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Abstract

The ability to accurately predict a ships future roll, pitch, and heave motions from measured motions is vital for many

maritime applications. Without accurate and reliable predictions autonomous systems may make choices that could cause damage

to themselves, equipment on the ship’s deck, or harm the ship’s crew. Current state-of-the-art methods for predicting ship pose

rely on either analytical methods, which make approximations on underlying dynamics of a ship’s motion, or on older data driven

methods. To facilitate the automated or autonomous vertical landing of an aircraft on the deck of a maritime vessel the ability to

accurately predict the ships future roll, pitch, and heave motions is vital. Current state-of-the-art methods for predicting ship pose

rely on either analytical methods, which make approximations on underlying dynamics of a ship’s motion, or on older data driven

methods. The work presented in this paper uses a modern Recurrent Neural Network (RNN) architecture constructed using Gated

Recurrent Unit (GRU) cells and an auto-encoder architecture in order to predict a ship’s motion. The proposed GRU Autoencoder

model is compared against the more common feed forward Neural Network (NN) non-linear autoregressive exogenous (NARX)

model. Both NN models are tested for robustness by studying the impact that noise, sea state, and ship model has on the overall

performance. It was found that the GRU Autoencoder model outperforms the NN NARX model in almost all scenarios and

was more robust. Additionally, guidelines for creating a training dataset that will create more robust prediction models are also

presented.
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I. INTRODUCTION1

Ships in the open ocean environment are expected to be able to operate in a wide range of ocean conditions. Ocean waves2

will induce pitching, rolling, and heaving motions on the ship which will negatively impact on-board operations. The ability to3

make quick and accurate predictions to the ships motion is important for tasks such as safely operating shipboard cranes [1]4

or vertical landings on the deck [2]. The roll, pitch, and heave motions can be measured using one or more sensors in order5

to construct time signals which a signal prediction model can use to estimate future ship motion values.6

This work seeks to improve the state-of-the-art for ship motion prediction methods applied for automating Uninhabited7

Aerial Vehicle (UAV) vertical landings on ship decks. During flight, the UAV tracking phases, flight control and navigation8

are well studied [2][3]. However, the final descent and landing on moving platforms is still an unsolved problem due to the9

inherent difficulties of operation in this kind of scario [4]. The work herein examines methods to improve vertical landings10

on a moving vessel. The use of mounted LIDAR sensors allows for the control system of the UAV to be independent of the11

ship it is landing from, removing hardware requirements from vessels and allowing for use on multiple ships. The UAV’s12

landing system would rely solely on its own sensors and signal prediction model to perform a safe landing. The goal of the13

current work is to predict the roll, pitch, and heave of a ship to facilitate a safe landing of a UAV [2][3]. Broadly speaking,14

ship motion is a highly coupled stochastic non-linear system; the six-degrees of freedom of the ship motion have non-trivial15

dependencies on the stochastic ocean waves dynamics, the ship hull structure, and the relative orientation to the sea [5].16

Analytical prediction models use approximations of the underlying description of the ships motion. By making an approxi-17

mation, an analytical model may be applied to a wide variety of cases at the potential cost of performance in a specific scenario18

of interest. Fast Fourier Transform (FFT) methods are a typical analytical method that aim to estimate ship motion as the sum19

of sine waves and have been used to predict various ship motions [2][3][6][7]. Autoregressive (AR) models are a stochastic20

method that use recent measured history to predict a step into the future. AR models have been successfully implemented for21

predicting ship roll, pitch, and heave motion [8]. Other methods such as Prony analysis [9] and variant ellipsoid methods [4]22

have also been applied to predicting ship motion.23

While the models listed above have all found success there is potential for improvement in data driven models which use24

measured or simulated data in order to create a prediction model tailored to a specific problem. Montáns et al. [10] published25

a review of data driven approaches in a wide range of engineering applications and noted that computational power and data26

availability area increasing and will create opportunities for new approaches to existing problems. Neural Networks (NN) are27

a form of data driven prediction models which have been applied to ship motion prediction and are becoming increasingly28

common. NNs have been used to predict ship and roll motions [11][12][13] as well the ship heave motion [14][15].29
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Feed forward NNs are adept at performing predictive tasks, but were mainly developed in the 1980s and there has been30

significant advances to NNs since. Recurrent Neural Networks (RNNs) [16][17] are an adaptation of NNs that use recurring31

connections to the same sets of weights to understand and make use of ordered data such as time signals, text, speech, and32

music. Both the Elmann and Jordan RNN architectures have been applied to predicting ship motion [18][19]. The Elmann33

RNN has been shown to outperform analytical models constructed with Kalman filters [19] and, when provided with sufficient34

datasets, they also outperform the feed forward NNs [20][21][22].35

A historical draw back with the Jordan and Elmann RNNs was a vanishing gradient problem that would prevent training36

RNNs using longer sequences of data [23]. This problem was address by Hochreiter et al. with the creation of the Long37

Short-Term Memory (LSTM) RNN cell structure [24]. By introducing two internal structures, referred to as gates, to the RNN38

cell that is responsible for determine what information from previous timesteps is significant, the LSTM does not suffer from39

the vanishing gradient problem, allowing for longer sequences to be used. Recently, the LSTM has been applied successfully40

for predicting ship motion [25].41

The Gated Recurrent Unit (GRU) is an adaptation of the LSTM that has less weights that need to be trained when compared42

to the LSTM, making it easier to train and quicker to calculate [26]. It has been shown that GRU models outperform the43

Jordan RNN and perform on par with the LSTM [27]. The GRU models have been applied to predicting ship roll, pitch, and44

heave motions; where they were found to be comparable to the LSTM, though the GRU model was quicker to train [28].45

Further development on the RNN structure was done by dividing the RNN into two substructures that each resemble a46

full RNN [29]. The first substructure, named the encoder, takes the input signal and compacted the information into only the47

significant features that describe it, as determined by training. The second substructure, named the decoder, takes the results48

from the encoder and decompressed it to create the prediction. The combination of the encoder and decoder substructures,49

referred to as an autoencoder, improved English to French when compared to other machine translation methods. Additionally,50

the autoencoder could handle long sequences well and has found success at predicting vehicle trajectories [30]. The GRU51

autoencoder structure utilizes the strengths of the GRU RNN for sequence learning and prediction as well as the advantages52

of the divided autoencoder structure, and thus can be used to create a model which improves on the state-of-the-art for ship53

motion prediction.54

To the authors of this works best knowledge, the autoencoder RNN architecture has not been applied to the task of predicting55

ship motion. Additionally, most applications use NARX structures which instead of predicting full, multi-channeled signals for56

future ship motions. Data has also been limited when creating NN based models, with most datasets coming from a single set57

of measurements. Prior work has commented that the impact of environmental factors, such as wave height and wind speed,58
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should be considered when constructing NN based predictive models [13]. However, limit testing for NN models has also been59

minimal, with few authors including the impact of noise, varying sea state, and ship model in their analysis.60

The work presented in this paper seeks to improve and contribute to the state-of-the-art by applying an auto-encoder RNN61

structure with GRU cells to make multivariate predictions of future roll, pitch, and heave motion based on recently measured62

data. The models presented in this work are constructed to only make use of instantaneous roll, pitch, and heave measurements63

that would reflect those obtained from UAV mounted LIDAR sensors so that the models can be later implemented into an64

automatic landing system. The data sets used in this work are generated from a combination of 21 different simulations. A65

comparison with a single step-ahead NN NARX model, which is more common in literature, is performed to demonstrate66

the improved performance of the GRU autoencoder [11][12][13][14][15][18][28]. Lastly, the impacts and measurement noise,67

varying sea state, and changing ship models are considered in order to limit test the models and evaluate their ability to68

generalize performance under a range of application focused extremes with the intent of creating a single, once-trained NN69

model capable of handling a wide range of scenarios.70

The remainder of this paper is as follows: Section II introduces the construction of the datasets used in this work and71

represent the “problem” to be solved while Section III presents the formulation of three prediction models used to examine72

the problem and highlight their baseline performance. Section IV will show studies of the impact of noise, varying sea states,73

and changing ship models.74

II. DATA CONSTRUCTION: SHIPMO3D SIMULATIONS75

Neural Network models must be trained against sets of data which should be large and varied enough in order to fully76

describe the application scenario the model will perform in. If the training data is limited in some way, such as by being77

small or having data that are too similar, the performance of the NN will reflect the limited data and not the generalize well.78

Furthermore, attempting to use a NN model with data from a set unlike the one it was trained on is expected to negatively79

impact performance, potentially in ways with effects that cannot be easily predicted. Small data sets have been a limiting80

factor in developing NN predictive models for predicting ship motion. The work presented in this paper uses simulations from81

the validated ship motion modelling software ShipMo3D [5][31] to construct the training and validation datasets. Within the82

current study, LIDAR or similar measurements are not used as an input to the proposed system. Previous work has developed83

a method to determine the world frame ship motion when using a UAV mounted LIDAR system [3][2]. Thus, the current work84

uses the world frame ship motion simulations to assess the proposed system while the case studies, section IV, provide insight85

on external factors which impact measurement.86
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Fig. 1. [top] The roll (top row), pitch (middle row), and heave (bottom row) ship motions sampled from the ShipMo3D simulation where the ship was
travelling at 10 kt with an angle of attack of 120 deg. [bottom] A typical 15 sample that is extracted from the simulation that would be used as a single
input for a prediction model.

Each simulation use a 30 metre vessel and sea state 2 ocean conditions, ship speeds of 6 kn, 8 kn, and 10 kn and headings87

of 0, 30, 60, 90, 120, 150, and 180 degrees were used to create 21 simulations. The various combinations of ship speeds and88

headings provide a better representation of the general relationship of waves on the ship. Each simulation is ran for a total of89

6 minutes and is sampled at 10 Hz.90

Fig. 1(top) shows a full ShipMo3D simulation where the ship was travelling at 10 kt with a heading of 120 deg. Fig.91

1(bottom) shows a 15 s sample that would be use to construct a typical input for the prediction models. While ShipMo3D92

provided the full kinematics of the ship, only the pitch, roll, and heave motions are extracted for use in this work. Additionally,93

while this work is limited to roll, pitch, and heave measurements as the input and target signals any measurable signals, such94

as the rates and accelerations, may be used as inputs or targets. The models presented in this work will require that all input95

channels share the same sampling frequency and that all target channels share the same sampling frequency.96
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The individual channels are normalized separately in order to have zero mean and a variation of 1. The normalization is97

done for two reasons, firstly, normalizing features inputted into a Neural Network increases the numeric stability of training98

and improves the speed of convergence towards a minimum, and secondly, without the normalization the channels may take99

values on different scales. Normalizing the data so that each channel is on the same scale prevents errors in any one channel100

from dominating the others and adding bias to the training process. The data signals are normalized using101

x̂ =
x− µ√

σ2
, (1)

where x is original data point, µ and σ2 are the mean and variance calculated across all data points in all simulations, and102

x̂ is the new normalized data point. The mean values, across all 21 simulations, are near zero for roll, pitch, and heave. Prior103

to normalization the roll variance is σ2
roll = 0.624 deg2, the pitch variance is σ2

pitch = 0.0785 deg2, and the heave variance104

is σ2
heave = 4.784 × 10−3 m2 deg2. After normalization the simulation data will have a mean of zero and a variance of one105

when constructing the individual data sample pairs for training and testing.106

The input signal duration is chosen to be 15 s in order to ensure the measurements contain at least one peak wave period107

for up to sea state six [32], which is the highest sea state a UAV may attempt a vertical landing. The target signal duration is108

chosen to be 5 s, which is a typical descent for the UAV that allows for time to abort dangerous landings [2]. In most cases a109

NNs which is trained on more data will outperform NNs trained on less. In order to create the largest dataset possible, every110

continuous 20 s interval is extracted from the 21 simulations and used to construct input and target data pairs. In total, 121 800111

input-target data pairs are created. The data pairs are shuffled randomly and split into a training data set consisting of 80% of112

the total data, 97 440 data pairs, and a testing data set consisting of the remaining 20% of the total data, 24 360 data pairs.113

If the data were not shuffled a sampling bias towards a single simulation could negatively impact the batch gradient descent114

training process, leading to an under performing predictive model.115

The training data set is used to optimize the NN weights against a Mean Squared Error (MSE) loss function and validation116

data set is used to evaluate performance. Using the validation data set a comparison can be made between prior NN NARX117

based models and the proposed GRU autoencoder model.118

III. SHIP MOTION PREDICTION MODELS119

This section presents the structure of the modern RNN architecture, constructed for making multi-channel sequence-to-120

sequence predictions using an autoencoder structure and Gated Recurrent Unit (GRU) cell structure. The proposed GRU121

Autoencoder model is also compared to a more common feed forward Neural Network (NN) non-linear autoregressive122
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exogenous (NARX) model. All models were trained and tested using the Tensorflow [33] framework; however, any similar123

NN software toolkit would work.124

As the data used has a zero mean the NNs presented in this work do no include bias elements. While it is possible to125

include a bias in NN and allow training to conclude that the bias element must be zero in order have this property, it would126

be inefficient when compared to applying prior knowledge and forcing the bias to be zero.127

A. Neural Network NARX model128

Feed-forward Neural Networks (NNs) are data driven models that are capable of learning important features from a set of129

data in order to make accurate predictions. NNs can be used to construct nonlinear autoregressive exogenous (NARX) models130

which are commonly used in ship motion prediction models. Different NN NARX models can be constructed by varying131

hyperparameters such as the number of steps ahead, input values, and target values. Figure 2 shows the NN NARX model used132

in this work; the NN NARX uses roll r(t), pitch (p(t), and heave h(t) motions, represented by the combined value x(t) and133

flattened into a single vector, as the inputs. The NN has two sets of weights, one W1 in a dense hidden layer with a rectified134

linear unit (ReLU) activation function and a second W2 in the dense output layer. The total number of trainable parameters in135

the network is equal to sum of the sizes of W1 and W2. As the input and output vector sizes are determined by the data the136

only way to control the total number of trainable parameters is to adjust the number of hidden neurons, which is the columns137

and row size if W1 and W2 respectively.138

Only the measured values from the timesteps between t0, the starting time of the sampling window, and ts, the length of the139

sampling window are included in the input vector. The final output is a vector containing the roll, pitch, and heave motions of140

the ship at the next timestep. The oldest measurements in the input vector are removed and the new prediction is appended to141

the input vector in order to construct the next input. Iterating the prediction, removal, and appending process creates the NN142

NARX model which can be used to construct indefinitely long predictions.143

The NN NARX model is trained using batch gradient descent with a batch size of 32 and a learning rate of 1× 10−4. The144

chosen loss function is the Mean Squared Error (MSE) of normalized roll, pitch, and heave motions. Training is considered145

sufficient when the change in training loss is less than 1× 10−4. The NN NARX model trains quickly as it only computes 3146

values. However, since it is only predicting the ship motion at a single time step it may propagate errors when constructing147

long term predictions. The architecture of the NN NARX model does not consider the order of the inputs and therefore it may148

not be the ideal architecture for handling time dependent signals, such as ship motion. While the NN NARX model has been149

successful at predicting ship motion [11][12][13][14][15][18][28] the GRU Autoencoder model, which is designed to consider150

ordered inputs such as time signals, is expected to improve performance. Furthermore, the GRU Autoencoder trains against its151
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x(t0 + ts + 1)

x(t0 + ts)

x(t0 + ts − 1)

x(t0 + 1)

x(t0)

x(t0 − 1)

Dense
ReLU
W1

Dense
Linear
W2

x(t0 + ts + 1)

Fig. 2. A visual that describes the information flow in the NN NARX model. The inputs x(t) consist of the roll r(t), pitch p(t), and heave h(t) motions.
Each prediction is made using information from the sampling time between t0 and t0 + ts. After each prediction the oldest measurements are removed from
the input vector and the predictions are appended to the input vector. Iterating the prediction and cycling allows for long term predictions using the single
model.

ability to make full signal predictions which naturally reduces error from the predictions that the NN NARX would introduce.152

It is believed that the GRU Autoencoder model will outperform the NN NARX model by a significant amount.153

B. GRU Autoencoder154

Recurrent Neural Networks (RNNs) are a class of Neural Networks that are structured to considered the order of inputs.155

RNNs are built from one or more cell structures that are provided inputs in a sequential manner and produce outputs at each156

step. They are meant to handle sequences of information, such as the ship motion time signals. Unlike the NN NARX model157

in Sec. III-A an RNN can be structured to create sequence outputs, such as full time signal predictions of ship motion.158

RNN cells take up to two inputs, the current time signal and the prior cell state, and provides up to two outputs, the current159

prediction and the current cell state, for each time step. At each time step the information being passed forward in time,160

referred to as the cell state, will be updated using the previous cell state. Figure 3 shows the autoencoder RNN model, which161

segments the RNN into two components. The first component is the encoder, which will take in the signal inputs xt and cell162

states at each time step, pass the cell states forward, but not return any signal. The second component is the decoder, where163

the cells will only take prior cell states as their inputs, pass the cell states forward, and return a signal at the current time step.164

The encoder and decoder use separate sets of weights and allow training to let the data determine which components of the165

inputs are most important and how those components form the predictions xt+n. The cell states are used to pass information166

forward through time and are marked by arrows in Figure 3167

Each of the cells shown in Fig. 3 represent a recurrent unit cell which defines the type of RNN that is being used. The older168

Elmann and Jordan RNNs created cell states that would directly pass information forward with each time step. However, the169

GRU cell modifies the cell state before passing the information forward. The GRU cell structure shown in Fig. 4 is made with170
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Encoder
Cell

Encoder
Cell

Encoder
Cell

Decoder
Cell

Decoder
Cell

x1 x2 x3

x3+1 x3+2

Encoder Decoder

Fig. 3. The structure of an Autoencoder RNN model that uses three timesteps in its input sequence and calculates two timesteps in its output sequence. The
Encoder is responsible only for determining what is important from the inputs xt and does not produces predictions at any timestep. The Decoder takes the
important information from the encoder and uses it to produce the outputs xt+n and does not consider any input information directly.

Prior State

Input Signal

Forget
Gate

Update
Gate

σ
New State

Cell Output

Fig. 4. A high-level visualization of how a GRU cell is structured. Both the current input and prior state are used in both the Forget and Update gates. Each
gate has its own weights and will produce independent values which are used as inputs for a sub-function, marked by σ. The result is then passed forward
as a new state and as the cell output for that timestep. Each of the Encoder and Decoder boxes in Fig. 3 are this cell structure.

two gate structures that each contain a set of trainable weights. The forget gate determines what information from the prior171

cell state is significant at the current time step and suppresses the information that is not relevant. The update gate determines172

what information from the current input should be emphasized in order to calculate the new cell state. The outputs of both173

gates are combined together and passed through a sigmoid activation function in order to create the new cell state.174

175

The GRU Autoencoder was trained using nearly the same methodology as the NN NARX model was in Sec. III-A. While176

the NN NARX model was trained for its ability to predict only the most immediate timestep, consisting of 3 values for roll,177

pitch, and heave, the GRU Autoencoder model was trained for its ability to predict full signals for each motion over a period178

of 5s at 10 Hz for a total of 150 values. The GRU Autoencoder model will almost certainly contain more trainable weights179

than the NN NARX model and as a consequence, will take longer to train; however, once trained it will perform significantly180

better.181

182
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C. Model Comparison183

The performance of each of the two models described above were compared against each other by the Mean Squared Error184

(MSE). As described in Sec. II the three signal channels are normalized separately and are dimensionless. The MSE value is185

therefore also dimensionless and is calculated as the MSE of all channels. Since the objective is to make full signal predictions186

the MSE is calculated over all timesteps in the target signals. The GRU Autoencoder model inherently makes full signal187

predictions and the NN NARX model is iterated until the full output signal has been constructed.188

As data driven models, the NN NARX model and the GRU Autoencoder model has a large number of parameters to select in189

order to optimize predictions against the training dataset. Both the NN architecture and the number of parameters will impact190

the performance of the models. A set of 30 sizes of weights were tested for the NN NARX and 15 layer sizes were tested for191

the GRU Autoencoder. All other hyperparameters are held constant as their impact on performance would be minimal when192

compared to the difference between the performance of the two architectures and the primary focus of the current study is to193

evaluate the advantages of the modern GRU Autoencoder NN structure. The MSE on the testing dataset is show in Fig. 5;194

the red circles show the testing MSE for the NN NARX models and the blue squares shows the testing MSE for the GRU195

Autoencoder models.196

For the NN NARX there is an upwards trend in the testing MSE as the number of trainable parameters increases, indicating197

that the NN NARX model has a tendency to over-fit its parameters. The best performing NN NARX model had a layer size of198

16, corresponding to 7248 trainable parameters, and a testing MSE value of 0.3747. The worst performing NN NARX model199

had a layer size of 232, corresponding to 105 096 trainable parameters, and a testing MSE value of 2.687.200

The GRU autoencoder models did not suffer from over-fitting as the NN NARX models did and showed a slight decreasing201

trend in testing MSE values as the number of trainable parameters increases. The best performing GRU Autoencoder model202

had a layer size of 120, corresponding to 88 920 trainable weights, and a testing MSE value of 0.0495. The worst performing203

GRU Autoencoder model had a layer size of 24, corresponding to 3960 trainable parameters, and a testing MSE value of204

0.1515.205

All of the GRU Autoencoder models outperformed all of the NN NARX models, which is attributed to the data driven nature206

of the GRU Autoencoder model allowing to learn the ship dynamics from the data directly, the architecture of the model which207

considers time ordered inputs, and being trained against making full time signals instead of single timesteps. The proposed208

GRU Autoencoder is arguably the better performing model for predicting ship motion.209

For the remainder of the work presented in this paper the best performing NN NARX model with layer size of 16 and210

a corresponding 7248 trainable parameters is chosen to evaluate performance. The GRU Autoencoder model with layer size211
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Fig. 5. The testing MSE values for various weight sizes sampled for the NN NARX model, red circles, and the GRU Autoencoder, blue squares. Every GRU
Autoencoder models trained out performed every NN NARX model trained regardless of the number of trainable weights.

of 32, corresponding to 6816 trainable parameters and a testing MSE of 0.1243 is used to evaluate the GRU Autoencoder212

models. The increase in performance by adjusting the number of parameters in the GRU Autoencoder is notably less than the213

difference in performance between the GRU Autoencoder models and NN NARX models. In order to examine the performance214

differences between the two models is due to the choice of architecture, the GRU Autoencoder model with the closest number215

of trainable parameters to the best NN NARX model is chosen to represent the GRU Autoencoder models.216

A sample prediction of the NN models is shown in Fig. 6. The solid black lines mark the input signals that the predictive217

models are provided and the solid green lines are the target signal that the models are attempting to reproduce. The red218

dashed line is the prediction made by the NN NARX model and the blue dash-dotted line is the prediction made by the GRU219

Autoencoder. Both the NN NARX and GRU Autoencoder models are able to make good predictions on the roll channel with220

the GRU Autoencoder predicting most of the channel to high accuracy and the NN NARX only losing accuracy after the221

second local minimum. The pitch and heave channels show the advantage of the GRU Autoencoder model over the NN NARX222

model. In both channels the NN NARX makes a large deviation from the target signal while the GRU Autoencoder remains223

much closer. As the GRU Autoencoder model is trained to value all time steps equally it is common for minor continuity224

issues to appear in the first few timesteps of the prediction, as seen in the pitch signal. While the GRU Autoencoder corrects225

the error from the discontinuity it must be considered for applications using real-time predictions.226

The data used for training and testing purposes will likely not reflect the data observed in application. Varying factors such227

as noise in the signal measurement, changing sea states, and different ship models must be expected. As changing the nature of228

the data will impact the data driven models it is important to understand how applying the GRU Autoencoder model different229

situations affects performance.230
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Fig. 6. A typical sample prediction for the NN NARX, the red dashed line, and the GRU Autoencoder, the blue dash-dotted line. The input signal provided
to the models is shown as the solid black line and the models are attempting to predict the future motion shown by the solid green line.

IV. CASE STUDIES231

The data measured in application scenarios is rarely identical to the data acquired a priori. Measurement noise, varying232

sea state levels, and different ship model dynamics can be expected and should be accounted for when implementing a ship233

motion prediction routine. As the NN NARX and GRU Autoencoder models require training against prior data to function234

it is critical to understand the impact of how these models react when presented with different data. While transfer learning235

methods may be applied to account for these differences the process of retraining during application can be computationally236

expensive and time consuming. This section presents a study of how noise, sea state, and ship model impact the performance237

of the NN NARX and GRU Autoencoder models and aims to assist in constructing guidelines for creating a model which can238

generalize a wide range of scenarios natively.239

A. The Impact of Noise240

The data described in Section II does not contain noise and so may not reflect in-situ data well as sensor data is rarely noise241

free. Thus, we seek to understand how the NN models presented handle noise similar to real sensor data. Noise is added to242

the simulated sea state 2 30 m vessel input signals by applying random, normally distributed values with zero mean and a243

variance of σ2. The noise levels are set to be equal across each of the normalized motion channels and cover a range up to244

σ2 = 1.0, which correspond to pitch, roll, and heave variances of 0.079 deg 2, 0.624 deg2, and 4.78× 10−3 cm2 respectively.245

Figure 7 shows how the NN models perform as the noise level increases, as judged by the MSE value on the full testing246

dataset. The solid blue line shows the best performing NN NARX model and the dash-dotted red line shows the selected GRU247

Autoencoder model.248
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Fig. 7. The MSE values for the NN NARX model, shown by the dashed red line, and the GRU Autoencoder model, shown by the blue dash-dotted line, for
various levels of noise in the testing inputs. As both models were trained without noise neither model is able to handle noise well.

Figure 7 shows how the testing MSE value varies when they modes are presented with noisy inputs; noting that the models249

in the figure are trained with noise free data. The NN NARX model, red dashed, and the GRU Autoencoder, blue dash-dotted,250

both have increasing testing MSE values as the noise level increases. For low levels of noise, below 0.35, the NN NARX has251

a lower MSE when compared to the propsed GRU Autoencoder model. The advantage of the NN NARX is likely due to the252

iterative calculation being able to correct well for small levels of noise. Unlike the NN NARX, whose MSE value increases253

exponentially as the noise increases beyond 0.35, the GRU Autoencoder MSE increases logarithmiclally. The GRU Autoencoders254

better performance on inputs with higher noise is due to training against full signals instead of individual timesteps, which255

allows the GRU Autoencoder to extract the underlying motion in the measured noise while making predictions.256

For roll, pitch, and heave Fig.8 and 9 show typical sample for how the NN models perform when presented with a lower257

noise level of 0.2 and a higher noise level of 1.0 respectively. The true input signal is marked by the solid black line and258

the measured signal, which contains noise, is marked by the solid grey line. As seen in Fig. 8 the presence of noise has a259

dramatic affect on the performance of both NN models. In each of the roll, pitch, and heave motions the NN NARX model260

propagated the noise into its predictions. The GRU Autoencoder did not show noise like behaviour in its predictions, but as261

shown in Fig. 7, the quality of predictions is lower than the NN NARX. With the higher noise level in Fig. 9 the NN NARX has262

difficulties preventing itself from propagating errors, which are noted by the large overshoots in each of the motion channels. In263

comparison, the GRU Autoencoder in Fig. 9 stays close to the target motions, although with unsatisfactory prediction quality.264

As NN models are data driven their prediction capabilities will be dependant on how much the training dataset matches the265

data measured in application. By including noise in the training data a NN model can learn to separate the underlying motion266

when making predictions. Fig. 10 and Fig. 11 plots the testing MSE of the NN models after being trained on data with a267
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Fig. 8. A typical sample of the prediction made from the NN models, trained without noise, on inputs containing noise with a normalized variance of 0.2,
which is a noise level where the NN NARX is expected to outperform the GRU Autoencoder, as shown in Fig. 7.

Fig. 9. A typical sample of the prediction made from the NN models, trained without noise, on inputs containing noise with a normalized variance of 1. At
higher noise levels, such as shown here, the GRU Autoencoder is expected to outperform the NN NARX, as shown in Fig. 7.

noise level of σ2 = 0.2 and a high noise level of σ2 = 1.0 respectively. The red dashed line marks the performance of the268

NN NARX, the blue dash-dotted line marked the performance of the GRU Autoencoder. The characteristic of exponentially269

increasing testing MSE value for the NN NARX is visible and logarithmically increasing testing MSE for the GRU Autoencoder270

can be seen. The results of Fig. 10 and Fig. 11 the NN NARX does not outperform the GRU Autoencoder regardless of the271

noise level, indicating that the GRU Autoencoder architecture and training is better able to extract the underlying motions.272

Table I shows the testing MSE values for the NN models when trained and tested on various noise levels. The NN NARX273

and GRU Autoencoder models performed better when trained with noise than when trained without. When trained without274

noise and presented with data that contained no noise the NN NARX and GRU Autoencoder models had MSE values of275

0.3774 and 0.1242, respectively. When the training data had a noise level of σ2 = 0.2 and the testing data contained no noise,276
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Fig. 10. The testing MSE values for the NN models after being retrained with data containing noise with normalized variance of 0.2. The NN NARX model,
shown by blue cross, keeps its exponentially increasing trend. The GRU Autoencoder model, shown by red crosses, keeps its logarithmically increasing trend,
though leveling off at a much higher noise level than when not trained with noise. Both NN models perform better that when not trained with noise and the
GRU Autoencoder out performs the NN NARX at all noise levels.

Fig. 11. The testing MSE values for the NN models after being retrained with data containing noise with normalized variance of 1.0. The NN NARX model,
shown by blue cross, keeps its exponentially increasing trend. The GRU Autoencoder model, shown by red crosses, keeps its logarithmically increasing trend,
though leveling off at a significantly higher noise level than when not trained with noise. Both NN models perform better that when trained with little to no
noise and the GRU Autoencoder out performs the NN NARX at all noise levels by a wide margin.

the NN NARX and GRU Autoencoder models had testing MSE values of 0.2612 and 0.1885, respectively. The noise trained277

NN NARX demonstrated an improvement, even when not evaluating noisy inputs. In comparison the GRU Autoencoder had278

a decrease in performance.279

When trained with data containing a noise level of σ2 = 1.0 and tested on data with the same level of noise, the NN NARX280

and GRU Autoencoder had MSE values of 0.4483 and 0.3243 respectively. Compared to the models that were not trained on281

noise, the improvement in performance is two orders of magnitude.282

When presented with testing data that contained no noise the MSE values for the NN NARX and GRU Autoencoder that283

were trained on data with a noise level of σ2 = 1.0 were 0.3729 and 0.2606 respectively. When presented with testing data284
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Fig. 12. A typical sample of the prediction made from the NN models, trained with noise with a normalized variance of 1.0 on inputs containing noise at the
same level. Both the NN NARX models are able to extract the underlying motions and make predictions despite the high level of noise present in the inputs.

TABLE I
THE TESTING MSE VALUES FOR THE NN NARX AND GRU AUTOENCODER MODELS WHEN TRAINED AND TESTED ON VARIOUS LEVELS OF NOISE.
TRAINING THE MODELS WITH NOISE LOWERS PERFORMANCE ON TESTING SAMPLES WITHOUT NOISE BUT GREATLY INCREASES PERFORMANCE ON

TESTING SAMPLES WITH NOISE.

Testing Noise Level σ2

Model Training Noise Level σ2 0 0.2 1.0

GRU Autoencoder
0 0.1242 4.274 10.19
0.2 0.1885 0.2109 0.6776
1.0 0.2606 0.2629 0.3243

NN NARX
0 0.3774 2.367 49.28
0.2 0.2612 0.2960 1.176
1.0 0.3729 0.3759 0.4483

that contained a noise level of σ2 = 0.2 the high noise trained NN NARX and GRU Autoencoder models had testing MSE285

values of 0.3759 and 0.2629, respectively. When presented with testing data that contained a noise level of σ2 = 1.0 the high286

noise trained NN NARX and GRU Autoencoder models had testing MSE values of 0.4483 and 0.3243, respectively.287

The same sample from Fig. 9 is shown again in Fig. 12, but with predictions made from NN models that have been trained288

on the input noise level of σ2 = 1.0 and the NN models perform significantly better when trained with noise when compared289

to when they are trained without noise, as was the case in Fig. 9.290

The NN model behaviour when using datasets that contain noise indicate that NN based motion prediction models should291

include noise in training. Furthermore, the noise included should be at the same level, or above, what would be encountered in292

application. When trained with noise the GRU Autoencoder model outperformed the more commonly used NN NARX model,293

showing a clear advantage of the proposed prediction model. For the current application, the results show that the common294

practice of pre-filtering the input signals is not necessary as the NN models are able account for the noise in the data if properly295

trained.296
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Fig. 13. The NN models are both trained on sea state 2 data and the testing MSE for sea states 2 through 6 are shown. The GRU Autoencoder model, shown
as solid blue in the left column, out performs the NN NARX, shown as hollow red bars in the right hand column, for all sea states. As expected, the more
complicated sea state 6 waves are the hardest to predict for both NN models.

B. The Impact of Sea State297

The NN models presented in Sec. III were trained and tested using data from sea state 2 simulations. In practical applications298

various sea states will be experienced by a system. Figure 13 shows the testing MSE values for sea states 2 through 6 for the299

two NN models. As suggested by Fig. 13, the GRU Autoencoder model outperforms the NN NARX model in all sea states.300

At sea state 2 the NN NARX had a testing MSE of 0.3774 and the GRU Autoencoder had a testing MSE of 0.1242. At sea301

state 6 the NN NARX had a testing MSE of 1.620 and the GRU Autoencoder had a testing MSE of 0.5774.302

The overall impact of increasing sea state was not as significant as introducing noise. Increasing the sea state makes the303

signal inputs more complicated by changing both the range of possible amplitudes and adding additional underlying modes. The304

reason that increasing sea state did not impact the models performance as much as adding noise is due to of the normalization305

of Eq. (1). The normalization brings range of possible values in higher sea states to within a specified, dimensionless range,306

that is similar among all sea states. By normalizing the data the only increase in signal complexity comes from the increase307

in underlying modes.308

From Fig. 13 when the NN models are trained on only the simpler sea state 2 data they are not able to handle the more309

complicated sea state 6 data. The NN models can be set up to handle multiple sea states simultaneously by including multiple310

sea states in the training data. Fig. 14 shows the NN NARX, in red hollow bars, and GRU Autoencoder, inblue solid bars,311

models after they were retrained to include all data from sea states 2 through 6. The NN NARX model had an average testing312

MSE value of 1.136, with the highest value of 1.315 occurring for the sea state 6 data and the lowest value of 1.052 occurring313

for the sea state 4 data. The GRU Autoencoder model had a significantly lower average testing MSE of 0.1306, with the314
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Fig. 14. The NN models after being retrained on data that contains equal portions from each sea state 2 through 6. The GRU Autoencoder model, shown
as solid blue in the left column, out performs the NN NARX, shown as hollow red bars in the right hand column, for all sea states. Unlike when trained on
only one sea state, both NN models perform roughly equally for all sea states.

highest value of 0.1674 occurring for the sea state 6 data and the lowest value of 0.1153 occurring for the sea state 2 data.315

By including the additional sea state data in training both NN models were able to perform consistently for all of the sea316

states that were included in training. However, the NN NARX performance significantly decreased on sea states 2 through 5317

and marginally increased on sea state 6. In comparison the GRU Autoencoder saw marginal increases in performance for the318

low sea states while also gaining large increases on the higher sea states. The GRU Autoencoder demonstrates a significant319

advantage of the NN NARX model for predicting across varying sea states, which agrees with the results presented in Fig. 5.320

As the data used for training is normalized applications will require some amount of initialization in order to measure enough321

data to calculate the variance that should be used to normalize the measured data. Once the variance is calculated the NN322

models will be ready for use.323

C. The Impact of Ship Model324

The NN models from Sec. III were trained using data from simulations of a 30m. vessel. Since applications may require325

multiple or different ship models which could have significantly different dynamics it is important to understand how changing326

ship models will impact the NN models.327

Using ShipMo3D a second dataset was created using a 100m frigate. As the 100m frigate is much larger than the 30m vessel328

and is not expected to move much in sea state 2 the NN NARX and GRU Autoencoder models are retrained using data from329

the 30m vessel in sea state 4. Table II shows the testing MSE values for the NN NARX model and the GRU Autoencoder330

model for the 30m vessel used to create the training data and the new data from the 100m vessel, all at sea state 4. The NN331

NARX had testing MSE values of 0.5912 and 3.976 for the 30m and 100m vessels respectively while the GRU Autoencoder332
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Vessel Size
Model Training Data 30m 100m

GRU Autoencoder 30m only 0.1458 0.9483
30m & 100m 0.1524 0.01156

NN NARX 30m only 0.5912 3.976
30m & 100m 0.3782 0.1489

TABLE II
THE NN MODELS ARE TRAINED ON DATA FROM SIMULATIONS OF A 30M VESSEL. THE GRU AUTOENCODER MODEL, SHOWN IN RED AS THE LEFT

COLUMN, OUT PERFORMS THE NN NARX, SHOWN IN BLUE AS THE RIGHT HAND COLUMN, FOR ALL SEA STATES. AS IS EXPECTED, BOTH NN MODELS
PERFORM BETTER ON DATA THAT REFLECTS THE TRAINING DATA THAN ON DATA THAT DOES NOT.

had testing MSE values of 0.1458 and 0.9483 for the 30m and 100m vessels respectively. As demonstrated in Sec. III the333

GRU Autoencoder model continues to outperform the NN NARX model. The results match expectations and the NN models334

perform better on the 30m vessel than the 100m vessel.335

Another set of NN models were trained using data from both ship model datasets as part of the training and the results336

are also shown in Table II. The NN NARX had testing MSE values of 0.3782 and 0.1489 for the 30m and 100m vessels337

respectively. The GRU Autoencoder model outperformed the NN NARX with testing MSE values of 0.1524 and 0.01156 on338

the 30m and 100m vessels respectively. Unlike in Sec. IV-A and Sec. IV-B the NN models did not generalize in a way that339

balanced performance between the training datasets. Instead, training optimized the loss by focusing on optimizing predictions340

from the slower moving 100m vessel. However only the GRU Autoencoders ability to predict the 30m vessel motions was341

lowered,indicated by the slight rise of 0.0066 in testing MSE. The NN NARX improved on its ability to predict ship motion,342

indicated by its decrease in testing MSE of 0.2130 and 3.827 for the 30m and 100m vessels, respectively. The GRU Autoencoder343

saw a decrease in testing MSE of 0.9368 when predicting the 100m vessel.344

Overall, the GRU Autoencoder performance remains superior performing model in comparison to the NN NARX model.345

However, as suggested by the near equal 30m vessel testing MSE values in Table II, there may be no advantage to training346

using multiple ship models unless the application requires it.347
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