parameters
Tables 2 and 3 provide the model parameters used in the simulations for the gantry and knuckle boom cranes,

respectively. For the gantry crane, the y axis will have a total mass of both the mass of the cart and mass of the rail,
m1y = m1+mrail, while for the x axism1x = m1. The payload for both cranes was considered to be a small Zodiac-style
watercraft [40].

C. Controller Gains
Tables 4 and 5 provide the gains used for the gantry crane PID and SMC controllers, respectively. Tables 6 and 7

provide the gains used for the knuckle boom crane PID and ideal SMC controllers, respectively, during tests without the
additional actuator dynamics. Table 8 provides the gains for the compensated SMC used with the additional actuator
dynamics.

D. Knuckle Boom Crane Equations of Motion
D.1. Knuckle Boom Crane Kinematics

The Denavit–Hartenberg method was used to derive the kinematics of the knuckle boom crane, as outlined in [12].
Note for notational simplicity, (t) will be dropped from all time varying quantities, and sin(x) and cos(x) may be
abbreviated s(x) and c(x). Figure 8 presents the dimensions used in the derivation.
D.1.1. Main Kinematic Chain

Figure 9 shows the coordinate frames for the main kinematic chain, with DH parameters listed in Table 9. The
origin frame is the coordinate frame (XYZ)D, fixed to the ship deck.
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Table 3

Knuckle Boom Crane Model Parameters

Geometric Inertial

Parameter Value Parameter Value

l0 4 m m0 5000 kg
l1 4 m m1 3000 kg
l2 2 m m2 2000 kg
lb1,x 0.8 m mp 1770 kg
lb1,z 1 m mb1 = mc1 1000 kg
lb4,x 1 m mb2 = mc2 1000 kg
lb4,y 0.5 m Ixx,0 7083.33 kgm2

lc1,x 2 m Iyy,0 833.33 kgm2

lc1,y 0.5 m Izz,0 7083.33 kgm2

lc3,x 2 m Ixx,1 390.625 kgm2

lc3,y 0.5 m Iyy,1 4140.63 kgm2

lb2 2 m Izz,1 4250.00 kgm2

lc2 2 m Ixx,2 208.333 kgm2

lCoG,b1 1 m Iyy,2 1541.67 kgm2

lCoG,b2 1.25 m Izz,2 1666.67 kgm2

lCoG,c1 1 m Ja 3.125 kgm2

lCoG,c2 1.25 m Ixx,b1 = Ixx,c1 40 kgm2

N 4 Iyy,b1 = Iyy,c1 900 kgm2

Izz,b1 = Izz,c1 900 kgm2

Ixx,b2 = Ixx,c2 10 kgm2

Iyy,b1 = Iyy,c1 650 kgm2

Izz,b1 = Izz,c1 650 kgm2

Table 4

Gantry Crane PID Controller Gains

KP ,x 1.65E5 KI,x 0 KD,x 3E5
KP ,y 1E5 KI,y 0 KD,y 2E6
KP ,l 1E6 KI,l 1E5 KD,l 1E5
KP ,� 1E6 KI,� 0 KD,� 0
KP ,� 1E6 KI,� 0 KD,� 0

Table 5

Gantry Crane SMC Controller Gains

�1 5 k1 1E5 Φ1 1
�2 5 k2 1E5 Φ2 1
�3 5 k3 1E5 Φ3 1
�4 50 k4 0 Φ4 0
�5 50 k5 0 Φ5 0

The transformation matrices for the main chain, as well as for the centres of gravity of the base, boom and jib are

DT1 =

⎡

⎢

⎢

⎢

⎣

c(�0) 0 −s(�0) 0
s(�0) 0 c(�0) 0
0 −1 0 l0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (97)
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Table 6

Knuckle Boom Crane PID Controller Gains

KP ,x 3E6 KI,x 3E5 KD,x 3E6
KP ,y 5E6 KI,y 5E6 KD,y 5E6
KP ,z 3E5 KI,z 1E5 KD,z 3E5
KP ,l 5E5 KI,l 1E6 KD,l 5E4
KP ,�1 1E5 KI,�1 0 KD,�1 0
KP ,�2 5E5 KI,�2 0 KD,�2 0
KP ,�3 1E5 KI,�3 0 KD,�3 0

Table 7

Knuckle Boom Crane Ideal SMC Controller Gains

�1 20 k1 1E8 Φ1 100
�2 20 k2 1E8 Φ2 100
�3 20 k3 1E7 Φ3 100
�4 20 k4 1E6 Φ4 100
�5 20 k5 0 Φ5 0
�6 20 k6 0 Φ6 0

Table 8

Knuckle Boom Crane Compensated SMC Controller Gains

�1 20 k�,1 5E5 Φ�,1 10 k�,1 1E5 Φ�,1 1E4
�2 20 k�,2 5E5 Φ�,2 10 k�,2 1E4 Φ�,2 1E3
�3 20 k�,3 1E5 Φ�,3 10 k�,3 1E4 Φ�,3 1E3
�4 20 k�,4 5E3 Φ�,4 1 k�,4 1E3 Φ�,4 1E3
�5 20 k�,5 0 Φ�,5 0 k�,5 0 Φ�,5 0
�6 20 k�,6 0 Φ�,6 0 k�,6 0 Φ�,6 0

Table 9

DH Table - Main Chain

ai �i di �i
1 0 −90° l0 �0
2 l1 0 0 �1
3 l2 0 0 �2
4 0 90° 0 �3
5 0 0 0 �4
6 l3 0 0 0

1T2 =

⎡

⎢

⎢

⎢

⎣

c(�1) −s(�1) 0 l1c(�1)
s(�1) c(�1) 0 l1s(�1)
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (98)

2T3 =

⎡

⎢

⎢

⎢

⎣

c(�2) −s(�2) 0 l2c(�2)
s(�2) c(�2) 0 l2s(�2)
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (99)
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3T4 =

⎡

⎢

⎢

⎢

⎣

c(�3) 0 s(�3) 0
s(�3) 0 −c(�3) 0
0 1 0 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (100)

4T5 =

⎡

⎢

⎢

⎢

⎣

c(�4) −s(�4) 0 0
s(�4) c(�4) 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (101)

5T6 =

⎡

⎢

⎢

⎢

⎣

1 0 0 l3
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (102)

1TCoG,0 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 lCoG,0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

(103)

2TCoG,1 =

⎡

⎢

⎢

⎢

⎣

1 0 0 −lCoG,1
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (104)

3TCoG,2 =

⎡

⎢

⎢

⎢

⎣

1 0 0 −lCoG,2
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

. (105)

Therefore, the transformation matrices to the payload frame 0T6 and the centres of mass for the base, boom and jib
with respect to the origin frame are simply concatenations of the above transformation matrices,

DT6 =
[DR6 Dr6
0 1

]

= DT1
1T2

2T3
3T4

4T5
5T6, (106)

DTCoG,0 =
[DRCoG,0 DrCoG,0

0 1

]

= DT1
1TCoG,0, (107)

DTCoG,1 =
[DRCoG,1 DrCoG,1

0 1

]

= DT1
1T2

2TCoG,1, (108)
DTCoG,2 =

[DRCoG,2 DrCoG,2
0 1

]

= DT1
1T2

2T3
3TCoG,2, (109)

where R is the rotation matrix and r the position vector. The velocity matrices of the payload and each CoG can then
be calculated,

DV6 =
[D!̃6 Dv6
0 1

]

= DṪ6
DT −16 , (110)

DVCoG,0 =
[D!̃CoG,0 DvCoG,0

0 1

]

= DṪCoG,0
DT −1CoG,0, (111)

DVCoG,1 =
[D!̃CoG,1 DvCoG,1

0 1

]

= DṪCoG,1
DT −1CoG,1, (112)

DVCoG,2 =
[D!̃CoG,2 DvCoG,2

0 1

]

= DṪCoG,2
DT −1CoG,2, (113)
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XD,b1

YD, Zb1ZD

Yb1

Xb2
Zb2

Yb2

Xb3 Zb3

Yb3

Xb4
Zb4

Yb4

�b1

�b2

Figure 16: The coordinate frames for the boom actuator kinematic chain of the knuckle boom crane.

Table 10

DH Table - Boom Actuator

ai �i di �i
b1 0 −90° 0 �0
b2 lb1 0 0 −�b1
b3 lb2 0 0 −�b2
b4 lb3 0 0 0

where !̃ is the skew symmetric velocity matrix and v the translational velocity vector.
D.1.2. Boom Actuator Kinematic Chain

Figure 16 shows the coordinate frames for the boom actuator kinematic chain, corresponding to the DH parameters
listed in Table 10.

The transformation matrices for the boom actuator kinematic chain are then given by,

DTb1 =

⎡

⎢

⎢

⎢

⎣

c(�0) 0 −s(�0) 0
s(�0) 0 c(�0) 0
0 −1 0 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (114)

b1Tb2 =

⎡

⎢

⎢

⎢

⎣

c(−�b1) −s(−�b1) 0 lb1c(−�b1)
s(−�b1) c(−�b1) 0 lb1s(−�b1)
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (115)

b2Tb3 =

⎡

⎢

⎢

⎢

⎣

c(−�b2) −s(−�b2) 0 lb2c(−�b2)
s(−�b2) c(−�b2) 0 lb2s(−�b2)
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (116)
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Table 11

DH Table - Jib Actuator

ai �i di �i
c1 lc1 0 0 �c1
c2 lc2 0 0 �c2
c3 lc3 0 0 0

b3Tb4 =

⎡

⎢

⎢

⎢

⎣

1 0 0 d1
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (117)

b3TCoG,b1 =

⎡

⎢

⎢

⎢

⎣

1 0 0 −lCoG,b1
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (118)

b4TCoG,b2 =

⎡

⎢

⎢

⎢

⎣

1 0 0 −lCoG,b2
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (119)

and concatenating the transformation matrices to relate the motion of each CoG to the origin,
DTCoG,b1 =

[DRCoG,b1 DrCoG,b1
0 1

]

= DTb1
b1Tb2

b2Tb3
b3TCoG,b1, (120)

DTCoG,b2 =
[DRCoG,b2 DrCoG,b2

0 1

]

= DTb1
b1Tb2

b2Tb3
b3Tb4

b4TCoG,b2. (121)
The velocity matrices for the boom actuator are then

DVCoG,b1 =
[D!̃CoG,b1 DvCoG,b1

0 1

]

= DṪCoG,b1
DT −1CoG,b1, (122)

DVCoG,b2 =
[D!̃CoG,b2 DvCoG,b2

0 1

]

= DṪCoG,b2
DT −1CoG,b2. (123)

D.1.3. Jib Actuator Kinematic Chain
Figure 17 shows the coordinate frames for the jib actuator kinematic chain, corresponding to the DH parameters

listed in Table 11.
The transformation matrices for the jib actuator kinematic chain are then,

1Tc1 =

⎡

⎢

⎢

⎢

⎣

c(�c1) −s(�c1) 0 lc1c(�c1)
s(�c1) c(�c1) 0 lc1s(�c1)
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (124)
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XD
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X1

Z1

Y1
Xc1

Zc1

Yc1

Xc2

Zc2

Yc2 Xc3

Zc3

Yc3

−�c1

�c2

Figure 17: The coordinate frames for the jib actuator kinematic chain of the knuckle boom crane.

c1Tc2 =

⎡

⎢

⎢

⎢

⎣

c(�c2) −s(�c2) 0 lc2c(�c2)
s(�c2) c(�c2) 0 lc2s(�c2)
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (125)

c2Tc3 =

⎡

⎢

⎢

⎢

⎣

1 0 0 d2
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (126)

c2TCoG,c1 =

⎡

⎢

⎢

⎢

⎣

1 0 0 −lCoG,c1
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (127)

c3TCoG,c2 =

⎡

⎢

⎢

⎢

⎣

1 0 0 −lCoG,c2
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

. (128)

Concatenating the transformation matrices,
DTCoG,c1 =

[DRCoG,c1 0rCoG,c1
0 1

]

= DT1
1Tc1

c1Tc2
c2TCoG,c1, (129)

DTCoG,c2 =
[DRCoG,c2 0rCoG,c2

0 1

]

= DT1
1Tc1

c1Tc2
c2Tc3

c3TCoG,c2, (130)
and velocity matrices

DVCoG,c1 =
[D!̃CoG,c1 DvCoG,c1

0 1

]

= DṪCoG,c1
DT −1CoG,c1, (131)
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DVCoG,c2 =
[D!̃CoG,c2 DvCoG,c2

0 1

]

= DṪCoG,c2
DT −1CoG,c2. (132)

D.1.4. Expressing Joint Angles in terms of Actuator Extensions
As the generalized coordinates were chosen to be d1(t) and d2(t), the joint angles �1(t) and �2(t) used in the

kinematic equations, as well as angles �b2(t), �c1(t) and �c2(t)must be expressed in terms of d1(t) and d2(t). Using thegeometry provided in Figure 8,

�1(d1(t)) =
�
2
− cos−1

(

a21 + b
2
1 − (d1(t) + lb2)

2

2a1b1

)

− tan−1
(

lb1x
l0 − lb1z

)

− tan−1
( lb4y
lb4x

)

, (133)

�2(d2(t)) =� − cos−1
(

a22 + b
2
2 − (d2(t) + lc2)

2

2a2b2

)

− tan−1
( lc1y
lc1x

)

− tan−1
( lc3y
lc3x

)

, (134)

�b2(d1(t)) =
�
2
− cos−1

(

b21 + (d1(t) + lb2)
2 − a21

2b1(d1(t) + lb2)

)

− cos−1
(

lb1x
b1

)

, (135)

�c1(d1(t)) = tan−1
( lc1y
l1 − lc1x

)

+ �
2

− cos−1
(

a21 + b
2
1 − (d1(t) + lb2)

2

2a1b1

)

− tan−1
( lb4y
lb4x

)

− tan−1
(

lb1x
l0 − lb1z

)

, (136)

�c2(d2(t)) = cos−1
(

a22 + (d2(t) + lc2)
2 − b22

2a2(d2(t) + lc2)

)

− �
2

+ tan−1
(

lc1x
lc1y

)

− tan−1
( lc1y
l1 − lc1x

)

, (137)

where
a1 =

√

l2b4x + l
2
b4y, (138)

b1 =
√

l2b1x + (l0 − lb1z)
2, (139)

a2 =
√

l2c1x + l
2
c1y, (140)

b2 =
√

l2c3x + l
2
c3y. (141)
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D.1.5. Lagrangian
With the velocity matrices of each CoG defined, the kinetic energy Ki corresponding to link i can be calculated

using

Ki =
1
2
mi

(DvTi ⋅ Dvi
)

+ 1
2
D!̃Ti

DIi
D!̃i, (142)

where DIi is the inertia matrix of link i with respect to the deck coordinate frame,
DIi = DRiIi

DRTi , (143)
where Ii is the inertia matrix of link i about its CoG. Note that for the slew motor,

Ka =
1
2
JaN

2�̇20 , (144)

whereN is the gear ratio between the slew motor and the crane base. The potential energy Pi of link i can be expressedby
Pi = migDT ⋅ Dri. (145)

The Lagrangian can then be calculated as
L =

∑

i
Ki −

∑

i
Pi, (146)

where each sum is taken over all the links in the crane. The final equations of motion can then be found,
d
dt

(

dL
dq̇

)

− dL
dq

= Fq . (147)

Using the six generalized coordinates given in equation (32), the equations of motion take the same form as for the
five-DOF gantry crane,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M11 M12 M13 M14 M15 M16
M21 M22 M23 M24 M25 M26
M31 M32 M33 M34 M35 M36
M41 M42 M43 M44 M45 M46
M51 M52 M53 M54 M55 M56
M61 M62 M63 M64 M65 M66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̈0
d̈1
d̈2
l̈3
�̈3
�̈4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a1
a2
a3
a4
a5
a6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−N�a
Fb
Fc
Fl
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (148)

The equations of motion for the knuckle boom crane are available as a supplementary file in MATLAB code. Note
that the follow notation is used in the MATLAB code:

)�1
)d1

= dt_1, (149)
)2�1
)d12

= ddt_1, (150)
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)�2
)d2

= dt_2, (151)
)2�2
)d22

= ddt_2, (152)
)�b2
)db2

= dt_b2, (153)
)2�b2
)db22

= ddt_b2, (154)
)�c1
)dc1

= dt_c1, (155)
)2�c1
)dc12

= ddt_c1, (156)
)�c2
)dc2

= dt_c2, (157)
)2�c2
)dc22

= ddt_c2, (158)
�̇0 = t_0dot, (159)
ḋ1 = d_1dot, (160)
ḋ2 = d_2dot, (161)
l̇3 = l_3dot, (162)
�̇3 = t_3dot, (163)
�̇4 = t_4dot, (164)
Θr = t_r, (165)
Φp = t_p. (166)

Any terms with subscripts are written with an underscore (for example, l0 is replaced with l_0).
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