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Abstract—The inclusion of current in a water channel is
a critical requirement for recreating accurately scaled ocean
environments in a laboratory. In this paper, the effect of a
uniform current on the theoretical model of a plunger-type
wavemaker has been investigated through a variance-based global
sensitivity analysis. The output of the wavemaker model is
represented by the ratio of wave amplitude to stroke amplitude.
Therefore, the sensitivity analysis evaluates the influence of all
uncertain input parameters on the output variance of the model.
In addition to the water current, the uncertain input parameters
for the wavemaker model were established as the wave frequency,
wedge angle, mean wedge depth, water height, and node points on
the wavemaker boundary. To account for a range of limitations
for both the plunger and the water channel in which it oscillates,
the sensitivity analysis was performed for a broad distribution
of each parameter.

The analysis determined that the wave frequency had the
highest influence on the output variance of the wavemaker
model. For a uniform water current, the first order and total
effect sensitivity indices were estimated as 0.74 ± 0.30% and
6.84± 0.16%, respectively. Although the sensitivity of the model
to the current was relatively low compared to the wave frequency,
there exists an impact due to the interaction of the current
with the other parameters. Therefore, it was established that the
inclusion of the current in the plunger-type wavemaker model is
essential for application of the model to an experimental setup.

Index Terms—Wavemakers, Plunger-type, Water current,
Global sensitivity analysis, sensitivity indices

I. INTRODUCTION

Wavemakers are a convenient method for generating and
observing water waves in a controlled laboratory setting.
The three most common types of wavemakers used in test
tanks are piston-type, flap-type, and plunger-type wavemakers
[1]. Of the existing wavemakers, plunger-types are the only
wavemakers that allow for water flow across its boundary;
however, research with the plunger system has focused on
water without a steady current.

The general theory for waves produced on a water sur-
face by a generator was initially established by Havelock
[2] and commonly referred to as “wavemaker theory”. The
specific application of wavemaker theory to a wedge-shaped
wavemaker was established by Wang [3] who showed that
the ratio of the water wave amplitude to the plunger stroke
amplitude will be dependent on the wavenumber and the
mean width of the wedge at the still water level. By using

the boundary collocation method, Wu [4] developed a semi-
analytical method to study waves generated by a plunger-type
wavemaker that demonstrated the required inclusion of water
height in the wavemaker model. The wave profiles produced
by a plunger-type wavemaker were studied by Ellix and
Arumugam [5] which Wu [4], [6] referenced for comparison
to the theoretical model; however, both theory and experiment
were only applied to the still water case and did not include
the effect of a steady current. The plunger-type wavemaker
theory was advanced by McPhee [7], who proposed that the
uniform current in a flume tank be taken into account, but
experimental validation was outside the scope of the study.

For the size of the wedge and geometry of the flume
tank at Carleton University, the new theoretical plunger-type
wavemaker model [7] predicts that the ratio between the wave
amplitude and the stroke amplitude of the plunger for a zero
velocity current will be equal to 0.62 for a wave frequency
of 3.2π rad/s. Using the standard theory, which does not
incorporate the influence of current, the ratio would remain
constant for any value of water current. However, experimental
measurements indicate a 25.6% average decrease in the ratio of
the wave amplitude to stroke amplitude as the current velocity
increases from 0.000 m/s to 0.305 m/s. Over the same range
in current, the new wavemaker model which accounts for
the flow, theorizes a 20.3% decrease in the amplitude ratio.
Therefore, the experimental results indicate that there is an
influence due to current on the wavemaker model output.

The scope of the current paper aims to investigate the
influence of water current on the theoretical plunger-type
wavemaker model through a variance-based global sensitivity
analysis (GSA). The theoretical development of the GSA is
well established [8], and while it has been applied to a variety
of scientific models, to the authors’ knowledge there has
been no sensitivity analysis conducted on the plunger-type
wavemaker model. As a result, the impact and understanding
of water current on the design and operation of a plunger-
type wavemaker is an essential contribution to the field. The
present study seeks to provide insight to the input parameters
of the theoretical plunger-type wavemaker model, with a focus
on how the inclusion of water current impacts the output of
the model and how the current parameter interacts with other
uncertain input parameters. The global sensitivity analysis will

 
 
978-1-7281-5446-6/20/$31.00 ©2020 IEEE

This is a DRAFT. As such it may not be cited in other works. 
The citable Proceedings of the Conference will be published in 

IEEE Xplore shortly after the conclusion of the conference.

Prep
rin

t



provide understanding towards the strengths and weaknesses
of the wavemaker model and a basis for the design of future
plunger-type wavemakers.

Section II of this paper provides an overview of the plunger-
type wavemaker theoretical model. Section III outlines the
theory of global sensitivity analysis including validation of the
code using the Ishigami function (Section III-A). Section IV
provides the results and discussion of the sensitivity analysis of
the plunger-type wavemaker model for a general distribution
of each uncertain input parameter. The paper is concluded in
Section V with a summary of the findings and applications.

II. PLUNGER-TYPE WAVEMAKER MODEL

A schematic of the plunger-type wavemaker problem for a
wedge with a triangular cross-section in a laboratory water
channel is displayed in Fig. 1, where x represents the hori-
zontal axis and z is the vertical axis. The angle β is measured

Figure 1. Schematic of an plunger-type wavemaker in a laboratory water
channel with current U . The channel is defined by four conditions. The far-
field radiation condition (RC), bottom boundary condition (BBC), kinematic
boundary condition (KBC), and combined free surface boundary condition
(CFSBC) which includes the kinematic free surface boundary condition
(KFSBC) and dynamic free surface boundary condition (DFSBC).

between the vertical z axis and the hypotenuse of the wedge,
while the mean wedge depth dµ is measured at the still water
height h. The clearance between the bottom of the water
channel and the wedge is denoted d′µ and

⇀
n represents the

vector normal to the surface of the wedge. The position of the
free surface of the water is represented by η(x, t) at position
x and time t relative to the plane z = h. Forward waves are
produced by the vertical displacement s of the plunger as it
oscillates in the water column. Thus, the water wave length
and height are controlled by the oscillation frequency and fluid
displacement of the plunger. The oscillating motion allows
for flow across the lateral boundary throughout the duration
of the operation. The magnitude of the water current U is
positive along the x-axis when moving the same direction as
the waves produced by the wavemaker. The water channel
in Fig. 1 can be defined by four boundary conditions and a
radiation condition (RC) that ensures only the existance of
progressive waves at large distance from the plunger [4]. The
bottom boundary condition (BBC) describes the horizontal

plane along z = 0 where the no flow condition applies. The
combined free surface boundary condition (CFSBC) describes
the free surface of the water which includes the kinematic free
surface boundary condition (KFSBC) and the dynamic free
surface boundary condition (DFSBC). The KFSBC ensures
that there is no flow across the free surface from the water
to the air, while the DFSBC constrains a uniform pressure
distribution across the free surface boundary. The final bound-
ary condition is a kinematic boundary condition (KBC) that
exists along the inclined surface of the plunger wedge and the
clearance defined by d′µ.

The transfer function between the wave amplitude a and
the stroke amplitude of the plunger s provides an important
metric for wavemaker design. For a known stroke amplitude,
the wave amplitude can be determined by examining the
water wave profile η(x, t) produced by the wavemaker. Under
the assumption of classic hydrodynamics, the fluid flow is
inviscid, incompressible, and irrotational. Thus, the problem
can be defined by small amplitude gravity wave theory where
there exists a velocity potential φ that satisfies the continuity
equation,

∇ · ∇φ = 0, (1)

where the gradient ∇ leads to the Laplace equation. Solving
for the linear wave profile therefore becomes a boundary
value problem constrained by the four boundary conditions
and radiation condition shown in Fig. 1. The BBC at z = 0 is
mathematically defined by,(

∂φ

∂z

)
z=0

= 0. (2)

Similarly, the CFSBC at z = h is expressed by,(
∂φ

∂z
− ω2

g
φ

)
z=h

= 0, (3)

where ω is the wave frequency and g is the acceleration due
to gravity, equal to 9.81 m/s2. Assuming no leakage around
the wedge, the KBC along the wavemaker and the clearance
section is respectively defined by,(

∂φ

∂n

)
d′µ≤z≤h

= sω sin(β) cos(ωt), (4a)(
∂φ

∂x

)
0≤z<d′µ

= 0. (4b)

When β = 0, the condition in (4a) is equal to that of (4b);
therefore, a single equation can be used to describe the KBC
for β ≥ 0 and 0 < z < h. Combining (4a) and (4b), the
modified KBC on the wavemaker at x = (z − d′µ) tan(β) is
expressed as,

∂φ

∂x
− ∂φ

∂z
tan(β) = sω tan(β) cos(ωt). (5)
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One form of the velocity potential φ(x, z) which solves the
Laplace equation and also satisfies the BBC, CFSBC, and RC
is given by,

φ(x, z) = A0 cosh(kpz)e
imkpx +

∞∑
n=1

An cos(knz)e
−knx,

(6)

where n = 1, 2, . . . ,∞, im is the imaginary number, A0 and
An are unknown coefficients of the velocity potential whose
values are to be determined, and the wavenumbers kp and
kn represent progressive and standing waves, respectively [4].
Equation (6) is constrained by the dispersion relationship of
both wavenumbers kp and kn defined by,

ω2 = gkp tanh(kph), (7)

ω2 = −gkn tanh(knh). (8)

For the no current condition, the dispersion relations in (7)
and (8) hold true; however, water waves in a uniform current
U experience a Doppler shift. Therefore, as initially proposed
by McPhee [7], the dispersion relation used to constrain the
velocity potential for the plunger-type wavemaker boundary
value problem must be modified to account for the current ve-
locity U . By shifting the frequency ω, the modified dispersion
relation for the progressive wavenumber kp can be expressed
as,

(ω − kpU)2 = gkp tanh(kph). (9)

From the definition of phase velocity where the celerity C is
equal to ω/kp, (9) can be rewritten as,

(C − U)2 =
g

kp
tanh(kph). (10)

The solution to (10) in terms of C is determined using the
quadratic solution and replacing the wavenumber kp with ω/C
[9], such that,

C =
(
U +

g

2ω

)
+

√
Ug

ω
+

1

4

( g
ω

)2
. (11)

For convenience, a reference frame that moves with the current
is adopted such that the solution to the boundary value
problem in the no current condition can still be used. To
relate the moving reference frame to the stationary frame, the
wavelength must be equal in both systems; therefore the period
T ′ relative to the moving frame relates to the period T in the
stationary frame by,

T ′ =
T

(1− U
C )
. (12)

By describing the period, and hence the frequency, by (12), the
current U ≥ 0 is taken into consideration for the wavemaker
boundary value problem.

With the dispersion constraint modified to include the effect
of current, substituting the velocity potential solution defined

by (6) into the modified KBC expressed in (5) yields an
expression from which A0 and An can be determined,[
imA0kp cosh(kpz)e

imkp(z−d′µ) tan(β)−

∞∑
n=1

Ankn cos(knz)e
−kn(z−d′µ) tan(β)

]
−[

A0kp sinh(kpz)e
imkp(z−d′µ) tan(β)−

∞∑
n=1

Ankn sin(knz)e
−kn(z−d′µ) tan(β)

]
tan(β)

= sω tan(β). (13)

To solve for the coefficients A0 and An, a semi-analytical
solution using the boundary collocation method is applied [4].
For the wavemaker problem, the boundary is defined as the
KBC in Fig. 1 which includes the inclined surface of the
wedge and the clearance between wedge bottom and channel
bottom d′µ. The boundary is divided into segments of equal
vertical length with two node points at each end of a segment
totalling M node points. To satisfy (13) at all M node points,
it is expressed in matrix form as,

BA′ = D, (14)

where B is a mxn matrix, A′ is a nx1 matrix, and D is a
mx1 matrix with the number of node points M representing
the number of matrix rows m and total number of waves n
representing the number of matrix columns. The elements of
matrices B, A′, and D are expressed as,

Bm1 = kph

(
im cosh

[
kph
( z
h

)
m

]
−

tan(β) sinh

[
kph
( z
h

)
m

])
e
imkph tan(β)

(
z−d′µ
h

)
m ,

(15)

Bmn = −kn−1h

(
cos

[
kn−1h

( z
h

)
m

]
−

tan(β) sin

[
kn−1h

( z
h

)
m

])
e
−kn−1h tan(β)

(
z−d′µ
h

)
m ,

n 6= 1, (16)

A′1 =
A0

sωh
, (17)

A′n =
An−1
sωh

, n 6= 1, (18)

Dm = tan(β), (19)

where Bm1 represents a single progressive wave and Bmn
represents the standing waves. Equation (14) is solved using a
least squares method to minimize the sum of quadratic error

Prep
rin

t



by multiplying both sides by the Hermitian transpose of B
denoted BT such that,

BTBA′ = BTD. (20)

Wu [4] suggests using a finite number of waves by setting
n = 16 such that the approximate solution to (20) includes
one progressive wave and 15 standing waves. The RC ensures
that the standing waves will decay with distance from the
wavemaker such that terms in (6) relating to kn will be
negligible. Thus, taking the real part of the first term in (6),
the velocity potential φ reduces to,

φ = Re
[
A0 cosh(kpz)e

im(kpx−ωt)
]
. (21)

The linear wave profile of the free surface η(x, t) where only
the progressive wave exists is expressed as,

η(x, t) =
1

g

∂φ

∂t
= Re

[−imωA0

g
cosh(kph)e

im(kpx−ωt)
]
,

(22)

where the amplitude of the wave a is defined by,

a =

∣∣∣∣−imωA0

g
cosh(kph)

∣∣∣∣ . (23)

By dividing both sides of (23) by the stroke amplitude s, the
theoretical plunger-type wavemaker model which relates the
water wave amplitude a to the stroke amplitude s is derived
to be,

a

s
=
∣∣−imA′1kphsinh(kph)

∣∣ , (24)

where A′1 is defined by (17). However, since the definition
of A′1 is dependent on the unknown coefficient A0, it is
determined by solving (20). Equation (24) is the key output
equation for the plunger-type wavemaker model which will be
investigated in the GSA.

The wavemaker model is non-linear and requires six input
parameters including the water current U . The water current,
along with the wave frequency ω, will impact the value of
kp. The progressive wavenumber is also required to determine
A′1; therefore, A′1 will be dependent on U and ω, as well
as additional parameters including the water height h, mean
wedge depth dµ, wedge angle β, and the number of node
points M used to describe the theoretical KBC. Although (24)
has the same form of the wavemaker model as presented by
Wu [4], its inclusion of the current causes an effect on the
output of the model. Fig. 2 plots the effect of an applied
uniform current U flowing in the direction of the propagating
wave on the amplitude ratio a/s. The “new model” repre-
sents the wavemaker model defined by (24) which includes
current, while the “standard model” excludes the influence
of current. The remaining input parameters have been fixed
where ω = 3.2π rad/s, β = 25.7°, dµ = 0.12 m, h = 0.583
m, and M = 200. Since the standard model does not account
for the current velocity, the value of a/s remains constant for
all values of U . On the contrary, the new model demonstrates
that for a constant stroke amplitude s, the amplitude of the
waves a propagating from the wavemaker will be smaller if a

Figure 2. The ratio of the wave amplitude to stroke amplitude for a uniform
current as predicted by the new wavemaker model which incorporates U and
the standard model which does not include U . The values of the remaining
input parameters were fixed at ω = 3.2π rad/s, β = 25.7°, dµ = 0.12 m,
h = 0.583 m, and M = 200.

steady current is included. As the current velocity is increased,
the wave amplitude will further decrease under a constant
stroke amplitude. The behaviour of the relationship in Fig.
2 is consistent for the wavemaker model; however, the exact
value of a/s will also be dependent on the values of the input
parameters that were fixed. Therefore, application of the GSA
to the new plunger-type wavemaker model is essential as it
will provide an estimated sensitivity measure for the uncertain
input parameters which include the current U , wave frequency
ω, wedge angle β, mean wedge depth dµ, water height h, and
node points M .

III. GLOBAL SENSITIVITY ANALYSIS THEORY

The sensitivity analysis herein aims to quantify the relative
importance of the uncertain input parameters for the plunger-
type wavemaker model. Compared to a derivative-based, or
local, sensitivity analysis, the GSA has the advantage of de-
termining the influence of each individual input parameter on
the outcome of the model as well as the degree of interaction
between parameters. To allow for the study of the non-linear
plunger-type wavemaker model, variance-based methods of
sensitivity analyses were used [8]. For these methods, the
influence of the input parameters are referred to as sensitivity
indices. For the variance-based GSA, the plunger-type wave-
maker model described by (24) is represented by the form,

Y = f(X1, X2, . . . , Xk), (25)

where the output Y is a scalar and Xi represents the model’s
uncertain input parameters where i = 1, 2, . . . , k. The first
order sensitivity index for a given parameter Xi is the ratio of
the partial variance Vi taken over Xi to the overall variance of
the model V . In the present study, the sensitivity indices were
numerically computed using Monte Carlo sampling methods
[10].
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For the Monte Carlo analysis, G and H are two independent
matrices whose elements are comprised of gji and hji, where
j = 1, 2, . . . , Ns. Ns represents the number of samples used in
the Monte Carlo analysis and is consistent for all parameters.
Next, a third matrix is constructed denoted GH which is equal
to G but with the ith column replaced by the ith column from
H. The normalized first order sensitivity index Si for each
input parameter is numerically estimated by [11]:

Si =
Vi
V

=
1
Ns

∑Ns
j=1 f(H)j

(
f(GH

(i))j − f(G)j
)

1
Ns

∑Ns
j=1

(
f(G)j

)2 − 1
Ns

∑Ns
j=1 f(G)jf(H)j

,

(26)

where f(·)j is the model evaluation of the jth row of each
matrix. Si estimates the independent contribution to the output
variance of the wavemaker model for each input parameter
i, but does not include higher order effects. The relationship
between the first and higher order sensitivity indices for the
parameters of a given model is based on the unconditional
variance decomposition and is expressed as [12],∑
i

Si +
∑
i

∑
q>i

Siq +
∑
i

∑
q>i

∑
r>q

Siqr + · · ·+ S123...k = 1,

(27)

where Si is the first order index for each parameter i. The
second order indices Siq describe the joint effect of Xi and
Xq where [q ∈ Z | i < q ≤ k]. For third order sensitivity
indices, Siqr represents the joint effect of Xi, Xq , and Xr

where [r ∈ Z | i < q < r ≤ k] and so forth for higher indices
until S123...k, which represents the sensitivity index due to
joint effect of all parameters. Therefore, to account for all
interactions due to k input factors, a total of 2k−1 sensitivity
indices are required. For a model with a large number of
input parameters, the number of required indices can become
computationally prohibitive. Therefore, total effect sensitivity
indices STi [13] are calculated to determine the contributions
of all terms in the variance decomposition which include Xi.
The total effect sensitivity index STi can be estimated by [11],
[14]:

STi =
VTi
V

=

1
2Ns

∑Ns
j=1

(
f(G)j − f(GH

(i))j

)2
1
Ns

∑Ns
j=1

(
f(G)j

)2 − 1
Ns

∑Ns
j=1 f(G)jf(H)j

.

(28)

By using the approach of total effect sensitivity STi, only 2k
indices are required for the GSA.

The uncertainty for the estimation of each sensitivity index
can be determined by calculating its respective confidence
interval. In this paper, 95% confidence intervals on the first
order variance Vi and total effect variance VTi have been
calculated using a numerical method [12] based on the form of
the numerators in (26) and (28). Since the solution presented
in [12] is based on previous forms of the estimators for Si
and STi, the uncertainty equations have been modified for the

present study. Thus, the modified 95% confidence intervals for
the first order δVi and total effect δVTi variances are given by,

δVi =
1.96√
Ns

(
1

Ns

Ns∑
j=1

[
f(H)j

(
f(GH

(i))j − f(G)j
)]2
−

[
1

Ns

Ns∑
j=1

f(H)j
(
f(GH

(i))j − f(G)j
)]2)1/2

,

(29)

δVTi =
1.96√
Ns

(
1

2Ns

Ns∑
j=1

[(
f(G)j − f(GH

(i))j

)2]2
−

[
1

2Ns

Ns∑
j=1

(
f(G)j − f(GH

(i))j

)2]2)1/2

. (30)

Similarly, the confidence interval for the overall variance δV
can be expressed as,

δV =
1.96√
Ns

(
1

Ns

Ns∑
j=1

[(
f(G)j

)2]2−
[

1

Ns

Ns∑
j=1

(
f(G)j

)2]2)1/2

. (31)

Using error propagation, the uncertainty associated with the
first order δSi and total effect δSTi sensitivity indices therefore
take the following forms,

δSi =

[(
δVi
V

)2

+

(
ViδV

V 2

)2
]1/2

, (32)

δSTi =

[(
δVTi
V

)2

+

(
VTiδV

V 2

)2
]1/2

. (33)

A. Code Validation - Ishigami Function

The sensitivity indices of the Ishigami function have been
analytically determined and thus, the performance of the
GSA implemented in the current paper can be validated. The
Ishigami function is given as,

f(Xi) = sin(X1) + b1 sin
2(X2) + b2X

4
3 sin(X1), (34)

where the parameter b1 = 7 and b2 is typically equal to
either 0.1 or 0.05, depending on the literature [13], [16].
In the current paper, the fixed parameters have been set to
b1 = 7 and b2 = 0.05. The uniform distribution of each
input parameter ranges from −π ≤ xi ≤ π. The Ishigami
function is a benchmark for sensitivity analyses since all
indices can be computed analytically and there is peculiar
result in that S3 = 0 yet ST3 cannot be neglected. The purpose
of this example is to examine how the sensitivity estimators
represented by (26) and (28) perform using the Monte Carlo
computation compared to the exact analytical values. The total
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variance V of the model and its partial variances can be
obtained from the relations:

V =
a2

8
+
bπ4

5
+
b2π8

18
+

1

2
, (35)

V1 =
bπ4

5
+
b2π8

50
+

1

2
, (36)

V2 =
a2

8
, (37)

V3 = 0, (38)
V12 = 0, (39)

V13 =
b2π8

18
− b2π8

50
, (40)

V23 = 0, (41)
V123 = 0. (42)

Table I provides the results of the sensitivity analysis ob-
tained through the Monte Carlo estimation using Ns = 50000,
along with the exact values and the uncertainty associated with
each estimated sensitivity index. The GSA for the Ishigami

Table I
ESTIMATED AND EXACT SENSITIVITY INDICES FOR THE ISHIGAMI MODEL

WITH ERROR ON THE ESTIMATED INDICES.

Sensitivity Index Exact [%] Estimated [%] Est. Error [%]

First Order

S1 21.85 21.50 ± 1.18

S2 68.69 69.36 ± 2.21

S3 0.000 -00.60 ± 0.63

Total Effect

ST1 31.31 30.77 ± 1.17

ST2 68.69 68.79 ± 1.94

ST3 9.46 9.41 ± 0.33

function reveals that S2 has the largest individual influence on
the output variance of the function. Since S2 is approximately
equal to ST2 in the estimation, there is no interaction between
X2 and the remaining parameters. On the other hand, the
contrast between S1 and ST1 signifies that X1 does have some
interaction with the other parameters. Since it has already
been established that X2 does not interact with the other
parameters, X1 must be interacting with X3. Finally, the first
order sensitivity index for X3 is estimated as −0.60%±0.63%.
Theoretically, Si and STi must be greater than or equal to
zero for the input parameters of any given model; however,
since the sensitivity indices from a GSA are estimated using
(26) and (28), negative values close to zero can occur. In
the context of S3, the negative value is simply a result of
the approximation and its error places the estimation within
range of its exact value of 0. S3 = 0 indicates that X3 has
no influence on the output variance of the Ishigami function;
however, since ST3 > 0, the parameter does interact with
the other parameters in the model which agrees with previous
results determined by examining X1. The estimated values
for the sensitivity indices are all in good agreement with the
exact values determined analytically. Therefore, the authors’

are confident that the methods used herein for the GSA of the
wavemaker are valid.

IV. GLOBAL SENSITIVITY ANALYSIS RESULTS

The following section presents the results of the variance-
based global sensitivity analysis applied to the theoretical
plunger-type wavemaker model. Plunger-type wavemakers are
versatile as the wavemaker can be outfitted with different
plunger sizes and shapes, depending on the desired wave
profiles to be replicated. To account for various plunger sizes
and current velocities, the GSA was conducted using a broad
range for each input parameter’s sample distribution in the
Monte Carlo analysis. The uniform distribution for the six
input parameters U , ω, β, dµ, h, and M are outlined in
Table II. The range of 50-400 for the number of boundary

Table II
UNIFORM PARAMETER DISTRIBUTIONS FOR PLUNGER-TYPE WAVEMAKER.

Parameter Minimum Maximum

U 0.0 [m/s] 2.5 [m/s]

ω 0.2π [rad/s] 10π [rad/s]

β 10 [Deg] 60 [Deg]

dµ 0.01 [m] 0.30 [m]

h 0.30 [m] 2.00 [m]

M 50 400

node points M is based on the range used by Wu [4], who
examined the change in wavemaker transfer function a/s for
M = 50, 100, 200, and 400. The analysis in [4] concluded
that M = 200 was an appropriate choice to achieve accurate
results with the wavemaker model. The remaining parameter
distribution ranges represent values that are typically seen the
laboratory setting, incorporating various geometries of both
the wedge and water channel along with a broad range of
wave frequencies ω and current velocities U . Using the sample
distributions presented in Table II, the GSA was conducted on
the new wavemaker model and the first order and total effect
sensitivity indices were determined for each parameter along
with the uncertainty on each estimate from (32) and (33).

The sensitivity indices and their associated numerical error
for the general case are presented in Table III as percentages
of the total output variance of the plunger-type wavemaker
model. The frequency ω was determined by the GSA to have
the highest impact on the output variance of the wavemaker
model. The first order effect Sω accounts for 28.47±0.81% of
the uncertainty in the model, while its total effect sensitivity
index STω is equal to 44.86 ± 0.99%. The output variance
of the wavemaker model is also greatly impacted by both
the wedge’s angle β and mean depth dµ whose total effect
sensitivity indices were 25.90 ± 0.56% and 24.21 ± 0.55%,
respectively. Comparatively, the height of the water h has a low
impact on the output variance of the wavemaker. The first order
sensitivity for h was estimated to be Sh = 0.99± 0.19% and
its total effect sensitivity STh = 2.45± 0.10%. However, the
number of boundary node points M has the lowest sensitivity
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Table III
PERCENT SENSITIVITY INDICES AND ERROR FOR THE PLUNGER-TYPE

WAVEMAKER MODEL.

Parameter Si [%] δSi [%] STi [%] δSTi [%]

U 0.74 ± 0.30 6.84 ± 0.16

ω 28.47 ± 0.81 44.86 ± 0.99

β 16.21 ± 0.61 25.90 ± 0.56

dµ 16.90 ± 0.60 24.21 ± 0.55

h 0.99 ± 0.19 2.45 ± 0.10

M 0.02 ± 0.03 0.06 ± 0.00

indices where SM = 0.02±0.03% and STM = 0.06±0.00%.
Therefore, M has the least amount of influence on the output
variance of the wavemaker model.

For the presented parameter distributions, the current U
independently accounts for 0.74 ± 0.30% of the output vari-
ance of the wavemaker model as given by the first order
sensitivity index SU . The total effect of the current, which
includes the first order index and the interaction of U with the
other parameters accounts for 6.84 ± 0.16% of the model’s
output variance. Despite the relatively low influence of U ,
experimental testing conducted using a wedge at Carleton
University demonstrated an observable decrease in the wave
amplitude to stroke amplitude ratio a/s for increasing current,
the results of which are provided in Section I. From Table III,
it can be concluded that the effect was mostly due to the total
interaction of U with the other input parameters determined by
STU−SU = 6.10±0.34%. Since the majority of the impact of
the current velocity on the wavemaker amplitude ratio is due to
the higher order effects in STU , inclusion of the water current
as an uncertain input parameter in the wavemaker model is
essential.

To demonstrate the influence of the current on the other
wavemaker parameters, the GSA was rerun for three fixed
values of U equal to 0, 1, and 2 m/s. Fig. 3 displays the
first order sensitivity indices Si of the input parameters ω, β,
dµ, h, and M for each fixed value of U . As the fixed value
of the current is increased from 0 m/s to 1 m/s to 2 m/s,
the first order sensitivity index for the frequency ω increased
from 8.32% to 34.97% to 41.07%. The first order indices also
increased for β and dµ, where for U = 2 m/s, the influence
of the parameters inverted resulting in the mean wedge depth
having a larger influence on the model the wedge angle. The
sensitivity of the wavemaker model to the water height h
only has a small change relative to the previously mentioned
parameters; however, there is still an observable difference
in the sensitivity index as the current increases. Therefore,
the interaction between the current U and water height h is
relatively low compared to the frequency, mean wedge depth,
and wedge angle. On the contrary, the first order sensitivity
indices for the node points M remain constant for each current
velocity at approximately zero. The total effect sensitivity
indices STi for ω, β, dµ, h, and M are displayed in Fig. 4
for the three fixed values of U . For the three respective values

Figure 3. The first order sensitivity indices of the remaining input parameters
when current is not included in the GSA.

Figure 4. The total effect sensitivity indices of the remaining input parameters
when current is not included in the GSA.

of U , the frequency ω had the largest deviation in the total
effect sensitivity index STω which increased from 20.90% to
48.53% to 52.19%. Similar trends as the first order sensitivity
indices are also observed for the remaining parameters. By
neglecting the effect of the current, the dependency of the
wavemaker model on the remaining input parameters shifts
with fluctuations in the current. As the current increases, the
output model becomes more influenced by the wave frequency.
Therefore, small errors in the measurement of the frequency
could lead to large errors in the wave amplitude to stroke
amplitude ratio a/s whereas for low current velocities, the
uncertainty in the frequency measurement would not impact
the output as much. Thus, even though the sensitivity indices
for the current U in Table III are low compared to ω, β, and
dµ, the inclusion of current and its specific value must be
considered in the wavemaker model.

In regards to the other input parameters, a notable observa-
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tion is the sensitivity indices for the node points M . For the
fixed current cases, the first order and total effect indices re-
mained constant across all three current velocities with similar
magnitudes to the results in Table III. As observed with S3 of
the Ishigami function in Section III-A, a sensitivity index close
to zero indicates that the parameter has no influence on the
uncertainty of the model. From the first order sensitivity index
of M , it can be concluded that the number of node points does
not individually impact the output variance of the wavemaker
model. The total effect sensitivity index on the other hand
indicates that M could have some interaction with the other
input parameters. However, since STM −SM = 0.04±0.03%
is significantly lower relative to the influence of the other
parameters, the number of node points M can be deemed a
non-influential parameter and fixed to a deterministic value.

An additional observation is the low sensitivity indices for
the water height h in Table III where Sh = 0.99 ± 0.19%
and STh = 2.45 ± 0.10%, and in Fig. 3 and Fig. 4 where
the maximum indices are Sh = 1.23 ± 0.13% and STh =
3.07±0.11%. Through application of the boundary collocation
method, Wu [4] concluded that the water height was a very
important parameter in the plunger-type wavemaker model.
However, the GSA of the model displayed that for a general
distribution value of the input parameters, the water height had
the lowest impact of the influential parameters on the wave
amplitude to stroke amplitude ratio a/s of the wavemaker.
Although the height of the water still needs to be measured and
included in the model for hydrodynamic considerations, any
uncertainty in the experimental measurement will not greatly
impact the output of the theoretical model.

From a design standpoint, the GSA revealed that for the
generation of waves by a plunger-type wavemaker, the un-
certainty in the model will be governed by the uncertainty
in the wave frequency. Therefore, for experimental testing,
the uncertainty in the frequency measurement should be re-
duced as much as possible to minimize the uncertainty in
the wave amplitude to stroke amplitude ratio a/s. Reducing
the wave frequency uncertainty is especially critical when
creating irregular wave spectra in a water channel, since
the desired profile is dependent on a range of frequencies.
The dimensions and positioning of the wedge should also be
measured with reduced uncertainty as those parameters have
the second and third highest influences on the output of the
model. On the other hand, although the water height and cur-
rent will influence the amplitude ratio, their lower sensitivity
indices indicate that uncertainty in their measurements will
not generate large uncertainties in the model. The specific
sensitivity measurements of the GSA for wavemaker model
are highly dependent on the uniform distribution range chosen
for each input parameter. Although the general trend of the
sensitivity indices would be similar to the results presented
here, the analysis could also be applied to an experimental
wavemaker for design considerations. In that case, the range
for each parameter distribution would be established by either
the uncertainty in the physical measurement of the parameter
or a range of values at which to test the parameter. By applying

the GSA to a specific experimental setup, the uncertainty in
the transfer function between the wave amplitude and stroke
amplitude can be improved. Thus, complex wave profiles can
be accurately reproduced for marine engineering applications
that require the inclusion of current such as ship motion and
the launch and recovery of tow-bodies.

V. CONCLUSION

The model that relates the wave amplitude to the stroke
amplitude for a plunger-type wavemaker in the presence of a
uniform current was presented. In addition to the current U ,
the model requires five input parameters including the wave
frequency, wedge angle, mean wedge depth, water height, the
number of node points for the kinematic boundary condition.
To investigate the effects of the current on the performance
and design of the model, the method of variance-based global
sensitivity analysis was introduced. The sensitivity analysis
was applied to a broad distribution range for each parameter,
providing results regarding the influence of all input parame-
ters as well as their interactions with one another within the
wavemaker model.

By determining the sensitivity of the wavemaker model to
its input parameters, the theoretical design of the plunger-
type wavemaker can be analysed for application to plungers
in an experimental water channel. The GSA established that
the number of node points required to define the kinematic
boundary on the wavemaker is a non-influential parameter,
such that uncertainty in the output of the wavemaker model
will not be effected by changing its value. On the other
hand, the analysis determined that the wave frequency has
the largest influence on the output variance of the wavemaker
model. Therefore, hydrodynamic applications dependent on
plunger-type wavemakers should take caution when executing
and determining the wave frequency for the model in order
to achieve a desired wave profile. Compared to the wave
frequency, the current has a low impact on the wavemaker
model; however, its influence cannot be neglected. It was
shown that by fixing the current in the wavemaker model to a
set magnitude, the influence of each parameter changes as the
value of the fixed current increases for both the first order and
total effect sensitivity indices. Therefore, to accurately recreate
a scaled ocean environment in a laboratory water channel, the
uniform current must be measured and taken into consideration
for the plunger-type wavemaker model.
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