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Recurrent U RU) cells and an auto-encoder architecture in order to predict a ship’s motion. The proposed GRU Autoencoder

model is comparediagainst the more common feed forward Neural Network (NN) non-linear autoregressive exogenous (NARX)
model. Both NN models are tested for robustness by studying the impact that noise, sea state, and ship model has on the overall
performance. It was found that the GRU Autoencoder model outperforms the NN NARX model in almost all scenarios and

was more robust. Additionally, guidelines for creating a training dataset that will create more robust prediction models are also

presented.
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I. INTRODUCTION

Ships in the open ocean environment are expected to be able to operate in a wide range of ocean conditions. Ocean waves
will induce pitching, rolling, and heaving motions on the ship which will negatively impact on-board operations. The ability to
make quick and accurate predictions to the ships motion is important for tasks such as safely operating shipboard cranes [1]]
or vertical landings on the deck [2]. The roll, pitch, and heave motions can be measured using one or more sensors in order
to construct time signals which a signal prediction model can use to estimate future ship motion v:

This work seeks to improve the state-of-the-art for ship motion prediction methods appli utomating Uninhabited

predicting s ch, and heave motion [8]. Other methods such as Prony analysis [9] and variant ellipsoid methods [4]

have also been appliéd to predicting ship motion.

While the models listed above have all found success there is potential for improvement in data driven models which use
measured or simulated data in order to create a prediction model tailored to a specific problem. Montans et al. [10] published
a review of data driven approaches in a wide range of engineering applications and noted that computational power and data
availability area increasing and will create opportunities for new approaches to existing problems. Neural Networks (NN) are
a form of data driven prediction models which have been applied to ship motion prediction and are becoming increasingly

common. NNs have been used to predict ship and roll motions as well the ship heave motion [14]|[13].
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Feed forward NNs are adept at performing predictive tasks, but were mainly developed in the 1980s and there has been
significant advances to NNs since. Recurrent Neural Networks (RNNs) [16][17] are an adaptation of NNs that use recurring
connections to the same sets of weights to understand and make use of ordered data such as time signals, text, speech, and
music. Both the Elmann and Jordan RNN architectures have been applied to predicting ship motion [18][19]. The Elmann
RNN has been shown to outperform analytical models constructed with Kalman filters [19] and, when provided with sufficient

datasets, they also outperform the feed forward NNs [20][21][22].

A historical draw back with the Jordan and Elmann RNNs was a vanishing gradient probl would prevent training

cell that is responsible for determine what information from previous timesteps 1 does not suffer from

the vanishing gradient problem, allowing for longer sequences to be used. R ly, t TM has been applied successfully

for predicting ship motion [25].

The Gated Recurrent Unit (GRU) is an adaptation of the LS gights that need to be trained when compared

Further development on the RN fdividing the RNN into two substructures that each resemble a

full RNN [29]]. The first substr takes the input signal and compacted the information into only the

the autoenco andle long sequences well and has found success at predicting vehicle trajectories [30]. The GRU

autoencoder struc utilizes the strengths of the GRU RNN for sequence learning and prediction as well as the advantages
of the divided autoencoder structure, and thus can be used to create a model which improves on the state-of-the-art for ship
motion prediction.

To the authors of this works best knowledge, the autoencoder RNN architecture has not been applied to the task of predicting
ship motion. Additionally, most applications use NARX structures which instead of predicting full, multi-channeled signals for

future ship motions. Data has also been limited when creating NN based models, with most datasets coming from a single set

of measurements. Prior work has commented that the impact of environmental factors, such as wave height and wind speed,
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should be considered when constructing NN based predictive models [13]. However, limit testing for NN models has also been
minimal, with few authors including the impact of noise, varying sea state, and ship model in their analysis.

The work presented in this paper seeks to improve and contribute to the state-of-the-art by applying an auto-encoder RNN
structure with GRU cells to make multivariate predictions of future roll, pitch, and heave motion based on recently measured
data. The models presented in this work are constructed to only make use of instantaneous roll, pitch, and heave measurements

that would reflect those obtained from UAV mounted LIDAR sensors so that the models can be 1

implemented into an
automatic landing system. The data sets used in this work are generated from a combination different simulations. A
the improved performance of the GRU autoencoder [11][12][13][14][15][18][28]. Lastly, the urement noise,
varying sea state, and changing ship models are considered in order to limit valuate their ability to
generalize performance under a range of application focused extremes with reating a single, once-trained NN
model capable of handling a wide range of scenarios.

The remainder of this paper is as follows: Section [l in ion of the datasets used in this work and

ulation of three prediction models used to examine

studies of the impact of noise, varying sea states,

STRUCHION: SHIPMO3D SIMULATIONS

Neural Network model i i ts of data which should be large and varied enough in order to fully
describe the applicatio ill perform in. If the training data is limited in some way, such as by being
small or havinggdata™t imilar, the performance of the NN will reflect the limited data and not the generalize well.
o use a NN model with data from a set unlike the one it was trained on is expected to negatively
impact performa potentially in ways with effects that cannot be easily predicted. Small data sets have been a limiting
factor in developing predictive models for predicting ship motion. The work presented in this paper uses simulations from
the validated ship motion modelling software ShipMo3D [5]|[31] to construct the training and validation datasets. Within the
current study, LIDAR or similar measurements are not used as an input to the proposed system. Previous work has developed
a method to determine the world frame ship motion when using a UAV mounted LIDAR system [3]][2]. Thus, the current work

uses the world frame ship motion simulations to assess the proposed system while the case studies, section [[V] provide insight

on external factors which impact measurement.
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ShipMo3D Simulation of the 30m Frigate
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Fig. 1. [top] The roll (top row), pitch (mi row) ship motions sampled from the ShipMo3D simulation where the ship was
travelling at 10 kt with an angle of attack cal 15 sample that is extracted from the simulation that would be used as a single

input for a prediction model.

Each simulation use" 2 ea state 2 ocean conditions, ship speeds of 6 kn, 8 kn, and 10 kn and headings

6 minutes and 1S{sampled at 10 Hz.

Fig. [T(top) shows afull ShipMo3D simulation where the ship was travelling at 10 kt with a heading of 120 deg. Fig.
[[[bottom) shows a 15 s sample that would be use to construct a typical input for the prediction models. While ShipMo3D
provided the full kinematics of the ship, only the pitch, roll, and heave motions are extracted for use in this work. Additionally,
while this work is limited to roll, pitch, and heave measurements as the input and target signals any measurable signals, such

as the rates and accelerations, may be used as inputs or targets. The models presented in this work will require that all input

channels share the same sampling frequency and that all target channels share the same sampling frequency.
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The individual channels are normalized separately in order to have zero mean and a variation of 1. The normalization is
done for two reasons, firstly, normalizing features inputted into a Neural Network increases the numeric stability of training
and improves the speed of convergence towards a minimum, and secondly, without the normalization the channels may take
values on different scales. Normalizing the data so that each channel is on the same scale prevents errors in any one channel

from dominating the others and adding bias to the training process. The data signals are normalized using

ey

oints in all Simulations, and

Z is the new normalized data point. The mean values, across all 21 simulations, itch, and heave. Prior

2

to normalization the roll variance is o7,

, = 0.624 deg?, the pitch variance 1 - 785 deg?, and the heave variance

is 07_,,. = 4.784 x 1073 m? deg?. After normalization the sim
when constructing the individual data sample pairs for training
The input signal duration is chosen to be 15 s in g g measurements contain at least one peak wave period

for up to sea state six [32], which is the highest

g to an under performing predictive model.
The training data is used to optimize the NN weights against a Mean Squared Error (MSE) loss function and validation
data set is used to evaluate performance. Using the validation data set a comparison can be made between prior NN NARX

based models and the proposed GRU autoencoder model.

III. SHIP MOTION PREDICTION MODELS

This section presents the structure of the modern RNN architecture, constructed for making multi-channel sequence-to-
sequence predictions using an autoencoder structure and Gated Recurrent Unit (GRU) cell structure. The proposed GRU

Autoencoder model is also compared to a more common feed forward Neural Network (NN) non-linear autoregressive
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exogenous (NARX) model. All models were trained and tested using the Tensorflow [33] framework; however, any similar
NN software toolkit would work.

As the data used has a zero mean the NNs presented in this work do no include bias elements. While it is possible to
include a bias in NN and allow training to conclude that the bias element must be zero in order have this property, it would

be inefficient when compared to applying prior knowledge and forcing the bias to be zero.

A. Neural Network NARX model

hyperparameters such as the number of steps ahead, input values, and targe . NN NARX model used
in this work; the NN NARX uses roll 7(t), pitch (p(t), and heave h(égmmoti y the combined value z(t) and

flattened into a single vector, as the inputs. The NN has two sg dense hidden layer with a rectified

the input vectord
NARX mq

The NN NA odel is trained using batch gradient descent with a batch size of 32 and a learning rate of 1 x 10~%. The
chosen loss function e Mean Squared Error (MSE) of normalized roll, pitch, and heave motions. Training is considered
sufficient when the change in training loss is less than 1 x 10~%. The NN NARX model trains quickly as it only computes 3
values. However, since it is only predicting the ship motion at a single time step it may propagate errors when constructing
long term predictions. The architecture of the NN NARX model does not consider the order of the inputs and therefore it may
not be the ideal architecture for handling time dependent signals, such as ship motion. While the NN NARX model has been
successful at predicting ship motion [T11][12][13][T4][T3][18[28]] the GRU Autoencoder model, which is designed to consider

ordered inputs such as time signals, is expected to improve performance. Furthermore, the GRU Autoencoder trains against its
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Fig. 2. A visual that describes the information flow in the NN NARX model. The inputs x(t) consist of the
Each prediction is made using information from the sampling time between to and to + ts. After each prediction
the input vector and the predictions are appended to the input vector. Iterating the prediction and cycling allows
model.

(t), pitch p(t heave h(t) motions.
Idest measure are removed from

ability to make full signal predictions which naturally reduces error from t i ARX would introduce.

It is believed that the GRU Autoencoder model will outperform the, ignificant amount.

B. GRU Autoencoder

Recurrent Neural Networks (RNNs) are a class @ s at are structured to considered the order of inputs.

segments
states at each p, pass the cell states forward, but not return any signal. The second component is the decoder, where
the cells will only ta ior cell states as their inputs, pass the cell states forward, and return a signal at the current time step.
The encoder and decoder use separate sets of weights and allow training to let the data determine which components of the
inputs are most important and how those components form the predictions z;,. The cell states are used to pass information
forward through time and are marked by arrows in Figure [3]

Each of the cells shown in Fig. 3] represent a recurrent unit cell which defines the type of RNN that is being used. The older

Elmann and Jordan RNNs created cell states that would directly pass information forward with each time step. However, the

GRU cell modifies the cell state before passing the information forward. The GRU cell structure shown in Fig. ] is made with
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Encoder is responsible only for determining what is important from the inputs z; and does not produces predictions at any ti ep. The Decoder takes the
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Fig. 4. A high-level visualization of how a GRU cell is structt rrent input and prior state are used in both the Forget and Update gates. Each
gate has its own weights and will produce independe rsed as inputs for a sub-function, marked by o. The result is then passed forward
as a new state and as the cell output for that timest der and Decoder boxes in Fig. E] are this cell structure.

The GRU oder was trained using nearly the same methodology as the NN NARX model was in Sec. [[II-A] While
the NN NARX mo s trained for its ability to predict only the most immediate timestep, consisting of 3 values for roll,
pitch, and heave, the GRU Autoencoder model was trained for its ability to predict full signals for each motion over a period
of 5s at 10 Hz for a total of 150 values. The GRU Autoencoder model will almost certainly contain more trainable weights

than the NN NARX model and as a consequence, will take longer to train; however, once trained it will perform significantly

better.
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C. Model Comparison

The performance of each of the two models described above were compared against each other by the Mean Squared Error
(MSE). As described in Sec. [[l] the three signal channels are normalized separately and are dimensionless. The MSE value is
therefore also dimensionless and is calculated as the MSE of all channels. Since the objective is to make full signal predictions

the MSE is calculated over all timesteps in the target signals. The GRU Autoencoder model inherently makes full signal

predictions and the NN NARX model is iterated until the full output signal has been constructed.

As data driven models, the NN NARX model and the GRU Autoencoder model has a large n parameters to select in
order to optimize predictions against the training dataset. Both the NN architecture and eters will impact
the performance of the models. A set of 30 sizes of weights were tested for the NN NARX ai layer sizeS were tested for
the GRU Autoencoder. All other hyperparameters are held constant as their imp uld be minimal when

compared to the difference between the performance of the two architectures the p focus of the current study is to

evaluate the advantages of the modern GRU Autoencoder NN e MS the testing dataset is show in Fig. [5}

the red circles show the testing MSE for the NN NARX mod es shows the testing MSE for the GRU
Autoencoder models.

For the NN NARX there is an upwards trend { SE as the fiumber of trainable parameters increases, indicating

ing to 88 920 trainable weights, and a testing MSE value of 0.0495. The worst performing

GRU Autoe e ddel had a layer size of 24, corresponding to 3960 trainable parameters, and a testing MSE value of

All of the GRU Autoencoder models outperformed all of the NN NARX models, which is attributed to the data driven nature
of the GRU Autoencoder model allowing to learn the ship dynamics from the data directly, the architecture of the model which
considers time ordered inputs, and being trained against making full time signals instead of single timesteps. The proposed
GRU Autoencoder is arguably the better performing model for predicting ship motion.

For the remainder of the work presented in this paper the best performing NN NARX model with layer size of 16 and

a corresponding 7248 trainable parameters is chosen to evaluate performance. The GRU Autoencoder model with layer size
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Testing MSE for the NN Based Models
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Fig. 5. The testing MSE values for various weight sizes sampled for the NN NARX model, red circ coder, blue squares. Every GRU

Autoencoder models trained out performed every NN NARX model trained regardless of the numb

evaluate the GRU Autoencoder

of 32, corresponding to 6816 trainable parameters and a testing MSE of 0.

Autoencoder is notably less than the

dels. In order to examine the performance

much closer. As th RU Autoencoder model is trained to value all time steps equally it is common for minor continuity
issues to appear in the first few timesteps of the prediction, as seen in the pitch signal. While the GRU Autoencoder corrects
the error from the discontinuity it must be considered for applications using real-time predictions.

The data used for training and testing purposes will likely not reflect the data observed in application. Varying factors such
as noise in the signal measurement, changing sea states, and different ship models must be expected. As changing the nature of

the data will impact the data driven models it is important to understand how applying the GRU Autoencoder model different

situations affects performance.
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Sample Prediction for the NN Models
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Fig. 6. A typical sample prediction for the NN NARX, the red dashed line, and the GRU Autoenc
to the models is shown as the solid black line and the models are attempting to predict the future

line. The input signal provided
reen line.

IV. CASE STUDIES

The data measured in application scenarios is rarely identicg A acquir priori. Measurement noise, varying

sea state levels, and different ship model dynamics can be expecte g dccounted for when implementing a ship

generalize a wide rangg

A. The Impag

The data d Section [[T] does not contain noise and so may not reflect in-situ data well as sensor data is rarely noise

free. Thus, we seck te, understand how the NN models presented handle noise similar to real sensor data. Noise is added to
the simulated sea state 2 30 m vessel input signals by applying random, normally distributed values with zero mean and a
variance of o2. The noise levels are set to be equal across each of the normalized motion channels and cover a range up to
o2 = 1.0, which correspond to pitch, roll, and heave variances of 0.079 deg 2, 0.624 deg?, and 4.78 x 10~3 cm? respectively.

Figure [7] shows how the NN models perform as the noise level increases, as judged by the MSE value on the full testing

dataset. The solid blue line shows the best performing NN NARX model and the dash-dotted red line shows the selected GRU

Autoencoder model.
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NN Model Performance with Measurement Noise.
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Fig. 7. The MSE values for the NN NARX model, shown by the dashed red line, and the GRU Au
various levels of noise in the testing inputs. As both models were trained without noise neither mo.

by the blue dash-dotted line, for

Figure [7] shows how the testing MSE value varies when they modes are pre d wi isy inputs; noting that the models

in the figure are trained with noise free data. The NN NARX mog ed, an GRU Autoencoder, blue dash-dotted,

both have increasing testing MSE values as the noise level in of noise, below 0.35, the NN NARX has

a lower MSE when compared to the propsed GRU Aaftoence deh, The advantage of the NN NARX is likely due to the

iterative calculation being able to correct well fo

For roll, pitch, and
noise level of 0.2 a
the measured
dramatic affee performance of both NN models. In each of the roll, pitch, and heave motions the NN NARX model
propagated the noisetimto its predictions. The GRU Autoencoder did not show noise like behaviour in its predictions, but as
shown in Fig.[7] the quality of predictions is lower than the NN NARX. With the higher noise level in Fig.[9]the NN NARX has
difficulties preventing itself from propagating errors, which are noted by the large overshoots in each of the motion channels. In
comparison, the GRU Autoencoder in Fig. [] stays close to the target motions, although with unsatisfactory prediction quality.

As NN models are data driven their prediction capabilities will be dependant on how much the training dataset matches the

data measured in application. By including noise in the training data a NN model can learn to separate the underlying motion

when making predictions. Fig. and Fig. [IT] plots the testing MSE of the NN models after being trained on data with a
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NN Signal Prediction with Input Noise ¢? = 0.2
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Fig. 8. A typical sample of the prediction made from the NN models, trained without noise, on in
which is a noise level where the NN NARX is expected to outperform the GRU Autoencoder, as s

ith a normalized variance of 0.2,

NN Signal Prediction with Input Noise o

Roll [deg]
o
o

Pitch [deg]

Fig. 9. A typical sample of
higher noise levels, such as s

models, trained without noise, on inputs containing noise with a normalized variance of 1. At
acoder is expected to outperform the NN NARX, as shown in Fig. m

noise level o ’ h noise level of 02 = 1.0 respectively. The red dashed line marks the performance of the
NN NARX, efdash-dotted line marked the performance of the GRU Autoencoder. The characteristic of exponentially
increasing testing value for the NN NARX is visible and logarithmically increasing testing MSE for the GRU Autoencoder
can be seen. The results of Fig. [I0] and Fig. [T1] the NN NARX does not outperform the GRU Autoencoder regardless of the
noise level, indicating that the GRU Autoencoder architecture and training is better able to extract the underlying motions.
Table [ shows the testing MSE values for the NN models when trained and tested on various noise levels. The NN NARX
and GRU Autoencoder models performed better when trained with noise than when trained without. When trained without

noise and presented with data that contained no noise the NN NARX and GRU Autoencoder models had MSE values of

0.3774 and 0.1242, respectively. When the training data had a noise level of 02 = 0.2 and the testing data contained no noise,
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NN Model Performance with 0° = 0.2
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Fig. 10. The testing MSE values for the NN models after being retrained with data containing noise
shown by blue cross, keeps its exponentially increasing trend. The GRU Autoencoder model, shown
though leveling off at a much higher noise level than when not trained with noise. Both NN
GRU Autoencoder out performs the NN NARX at all noise levels.

e of 0.2. The NN NARX model,
arithmically increasing trend,
t trained with noise and the

Testing MSE

Fig. 11. The testing MSE value

noise level than when not trained with noise. Both NN models perform better that when trained with little to no
the NN NARX at all noise levels by a wide margin.

a decrease in performance.

When trained with data containing a noise level of 02 = 1.0 and tested on data with the same level of noise, the NN NARX
and GRU Autoencoder had MSE values of 0.4483 and 0.3243 respectively. Compared to the models that were not trained on
noise, the improvement in performance is two orders of magnitude.

When presented with testing data that contained no noise the MSE values for the NN NARX and GRU Autoencoder that

were trained on data with a noise level of 02 = 1.0 were 0.3729 and 0.2606 respectively. When presented with testing data
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NN Signal Prediction with Input Noise ¢? = 1.0

—_ 21
o
g
= 0
©
o
51
= 0.5
3
= 0.0
S
£ -05 1
_ 021
£
Y 0.0
[+
L
F=
_0‘2 <
Time [s]
—— True Motion —=—= Target Motion === NN NARX
—— Measured Motion  —-- GRU Autoencoder
Fig. 12. A typical sample of the prediction made from the NN models, trained with noise with a no: i i on inputs containing noise at the
same level. Both the NN NARX models are able to extract the underlying motions and make predic i of noise present in the inputs.
TABLE I
THE TESTING MSE VALUES FOR THE NN NARX AND GRU AUTOENCODER MODELS WHEN STED ON VARIOUS LEVELS OF NOISE.
TRAINING THE MODELS WITH NOISE LOWERS PERFORMANCE ON TESTING SAMP TLY INCREASES PERFORMANCE ON
Model

GRU Autoencoder

NN NARX

The NN modelNbehaviour when using datasets that contain noise indicate that NN based motion prediction models should

include noise in training. Furthermore, the noise included should be at the same level, or above, what would be encountered in
application. When trained with noise the GRU Autoencoder model outperformed the more commonly used NN NARX model,
showing a clear advantage of the proposed prediction model. For the current application, the results show that the common

practice of pre-filtering the input signals is not necessary as the NN models are able account for the noise in the data if properly

trained.
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NN Model Performance for Various Sea States.
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Fig. 13. The NN models are both trained on sea state 2 data and the testing MSE for sea states 2 th;
as solid blue in the left column, out performs the NN NARX, shown as hollow red bars in the rig
complicated sea state 6 waves are the hardest to predict for both NN models.

RU Autoencoder model, shown
states. As expected, the more

B. The Impact of Sea State

The NN models presented in Sec. |ll| were trained and tested sea state2 simulations. In practical applications

in underlying m@

From Fig. [13] when"ie NN models are trained on only the simpler sea state 2 data they are not able to handle the more
complicated sea state 6 data. The NN models can be set up to handle multiple sea states simultaneously by including multiple
sea states in the training data. Fig. |E| shows the NN NARX, in red hollow bars, and GRU Autoencoder, inblue solid bars,
models after they were retrained to include all data from sea states 2 through 6. The NN NARX model had an average testing
MSE value of 1.136, with the highest value of 1.315 occurring for the sea state 6 data and the lowest value of 1.052 occurring

for the sea state 4 data. The GRU Autoencoder model had a significantly lower average testing MSE of 0.1306, with the
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NN Model Performance for Various Sea States.

1.6 HEE GRU Autoencoder
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Sea State

Fig. 14. The NN models after being retrained on data that contains equal portions from each sea
as solid blue in the left column, out performs the NN NARX, shown as hollow red bars in the righ
only one sea state, both NN models perform roughly equally for all sea states.

RU Autoencoder model, shown
tates. Unlike when trained on

highest value of 0.1674 occurring for the sea state 6 data and the 1g

By including the additional sea state data in training both 1

C. The Impg

The NN modelsdfrom Sec. were trained using data from simulations of a 30m. vessel. Since applications may require
multiple or differentShip models which could have significantly different dynamics it is important to understand how changing
ship models will impact the NN models.

Using ShipMo3D a second dataset was created using a 100m frigate. As the 100m frigate is much larger than the 30m vessel
and is not expected to move much in sea state 2 the NN NARX and GRU Autoencoder models are retrained using data from
the 30m vessel in sea state 4. Table [l shows the testing MSE values for the NN NARX model and the GRU Autoencoder

model for the 30m vessel used to create the training data and the new data from the 100m vessel, all at sea state 4. The NN

NARX had testing MSE values of 0.5912 and 3.976 for the 30m and 100m vessels respectively while the GRU Autoencoder
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Vessel Size

Model Training Data | 30m 100m
30m only 0.1458 | 0.9483
GRU Autoencoder 15 e —66:7170.1524 [ 0.01156
30m only 0.5912 | 3.976
NN NARX 30m & 100m | 0.3782 | 0.1489
TABLE II

THE NN MODELS ARE TRAINED ON DATA FROM SIMULATIONS OF A 30M VESSEL. THE GRU AUTOENCODER MODEL, SHOWN IN RED AS THE LEFT
COLUMN, OUT PERFORMS THE NN NARX, SHOWN IN BLUE AS THE RIGHT HAND COLUMN, FOR ALL SEA STATES. AS IS EXPECTED, BOTH NN MODELS
PERFORM BETTER ON DATA THAT REFLECTS THE TRAINING DATA THAN ON DATA THAT DOES NOT.

a3 had testing MSE values of 0.1458 and 0.9483 for the 30m and 100m vessels respectively. As onstrated in Sec. [[T]] the
s« GRU Autoencoder model continues to outperform the NN NARX model. The results matc
a5 perform better on the 30m vessel than the 100m vessel.

336 Another set of NN models were trained using data from both ship model
397
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