
PREPRIN
T

Fast and Robust Inverse Kinematics of Serial
Robots using Halley’s Method

Steffan Lloyd , Rishad Irani , Member, IEEE, and Mojtaba Ahmadi , Senior Member, IEEE

The final version of this paper is published in IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2768–2780, Oct. 2022, DOI
10.1109/TRO.2022.3162954. ©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—This paper proposes a novel numerical inverse
kinematics algorithm called the Quick Inverse Kinematics or
QuIK method. The QuIK method is a third-order algorithm that
uses both the first and second-order derivative information to
iteratively converge to a solution. Numerical inverse kinematics
methods are readily implemented on any serial robot and do
not rely on joint alignment. However, they typically are slower
and less robust. The second-order derivative term allows the
QuIK algorithm to converge more rapidly and more robustly than
existing algorithms. A damped extension to the QuIK method is
also proposed to increase reliability near singularities. The QuIK
methods are tested in terms of evaluation speed, reliability, and
singularity robustness against the Newton-Raphson method and
several other modern algorithms. The proposed QuIK methods
outperform all other tested algorithms in terms of speed and
robustness, and have strong performance near singularities. The
QuIK algorithms are proposed as faster and more robust “drop-
in” replacements to the Newton-Raphson methods in inverse
kinematics. C++ and Matlab codebases are made available.

Index Terms—Kinematics, numerical inverse kinematics, sim-
ulation & animation, performance evaluation & benchmarking.

I. INTRODUCTION

INVERSE kinematics is a ubiquitous problem in robotics
and many other domains, such as computer graphics,

animation, video games [1], and even biology [2]. Many
kinematic chains do not admit closed-form solutions to their
inverse kinematics problem. When closed-form solutions are
possible, they are difficult to derive and rely on perfect joint
alignment. Numerical inverse kinematic routines transform
the inverse kinematics into either an optimization problem
or a root-finding problem, and iterate from an initial guess
of the joint variables to an exact solution. Numerical inverse
kinematic routines are used in many robotics applications, such
as

Manuscript received October 7, 2021; accepted March 15, 2022. This
work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) under Grant RGPIN-2017-06967, Grant RGPIN-
2015-04169, and Grant CRDPJ 514258-17. The work of Steffan Lloyd was
supported by NSERC CGS-D. This article was recommended for publication
by Associate Editor Q. Li and Editor E. Yoshida upon evaluation of the
reviewers’ comments. (Corresponding author: Steffan Lloyd.)

The authors are with the Department of Mechanical and
Aerospace Engineer- ing, Carleton University, Ottawa, ON K1S 5B6,
Canada (e-mail: steffan.lloyd@ carleton.ca; rishad.irani@carleton.ca;
mojtaba.ahmadi@carleton.ca).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TRO.2022.3162954.

Digital Object Identifier 10.1109/TRO.2022.3162954

• Kinematic calibration: Calibrated kinematic parameters
can give higher robot accuracy, but preclude the use of
closed-form solutions since joint alignment is imperfect.
However, numerical solutions have no such limitation.

• Optimal or singularity-free design: Robotic designs that
allow for straightforward closed-form inverse kinematic
solutions are not necessarily optimal by other design
criteria. For example, the spherical wrist used by many
manipulators to decouple translational and rotational mo-
tion can create pinch points which are hazardous for
human-robot interactions [3].

• Derivation-free analysis: Numerical inverse kinematic
solutions can be performed programmatically without a
derivation step. This reduces implementational complex-
ity, and is required in many applications such as computer
graphics [4], reconfigurable robots [5], and more.

• Redundant manipulators: Closed-form inverse kinematic
formulations of highly articulated robots are challenging
and often impossible; however, a numerical approach is
intuitive and allows for straightforward optimization of
the pose within the null-space of the kinematic chain [1].

Due to the broad applicability of the inverse kinematics
problem, many such iterative numerical algorithms have been
developed. Existing methods can be broadly categorized into
heuristic, optimization-based and Jacobian-based methods [4].
Heuristic methods implement simple update rules to solve the
inverse kinematics problem. They are readily implemented and
involve only basic computations. One of the most popular
heuristic methods is the Cyclic Coordinate Descent (CCD)
method [6]. CCD runs quickly and is ideal when an approxi-
mate solution must be obtained rapidly. However, it is slower
than other methods when higher precision is needed and has
issues converging in some cases [6].

In optimization methods, the problem is formulated as
an optimization problem with a scalar cost function to be
minimized. Conversely, Jacobian-based methods use the ma-
nipulator Jacobian function to estimate joint changes which
will reduce the end-effector error to zero. Generally, Jacobian-
based solutions are less computationally intensive and more
easily implemented [4]; however, optimization methods can
be more flexible in dealing with redundancy resolution [7].
The focus of the current work is on Jacobian-based methods.

A large number of methods have been proposed within the
Jacobian-based category of numerical methods, including first-
order Jacobian transpose techniques [8], and second-order
methods such as Jacobian pseudoinverse methods [9] and

https://orcid.org/0000-0002-9305-1952
https://orcid.org/0000-0003-2854-001X
https://orcid.org/0000-0002-5679-7640
https://doi.org/10.1109/TRO.2022.3162954
https://doi.org/10.1109/TRO.2022.3162954
https://doi.org/10.1109/TRO.2022.3162954

PREPRIN
T

LLOYD et al.: FAST AND ROBUST INVERSE KINEMATICS OF SERIAL ROBOTS USING HALLEY’S METHOD 2

variations thereof such as the damped least-squares (DLS)
method (also known as the Levenberg-Marquardt algorithm)
[10]–[12], or the selectively damped least squares method [13].
The Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm
has also been applied to inverse kinematics [1], and avoids
explicit inversion of the Jacobian matrix — instead estimat-
ing its inverse through successive gradient evaluations. The
BFGS algorithm has less computational load at each iteration;
however, steps are not taken as accurately, so more iterations
may be needed and reliability may not be as high. Some more
recent works have also investigated using a machine-learning
approach to inverse kinematics — using neural networks to
learn the inverse relationship between the joint angles and
the corresponding Cartesian coordinates [14], [15]. However,
these methods give inexact answers, require a costly network
training step before they can be used, and do not handle
redundancy in an intuitive manner. These machine learning
solutions, as well as just simple lookup tables, can also be
used as an initial seed to numerical algorithms, thus improving
the quality of the initial guess and increasing reliability [16].

The current state-of-the-art and defacto-usage of numerical
inverse kinematics fall into variations of these aforementioned
algorithms. The open-source Orocos Kinematics and Dynam-
ics Library (KDL) [17] is arguably the most popular generic
inverse kinematics solver [7], and features various solvers
based on a Levenberg-Marquard optimization approach, as
well as a Newton-Raphson pseudoinverse solver. The KDL
library is used in the ROS libraries, along with another solver
called Trac-IK that improves reliability by simultaneously
running both a Newton-Raphson solver and a BFGS solver,
and stopping when either of the two reaches a successful
solution [7]. Mathworks’ popular Matlab Robotics Toolbox
features two solvers – one based on the Levenberg-Marquard
algorithm (implemented as in [12]), and another based on the
BFGS algorithm (implemented as in [1]).

At the core of these second-order Jacobian-based methods
is the Newton-Raphson (NR) root-finding algorithm. For a C1

continuous nonlinear function f : Rn → Rm, the first-order
Taylor series expansion is given by

f(x+ δx) ≈ f(x) +∇f(x) δx. (1)

The NR method attempts to find the root of f , denoted by the
symbol x∗, by setting f(x + δx) = 0, then solving (1) for
the required step δx to reach x∗. This rearrangement yields
an iterative equation

xk+1 = xk −∇f(x)−1f(x) = xk −∇f(x) \ f(x), (2)

where, for the remainder of this paper, we will use the
backslash symbol, x = A \ b, to denote x as the solution
to the linear equation Ax = b. We use this specialized
notation since this operation includes much hidden complexity.
The linear system is not necessarily square, and as such an
explicit inversion may not be possible. For singular systems,
a specific solution must be selected, and for over-determined
systems the solution x will not give exact results and a least-
squares approach (or similar) is necessary. Linear systems
can also be solved faster and more robustly through the

pseudoinverse of A or through row operations such as a
Lower-Upper (LU) or Orthogonal (QR) decomposition. How
the linear system is solved affects the performance of the
inverse kinematics algorithm, particularly for redundant chains
or near singularities [13], [18].

The NR method is a second-order algorithm, and by most
standards, is very fast. Once the algorithm is sufficiently
close to the true solution x∗, its convergence is quadratic
— within a certain basin, the number of significant digits in
the estimate approximately doubles with each iteration [19].
For the inverse kinematics problem, the function f is the
error vector between the desired and current configuration,
and the gradient term is the manipulator Jacobian matrix – a
quantity that is not difficult to compute and is often readily
available in robotics applications. However, a drawback of
the NR method is that at singular, or near-singular points,
the manipulator Jacobian becomes ill-conditioned, which can
cause the iteration equation (2) to diverge. This issue is the
rationale of the use of damped methods [10], [11], [13], in
which the speed of the algorithm is sacrificed slightly to allow
for more reliability near kinematic singularities. Another issue
with the NR method is that, as is, it does not handle the
addition of constraints to the problem. Extensions to handle
these cases exist, such as task augmentation [20], null-space
projection [21], [22] or task priority [23].

The NR method is the first member of a class of root-finding
algorithms known as Householder’s methods [24]. The second
algorithm in this class is the third-order root finding method,
known as Halley’s Method. In Halley’s method, the Taylor
series is expanded one term further [25], as

f(x+ δx) ≈ f(x) +∇f(x) δx+ 1
2 ∇

2f(x) δx δx. (3)

Here, the second derivative term ∇2f(x) is, in fact, a rank-3
tensor in Rm×n×n, and the associated multiplication operation
is defined “naturally,” such that

[
∇2f(x) δx

]
∈ Rm×n and[

∇2f(x) δx δx
]
∈ Rm, with elements defined respectively as[

∇2f(x) δx
]
ij
=
∑

k

[
∇2f(x)

]
ijk

δxk,[
∇2f(x) δx δx

]
i
=
∑

k

∑
j

[
∇2f(x)

]
ijk

δxk δxj . (4)

To solve for the desired step size of (3), the left-hand side is set
to zero, and the equation is solved for δx. Here, however, the
problem is more complex and solving the resulting quadratic
equation is non-trivial in the multidimensional case. Instead,
an estimate of δx is obtained as the NR step,

δxnr = −∇f(x) \ f(x), (5)

and substituted into (3), yielding

0 ≈ f(x) +∇f(x) δx+∇2f(x) δxnr δx. (6)

This expression can be rearranged for δx and yields the
iterative equation [25]

xk+1= xk −
[
∇f(x) + 1

2 ∇
2f(x) δxnr

]
\f(x). (7)

Halley’s method is perhaps more easily understood graphi-
cally. Fig. 1 shows both the NR method and Halley’s method
on a 1-dimensional sinusoidal function. For each iteration, the

The final version of this paper is published in IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2768–2780, Oct. 2022, DOI 10.1109/TRO.2022.3162954. © 2022 IEEE. Personal use of
this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/TRO.2022.3162954

PREPRIN
T

LLOYD et al.: FAST AND ROBUST INVERSE KINEMATICS OF SERIAL ROBOTS USING HALLEY’S METHOD 3

Fig. 1. Illustration of the Newton-Raphson method (left) and Halley’s method (right) on a sinusoidal function. The Newton-Raphson method uses a first-order
(linear) function approximation at x, whereas Halley’s method uses a second-order approximation — matching both the function’s slope and acceleration at x.

former fits a line to match the slope of f(x) and uses it to
find the next step of the iteration. Halley’s method instead
fits an oscullating curve that matches both the slope and the
second derivative of f(x), and uses the roots of this fitted
curve to estimate the next point [19]. The additional higher-
order information improves the estimate of the root location.
Halley’s method is a third-order method, and instead of the
quadratic convergence of the NR method, Halley’s method
gives cubic convergence within the basin of convergence —
approximately tripling the number of correct significant digits
at each iteration [26].

Despite its advantages, Halley’s method, and other similar
third-order methods, do not see much widespread usage [26],
[27]. Computation of both the first and second-order partial
derivative terms can be prohibitively difficult, both in terms
of derivation and evaluation. Computing the gradient for NR
requires (m · n) partial derivative terms, whereas ∇2f(x)
involves (m·n2) second-order partial derivative terms and thus
scales poorly to larger n [26]. If numerical differentiation must
be used for the derivative terms, the complexity of evaluating
both ∇f(x) and ∇2f(x) becomes intractable. Given that the
NR or even first-order gradient descent methods are easier to
implement and can achieve the same result by performing a
larger number of simpler iterations, the effort of implementing
Halley’s method is often deemed unnecessary or even coun-
terproductive [27].

However, certain problems are well-suited to higher-order
root-finding methods, and have the following properties:

1) Low dimensionality: Unlike a typical artificial intelli-
gence problem which may involve copious optimization
parameters, problems that favor the use of Halley’s
method would have a relatively low order, decreasing the
number of additional partial derivative terms in ∇2f(x)
and lessening the cost of solving an additional set of
linear equations.

2) Expensive function evaluation: If a single evaluation of
f is computationally expensive, it is more desirable
to minimize the number of iterations required by the
algorithm.

3) Easily computed, symmetric or sparse second derivative:
If the second derivative term ∇2f(x) is easily computed
compared to the objective function f or the first deriva-
tive ∇f(x), it is more desirable to use Halley’s method.
If the second-derivative has additional symmetry or spar-

sity that can reduce computations and memory usage,
then the method is additionally relevant.

Based on current literature, Halley’s method does not seem
to have been investigated as a method for solving the inverse
kinematics problem in kinematic chains. However, the reader
can note that the numerical inverse kinematics problem fills
all the properties listed above. The problem dimensionality is
typically relatively small (i.e., compared to machine learning
problems). The forward kinematics of a manipulator is quite
computationally intensive, so additional iterations are not
cheap. The second-derivative term, known as the Kinematic
Hessian, is surprisingly easy to compute, and features both
significant symmetry and sparsity [28]. Finally, it will be
shown that Halley’s method is very robust in the inverse
kinematics problem, converging more reliably and within
a larger basin of convergence than the NR method. This
increased robustness is significant in robotics, where reliability
is critical — particularly in real-time applications.

This paper makes several contributions. Firstly, we show
how Halley’s method can be readily applied to the inverse
kinematics problem, resulting in the novel Quick Inverse
Kinematics (QuIK) method. Second, we derive a singularity-
robust version of the QuIK method, called the Damped Quick
Inverse Kinematics (DQuIK) method. Thirdly, we provide
extensive benchmarking of the proposed methods against the
Newton-Raphson algorithm, as well as several state-of-the-
art inverse kinematics packages. These benchmarks show the
superiority of the QuIK algorithms over traditional inverse
kinematic methods in terms of convergence rate, robustness,
and speed. Additionally, a full implementation of the proposed
algorithms is developed in C++ and Matlab code, and made
available for general use [29].

This paper is organized as follows. Section II explicitly
states the inverse kinematics problem and defines notation for
the paper. Section III presents the Quick Inverse Kinematics
algorithm and associated derivations, extensions and details.
Lastly, Section IV shows several benchmarking tests of the
QuIK algorithms for convergence rate, overall algorithm effi-
ciency, robustness, and behavior near singularities.

II. PROBLEM DEFINITION

Consider an n degree-of-freedom (DOF) manipulator with
generalized coordinates q ∈ Rn. We define Ti as the 4 × 4
homogeneous transformation matrix from the ith frame of the

The final version of this paper is published in IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2768–2780, Oct. 2022, DOI 10.1109/TRO.2022.3162954. © 2022 IEEE. Personal use of
this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/TRO.2022.3162954

PREPRIN
T

LLOYD et al.: FAST AND ROBUST INVERSE KINEMATICS OF SERIAL ROBOTS USING HALLEY’S METHOD 4

robot to the base coordinate system, composed from a rotation
matrix Ri and displacement vector pi as

Ti(q) =

[
Ri pi

0 1

]
. (8)

Ri is further subdivided into three column vectors ni, si and
ai, corresponding to unit vectors along the x–, y– and z–axes
of the ith coordinate system, as

Ri =
[
ni si ai

]
. (9)

Let f : Rn → Rm be a function that reports the errors of
m tasks for the manipulator. In the general case, the inverse
kinematics problem seeks to find the joint angles q∗ which
yield f(q∗) = 0. If these m tasks correspond to the spatial
and orientation positioning of the last link of the chain to a
desired transformation matrix Td, composed of a rotation Rd

and position pd, then f : Rn → R6 as

f(q) = e =

[
elin
erot

]
, (10)

where e is a 6-vector of the positional and rotational error of
the nth link. It is convenient to represent this error using the
six-component exponential coordinates, arranged into a spatial
twist as [30]

e =

[
ve
ωe

]
= log

(
TnT

−1
d

)
, (11)

where ve correspond to the linear velocity vector required
to go from pn to pd in unit time, and ωe corresponds to
the angular velocity vector required to rotate from Rn to
Rd in unit time [30]. With this definition, the manipulator
geometric Jacobian J(q) can be used directly as the error
gradient ∇e(q) [12]. Computation of e is accomplished via
the matrix logarithm operation [12], [30], which is described
in the appendix. The inverse kinematics problem seeks to set
e(q) identically to zero. In this paper, the solution is achieved
iteratively from an initial guess q0 according to an update law

qk+1 = qk + δq. (12)

In the current work, we deal solely with the case of serial
kinematic chains. The extension to tree-like chains would be
possible with only minor modifications and involve augmen-
tation of the error function and corresponding Jacobian.

III. THE QUICK INVERSE KINEMATICS ALGORITHM

To properly define the QuIK method and associated equa-
tions, we must first discuss how the Newton-Raphson method
is adapted to the inverse kinematics problem. In the NR
method, we adapt (2) as

qk+1 = qk −∇f(qk) \ f(qk) = qk − J(qk) \ e(qk), (13)

where J(qk) is the geometric Jacobian function of the chain,
to the last frame (frame n) and expressed in world frame
coordinates, satisfying the relation[

vn
ωn

]
= J q̇. (14)

For kinematic chains with frame assignments such that the
joint axes coincide with the z–axes of each link, computation
of the Jacobian J is straightforward from the forward kine-
matics Ti(q), as [31]

J =

[
Jv
Jω

]
=

[
jv1 · · · jvn
jω1 · · · jωn

]
, (15)

where the submatrices Jv ∈ R3×n and Jω ∈ R3×n are called
the linear and angular velocity Jacobians, respectively, with
columns computed as

jvj =

{
aj−1 ×

(
pn − pj−1

)
, if j is revolute,

aj−1, if j is prismatic,

jωj =

{
aj−1, if j is revolute,
0, if j is prismatic.

(16)

To extend the NR method to the QuIK method, we add an
additional derivative term to the iterative equation (13), effec-
tively adapting the update equation (7) for Halley’s method to
the inverse kinematics problem, giving

qk+1 = qk −
[
∇f(qk) + 1

2 ∇
2f(qk) δqnr

]
\f(qk)

= qk −
[
J(qk) +

1
2 H(qk) δqnr

]
\ e(qk), (17)

where the multiplication
[
H(qk) δqnr

]
is performed analogous

to (4), δqnr is the Newton-Raphson step

δqnr = −J(qk) \ e(qk), (18)

and H(q) ∈ R6×n×n is the rank-3 tensor corresponding to the
gradient of the robot Jacobian,

H(q) , ∇J(q) = ∂
∂qJ(q), (19)

which is the the Kinematic Hessian of the manipulator [32].
The H term should not be confused with the “Hessian matrix”
which is sometimes defined when solving inverse kinematics
as an optimization problem of a scalar cost function [1]. In
these cases, as the cost function is scalar, the “Hessian” is a
matrix and the resulting algorithm is second-order. Instead,
H is a rank-3 tensor of second-order partial derivatives for
the vector function e(q), formed by the partial derivatives of
the geometric Jacobian J(q), and the resulting algorithm is
third-order.

Practically, the QuIK method is straightforward to imple-
ment with (17) and (18). The difficulty is then to compute
the kinematic Hessian H efficiently. Eq. (19) is not in a
convenient form for numerical evaluation. However, closed-
form derivation of H is possible by applying various kinematic
identities. This derivation is omitted for brevity, but a thorough
treatment can be found in [28]; the results are summarized in
the following surprisingly concise formulae. Let Hi ∈ R6×n

denote the ith “page” of H, such that Hi(q) =
∂
∂qi

J(q). Then,

Hi(q) =
∂
∂qi

J(q) =

[
∂
∂qi

jv1 · · · ∂
∂qi

jvn
∂
∂qi

jω1 · · · ∂
∂qi

jωn

]
, (20)

The final version of this paper is published in IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2768–2780, Oct. 2022, DOI 10.1109/TRO.2022.3162954. © 2022 IEEE. Personal use of
this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/TRO.2022.3162954

PREPRIN
T

LLOYD et al.: FAST AND ROBUST INVERSE KINEMATICS OF SERIAL ROBOTS USING HALLEY’S METHOD 5

for i = 1, . . . , n, where

∂jvj
∂qi

=

ai−1 × (aj−1 × [pn − pj−1]),

if i ≤ j and i, j are revolute,
aj−1 × (ai−1 × [pn − pi−1]),

if i > j and i, j are revolute,
ai−1 × aj−1, if i ≤ j, i is revolute, j is prismatic,
aj−1 × ai−1, if i > j, i is revolute, j is prismatic,
0, otherwise,

∂jωj
∂qi

=

{
ai−1 × aj−1, if i ≤ j and i, j are revolute,
0, otherwise. (21)

Each of these terms is straightforward to compute directly.
However, comparison with (16) reveals that many of the cross
products above have already been computed in the manipulator
Jacobian J. Substitution of these terms directly into (21)
results in further simplifications, summarized as

∂jvj
∂qi

=

jωi × jvj , if i ≤ j and i is revolute,
jωj × jvi, if i > j and i is revolute,
0, otherwise,

∂jωj
∂qi

=

{
jωi × jωj , if i ≤ j and i, j are revolute,
0, otherwise. (22)

Two final simplifications are possible. First, we can note the
symmetry in the entries of the expression for ∂

∂qi
jvj and avoid

redundant calculations. Second, the cross product of any vector
with itself is always zero, so the term ∂

∂qi
jωj = 0 if i = j.

Thus, an equivalent but more efficient formulation is

∂jvj
∂qi

=

jωi × jvj , if i ≤ j and i is revolute,
∂
∂qj

jvi, if i > j and i is revolute,
0, otherwise,

∂jωj
∂qi

=

{
jωi × jωj , if i < j and i, j are revolute,
0, otherwise. (23)

Eq. (23) is interesting for several reasons. First, the kine-
matic Hessian H is much simpler to compute than one may
think, involving at most two cross products per column,
and often fewer. Second, H benefits both from significant
sparsity and significant symmetry, meaning that the number of
computations required to evaluate it is significantly reduced.
The number of cross products required to evaluate (23) is n2

in the worst case (if all joints are revolute). In fact, only
half of the elements of H require any computation at all.
This sparsity and symmetry can be leveraged to reduce the
requirements of computing the potentially large tensor H,
as well as in reducing the number of multiplications in the
product

[
H(qk) δqnr

]
. Finally, and perhaps most interesting,

the kinematic Hessian H can be computed solely from the
Jacobian J itself. This computational property reduces the
complexity of evaluating H, since J must be computed for
the NR method regardless. It also means that implementing
the QuIK method is straightforward — regardless of how J is
computed, the extension to H involves only a small number
of extra calculations.

A. Damping the QuIK Method

In inverse kinematics, the Newton-Raphson method is often
not used in its pure form, as it can experience numerical
instabilities when the manipulator is near a singularity. These
instabilities arise in the step of solving the linear set of
equations J \ e in (13). One method of solving this system
is through the Moore-Penrose pseudoinverse J†, defined as

J† = JT
(
JJT

)−1
. (24)

While this solution involves more work than through the
direct use of row operations such as LU decomposition, it
provides a minimum-norm solution. While the minimum norm
solution is well behaved when J is exactly singular, in practice
exact singularities are highly unlikely, except by design [33].
However, if the pseudoinverse is evaluated near, but not exactly
at a singularity, it can result in a poorly behaved solution,
giving large commanded joint angles and destabilizing the
iterative algorithms [13].

Although many methods exist for handling the convergence
problems of the NR algorithm, one of the most common is the
Damped Least-Squares or Damped Newton-Raphson (DNR)
method [10], [11]. In optimization, this method is also known
as the Levenberg-Marquardt algorithm. A damping factor λ is
introduced into the pseudoinverse solution in (24), giving the
DNR step as

δqdnr = −JT
(
JJT + λ2I

)
\ e, (25)

where I is the n×n identity matrix. This damping factor acts
as a norm-2 regularization term. Whereas (24) minimizes the
residual error ||Jδq− e||2, instead (25) will minimize

||Jδq− e||2 + λ||δq||2, (26)

simultaneously attempting to solve the linear system while
minimizing the step size ||δq||, as weighted by λ. When e is
large, the damping term will have little or no effect on the
resulting δq. However, when e approaches zero, the damping
term has a more significant effect and ensures that large steps
are not taken to attempt to eliminate small errors.

To resolve the singularity issues in the novel QuIK method,
we propose using the same damping methodology, in what
we name the Damped Quick Inverse Kinematics (DQuIK)
algorithm. Rather than finding an estimate to the root of
the quadratic equation J δq+ 1

2 H δq δq− e = 0, we instead
attempt to minimize the quantity

||J δq+ 1
2 H δq δq− e||2 + λ||δq||2, (27)

simultaneously solving the quadratic system while minimizing
the step size δq. As before, we first find an approximate
solution from the NR method, except now the damping λ is
included as qdnr as in (25). Then, the DQuIK step size is
computed with the same damped pseudoinverse solution as

δqk = −AT
(
AAT + λ2I

)
\ e(qk),

A = J(qk) +
1
2 H(qk) δqdnr. (28)

The downside of the damped DQuIK and DNR methods is
that they require an appropriate selection of the damping

The final version of this paper is published in IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2768–2780, Oct. 2022, DOI 10.1109/TRO.2022.3162954. © 2022 IEEE. Personal use of
this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/TRO.2022.3162954

PREPRIN
T

LLOYD et al.: FAST AND ROBUST INVERSE KINEMATICS OF SERIAL ROBOTS USING HALLEY’S METHOD 6

parameter λ. If λ is too low, the algorithm may experience
issues near singularities, whereas if it is too large, the step
δq is overly warped by the effect of λ and the algorithm
converges slower than necessary. A thorough investigation into
proper selection of λ is beyond the scope of the current work.
However, there is a good base of literature on the subject.
Many methods have been proposed for the NR method that
involve dynamic selection of λ at each algorithm iteration,
for optimal performance. These methods can be equally well
applied to the QuIK method, by selecting λ based on a
measure of manipulability, such as in [10], [34], by limiting the
minimum singular values of J to be above a given threshold
[13], [35], or by similarly limiting the condition number of J
under a threshold [18], [36], [37]. Comparisons of many of
these methods are given in [12], [18].

B. Extension to High-DOF & Redundant Chains

As with the Newton-Raphson methods, the QuIK methods
can be extended to higher-DOF kinematic chains. As is, the
given equations are perfectly suited to handle longer kinematic
chains. With longer kinematic chains, a valid concern is that
the third-order QuIK methods may not scale as ideally as the
second-order NR methods, due to the exponential increase in
partial derivative terms to be computed. Indeed, the calculation
of the kinematic Hessian in the QuIK methods is of complexity
O(n2), whereas the error and Jacobian terms in second-
order methods such as the Newton-Raphson method have
linear complexity, O(n). Practically, however, this is not a
significant problem. The computations of both methods are
dominated computationally by the linear system solution steps,
which, if done by LU or Cholesky decomposition, scales as
O(m2.8), or for Singular Value Decomposition (SVD) or QR
decomposition, O(m2n) [38] — in other words, the algorithms
are dominated by the number of constraints, not the number
of joints. Moreover, even the longest kinematic chains are
still relatively small, by computational standards, so non-ideal
scaling of the complexity is not as severe a problem as in
other applications. In robotics, kinematic redundancy is often
exploited to perform additional tasks or optimize the inverse
kinematics solution within the null-space of the manipulator.
These techniques could be accomplished as in the NR method
through task augmentation [20] or null-space projection [21],
[22]; however, this is beyond the scope of the current work.

IV. BENCHMARKING AND ANALYSIS

The final section of this work will seek to validate the
proposed QuIK method in experimental testing. We have
written a C++ library implementing the QuIK/DQuIK and
NR/DNR methods for this testing, which is made available
for general use [29].

In the majority of our testing, we compare the QuIK/DQuIK
methods against the NR/DNR methods. Of course, many
numerical inverse kinematics algorithms exist; however, the
NR method is very common in modern inverse-kinematic
algorithms, albeit often with various tweaks and modifica-
tions to the damping, exit conditions, etc. As these various
implementations have too many variations and parameters to

test and comment on in the current work, we instead use our
implementations of both the NR and QuIK methods. These
implementations are identical in all aspects except in their
computations of the step size δq. As such, they can be mean-
ingfully compared to ascertain the fundamental performance
of the two algorithms. Other algorithmic variations, such as
dynamic or selective damping [12], [18] or more advanced
exit conditions, can be equally well applied to either the QuIK
or NR methods. Additionally, we include the quasi-Newton
BFGS method, implemented as in [1], for comparison in the
benchmarks. The BFGS method avoids explicit inversion of J
such that each iteration is faster, but potentially less accurate,
than the NR method.

This section is organized as follows. Section IV-A describes
the implementational details of the algorithms for benchmark-
ing, how sample inverse kinematics problems are generated,
and an error saturation step that can further improve the
algorithm performance. In Section IV-B, we briefly compare
the convergence of the QuIK and NR algorithms. Section IV-C
will compare the overall speed and reliability of the QuIK, NR,
and BFGS methods, and show the QuIK method to outperform
the other algorithms in nearly all tests. Section IV-D investi-
gates the singularity robustness of the algorithms. Finally, to
properly situate these comparisons among existing research,
Section IV-E compares the QuIK method against other state-
of-the-art algorithms commonly used today. For Sections IV-B
to IV-D, we use a 6-DOF KUKA KR6 industrial robot as an
example kinematic chain; however, in Section IV-E, we will
provide results for an assortment of sample kinematic chains,
including redundant manipulators.

A. Algorithm & Benchmark Implementation

The C++ codebase for the QuIK and NR algorithms can
be viewed and downloaded at [29]. This codebase is well
commented and can clarify any technical implementational
details not covered in this paper. It can also be used to repro-
duce the benchmarks presented in this work. The algorithms
take as input a desired end-effector transform Tn(q

∗) and an
initial guess of the joint angles q0. The algorithms run until
convergence is achieved, as determined by the condition

||e|| < ε, (29)

where ε is the desired target Cartesian accuracy, or after a
maximum of 200 iterations. Double-precision (52-bit accu-
racy) arithmetic is used in all calculations. All testing is done
on a desktop computer with an Intel i7 CPU@3.2 GHz with 32
GB memory. The code was compiled using the MinGW-w64
GCC compiler.

1) Sample problem generation: To test the algorithms, it
is necessary to have a means of generating a large number
of inverse kinematics “problems” to solve programmatically,
such that speed, reliability and convergence can be quantified
statistically with a good sample size. Each sample problem
is defined by a target joint configuration q∗ and a starting
joint configuration q0. Target configurations q∗ are generated
randomly from a uniform distribution within ±π. The target
end-effector transform is then computed from the forward

The final version of this paper is published in IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2768–2780, Oct. 2022, DOI 10.1109/TRO.2022.3162954. © 2022 IEEE. Personal use of
this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/TRO.2022.3162954

PREPRIN
T

LLOYD et al.: FAST AND ROBUST INVERSE KINEMATICS OF SERIAL ROBOTS USING HALLEY’S METHOD 7

kinematics of the chain, T(q∗). To obtain an appropriate start-
ing pose q0, we randomly perturb q∗ by a vector δqpert. The
perturbations δqpert are generated from a uniform distribution
in the range [−1, 1] and normalized by the average absolute
value of its elements before being scaled by a desired mean
initial joint error, denoted by σ. Mathematically, this can be
written as

q∗ ∼ unif(−π, π), r ∼ unif(−1, 1),

δqpert = σ

(
||r||1
n

)−1
r, q0 = q∗ + qpert. (30)

This formulation is useful since the difficulty of the inverse
kinematics problem can be selected by adjusting the mean ini-
tial joint error σ. Intuitively, σ can be interpreted as the mean
magnitude of the error in each joint, i.e., σ = 1

n

∑
|δqpert,i|.

2) Error saturation: In our implementation, we additionally
include a basic error saturation step, as described in [13], [33].
When the error e is large, the Taylor series expansion of (1) or
(3) is no longer an accurate function estimate, which can cause
the algorithms to take inaccurate steps. Moving the target
position closer, in these cases, can help [33]. The saturated
error is calculated as in [13], [33], as

esat =

{
e, if ||e|| < d,

d e/||e||, otherwise, (31)

where d is an adjustable parameter of the maximum step size.
In the current work, (31) was implemented separately for the
linear and rotational elements of e, as they differ in magnitude
(i.e., with parameters dlin and drot).

This strategy dramatically increases performance in the NR
algorithm, and a good initial guess is dlin as half the average
link lengths of the chain and drot = π/4 [33]. However, for
the QuIK algorithms, due to their better approximation of the
kinematics, error saturation was found to have a minor effect
only. Regardless, it is necessary to include it to provide a fair
comparison between both methods.

In the current work, these parameters were optimized by
running both algorithms on N = 105 randomly generated
samples with σ = 1 rad, and quantifying the resulting error
rate. This calculation, relating the error saturation parame-
ters to the resulting error rate, was fed into a Nelder-Mead
Simplex optimization routine [39], implemented via Matlab’s
fminsearch method, giving the optimal values for the
KUKA KR6 robot of dlin = 140mm and drot = 0.86 rad (for
NR) and dlin = 340mm and drot = 1.00 rad (for QuIK).

B. Algorithm Convergence

The first benchmark will demonstrate the differences in con-
vergence speeds between the NR and QuIK methods. For this
test we generate N = 106 random target configurations as in
(30), with σ = π

4 rad, for the KUKA KR6 manipulator shown
in Fig. 2 and with Denavit-Hartenberg (DH) parameters as in
Table I. We run each set of sample joint configurations through
both the NR and QuIK algorithms and track the normed
errors ||e|| at each iteration. In Fig. 3, we plot the results
of this test, showing at each iteration of the algorithms the

Fig. 2. The KUKA KR6 R700 robot, shown in a typical working configuration
(left) and in the singular configuration of Section IV-D (right).

TABLE I
DH PARAMETERS FOR KUKA KR6 R700 MANIPULATOR

Joint Angle Link Offset Link Length Link Twist
[rad] [mm] [mm] [rad]

1 q1 183 25 −π/2
2 q2 0 −315 0
3 q3 0 −35 π/2
4 q4 365 0 −π/2
5 q5 0 0 π/2
6 q6 80 0 0

Tool transform: log(Ttool) =
[
150, 250, 100, 0, π

2
, 0

]
T.

full distribution of the iteration errors and their median. This
figure shows the rapid convergence of the QuIK algorithm, and
illustrates the quadratic and cubic convergence of the NR and
QuIK algorithms, respectively. For the NR method, it can be
noted that accuracy approximately doubles with each iteration
(||e|| ≈ 10−0.5 → 10−0.8 → 10−1.2 → 10−2 → 10−3.4 →
10−6.1), and for the QuIK method, it approximately triples
instead (||e|| ≈ 10−0.9 → 10−2.4 → 10−6.5 → 10−15.4).

C. Overall Algorithm Complexity & Robustness

The QuIK method may converge faster than the Newton-
Raphson method on an iteration-to-iteration basis, but this
result does not necessarily imply that it will give better
overall performance given that each iteration requires more
computations. Better indicators are total evaluation time (CPU
time to convergence) and robustness (how often the algorithms
fail). To test these metrics, joint samples are generated as
before but over a range of initial joint errors σ. Algorithms are
run to with an exit error tolerance of ε = 10−8 rad. Results
are averaged over N = 107 samples. This test is run for both
the QuIK and NR methods, as well as the damped DQuIK
and DNR algorithms, with λ2 = 10−5 (heavily damped)
and λ2 = 10−7 (lightly damped). The BFGS algorithm is
also included in this comparison. These results are plotted in
Fig. 4, where the top plot shows the mean number of iterations
required to converge and the middle plot shows the mean
CPU time to convergence. Finally, the bottom plot shows the
percentage of samples which failed to converge. For this test,

The final version of this paper is published in IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2768–2780, Oct. 2022, DOI 10.1109/TRO.2022.3162954. © 2022 IEEE. Personal use of
this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/TRO.2022.3162954

PREPRIN
T

LLOYD et al.: FAST AND ROBUST INVERSE KINEMATICS OF SERIAL ROBOTS USING HALLEY’S METHOD 8

Fig. 3. Convergence of the Newton-Raphson and QuIK algorithms on a 6-DOF manipulator, with a mean initial guess error σ = π/4 and with N = 106

random poses. Note: the histograms are scaled individually so that error distributions can be observed; thus, they are not to-scale relative to each other.

a sample is considered converged if

||e|| < ε′ ||J(q∗)||, (32)

where ε′ = 10−5 rad is a modified tolerance, and ||J(q∗)||
is the norm-2 condition number of the geometric Jacobian
at the target point. This modification avoids categorizing ill-
conditioned configurations as “failed” when the algorithm in
fact did converge successfully, within numerical limitations.

The results show the QuIK and DQuIK methods to be
superior to their NR counterparts in all tests. The top figure
shows the QuIK algorithms to require many fewer steps to
converge than the NR methods, as expected. This difference
is small for low initial joint error, but significant when σ is
larger. This difference can be attributed to the larger basin
of convergence of the third-order QuIK methods. Since the
estimation at each step is more accurate than for the NR
method, its convergence is stronger when further from the true
solution. In the lightly damped case (λ2 = 10−7), the damped
algorithms converged almost identically to their respective
undamped versions. However, the heavily damped algorithms
(λ2 = 10−5) are slower, and the difference between the DNR
and DQuIK algorithms is also narrowed as the higher-order
benefits are “masked” by the damping effects.

The middle plot in Fig. 4 shows that, despite the added
complexity at each step of the iterations, the QuIK methods
also outperforms the NR methods in terms of pure computa-
tional speed. As with the top plot, this difference is smaller
for initial joint error, but more significant at larger σ. The
lightly damped algorithms also performed nearly identically
to the undamped versions, however for the heavily damped
cases, speeds were slower, and the DNR algorithm performs
better as the added accuracy of the DQuIK method is lost to
the damping effects. The BFGS algorithm was slower in all
cases, but was relatively better at higher initial errors.

In the bottom plot of Fig. 4, we show the reliability of the
algorithms, as measured by the percentage of samples that
failed to converge. Here, we see the clear superiority of the

QuIK and DQuIK methods. The QuIK method failed 8 to 35x
less frequently than the NR method, depending on the initial
joint error σ. Within robotics, this trait is perhaps the most
significant advantage of the QuIK and DQuIK methods. While
they are faster and more efficient, they also provide a higher
chance of convergence. For real-time control scenarios, where
an inverse kinematics error is highly problematic, the lower
chance of failures is a significant boon. Moreover, whereas
algorithm speed can vary significantly based on implementa-
tional details, reliability is more intrinsically connected to the
algorithm itself.

The lightly damped methods had better reliability than
the undamped methods for low initial joint error, and had
similar or slightly worse performance for high σ. The heavily
damped algorithms had even better reliability for low σ, but
were considerably less reliable for high initial joint error.
The reason for this difference is that errors at good initial
guesses are primarily caused by ill-conditioned configurations,
which algorithm damping helps to correct. However, for poor
initial guesses, errors are also caused by convergence to the
wrong solution branch. Damping does not help with this issue,
and instead only masks the valuable higher-order derivative
information of the QuIK methods. Thus, both of the highly
damped algorithms behave similarly to the undamped NR
algorithm in these cases. The BFGS method had the worst
reliability in all cases.

In practice, many applications allow for a good initial
guess at the joint angles, and as such, the initial error σ
that the algorithm needs to overcome is small, and the speed
and reliability can be very good. For kinematically calibrated
manipulators, an approximated closed-form solution can give
a nearby configuration from which to iterate. In trajectory-
following operations, the previously commanded joint angles
are never very far from the joint angles for the current step.
Other researchers have also proposed using pre-trained lookup
tables or machine learning models to obtain approximate
solutions, which could be given to these numerical algorithms

The final version of this paper is published in IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2768–2780, Oct. 2022, DOI 10.1109/TRO.2022.3162954. © 2022 IEEE. Personal use of
this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/TRO.2022.3162954

PREPRIN
T

LLOYD et al.: FAST AND ROBUST INVERSE KINEMATICS OF SERIAL ROBOTS USING HALLEY’S METHOD 9

Fig. 4. Comparison of the mean iterations to convergence (top), mean
evaluation time to convergence (middle) and convergence robustness (bottom),
with a target tolerance ε = 10−8 rad and averaged over N = 107 samples.
∗ Error rates below 10−4% are considered not statistically significant at the
tested sample size, and are lumped with zero.

to converge quickly and reliably to a more exact answer [16].
The most common reasons given against the use of numeri-

cal inverse kinematic solutions are slow speed and lower relia-
bility. However, with good initial guesses (e.g., σ ≈ 0.01 rad),
the speed of the QuIK method in our tests approached 5 µs,
and the error rate approached 10−4% (i.e., one error for every
million samples). The lightly damped DQuIK method had
similar speed and saw no errors in 10 million samples. This
performance is both sufficiently fast and reliable for even
high-rate control scenarios. Moreover, the performance comes
very close to closed-form solutions. For example, the closed-
form solution to the KUKA KR6 manipulator, in our testing,
evaluated in approximately 0.7 µs — still outperforming the
numerical algorithms, but not by a significant margin.

D. Singularity Handling

Singularities can affect iterative inverse kinematics in two
ways. The first case is if the inverse kinematics algorithm
starts at an ill-conditioned point, or encounters one as an
intermediate point. This type of singularity can cause the
algorithms to take large “jumps” and potentially diverge, or
iterate into the incorrect solution basin. The second case is
when the target point itself is ill-conditioned.

The first case is more straightforward to deal with, since
the algorithm only needs to “get past” the given point without
making large errors. One reason why the QuIK method may
converge more reliably is its natural handling of singular or
near-singular points. Consider Fig. 5, which plots, in one
dimension, the behavior of the Newton-Raphson and Halley’s
method on a sinusoidal function, where the function gradient
at x0 is nearly zero. Here, the step size in the NR algorithm
becomes very large, and the algorithm diverges. In Halley’s
method, however, the effect of the singularity is reversed. As
∇f(x) approaches zero,

δx = lim
∇f(x)→0

−
[
∇f(x) + 1

2∇
2f(x) δxnr

]
\ f(x)

= lim
∇f(x)→0

−
[
∇f(x) + 1

2∇
2f(x)∇f(x) \ f(x)

]
\ f(x)

=
[
0+ 0 \ f(x)

]
\f(x)

≈
[
∞
]
\f(x) = 0. (33)

Thus, rather than taking large steps, Halley’s method instead
takes small steps until better knowledge of the function can
be obtained.

The case where the target point q∗ is singular is more
challenging to deal with, and in these cases, the higher-order
information of the QuIK methods is less helpful. Here, the
damping methods presented in Section III-A show their worth.
To quantify singular configuration reliability, we generate a
single singular configuration where the wrist center of the
manipulator is directly above the first joint axis, as shown
in Fig. 2. This configuration is then perturbed using randomly
generated values which are scaled using a numerical solver to
achieve any arbitrary condition number, ||J(q∗)||. A total of
N = 106 samples are generated in this manner. These config-
urations are then further perturbed as in (30) with σ = 0.1 rad,
to obtain a second set of configurations. We then run the
algorithms twice – once using the singular configurations as

The final version of this paper is published in IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2768–2780, Oct. 2022, DOI 10.1109/TRO.2022.3162954. © 2022 IEEE. Personal use of
this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/TRO.2022.3162954

PREPRIN
T

LLOYD et al.: FAST AND ROBUST INVERSE KINEMATICS OF SERIAL ROBOTS USING HALLEY’S METHOD 10

Fig. 5. Behavior of the Newton-Raphson (left) and Halley’s method (right) when x0 is near a singularity, ∇f(x0) = 0. The NR method immediately diverges,
however Halley’s method instead takes small steps until the basin of convergence is reached. In this example, Halley’s method will converge to the root even
when x0 is arbitrarily close to the singularity, so long as the gradient is not exactly zero.

the target, and the perturbed configurations as the initial guess,
then again using the singular poses as the initial guess and the
perturbed as the target. This setup allows quantification of the
algorithm performance in both singularity situations — where
the singularity is a midpoint of the algorithm (singular start)
and where the singularity is the target (singular target). Fig. 6
plots the reliability for both situations over varying condition
numbers ||J(q)|| using the same seven algorithms as in the
previous section, with a requested accuracy of ε = 10−12.
Here we use a slightly different metric for convergence than
in the previous section, since the condition numbers are so high
as to render (32) meaningless. Instead, we use the condition
||e|| < ε′, with ε′ = 10−3 rad.

These results show that the undamped NR and QuIK
methods both suffer from reliability issues near singularities,
for both singular starting configurations and singular target
configurations. The reliability is worst when the pose is
nearly, but not identically singular (||J|| ≈ 106 to 1010). This
trend is expected, as the pseudoinverse is known to be well
behaved exactly at singularities, but can command large joint
adjustments when in the neighborhood of a singularity [13].
As expected, Fig. 6 shows the undamped QuIK method to be
more robust than the NR method in handling singular starting
configurations.

The damped algorithms generally avoid this unstable region.
In all cases, higher damping improved the algorithm perfor-
mance near singularities. For the DNR method, the lightly and
heavily damped algorithms still occasionally failed in testing.
However, the lightly damped DQuIK method experienced only
rare failures, and the heavily damped DQuIK method did not
experience any failures at all during testing. The downside of
the damping term, of course, is slower general performance
and a reduction in reliability when the initial guesses are poor
and the configurations are non-singular. However, with proper
tuning of the λ parameter, as discussed in further depth in
[10], [12], [13], [35], damping is a beneficial trade-off to avoid
poor performance in the undamped cases near the singularities.
Methods of dynamically adjusting the damping can improve
results in both scenarios [10], [12], [13], [18], [34]–[37].

E. Comparisons with Other Packages

In the final section of this paper, we show the performance
of the proposed QuIK method against other state-of-the-art
methods and on a variety of test manipulators. For this test,

Fig. 6. Reliability of tested inverse kinematics algorithms at near-singular
starting configurations (top), and at near-singular target configurations (bot-
tom), with a requested accuracy ε = 10−12 rad, an initial joint error σ =
0.1 rad, and averaged over N = 106 samples.
∗ Error rates below 10−3% are considered not statistically significant at the
tested sample size, and are lumped with zero.

The final version of this paper is published in IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2768–2780, Oct. 2022, DOI 10.1109/TRO.2022.3162954. © 2022 IEEE. Personal use of
this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/TRO.2022.3162954

PREPRIN
T

LLOYD et al.: FAST AND ROBUST INVERSE KINEMATICS OF SERIAL ROBOTS USING HALLEY’S METHOD 11

we emulate the testing procedure given in [7]. For each
manipulator, we generate 106 random target configurations
q∗, uniformly distributed within the joint-space of each ma-
nipulator. The starting configurations q0 are taken as the
home configuration of the tested robot, and is fixed for all
samples. Requested accuracy is ε = 10−8 rad and reliability
is computed as in Section IV-C. We test the QuIK, DQuIK
(with λ2 = 10−7), NR and BFGS algorithms from earlier,
along with the following additional algorithms:
• KDL-LMA and KDL-NR: The open-source Orocos Kine-

matics and Dynamics Library (KDL) is arguably the most
widely-used generic inverse kinematic solvers [7], [17],
and is used in the ROS packages. KDL-LMA is their
implementation of the automatically-damped Levenberg-
Marquard algorithm. This algorithm is their primary
inverse-kinematics algorithm. We also include KDL-NR,
which is their implementation of the Newton-Raphson
method, implemented without damping.

• ML-BFGS and ML-LMA: Mathworks’ Matlab Robotics
Toolbox features two inverse kinematics solvers. ML-
BFGS is a BFGS solver, implemented as in [1] with some
modifications. ML-LMA is a version of the Levenberg-
Marquardt algorithm, implemented as in [12].

All algorithms are run from compiled C++ code. For the
Matlab algorithms, automatic code generation (provided in
Matlab) reduces the interpreted code into compiled C++ code
prior to benchmarking. Each of the algorithms is tested on
the KUKA KR6 manipulator defined earlier, as well as the
following additional four manipulators.
• KUKA KR6 (Perturbed DH): The KUKA KR6 robot from

Fig. 2, with a “perturbed” DH table. Each parameter is
modified by a small but non-negligible random number
in the range ±0.01. This chain gives an approximation
of a manipulator after kinematic calibration, and will
demonstrate that joint alignment is not required for these
numerical algorithms.

• KUKA iiwa7 r800: A 7-DOF revolute-joint redundant
manipulator.

• Kinova Jaco: A 6-DOF manipulator with a nonspherical
wrist, which complicates closed-form solutions [3].

• Boston Dynamics Atlas: The Atlas humanoid robot [40]
is used as a sample hyper-redundant chain. Testing is
performed on the 16-DOF chain from the robot’s right
foot to right hand.

The full kinematic parameters of these manipulators can be
found in the linked codebase [29]. Note that, as discussed in
Section III-B, we do not implement any specific optimization
strategy for redundant manipulators to select an “ideal” pose
within the null-space of the manipulator — instead, we search
for any solution which reduces the Cartesian error to zero. Fur-
ther optimization could be accomplished through techniques
such as task augmentation [20] or null-space projection [21],
[22]; however, this is beyond the scope of the current work.

The results of this testing are given in Table II. Across
all manipulators, and in terms of both evaluation speed and
reliability, the QuIK and DQuIK methods outperforms other
methods — often by one to two full orders of magnitude. In

terms of speed, the QuIK algorithm computes in 21 to 35 µs,
depending on manipulator. The next nearest algorithms were
BFGS (1.1 to 3.1x slower), NR (1.0 to 1.8x slower), and
KDL-LMA (3.9 to 7.2x slower). Both Matlab algorithms per-
formed exceedingly slowly, with ML-BFGS being 329 to 941x
slower and ML-LMA being 32 to 52x slower. It is to be
expected that our implementations may be more efficient, as

TABLE II
RELATIVE SPEED AND RELIABILITY OF THE QUIK METHOD

Mean Time∗ Error Rate∗

KUKA KR6 (6-DOF)
QuIK 21 µs 0.13%
DQuIK 22 µs (x 1.0) 0.24% (x 1.8)
NR 38 µs (x 1.8) 1% (x 7.7)
BFGS 34 µs (x 1.6) 61% (x 460)
KDL-LMA 148 µs (x 7.0) 5.3% (x 40)
KDL-NR 425 µs (x 20) 3.5% (x 27)
ML-BFGS 14 794 µs (x 697) 61% (x 467)
ML-LMA 670 µs (x 32) 1.1% (x 8.6)

KUKA KR6 (Perturbed DH, 6-DOF)
QuIK 24 µs 0.38%
DQuIK 25 µs (x 1.0) 0.82% (x 2.2)
NR 41 µs (x 1.7) 1.3% (x 3.4)
BFGS 36 µs (x 1.5) 62% (x 164)
KDL-LMA 149 µs (x 6.2) 6.8% (x 18)
KDL-NR 452 µs (x 19) 4.2% (x 11)
ML-BFGS 15 015 µs (x 628) 62% (x 163)
ML-LMA 1 255 µs (x 52) 1.4% (x 3.7)

KUKA iiwa7 R800 (7-DOF)
QuIK 16 µs 0%
DQuIK 17 µs (x 1.0) 0% —
NR 25 µs (x 1.5) 0.001% (x∞)
BFGS 51 µs (x 3.1) 34% (x∞)
KDL-LMA 118 µs (x 7.2) 0.005% (x∞)
KDL-NR 337 µs (x 20) 0.085% (x∞)
ML-BFGS 15 520 µs (x 941) 63% (x∞)
ML-LMA 670 µs (x 41) 0.004% (x∞)

Kinova Jaco (Nonspherical Wrist, 6-DOF)
QuIK 35 µs 0.66%
DQuIK 37 µs (x 1.0) 1.4% (x 2.1)
NR 64 µs (x 1.8) 4.4% (x 6.8)
BFGS 41 µs (x 1.1) 59% (x 90)
KDL-LMA 177 µs (x 5.0) 17% (x 26)
KDL-NR 774 µs (x 22) 14% (x 21)
ML-BFGS 17 504 µs (x 495) 64% (x 98)
ML-LMA 1 268 µs (x 36) 2.1% (x 3.2)

Boston Dynamics Atlas (Foot to Hand, 16-DOF)
QuIK 32 µs 0%
DQuIK 32 µs (x 1.0) 0% —
NR 33 µs (x 1.0) 0% —
BFGS 110 µs (x 3.4) 1.8% (x∞)
KDL-LMA 126 µs (x 3.9) 0% —
KDL-NR 267 µs (x 8.4) 0% —
ML-BFGS 10 498 µs (x 329) 13% (x∞)
ML-LMA 1 484 µs (x 47) 0% —
∗ Factors are relative to the QuIK algorithm, which is the fastest and most
robust across all tests.

The final version of this paper is published in IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2768–2780, Oct. 2022, DOI 10.1109/TRO.2022.3162954. © 2022 IEEE. Personal use of
this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/TRO.2022.3162954

PREPRIN
T

LLOYD et al.: FAST AND ROBUST INVERSE KINEMATICS OF SERIAL ROBOTS USING HALLEY’S METHOD 12

we limit ourselves to serial manipulators, whereas Matlab and
KDL work on any tree-structure robot, which introduces some
overhead. Additionally, the KDL algorithms use an SVD-based
linear solver, which is more numerically stable but slower.
However, the speed differences are nonetheless considerable,
and the SVD-based algorithms were still less reliable than our
Cholesky-based implementations.

In terms of reliability, the QuIK and DQuIK methods again
had the highest performance. The next nearest contenders were
ML-LMA (3.2 to 8.6x more failures) and NR (3.4 to 7.7x
more failures). That these algorithms would perform sim-
ilarly is expected as they are mathematically very similar
— however, Matlab’s implementation is significantly slower.
The BFGS algorithms (both BFGS and ML-BFGS) were
not reliable, failing 90 to 467x more often, and the KDL
algorithms (KDL-LMA and KDL-NR) had only moderate
performance (11 to 40x more failures). The perturbed KUKA
KR6 chain and the Kinova Jaco chain both are slightly more
difficult to solve. All algorithms take longer and have slightly
lower reliability for these robots, but the differences to the
“aligned” KUKA KR6 robot are nonetheless relatively minor.
We note that the testing methodology for Table II primarily
tests the algorithms with poor initial guesses. Thus, per the
trends observed in Fig. 4, we expect these results to slightly
amplify the relative speed of the QuIK methods, but also
reduce their relative reliability.

Finally, we can note that the performance gains of the QuIK
and DQuIK method extend to the two redundant manipulators.
It is noticeable that the inverse kinematics is more reliable
on these redundant manipulators. This increased reliability is
expected, as the number of constraints m has not changed, but
more joint variables n are available to eliminate the error, thus
facilitating the problem.

V. CONCLUSION

A novel inverse kinematics algorithm, the Quick Inverse
Kinematics (QuIK) method, has been introduced. The QuIK
algorithm is a third-order, iterative, numerical algorithm which
adds a second-order derivative term to the Taylor series ap-
proximation of the forward kinematics function. The second-
order derivative information was shown to exhibit significant
symmetry and sparsity, speeding up computations. An exten-
sion to the QuIK method, called the Damped Quick Inverse
Kinematics (DQuIK) method, was introduced to allow for
stable behavior near ill-conditioned target configurations. The
proposed algorithms were benchmarked in terms of evalua-
tion speed, reliability, and singularity robustness against the
Newton-Raphson method and several other modern inverse
kinematics algorithms. The QuIK and DQuIK algorithms were
able to converge faster and more reliably than the other tested
methods. The damped DQuIK method was generally more re-
liable than the damped NR method reliable near singular con-
figurations. The QuIK algorithms are proposed as faster and
more robust “drop-in” replacements to the Newton-Raphson
methods in inverse kinematics. A codebase is provided for
public use, featuring C++ and Matlab implementations of the
proposed algorithms, and allowing readers to reproduce the
results given in the current work [29].

APPENDIX
THE MATRIX LOGARITHM

The matrix logarithm operation is included here, for com-
pleteness. These formulas originate from [12], [30] but have
been modified for computational accuracy and notational con-
sistency. The matrix logarithm operation is used to convert
a homogeneous transformation matrix T ∈ SE(3) to a 6-
element spatial twist e ∈ R6 of the form

e = log(T) =
[
pT ωT

]T
, (34)

where p is the linear translation of T, and ω is the angle-
axis representation of the rotational component, R ∈ SO(3).
Define the intermediate 3-vector ε from the entries of R as

ε =
[
r32 − r23 r13 − r31 r21 − r12

]T
. (35)

If R is not a diagonal matrix, then ε is non-zero and ω can
be computed directly as [12]

ω = atan2
(
||ε||, trace(R)− 1

)
||ε||−1 ε. (36)

If ||ε|| is nearly zero, then R is either nearly the identity,
in which case trace(R) ≈ 3, or nearly rotation of π radians
about the x–, y– or z–axes, in which case trace(R) ≈ −1.
In the former case, we use a Taylor-series approximation to
avoid divide-by-zero errors which reduces to

ω ≈
(
3
4 −

1
12 trace(R)

)
ε. (37)

In the latter case, numerical precision is less important since
for rotational errors this large, numerical algorithms will not
take accurate steps regardless of ω, and a rotation of π rad
about any axis will reduce error nearly to zero. An acceptable
approximation in this case is [12]

ω ≈ π
2

[
diag(R) + 1

]
. (38)

REFERENCES

[1] J. Zhao and N. Badler, “Inverse Kinematics Positioning Using Nonlinear
Programming for Highly Articulated Figures,” ACM Trans. Graph.,
vol. 13, no. 4, pp. 313–336, 1994.

[2] A. A. Canutescu and R. L. Dunbrack, “Cyclic coordinate descent: A
robotics algorithm for protein loop closure,” Protein Sci., vol. 12, no. 5,
pp. 963–972, 2003.

[3] A. Campeau-Lecours, H. Lamontagne, S. Latour, P. Fauteux, V. Maheu,
F. Boucher, C. Deguire, and L.-J. C. L’Ecuyer, “Kinova Modular Robot
Arms for Service Robotics Applications,” Int. J. Robot. Appl. Technol.,
vol. 5, no. 2, pp. 49–71, 2018.

[4] A. Aristidou, J. Lasenby, Y. Chrysanthou, and A. Shamir, “Inverse
Kinematics Techniques in Computer Graphics: A Survey,” Comput.
Graph. Forum, vol. 37, no. 6, pp. 35–58, sep 2018.

[5] I. M. Chen, G. Yang, and I. G. Kang, “Numerical inverse kinematics
for modular reconfigurable robots,” J. Robot. Syst., vol. 16, no. 4, pp.
213–225, 1999.

[6] L.-C. Wang and C. Chen, “A combined optimization method for solving
the inverse kinematics problems of mechanical manipulators,” IEEE
Trans. Robot. Autom., vol. 7, no. 4, pp. 489–499, 1991.

[7] P. Beeson and B. Ames, “TRAC-IK: An open-source library for im-
proved solving of generic inverse kinematics,” IEEE-RAS Int. Conf.
Humanoid Robot., vol. 2015-Decem, pp. 928–935, 2015.

[8] W. Wolovich and H. Elliott, “A computational technique for inverse
kinematics,” in 23rd IEEE Conf. Decis. Control, no. December. IEEE,
dec 1984, pp. 1359–1363.

[9] D. E. Whitney, “Resolved Motion Rate Control of Manipulators and
Human Prostheses,” IEEE Trans. Man-Machine Syst., vol. 10, no. 2, pp.
47–53, 1969.

The final version of this paper is published in IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2768–2780, Oct. 2022, DOI 10.1109/TRO.2022.3162954. © 2022 IEEE. Personal use of
this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/TRO.2022.3162954

PREPRIN
T

LLOYD et al.: FAST AND ROBUST INVERSE KINEMATICS OF SERIAL ROBOTS USING HALLEY’S METHOD 13

[10] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with
singularity robustness for robot manipulator control,” J. Dyn. Syst. Meas.
Control. Trans. ASME, vol. 108, no. 3, pp. 163–171, 1986.

[11] C. W. Wampler, “Manipulator Inverse Kinematic Solutions Based on
Vector Formulations and Damped Least-Squares Methods,” IEEE Trans.
Syst. Man Cybern., vol. 16, no. 1, pp. 93–101, 1986.

[12] T. Sugihara, “Solvability-Unconcerned Inverse Kinematics by the Lev-
enberg–Marquardt Method,” IEEE Trans. Robot., vol. 27, no. 5, pp.
984–991, oct 2011.

[13] S. R. Buss and J.-S. Kim, “Selectively Damped Least Squares for Inverse
Kinematics,” J. Graph. Tools, vol. 10, no. 3, pp. 37–49, 2005.

[14] A. El-Sherbiny, M. A. Elhosseini, and A. Y. Haikal, “A comparative
study of soft computing methods to solve inverse kinematics problem,”
Ain Shams Eng. J., vol. 9, no. 4, pp. 2535–2548, 2018.

[15] S. Phaniteja, P. Dewangan, P. Guhan, A. Sarkar, and K. M. Krishna,
“A deep reinforcement learning approach for dynamically stable inverse
kinematics of humanoid robots,” 2017 IEEE Int. Conf. Robot. Biomimet-
ics, ROBIO 2017, vol. 2018-Janua, pp. 1818–1823, 2018.

[16] N. Vahrenkamp, D. Muth, P. Kaiser, and T. Asfour, “IK-Map: An en-
hanced workspace representation to support inverse kinematics solvers,”
IEEE-RAS Int. Conf. Humanoid Robot., vol. 2015-Decem, no. 611909,
pp. 785–790, 2015.

[17] H. Bruyninckx, “Open robot control software: The OROCOS project,”
Proc. - IEEE Int. Conf. Robot. Autom., vol. 3, pp. 2523–2528, 2001.

[18] A. Colome and C. Torras, “Redundant inverse kinematics: Experimental
comparative review and two enhancements,” IEEE Int. Conf. Intell.
Robot. Syst., pp. 5333–5340, 2012.

[19] T. R. Scavo and J. B. Thoo, “On the Geometry of Halley’s Method,”
Am. Math. Mon., vol. 102, no. 5, p. 417, may 1995.

[20] O. Egeland, “Task-Space Tracking with Redundant Manipulators,” IEEE
J. Robot. Autom., vol. 3, no. 5, pp. 471–475, 1987.

[21] A. Leigeois, “Automatic Supervisory Control of the Configuration and
Behavior of Multibody Mechanisms,” IEEE Trans. Syst. Man. Cybern.,
vol. 7, no. 12, pp. 868–871, 1977.

[22] T. Chan and R. Dubey, “A weighted least-norm solution based scheme
for avoiding joint limits for redundant manipulators,” in Proc. IEEE Int.
Conf. Robot. Autom. IEEE Comput. Soc. Press, 1993, pp. 395–402.

[23] Y. Nakamura and H. Hanafusa, “Optimal Redundancy Control of Robot
Manipulators,” Int. J. Rob. Res., vol. 6, no. 1, pp. 32–42, 1987.

[24] A. S. Householder, The Numerical Treatment of a Single Nonlinear
Equation. New York: McGraw-Hill, 1970.

[25] G. Gundersen and T. Steihaug, “On large-scale unconstrained opti-
mization problems and higher order methods,” Optim. Methods Softw.,
vol. 25, no. 3, pp. 337–358, jun 2010.

[26] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear
Equations in Several Variables. New York: Academic Press, 1970.

[27] W. Rheinboldt, Methods for Solving Systems of Nonlinear Equations.
SIAM, 1998.

[28] M. Thomas and D. Tesar, “Dynamic modeling of serial manipulator
arms,” J. Dyn. Syst. Meas. Control. Trans. ASME, vol. 104, no. 3, pp.
218–228, 1982.

[29] S. Lloyd, R. Irani, and A. Mojtaba, “Github Repository for the QuIK
Algorithm,” 2022. [Online]. Available: https://github.com/CarletonABL/
QuIK

[30] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to
Robotic Manipulation, 1994, vol. 29.

[31] M. W. Spong and M. Vidyasagar, Robot dynamics and control. John
Wiley and Sons, 2008.

[32] A. Hourtash, “The kinematic Hessian and higher derivatives,” Proc.
IEEE Int. Symp. Comput. Intell. Robot. Autom. CIRA, pp. 169–174,
2005.

[33] S. R. Buss, “Introduction to inverse kinematics with jacobian transpose,
pseudoinverse and damped least squares methods,” IEEE Journal of
Robotics and Automation, vol. 17, no. 1-19, p. 16, 2004.

[36] R. V. Mayorga, N. Milano, and A. K. Wong, “A fast procedure for ma-
nipulator inverse kinematics evaluation and pseudoinverse robustness,”
Proc. IEEE Int. Work. Intell. Motion Control. IMC 1990, vol. 2, no. 4,
pp. 787–792, 1990.

[34] L. Kelmar and P. Khosla, “Automatic generation of kinematics for a
reconfigurable modular manipulator system,” in Proceedings. 1988 IEEE
Int. Conf. Robot. Autom. IEEE Comput. Soc. Press, 1988, pp. 663–668.

[35] S. Chiaverini, B. Siciliano, and O. Egeland, “Review of the Damped
Least-Squares Inverse Kinematics with Experiments on an Industrial
Robot Manipulator,” IEEE Trans. Control Syst. Technol., vol. 2, no. 2,
pp. 123–134, 1994.

[37] A. A. Maciejewski and C. A. Klein, “Numerical filtering for the
operation of robotic manipulators through kinematically singular con-
figurations,” J. Robot. Syst., vol. 5, no. 6, pp. 527–552, 1988.

[38] J. R. Bunch and J. E. Hopcroft, “Triangular factorization and inversion
by fast matrix multiplication,” Math. Comput., vol. 28, no. 125, pp.
231–231, jan 1974.

[39] C. Lagarias, Jeffrey, A. Reeds, James, H. Wright, Margaret, and
E. Wright, Paul, “Convergence properties of the nelder–mead simplex
method in low dimensions,” SIAM J. Optim., vol. 9, no. 1, pp. 112–147,
1998.

[40] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter,
T. Koolen, P. Marion, and R. Tedrake, “Optimization-based locomotion
planning, estimation, and control design for the atlas humanoid robot,”
Auton. Robots, vol. 40, no. 3, pp. 429–455, 2016.

Steffan Lloyd received his B. Eng. degree in me-
chanical engineering from Carleton University, Ot-
tawa, Canada in 2015. He worked as a mechanical
designer in aerospace robotics at Advanced Inte-
gration Technologies (AIT) in Umeå, Sweden from
2016-2018. He is currently pursuing a Ph.D. in
mechanical engineering at Carleton University under
the supervision of M. Ahmadi and R. Irani.

Rishad A. Irani received the B.A.Sc. degree in me-
chanical engineering from the University of Wind-
sor, Windsor, Canada, in 2003, and the M.A.Sc.
and Ph.D. degrees in mechanical engineering from
Dalhousie University, Halifax, Canada, in 2006 and
2011, respectively. He joined Carleton University
in January 2016. Previously, he worked with Rolls-
Royce Canada Limited. His current research focuses
on modeling and mechatronic applications for ma-
rine systems.

M. Ahmadi received the B.Sc. degree from Sharif
University of Technology, Tehran, Iran, in 1989, the
M.Sc. degree from the University of Tehran, Iran,
in 1992, and the Ph.D. degree in mechanical engi-
neering from McGill University, Montreal, Canada,
in 1998. He joined Carleton University, Ottawa, ON,
Canada in 2005, where he is currently a Professor.
He founded the Advanced Biomechatronics and Lo-
comotion Lab. His current interests include rehabil-
itation robotics, human-robot interaction, design of
mechatronics systems.

The final version of this paper is published in IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2768–2780, Oct. 2022, DOI 10.1109/TRO.2022.3162954. © 2022 IEEE. Personal use of
this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://github.com/CarletonABL/QuIK
https://github.com/CarletonABL/QuIK
https://doi.org/10.1109/TRO.2022.3162954

	Introduction
	Problem Definition
	The Quick Inverse Kinematics Algorithm
	Damping the QuIK Method
	Extension to High-DOF & Redundant Chains

	Benchmarking and Analysis
	Algorithm & Benchmark Implementation
	Sample problem generation
	Error saturation

	Algorithm Convergence
	Overall Algorithm Complexity & Robustness
	Singularity Handling
	Comparisons with Other Packages

	Conclusion
	Appendix: The Matrix Logarithm
	References
	Biographies
	Steffan Lloyd
	Rishad A. Irani
	M. Ahmadi

