
Noname manuscript No.
(will be inserted by the editor)

The Application of Mechanistic Cutting Force Models for Deburring

Grael Miller · Mojtaba Ahmadi · Rishad Irani

Received: date / Accepted: date

Abstract In this paper, the performances of two cutting force
models are compared alongside two methods for identify-
ing their empirical parameters. The models’ performances
are evaluated with the aim of determining which model is
suited to the prediction of forces generated during the op-
erations with features sizes less than 1 mm. The models’
empirical parameters were then identified using a linear re-
gression on collected force data and a simplex search-based
optimization method that minimized the error between the
model output and the measured data. The models’ predic-
tions were compared to experimental results gathered from
several shallow milling passes conducted at a variety of tool
immersions. The models were used to produce force esti-
mates based on measured milling parameters and depth of
cut estimates based on the measured forces. The simplex
search method was shown to be the most effective of the
identification techniques. In full immersion tests, the linear
model trained using the linear regression method performed
best. However, in low MRR partial immersion tests, which
more closely resemble deburring operations, the exponential
model trained via simplex search outperformed the linear
model by nearly two orders of magnitude.

Keywords cutting force model · nonlinear force model ·
Milling · deburring

1 Introduction

Deburring is a ubiquitous finishing process in the manufac-
ture of metal and composite parts, accounting for approx-
imately 9% of total manufacturing costs [1]. A large por-
tion of deburring is performed by hand, exposing workers to
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sharp edges and metal dust. Automating the process through
robotic deburring is an appealing solution, as robotic ma-
nipulators can be made cheaper and can cover a larger work
volume than traditional CNC centres. The added flexibility
and lower cost of robotic manipulators comes at the cost of
lower rigidity and precision. Additionally, the low contact
forces generated by low material removal rate (MRR) oper-
ations such as deburring significantly decrease the signal to
noise ratio. To compensate for the lower rigidity of robotic
manipulators and the increased noise on the feedback signal,
it is necessary to develop robust control solutions to ensure
a consistent finished edge.

To design an effective controller for the deburring pro-
cess, it is important to be able to model the forces generated
through deburring. In the literature, deburring modelling is
primarily focused on simple empirical models for use as part
of a force control solution. For example Her and Kazerooni
[2] propose a very simple relationship wherein the tangential
force is directly related to the cutting force by

Ft = K×MRR (1)

where K is an experimentally determined constant and MMR
is the material removal rate in grams per second. Hsu and
Fu [3] propose a contact model based on the tool position
relative to the edge. A number of proposed deburring solu-
tions do not consider the contact force explicitly; instead,
they experimentally determine the cutting force required to
achieve a desired finished surface [4,5]. The disadvantage to
implicitly considering the contact force in this way is that a
new “ideal” contact force must be determined for each new
tool workpiece combination as well as for each new desired
surface finish.

While a great deal of scientific effort has been applied
to model the cutting of metal, to the best knowledge of the
authors at this time, existing metal cutting models have not
been applied to the problem of deburring. The purpose of
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this paper is to begin the investigation into the application
of existing cutting models to the task of predicting the cut-
ting forces during low MRR operations such as deburring.
These models are important as they could be used in two
ways: the first use is as a pre-processing algorithm that pre-
dicts the forces created by the deburring operation where
the models are used to generate an acceptable and/or opti-
mal toolpath. The model’s second purpose is as an on-line
observer to provide an estimate of the depth of cut, material
removal rate and contact forces that will be used in real-time
control of the tool path to maintain a consistent and accurate
finish.

As a pre-process step, the model should be able to accu-
rately predict the forces generated during the finishing op-
eration when given an accurate measurement of the volume
and position of the features to be removed. The forces pre-
dicted by the model can then be used to plan optimal tool-
paths to maximize the throughput for the system. Addition-
ally, the predicted forces could be passed to the force con-
troller to maintain the desired contact force at each point
along the toolpath.

The model’s secondary purpose is to serve as an on-line
observer of the depth of cut. While the robot is in opera-
tion, it will not be possible to measure the depth of cut di-
rectly without stopping the spindle. Using the robot’s for-
ward kinematics, the CAM information of the workpiece,
and the geometry of the tooling it will be possible to esti-
mate the depth of cut; however, a purely kinematic strategy
for depth of cut estimation is prone to measurement noise
and errors in the accuracy of the robot’s kinematic model.
As an observer, the model can provide a second estimate of
the depth of cut using the measured forces online, while at-
tempting to maintain a desired contact force.

This paper investigates the accuracy of existing cutting
force models developed for conventional scale milling when
used to predict the forces generated by high speed, low ma-
terial removal rate operations found in deburring. The de-
burring process approaches the boundary of what is consid-
ered micro-scale machining, so it is possible that some of the
effects that dominate machining forces at that scale could
cause inaccuracies in the existing cutting models.

This paper is divided into seven sections. The first be-
ing this brief introduction to the paper and its contents. The
second section gives background on the mechanistic cutting
force models used in this paper. The third section contains a
brief overview of the derivation of the equations used in this
paper from the base model. The fourth section outlines the
equipment and procedures used to collect the data. Section
five presents the two methods used to identify the empirical
parameters of the models, while the last two sections sum-
marize the results and provide conclusions respectively.

Fig. 1 Merchant circle showing the force relationships of an orthogo-
nal cut. Adapted from [7]

2 Background

From the middle of the 20th century to the present, a great
deal of scientific effort has been devoted to the accurate pre-
dictions of the forces generated during machining. In gen-
eral the cutting-force models found in literature can be placed
in three categories: analytical, finite element methods (FEM),
and mechanistic. While mechanistic models were selected to
form the basis of the deburring models, it is useful to have a
basic understanding of the current state of the art of cutting
force modelling. The following is a brief review of existing
orthogonal cutting models.

2.1 Analytical Models

Analytical models predict the forces and material deforma-
tion generated through cutting by using relationships de-
rived from physics and solid mechanics. The analytical model,
proposed by Merchant [6], is among the earliest attempts to
model the cutting process scientifically. Figure 1 shows a di-
agram of the basic elements of the Merchant model which
breaks the resultant cutting force F into the easier-to-measure
normal and tangential components FT and FN which are then
related to the work performed across the shear plane Φc to
deform the structure of the uncut chip into the cut chip with
crystal orientation Ψc as well as the measured shear force
Fs. The model assumes an ideal isotropic material with per-
fectly rigid-plastic behaviour with no temperature or strain
hardening effects considered. The omission of strain hard-
ening caused poor agreement with experimental data [7].

The Merchant model was improved by Palmer and Ox-
ley [7] who replaced the 2D shear plane with a zone of plas-
tic deformation. The model proposed by Palmer and Ox-
ley uses lines of constant shear and hydrostatic stress, slip-
lines, to provide a more accurate picture of how the metal is
being deformed through the entire plastic region. The slip-
line model also allowed for the inclusion of work-hardening
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terms omitted by the Merchant model which improved the
model’s agreement with experimental results [7].

The slip-plane model was further improved by Roth and
Oxley [8] to include the secondary shear zone along the rake
face of the tool, noted in Figure 2. The improved slip-line
model also accounted for the curl in the produced chip by
modelling the elastic contact between the rake face of the
tool. The universal slip-line model developed by Fang et al.
[9] combines the work of Oxley and Palmer to create a slip-
line model that predicts not only contact forces and shear
stress but chip curl radius and the flow of material under the
tool tip among others.

Fig. 2 Simplified locations of shear zones in chip formation during
orthogonal cut.

While the current analytical models show good agree-
ment with experimental data [9] they are very complex to
implement. Current analytical models are dependent on very
accurate measures of the material properties and geometry
of the tool and workpiece, which can be difficult to measure
accurately [9,10]. These models are designed to be of use
for the development of more efficient machine tooling and
strategies [6,8,9]. Additionally, the quantities the analytical
models predict, chip curl radius and shear-plane angle are
not useful for the proposed deburring model. As computa-
tional power becomes cheaper and easier to access more re-
search has been focused on creating finite element models
that can take better advantage of that power.

2.2 Finite element methods

Finite element method (FEM) models attempt to simulate
the actual behaviour of the cutting process. In an FEM model
the workpiece and tool are broken up into a mesh of small el-
ements which are connected following a simplified analyti-
cal model. FEM models provide highly detailed information
about the behaviour of the chip during the cutting process
[10], however, they are highly dependent on the boundary
conditions and the selection of the physical parameters such
as yield stress and friction coefficients [11]. The acquisition
of these physical parameters can be very difficult in the case

of cutting models where strains and strain rates are much
higher than what can be measured experimentally [12]. As
with the analytical models discussed previously, FEM mod-
els also model a number of chip behaviours that are of little
to no use for deburring applications. FEM models are also
computationally much more expensive to run which makes
them poorly suited for online applications [10][11]. Unlike
the analytical and FEM models mechanistic models are sim-
ple to implement, accurate and are typically very computa-
tionally efficient.

2.3 Mechanistic Force Models

Mechanistic models typically consist of a function whose
form is taken from analytical models with one or more lumped
empirical coefficients. The empirical coefficients combine
the effects of the physical properties of the tool and work-
piece into a single value. The empirical coefficients are only
applicable for the specific tool workpiece combination they
are trained for, meaning the experimentally determined con-
stants must be re-calculated with each new tool workpiece
combination.

An early mechanistic force model was proposed by Sab-
berwall and Koensbeurger [13] who proposed a direct pro-
portionality Kt between the tangential cutting force Ft and
the uncut chip area ha as well as a direct proptionality Kc
between the tangent force and the cutting force Fc

Ft = Ktha, (2)

Fc = KcFt , (3)

where h is the uncut chip thickness and a is the axial depth of
cut and Kt and Kc are empirically determined constants. The
Koensbeurger model was further improved by Altintas and
Budak [14]. The Altintas model proposes a linear relation-
ship between the instantaneous chip thickness h and cutting
forces

Fj = (K jch+K je)a j ∈ t,r,a (4)

where t,r,a represent the tangential, radial and axial direc-
tions respectively, h is the instantaneous uncut chip thick-
ness and a is the axial depth of cut, Ktc,Krc,Kac are the em-
pirical parameters that represent the forces generated by the
mechanical shearing of the metal and Kte,Kre,Kae are em-
pirical parameters that represent the forces generated by all
sources of friction independent of the cutting action such as
ploughing and edge rubbing [15].

Another popular mechanistic model in the literature is
the exponential model proposed by Keinzel [16]. The expo-
nential model proposes an exponential relationship between
the cutting forces and the uncut chip thickness as

Fj = K jahβ j ∈ t,r,a, (5)
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where Kt ,Kr,Ka and β are the lumped empirical coefficients.
The Keinzel model is less commonly used due in part to its
non-linearity. However, with current computing technology,
the model can be evaluated in real time and the few papers
that have used the model showed results that were compara-
ble to or surpassed the accuracy of the Altintas model [16,
17,18].

While the Altintas and Keinzel models are common in
literature, there have been attempts at constructing other mech-
anistic models based on other cutting parameters. For exam-
ple, Auerbach et al. propose a model that makes use of ma-
chining variables that are more readily measured by exist-
ing process control systems in industry [19]. The Auerbach
model proposes a relation between the cutting area and the
milling force Fa such that

FA = c1 +
c2bah
bc3

, (6)

where c1,2,3 are empirical parameters and b is the width of
cut. However, as noted by Zhang et al. [20] models that
consider the instantaneous uncut chip thickness explicitly as
part of the model outperform those that do not. The impor-
tance of considering the uncut chip thickness directly helps
to explain the lasting impact and continued use of the Alt-
intas and Keinzel models. In addition to the structure of the
models themselves, a great deal of effort has gone into the
fast and accurate computation of the empirical parameters.

2.3.1 Parameter identification

Budak and Altintas provided a method to identify the pa-
rameters from orthogonal cutting data [21]. Altintas et al.
propose the creation of a database of physical parameters
based on numerous experiments, so that physical parameters
of any given tool-workpiece combination could be looked
up and used to compute a set of matching empirical parame-
ters. Altintas outlines another method for obtaining the coef-
ficients through linear regression [15]. The linear regression
method uses a number of single feed rate tests to identify the
the parameters, the method is effective but time consuming.
Adem et al. propose a global optimization solution in which
a large set of cutting data is used to train the coefficients
simultaneously using a simplex search algorithm [16]. The
proposed simplex search allows for more efficient traininmg
of the model compared to the linear as it allows for a wider
variety of data to be included in the training, however in
Adem et al. it was only tested on full immersion data.

Shwenzer et al.[17,18] proposes using an online opti-
mization algorithm to continuously update the parameters
as they change due to cutter wear and other environmental
factors. The work by Shwenzer includes the comparison of a
large variety of existing local and global solvers [17] and an

Fig. 3 Alignment of tool coordinate frame for single point turning op-
eration

application of the ensemble Kalman filter [18]. Online opti-
mization methods have some potential drawbacks as the sys-
tem is under-constrained which can lead the global solvers
to converge to different local solutions if their initial condi-
tions were not set carefully [17]. The results of these online
strategies are very appealing from an industrial standpoint
as they remove one of the primary drawbacks of the mech-
anistic models which is the time required to train the model
for each new tool-workpiece interaction.

Mechanistic models, specifically the linear model pro-
posed by Altintas and the nonlinear model proposed by Keinzel,
which are the most widely used in the literature, were se-
lected as the basis functions of the deburring model. Mech-
anistic models were selected as they are the most compu-
tationally efficient, they have good agreement with experi-
mental results and unlike the analytical and FEM models do
not output extraneous information [16,15,17].

3 Model form

The linear model of Altintas and Budak and nonlinear force
model by Keinzle used in this research were developed to
model single point cutting operations; Figure 3 shows a sim-
plified diagram of a single point turning operation. In Fig-
ure 3 coordinate frame is defined with its origin fixed cutting
edge with three orthogonal axes: radial, tangential, and ax-
ial noted as r, t, and a. In a fixed point operation, the cutting
edge is fixed and held orthogonal to the part and the work-
piece is moved relative to the cutting edge. During a fixed
point cut, the chip thickness h f p is constant with

h f p =
Va

Ω

and depends only on the linear feed rate in the axial direction
Va and the angular velocity of the spindle Ω . Although the
models’ forms are derived from fixed point operations they
remain valid for any orthogonal cutting element.

The Altintas model proposes a linear relationship be-
tween the instantaneous chip thickness h and the instanta-
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neous cutting forces are governed by six empirical parame-
ters such that

Ft = (Ktch+Kte)a (7)

Fr = (Krch+Kre)a (8)

Fa = (Kach+Kae)a (9)

where Ft,r,a are the instantaneous force in the tangential, ra-
dial and axial direction respectively, h is the instantaneous
uncut chip thickness and a is the axial depth of cut, K(t,r,a)c
and K(t,r,a)c are the six lumped empirical parameters.

Kienzle’s non-linear model proposes an exponential re-
lationship between the feed per tooth and the cutting forces,
and is governed by only four empirical parameters such that

Ft = Ktahβ (10)

Fr = Krahβ (11)

Fa = Kaahβ (12)

where h and a represent the instantaneous chip thickness and
axial depth of cut respectively, Kt,r,a are axis specific empir-
ical parameters and β which is an empirical parameter com-
mon to all three axes [22].

As discussed earlier, the empirical parameters in both
the linear and non-linear models are lumped parameters that
replace a more complex analytical function and are directly
obtained experimentally by observing the cutting forces. It
is, possible to fit these parameters by using analytical mod-
els that relate other cutting quantities such as rake angle
and shear plane angle to the cutting parameters [21]. How-
ever, obtaining the parameters analytically is difficult as it
requires the ability to observe the chip formation directly
in order to measure the shear plane angle and very accurate
measurement of the material properties of the workpiece.
The model is only valid for orthogonal cuts, therefore, to
apply the model to the curved cutting edge found on a typi-
cal helical end-mill the cutting edge must be discretized.

Figure 4 shows a diagram of the discretization of a stan-
dard 2 flute helical end mill. The end-mill is discretized
along the Z-axis of the tool, creating j elements of height
dz with i orthogonal teeth per cutting element where i is the
number of flutes in the cutter. Each of these cutting elements
is offset from the previous element by angle ψ given as

ψ =
2tan(δ )

D
dz (13)

where δ is the helix angle of the tool and D is the tool di-
ameter. The larger the value of δ the more elements j are
required to avoid numerical errors [15].

Since the milling operation is intermittent, with each tooth
following a trochoidal path through the material, the chip
thickness is not dependant only on feed rate but also includes
a dependency to the rotation angle of the cutter φ . The chip

Fig. 4 Left: Diagram of discretized two flute end mill. Upper right:
Angular offset Ψ between each cutting element. Lower right: Coordi-
nate frame location for single cutting element.

thickness for a given tooth i of the jth cutting element is
given by

hi, j = f sin(φi, j), (14)

where f is the feed per tooth in mm
rev×tooth and φi, j is the im-

mersion angle of the ith tooth of the jthcutting element is

φi, j = φ +
2π

N
i+ψ j, (15)

where φ is the immersion angle of the first tooth of the first
cutting element, N is the number of teeth per cutting ele-
ment. It should be noted that (14) is a chip thickness for-
mula that does not account for cutter run-out and tool de-
flection. For the linear model substituting the instantaneous
chip thickness of the ith tooth of the jth cutting element hi, j
into (7) through (12) yields

dFn j,i = (Knchi, j +Kne)dz n ∈ t,r,a (16)

and for the exponential model,

dFn j,i = Knhβ

i, jdz n ∈ t,r,a (17)

where in both cases dFn j,i is the force in the n-axis for the ith

tooth of the jth cutting element. In order to model the forces
generated by the whole tool, the forces from each cutting
element are transformed from their local edge frame (t,r,a)
into the tool frame (x,y,z) with a transformation matrix such
that


dFx
dFy
dFz

=

−cosφi, j −sinφi, j 0
sinφi, j −cosφi, j 0

0 0 1


dFt
dFr
dFa

 , (18)

where the x-axis is along the direction of cut, the y-axis is
normal to the cut and the z-axis is along the tool axis. The
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transformation matrix also contains a reflection about the X-
axis and Y -axis to align with existing conventions for milling
forces. After applying (18) the cutting elements share a com-
mon coordinate frame the forces can be integrated along the
z-axis such that

Fn =
∫ z

0
dFn(φi, j,z)dz n ∈ x,y,z, (19)

where Fn is the instantaneous force in the n direction as a
function of the immersion angle φ and the feed per tooth
where n = x,y,z. The axial integration can be done analyti-
cally or numerically depending on the geometry of the cut-
ting tool.

In order to obtain the average force F̄n, the instantaneous
force is integrated over one full revolution of the cutter. Fig-
ure 5 shows the definition of the limits of integration φst and
φex which are the immersion angles where the cutter enters
and leaves the workpiece respectively. With the limits of in-
tegration defined, the mean force F̄n is given as

F̄n =
N
2π

∫
φex

φst

Fndφ n ∈ x,y,z. (20)

To simplify the equations further, if the tool is fully im-
mersed in the part (ie. φst = 0 and φex = pi), then average
force per cutter revolution F̄ for the linear model is given
by [16]

F̄x =

(
−NKrc

4
f − NKre

π

)
a, (21)

F̄y =

(
NKtc

4
f +

NKte

π

)
a, (22)

F̄z =

(
NKac

π
f +

NKae

2

)
a, (23)

(24)

which has an analytical solution. For the exponential model,
whose integral must be solved numerically, the mean force
is given by

F̄x =
Na
2π

Kr f β

∫
π

0
sinβ

θ sinθdθ , (25)

F̄y =
Na
2π

Kt f β

∫
π

0
sinβ

θ sinθdθ , (26)

F̄z =
Na
2π

Ka f β

∫
π

0
sinβ

θdθ . (27)

With the models in this form they can be used more easily
identify the empirical parameters using data collected using
the experimental testbed.

Fig. 5 Immersion angle measurement for up milling cut

Fig. 6 Photo of robotic tested and location of world frame coordinate
system.

4 Experimental testbed

To begin the identification of the models’ empirical parame-
ters, a number of tests were conducted where a slot was cut
out of a coupon of aluminum 6061. The slot for each test
was 63.5mm long with a commanded depth of 0.5 mm. For
all the tests a 1/8 inch 2 flute flat end carbide end mill was
used. Figure 6 shows the experimental setup, the endmill is
driven by a 350 W electric spindle mounted on a 6-DOF
robotic manipulator. A force torque sensor was mounted be-
tween the spindle and the last joint of the robot to measure
the contact force in the tool frame. Two sets of data were col-
lected, one set where the feed per tooth was kept constant for
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the whole test and a second set where the feed per tooth was
linearly increased throughout the slot. Table 1 provides the
spindle rpm and linear feed rate used in each of the tests, as
well as the resultant feed per tooth. In tests where a the feed
rate was varied linearly along the cut the start and end feed
rate are listed.

Table 1 Test plan for gathered full immersion experimental data

spindle speed [krpm] feed rate
[mm

s

]
fpt
[ mm

rev tooth

]
15 1 0.002
10 1 0.003
5 1 0.006

15 2 0.004
10 2 0.006
20 3 0.0045
15 3 0.006
10 3 0.009
20 4 0.006
15 4 0.008
10 4 0.012
20 5 0.0075
15 5 0.01
10 5 0.015
20 5.5 0.00825
15 5.5 0.011
20 1→ 5 0.0015→ 0.0075
15 1→ 5 0.002→ 0.01
10 1→ 5 0.0015→ 0.0075
20 1→ 10 0.0015→ 0.0015
15 1→ 10 0.002→ 0.02
20 1→ 20 0.0015→ 0.03

Additionally, to aid in the parameter identification and over-
all quantification of the cut, each cut slot was scanned using
a laser profile scanner to obtain the depth of cut along the
slot.

5 Parameter identification

The data collected from the testbed can now be used to iden-
tify the empirical parameters using the linear regression method
outlined by Altintas [15] and the simplex search method out-
lined by Adem [16]. The linear regression method, Section
5.1, makes use of only the constant feed-rate tests while the
simplex search method, Section 5.2, is able to make use of
all the collected data.

5.1 Linear regression method

The linear regression method outlined by Altintas identifies
the empirical parameters by plotting the mean force of each

test against its feed rate, the slope and y-intercept of the mea-
sured data can be used to identify the empirical parameters
in (21) – (27).

In order to use the expressions for mean force presented
in equations (21) – (27) to identify the model parameters
they had to be modified slightly. In equations (21) – (27)
the mean force is dependent on the depth of cut a which
is assumed to be constant throughout the cut. However, in
practice it was not possible to maintain a constant depth of
cut throughout each test. To eliminate the need to maintain
a constant depth of cut, the depth was divided out of both
sides of the equations such that the model now relates the
specific force Fsn to the feed per tooth where the specific
force is defined as

Fsn =
Fn

a
. (28)

The final form of the linearized model used to fit the mea-
sured data is

F̄sx =
−NKrc

4
f − NKre

π
(29)

F̄sy =
NKtc

4
f +

NKte

π
(30)

F̄sz =
NKac

π
f +

NKae

2
. (31)

Additionally, the log of both sides of the exponential model
(25) – (27) is taken to transform the exponential relationship
into the following linear equation

ln(F̄sx) = β ln( f )+ ln
(

N
2π

Kr

∫
π

0
sinβ

θ sinθdθ

)
(32)

ln(F̄sy) = β ln( f )+ ln
(

N
2π

Kt

∫
π

0
sinβ

θ sinθdθ

)
(33)

ln(F̄sz) = β ln( f )+ ln
(

N
2π

Ka

∫
π

0
sinβ

θ sinθdθ

)
. (34)

Once the models have been transformed into a linear form
the next step is to use experimental data to fit the empirical
parameters using linear regression.

For the X,Y and Z-axes, figure 7 and 8 show the the mea-
sured specific mean force as a function of measured feed per
tooth and the natural log of the measured specific force as a
function of the natural log of the measured feed per tooth re-
spectively, alongside their respective linear trend lines. Fig-
ure 7 and 8 have linear correlation coefficient of R = .95 be-
tween the feed per tooth and the specific mean force along
the Y-axis. The forces generated along the X-axis, show a
lower linear correlation, R = 0.82 for the linear and R = 0.75
for the exponential model, which is more pronounced at feed
rates below 0.008 mm

rev×tooth .
The cause of the variability of the force along the X-

axis feed rates below mm
rev×tooth is likely due to the increased

forces along the X-axis creating larger vibrations in the robotic
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Fig. 7 Linear model training set: Specific mean cutting force vs. feed
per tooth

manipulator. The forces along the z-axis show the weak-
est correlation with R=0.33, which is most likely due to a
combination of the contact forces below < 1N measured in
the Z-axis along with the fact that it is most affected by the
vibration of the workpiece. The Z-axis is typically omitted
from models since it has little effect on control or process
modelling. Thus, the remainder of the current study is fo-
cused on the X and Y-axis forces.

Table 2 collects the identified parameters of the linear
and exponential models, respectively. The identified param-
eters follow the general trends of these coefficients that Kt >
Kr > Ka, found in other papers where similar identification
procedures were conducted [23,16]. The only major differ-
ence between the results and those presented in the litera-
ture being the much lower values for Kne which are the y-
intercept values for the model. The low y-intercept values
imply that at the 1000 : 1 ratio of rpm to linear feed rate
reached during the tests, the friction terms are almost neg-
ligible relative to the shearing forces. As an alternative to
the linear regression method, following the work presented
by Adem [16], the parameters were also identified using the
simplex search method.

Fig. 8 Exponential model training set: natural log of specific mean
cutting force vs. natural log of feed per tooth

5.2 Simplex search method

The simplex search method allows for the whole data set
to be considered at once not just a single average force from
each test. In addition to considering a whole data set at once,
the feed rate can be varied throughout each trial. The ability
to vary the feed rate throughout each trial allows for a much
wider range of feed rates to be collected in fewer trials. For
the specific set-up used in these experiments it allowed for
much higher feed rates since the feed rate could start slow at
around 1 mm per second and build to a speeds in excess of
20 mm per second without stalling the tool.

The data was prepared by trimming the transients from
the force data, then combining the force, depth, and feed per
tooth data of each test into a single dataset. The MATLAB
implementation of the simplex search function fminsearch
was used to minimize the cost function C, where

C =
1
n ∑(|Fmes−Fpred |)2 (35)

where Fmes is the measured force and Fpred is the force pre-
dicted by the model and n is the number of samples taken.
Table 2 summarizes the cutting parameters identified using
the search method and linear regression for both models.
The simplex search method allows for much wider ranges
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of feed rates to be added to the training set with far fewer
trials. For example, by observing table 1 you can see that
the first three variable feed rate tests cover nearly the entire
set of feedrates covered by the first fifteen single feed rate
tests which makes it much more time efficient to train the
model using the simplex search method.

6 Results

Once the model parameters were identified, their performances
were evaluated by comparing the forces predicted by the
model to those gathered experimentally. Table 3 collects the
mean error for each training method. There is less than 1 N
of absolute error across all training methods, with the ex-
ception of the exponential model trained using the linear re-
gression method which produced a mean error of 2.95 N.
Furthermore, Table 3 shows that the two best performing
models are the linear model trained using linear regression
and the exponential model trained using the simplex search
method.

In Figure 9, where the left side uses the linear regres-
sion, the right side uses the simplex search method, the X
and Y-axis forces predicted by the linear and exponential
models are plotted against the feed per tooth as dashed and
solid lines respectively along with the measured force repre-
sented by the blue lines. The Y-axis forces predicted by the
exponential model trained via linear regression in Figure 9
are significantly under-predicting the measured forces. In
the second column of Figure 9 both the linear and exponen-
tial model have essentially the same form as the exponential
model except for better performance from the exponential
model predicting the X-axis forces at higher feedrates.

6.1 Depth estimation

In addition to predicting the cutting forces generated, the
deburring force model is intended to work as an observer
by taking in force measurements and returning a predicted
depth of cut. To test the models’ performances as an ob-
server, the error in the force prediction was run through the
model restructured to output the estimated depth error an for
the linear model such that

an =
|F̄n−Fmes|
−NKnc

4 f − NKne
π

(36)

and for the exponential model

an =
|F̄n−Fmes|

N
2π

Kr f β
∫

π

0 sinβ
θ sinθdθ

, (37)

Table 4 shows the mean estimated depth error plus or
minus two standard deviations. When using the metric of es-
timated depth error to compare the models, the linear model

outperforms the exponential model by more than 3 times
with a mean depth error of −0.011±0.17 mm compared to
the exponential model’s mean error of 0.035±0.25 mm.

Figure 10 shows the estimated depth prediction error
plotted against the measured feed per tooth using the lin-
ear regression and simplex search method for both the lin-
ear and exponential models. The exponential model shows
better agreement at feed-rates exceeding 0.01 mm

rev×tooth . De-
spite both of the models omitting tool run-out, plastic de-
formation and the chip size effect, which has been shown
to have a larger effect at feedrates below < 0.1 mm

rev×tooth [16],
both models have mean depth estimation error approaching
or below the 0.03 mm repeatability of the robotic manipula-
tor uses to carry out the experiments.

6.2 Model training results

Of the two training methods tested, the simplex search method
produced the best results overall, with a mean force estima-
tion error of 0.34 N across both models compared to the lin-
ear regression model’s 0.67 N. However, observing the first
row of Tables 3 and 4, the performance of the linear model is
superior when using coefficients determined with the linear
regression method. Additionally, the exponential model per-
formed best when trained using the simplex search method.
Therefore, for the remaining trials in the current study only
the results from the linear model trained using the linear re-
gression method and the exponential model trained with the
simplex method are shown.

6.3 Partial immersion results

While the models force predictions for full immersion oper-
ations were shown to be accurate to within 0.5 N, the end
goal of these models is to predict the forces generated dur-
ing finishing operations which tend to have lower MRR and
consist primarily of partial immersion operations. Addition-
ally, in full immersion passes the tool is fully constrained in
the Y-axis by material on both sides, which is not the case
for partial immersion cuts. To further validate the model a
number of partial immersion tests were conducted to simu-
late material removal operations that are closer to the MRR
found in finishing operations.

Figure 11 shows the setup for first set of partial immer-
sion data, removing 0.1 mm from a 3 mm wide coupon.
Figure 12 plots the mean measured force as hollow circles
and the predicted forces using the linear and exponential
models as ’+’ and ’×’ respectively, all of which are plot-
ted against the measured feed per tooth. The Y-axis force
plot of Figure 12 demonstrates an interesting behaviour of
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Table 2 Identified model parameters

Linear model Non-linear model
Krc Kre Ktc Kte Kac Kae Kt Kr Ka β

Linear Regression 1304.8 -1.1 1446.4 2.5 42.5 0.1 406.76 292.49 1.79 0.78
Simplex Search 1050.5 -0.1 1293.9 3.3 65.5 0.1 564.15 352.3 40.46 0.82

Fig. 9 Left: Measured data, linear and exponential model output vs. measured feed per tooth using models trained via regression method Right:
Measured data, linear and exponential model output vs. measured feed per tooth using models trained via simplex search method

Table 3 Model performance summary: Force prediction accuracy

Model Training Mean force error ± 95%CI
X (N) Y (N)

Linear lin reg 0.41 ± 0.005 0.13 ± 0.003
Exponential lin reg 0.17 ± 0.005 2.95 ± 0.006

Linear Simplex
Search 0.56 ± 0.005 0.41 ± 0.004

Exponential Simplex
Search 0.29 ± 0.005 0.54 ± 0.004

Table 4 Summary of predicted depth error

Model Training mean error
(mm)

Linear linear regression -0.003 ± 0.1589
Exponential linear regression -0.116 ± 0.7075

Linear Simplex search -0.011 ± 0.1716
Exponential Simplex search 0.035 ± 0.2540

the partial immersion passes, that the Y-axis forces do not
increase with feed rate past 0.1 mm

rev×tooth and are generally

much less sensitive to the changing feed rate than the X
and Z-axis forces. This insensitivity to feed rate noted in the
Y-axis forces matches the findings in Her [2] which found
that the force along the Y-axis is much less sensitive to the
overall MRR than the tangential force. The very low Y-axis
forces created by this insensitivity to the feed rate are cap-
tured much more accurately by the exponential model.

Table 5 collects the average error with the 95% confi-
dence interval and the standard deviation of the error for the
values presented in Figure 12. The exponential model out-
performs the linear model by 0.425 N in predicting the X-
axis forces and 5.7 N in its predictions of the Y-axis forces.

A second set of partial immersion tests were conducted
by removing a 0.8 mm by 0.5 mm simulated burr. A simu-
lated burr was used in these tests in place of an actual burr as
it provides a more consistent force profile to make compar-
ing multiple trials easier, and, more importantly, it allows the
models to be used as derived without additional processing,
the application of these models to non-rectangular geome-
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Table 5 Partial immersion force prediction accuracy (0.1×3 mm cut)

X-axis error [N] Y-axis error [N] Z-axis error [N]
µ± 95% CI σ µ± 95% CI σ µ± 95% CI σ

Linear -0.72 ± 0.18 0.38 -0.57 ± 0.40 0.86 0.26 ± 0.058 0.38
Exponential 0.29 ± 0.039 0.082 -0.007 ± 0.068 0.15 0.23 ± 0.05 0.082

Fig. 10 Estimated error in depth prediction of linear and exponential
models vs. measured feed per tooth

Fig. 11 Diagram of the 0.1× 3 mm cut partial immersion cut. Linear
feed along -X, tool rotation +Z

tries is an area of further study. Figure 14 plots the mean
measured force as hollow circles and the predicted forces
using the linear and exponential models a stars an crosses
respectively. The data in Figure 14 shows the exponential
model is again better able to track the tangential force with
a mean Y-axis error 1.5 N lower than the linear model.

Fig. 12 Measured force vs. model prediction for partial immersion
cut for 0.1× 3 mm cut, error bars at 1σ . Linear model output shifted
slightly along X-axis for readability.

Fig. 13 Diagram of the 0.8×0.5mm cut partial immersion cut. Linear
feed along -X, tool rotation +Z

6.4 Partial immersion depth prediction

The models were also used to estimate the depth of cut us-
ing the same technique used to obtain depth predictions for
the full immersion tests. The exponential model has a mean
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Fig. 14 Measured force vs. model prediction for partial immersion cut
for 0.8×0.5mm depth of cut, error bars at 1 σ

depth estimation error of 0.018±0.017 which is nearly four
times lower than that of the linear model with a mean er-
ror of 0.076± 0.022 mm. The exponential model tends to
overestimate the depth of cut slightly, while the linear model
consistently underestimates which follows the consistent over
prediction of the contact force which seems to indicate that
the linear model is unsuitable to modelling partial immer-
sion processes.

7 Conclusion

This paper compared the performance of the linear force
model proposed by Altintas and the exponential model pro-
posed by Kienzle for low MRR milling operations. For the
full immersion case, the linear model was four times more
accurate, with a mean Y-axis error of 0.13± 0.003 N com-
pared to the 0.54±0.004 N error of the exponential model.
However, in lower MRR partial immersion trials the expo-
nential model was eighty times more accurate at predicting
the cutting forces in along the Y-axis (−0.007 ± 0.0681 for
the exponential vs. −0.572 ± 0.4009 for the linear.)

In addition to the contact force models, two methods
to train the models were investigated: a linear regression
based method proposed by Altintas [15] and a global search
method proposed by Adem [16]. The models with parame-
ters identified by the global search strategy produced a mean
error across the X and Y-axes two times lower than the mod-
els whose parameters were identified by the linear regression
method. The global search method was also more efficient
when it comes to training as a wider range of feed rates and
RPMs can be included in fewer tests.

The superior performance of the exponential model trained
using the simplex search in the low MRR partial immersion
case makes it the choice for future deburring model develop-
ment. However, the linear model is still worth investigating
further as it is significantly more computationally efficient
which could prove crucial for online modelling tasks.
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