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Abstract

Cable-sheave systems are commonly used on marine vessels for lifting and towing

applications. As a result of the motion of the vessel, the cable can detach from the

surface of the sheave. This thesis presents a simulation of a towed cable system which

includes the interaction of the cable with the sheave surface in order to examine

variations in the contact between the cable and the sheave. A three-dimensional

description of the sheave geometry is implemented in order to accurately model the

contact forces as the vessel undergoes six degree-of-freedom motion. To assess the

performance of the model, the simulated cable behavior is compared to small scale

experimental measurements. Experiments were carried out with a pulley supporting a

cable and a swinging load. Good agreement with the measured cable tension and wrap

angle of the cable around the pulley was shown. Using existing experimental data, the

motion of a small towbody in a flume tank was compared with the simulated motion.

The simulation demonstrated good agreement with the experimental towbody motion,

predicting the volume of the enclosing ellipsoid to within 27%. Finally, a case study

was performed to demonstrate the usage of the simulation to examine variations in

cable tension and contact forces for a full scale system. The method demonstrated

can be used in future studies to examine cable detachment behavior.
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1 Introduction

Cable-pulley systems are commonly used in marine lifting applications and towing

of sensor bodies for oceanographic research. Figure 1 illustrates a vessel towing a

submerged sensor with a cable. A sheave is used to position the cable over the

stern of the vessel, while a winch is used to pay-out and reel-in the cable. The

cable experiences hydrodynamic drag, forming a catenary as shown in the figure, as

well as forces transmitted through the sheave due to the motion of the ship. It is

often desirable to keep the sensor body at a constant depth such that the collected

data is not affected by the motion. Active Heave Compensation (AHC) may be

used to decouple the motions of the ship and the sensor body and minimize the

displacement of the sensor. Measurements of the ship motion determined from an

Inertial Measurement Unit (IMU) can be used to determine the displacement of the

sheave throughout the motion. The cable can then be reeled in or out to compensate

for the disturbance. As a result of the ship motion and heave compensation, the

cable can experience large variations in tension and is susceptible to loss of contact

with the sheave surface if the tension becomes small. For many systems it may not

be possible to constrain the cable in the sheave mechanically. It is thus desirable

to model the cable dynamics and interactions with the sheave and winch surfaces in

order to predict cable detachment and avoid unsafe conditions.

Various modelling methods have been used to simulate the dynamics of cables and

most can be categorized as either Finite Difference Methods (FDM) or Finite Element

Methods (FEM). In the Finite Difference Method, the cable is treated as continuous

and the governing equations of the system are then approximated using difference

equations. The governing equations, however, tend to be problem specific and the

incorporation of nonlinear boundary conditions can be complex [1]. In the Finite

Element Method the cable is first divided into a number of discrete elements, then
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Figure 1: Diagram of ship and towed cable

each element is treated as one body in a a multibody system. Finite Element Methods

are much more versatile than Finite Difference Methods and nonlinear boundary

conditions and external loads can be applied easily [1].

Figure 2 illustrates the various modelling methods. Linear finite element models

utilize straight elastic elements elements shown as dotted lines to connect discrete

particles or lumped masses shown as black circles, while finite segment models con-

sist of rigid elements connected by spherical joints. These models generally neglect

the bending stiffness of the cable, with the exception of finite segment models with

torsional springs at the joints [2]. Nonlinear methods utilize curved elements with the

advantage of inherent bending stiffness and can be constrained such that the slope

is continuous along the length of the cable. The continuous definition of the cable

profile allows for external forces to be distributed along the length of the element,

rather than concentrated at the nodes or centroids as with the lumped-mass and

finite segment formulations, respectively. For systems with highly dynamic motion

and slack cables, the effects of the bending stiffness become prominent and nonlinear

curved-element formulations demonstrate better accuracy [3].

Models of submerged cables using finite elements typically use a revolute joint

2



Figure 2: Illustration of cable modelling methods

to model the attachment of the cable to the ship. A model of a submerged cable

that includes the interaction of the cable with the winch and sheave has not been

found in the literature. However, a number of systems consisting of a cable with

surface contact have been examined including belt-drives [4, 5], catenary-pantograph

interactions [6] and loaded cable-pulley systems [7–9]. These studies usually only

consider static loads or simple, planar cable motions. Also, the cable motion in these

systems is often purely reciprocal and the area of contact between the cable and the

surface remains constant. A small number of studies have examined cable-pulley

interactions with dynamic contact [9, 10].

There are two main formulations that are used to model the normal contact forces

between a flexible body and a rigid surface, Lagrange multiplier methods and penalty

methods [11]. Lagrange multiplier methods use a discrete set of contact points de-

fined on each body. The relative positions of matching points on the two bodies are

governed by a kinematic constraint and the contact force is equal to the force required

to satisfy the constraint exactly. Alternately, contact penalty methods allow the sur-
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faces of the bodies to intersect. The normal contact force is then given as a function

of the relative “penetration”. The contact penalty method is convenient for problems

involving cable pulley systems as a continuous contact distribution can be described.

Additionally, unilateral contact, where the contact force opposes penetration of the

bodies but not separation, has a simple implementation using the penalty method.

Nonlinear finite element models are prevalent for modeling cable-pulley systems.

The continuous nature of curved element formulations is advantageous, as the contact

forces can be defined as continuous functions of the cable position and velocity. Thus,

only a small number of elements are required to accurately model the surface interac-

tion. The Absolute Nodal Coordinate Formulation (ANCF) is common in the current

literature for modeling both submerged cables [12, 13] and cable-pulley interactions

[7–9].

A model of a towed cable system which includes both the dynamics of the sub-

merged cable and towbody and the normal contact between the cable and the sheave

could be used to examine dynamic contact behavior and cable detachment during

towing operations. The first objective of this thesis is to develop a three-dimensional

finite element model of a flexible cable with winch and sheave surface interactions to

simulate the cable dynamics of a towed-body system with active heave compensation.

The nonlinear ANCF approach will be used, in order to accurately model both the

contact force distribution imparted on the cable by the sheave and the behavior of

the cable for low tension conditions. Both the sheave and winch interactions are to

be modeled using a contact penalty formulation. The resulting model will be capable

of exhibiting detachment of the cable from the sheave surface.

In previous literature, experimental validation of cable-pulley systems is limited

to simple cable motions or focused solely on the sliding contact behavior as with belt

drives and catenary pantograph models. Validation of the normal contact behavior

and cable tension for dynamic excitations is sparse. The second objective of this thesis

4



is to assess the performance of the model by comparing the simulated cable behavior

of small-scale systems with experimental measurements. Fidelity of the model in

simulating the towbody motion, cable tension and the contact between the cable and

sheave is important to predicting cable detachment during slack conditions. Small

scale tests of a towed body system with excitation at the tow point and active heave

compensation will be used to verify the accuracy of the simulated towed body motion.

Additionally, experimental measurements of a cable-pulley system with a moving load

will be used to quantify the accuracy of the simulated cable tension and wrap angle

of the cable around the pulley.

The final objective of this thesis is to demonstrate the capability of the simulation

to exhibit variations in cable tension and contact between the cable and sheave during

towing operations. A case study of a full scale towed cable system will be performed

using experimental ship motion data. The effect of active heave compensation on the

cable tension and contact distribution will then be examined. In future work, the

method developed can be used to examine cable detachment behavior.

The key contributions of the research shown in this thesis are:

1. The inclusion of winch and sheave contact in a model of a marine cable system.

2. A three-dimensional formulation of the contact forces between the cable and the

sheave groove, which enables accurate modelling of the contact forces during

six degree-of-freedom ship motion.

3. Experimental validation of the cable-sheave model for cases where the wrap

angle of the cable around the sheave undergoes significant variation.

4. A method outlined to examine dynamic contact behavior during towing opera-

tions.

This thesis consists of six chapters. Chapter 2 contains a review of existing lit-

erature related to numerical modeling of cables, submerged cables and cable-pulley
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interactions. Chapter 3 describes the modelling and numerical simulation of the sys-

tem. Chapter 4 presents validation of the model based on towed-body motion of a

small-scale cable-winch system. In Chapter 5, a case study of a full scale system is

shown to demonstrate the simulated cable behavior. Finally, the results and conclu-

sions of this thesis are given in Chapter 6.
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2 Background and Literature Review

2.1 Background

Heave compensation systems can be categorized as either passive or active [2]. Passive

compensation utilizes a damping element in the towline or overboarding system to

attenuate motion of the body, while active compensation systems are actuated based

on measurements of the ship motion using an Inertial Measurement Unit (IMU). For

a straight line tow, Calnan et al. [14] developed and examined a number “set-point

algorithms” for a winch-based AHC system. The set point algorithm estimates the

amount of cable required to be reeled in or out by the winch in order to maintain the

depth of the towed body.

Figure 3 illustrate Calnan’s waterline algorithm that aims to keep the same point

on the cable located at the waterline for the duration of the motion. The desired cable

extension Lw is determined by estimating the change in the length of cable between

the sheave and the waterline.

Figure 3: Waterline set point algorithm.

The waterline set-point LW is given by

LW =
H

cos(θ)
− Hnom

cos(θnom)
(1)

where Hnom is the sheave height in steady conditions, θ is the angle of the cable as it
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leaves the sheave and θnom is the nominal value of θ. If θ can be measured directly,

then the algorithm is referred to as rigorous. If the sheave angle is not measured,

then it is referred to as simplified and the sheave angle is assumed to have a constant

value θnom.

Figure 4 illustrates the sheave algorithm projects the displacement of the sheave

from its nominal position onto the cable to determine the length of cable required to

be reeled out LS.

Figure 4: Sheave set point algorithm.

The sheave set point LS is computed by

LS = (∆x) sin(θ) + (∆z) cos(θ) (2)

where ∆x and ∆z are the displacements of the sheave along the x and z axes.

In order to examine the efficacy of these algorithms, Calnan implemented the algo-

rithms both in small scale experiments performed in a flume tank and in a computer

simulation. The small-scale experiment consisted of a cable, with a small-sphere as

a towbody, and a winch. The winch could translate in three directions and the ro-

tation about its axis was controlled by a feedback loop. The towbody motion was

captured by two cameras and the position was converted into Cartesian coordinates.

An ellipsoid fitting algorithm was then used to determine a volume which contained
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95% of the towbody position data points. In the experiments, the Rigorous Sheave

algorithms performed best with an 86% reduction in ellipsoid volume. The Simplified

Sheave and Simplified Waterline algorithm performed similarly, however the Rigorous

Waterline method was found to be unreliable [15].

The computer simulation consisted of rigid rods connected by universal joints

with torsional springs to provide bending stiffness. The sheave and winch contact

was not considered. Instead, a prismatic joint was translated to effect the reeling in

and out of the cable. The simulator was validated using the experimental flume tank

data. The simulator underestimated the ellipsoid volume by as much as 56 percent,

but showed good agreement with the reduction in ellipsoid volume exhibited in the

experiments. The model was also used to simulate a full scale system, wherein the

Sheave algorithms demonstrated comparable performance to the small scale tests.

The Simplified Waterline algorithm performed significantly worse at full scale than

at small scale, while the Rigorous Waterline method was again unreliable. As the

Waterline algorithms demonstrated poor performance and instability in the full-scale

computer simulations, only the Sheave algorithms will be examined in this thesis.

The cable simulation developed by Calnan could potentially be improved by using

an alternative method for modelling the cable, which better captures the dynamic

cable behavior. In the next section, various methods for modelling flexible cables are

compared. Additionally, inclusion of the contact between the cable and the sheave

may improve the accuracy of the simulation. Section 2.4 discusses two methods for

modelling contact between two bodies and their application to flexible cable models.

2.2 Cable Modelling Methods

Various methods of modelling flexible cables and ropes have been explored in the liter-

ature. In general, cable models can be categorized as either Finite Difference Methods

(FDM) or Finite Element Methods (FEM). In the FDM, the cable is modelled as a
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continuum and the governing equations are derived as Partial Differential equations

(PDEs). Finite difference approximations are used to spatially discretize the govern-

ing equations. When using a finite element method, the cable is initially discretized

into a series of segments. Each element is treated as one body in a multibody system

and the governing equations are formulated as coupled ordinary differential equations.

Ablow and Shechter [16] developed a three-dimensional model of a towed cable

using the Finite Difference Method. To develop the governing equations they began

by defining the balance of forces on a differential cable segment as

∂

∂S
T + W + F + B = 0 (3)

where S is the distance along the cable, T is the tension, W is the cable’s self weight

per unit length, F is the external hydrodynamic force per unit length and B is the

d’Alembert force per unit length. Equation 3 can be written as three dynamic equa-

tions by taking the components in each of three body-fixed axes t,n and b, where t

is tangent to the cable and n and b are normal to the cable. Figure 5 illustrates the

body-fixed axes for a differential cable segment and the Cartesian coordinate frame

with unit vectors i, j and k.

Figure 5: Differential cable segment with body-fixed coordinate axes and inertial
coordinate axes.
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The orientation of the body-fixed frame is defined relative to the inertial coordinate

frame as

[t n b] = [i j k] Rz(−θ)Rx(−ψ)Rz(φ) (4)

where θ, φ and ψ are Euler angles and Rx and Rz are rotation matrices about the x

and z axes, respectively. The form of the rotation matrices will be shown in Section

3.1.

Additionally, three compatibility equations which relate the cable velocities to the

strain ε and the rotational rates φ̇, ψ̇ and θ̇ were derived by taking the components

of the equation

d

dt

(
∂r

∂S

)
=

∂

∂S

(
dr

dt

)
, (5)

where r is the cable position, along each of the body fixed axes t,n and b. The

state vector has seven components: the tension T , the tangential velocity component

Vt, the normal velocity components Vn and Vb, and the Euler angles θ, φ and ψ. An

additional condition is needed to fully define the body-fixed coordinate frame relative

to the inertial frame, thus the Euler angle ψ was given a constant value of π/2.

Ablow and Schechter [16] note the system becomes singular at zero tension, however

Triantafyllou and Howell [17] have shown that including the cable’s bending stiffness

in the governing equations, even if the stiffness is minimal, prevents the singularity.

Although FDM cable models are computationally efficient and demonstrate rea-

sonable accuracy for towed-body simulations [16], they are less versatile than finite

element methods and it can be difficult to include complex boundary conditions [1].

The inclusion of towed-body dynamics and sheave and winch contact dynamics may

therefore be challenging. Finite Element Methods, on the other hand, are modular

which simplifies the insertion of additional elements, such as towed bodies, depressors
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or faired cable sections [1]. Complex boundary conditions are also simple to imple-

ment using kinematic constraints. Finite Element Methods can be categorized by the

type of element used. The lumped-mass method consists of concentrating the cable

mass into a finite number of particles which are connected by massless, linear springs.

Alternatively, finite segment methods consist of rigid links that are connected by

kinematic joints [18].

The governing equations for finite element models have a general form of [19]

Mq̈ + Cq̇ + P(q) = Q (6)

where q is the vector of generalized coordinates, M is the mass matrix, C is the

damping matrix, P(q) represents a general nonlinear elastic force and Q is the vector

of generalized external forces.

For lumped-mass models, the mass and external forces are concentrated at the

nodes. In Driscoll and Nahon’s model of a mooring cable [20], the mass concentrated

at each node is equivalent to one-half of the mass of the adjacent segments. Sim-

ilarly one half of the forces acting on the adjacent segments is concentrated at the

nodes. The mass matrix, in this case, is diagonal which leads to very good compu-

tational efficiency over other methods, however this type of mass lumping neglects

the rotational inertia of the element. In finite segment models, the mass and exter-

nal loads are often concentrated at the center of gravity of the segment. Kamman

and Huston [21] use the orientations of the cable segment as generalized coordinates,

thus the rotational inertia of the segment and external torques can be included. In a

later work, Kamman and Huston lump the mass at the joints in order to reduce the

computational requirements of the model [22].

In both lumped mass and finite segment models, the bending stiffness can be

incorporated. Buckham and Nahon [12] developed a three-dimensional model a slack

ROV tether using a lumped approach and linear elastic elements. However, they
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note the inaccuracy of the model during low tension due to bending effects being

neglected. The researchers developed a discrete definition of the internal bending

forces at each node using the positions of the adjacent nodes to estimate the cable

curvature. The model was validated for static bending loads and is shown to provide

a good approximation of the flexural stiffness. In Calnan’s finite segment model [2],

the bending stiffness is approximated using rotational springs at the joints.

For deformable elements, the inertia and distributed external forces can be more

accurately represented using “shape functions” [23]. The shape function S inter-

polates the position of an arbitrary point on the element r from the generalized

coordinates q as

r(p) = S(p)q, (7)

where p is a parameter representing the position of the point in material coordinates.

The shape function can then be used to formulate the mass matrix using the varia-

tional or Lagrangian approach. Given the kinetic energy of the element K, defined

as

K =

∫ L

0

ṙTµṙdp (8)

where µ is the cable density per unit length, the mass matrix is given by the

Hessian of K [24]:

M =
∂K

∂q̇∂q̇
=

∫ L

0

STµSdp. (9)

A common FEM formulation utilizing curved elements is known as the Absolute

Nodal Coordinate Formulation (ANCF) [23]. The element is parameterized by the

arc coordinate p ∈ [0, L] and the shape is determined by a cubic Hermite spline; in

other words, the path of the element r(p) is defined by the positions r and the slopes
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r′ = ∂r/∂p at each of the nodal endpoints. The generalized coordinate vector is thus

q = [r(0) r′(0) r(L) r′(L)]
T , (10)

where p = 0 and p = L represent the nodes at each end of the element. The cubic

shape function is given by

S(p) =

[
(1− 3ξ2 + 2ξ3)I3 (ξ − 2ξ2 + ξ3)I3 (3ξ2 − 2ξ3)I3 (ξ2 − ξ3)I3

]
, (11)

where I3 is a 3× 3 identity matrix and ξ = p/L is the parameter p normalized by the

unstretched length. The mass matrix M in Equation 9 can be written as a constant

matrix:

M =
µL

420



156I3 22LI3 54I3 −13LI3

4L2I3 13LI3 −3L2I3

156I3 −22LI3

sym. 4L2I3


. (12)

The off-diagonal terms in the above matrix represent the coupling between the nodes

which results from the rotational inertia of the element.

Finite element methods can be further classified as linear or nonlinear formula-

tions. The lumped-mass method, in general, is linear in that the elastic forces are

linearly proportional to the nodal displacement. For problems where the bending or

tensile deformations are large, the change in geometry is taken into account when

formulating the elastic forces, thus giving rise to geometric nonlinearity. The nonlin-

ear elastic forces can be formulated using standard continuum mechanics approaches

such as the Euler-Bernoulli or Timoshenko beam theories [25].

In the definition of the ANCF shown above each node has one gradient vector

14



rp, which is a special case of the general ANCF method and is often referred to as

the “gradient-deficient” ANCF [26]. The gradient-deficient formulation follows the

Euler-Bernoulli beam theory and thus the cable cross-section is always perpendicular

to the neutral axis. Shear and torsional deformations can by introduced by including

additional gradient vectors at each node [27].

Figure 6 compares the gradient-deficient and shear-deformable elements. In the

gradient-deficient case, the cross-section is always perpendicular to the cable-centerline.

In the shear-deformable case, the parameter q defines the position of a point on the

element across the cross-section. The gradient vector rq defines the orientation of the

cable cross-section.

Figure 6: Comparison of gradient deficient and shear deformable cable elements.

In the current study, the cable is made of strands of steel wire. Since the strands

can slide relative to one another, the shear-deformable method may be more applica-

ble. However, as a result of the slenderness of the cable, the Euler-Bernoulli beam is

likely a sufficient approximation [28] and has half of the required degrees of freedom as

the fully-parameterized beam element [27]. Torsional deformations are not expected

to be significant.

The ANCF method has several advantages over linear methods. The continuum-

mechanics approach allows for simple and accurate definitions the cable elastic forces.

Several models of the longitudinal and tangential elastic forces using the Absolute
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Nodal Coordinate Formulation are shown by Berzeri and Shabana [29]. The impor-

tance of accurately modelling the bending stiffness will be discussed in the following

sections. Furthermore, in the current study the hydrodynamic loads and contact

forces are expected to vary significantly along the length of the cable and are dis-

continuous at the waterline and contact transitions. The curved elements can be

constrained such that the cable has a smooth and continuous profile and the nonlin-

ear external forces can be evaluated at any arbitrary point on the cable. The number

of elements required to obtain an accurate solution is thus much smaller than with

linear models, which is a significant advantage for modeling long submerged cables.

2.3 Submerged Cable Dynamics

In Calnan’s computer simulation [2], the hydrodynamic forces acting on the cable

follow the Morison equation. The Morison equation is frequently used to model the

forces acting on a body in a normal, non-uniform flow, as it can efficiently predict the

force acting on the body without numerical modeling of the flow field. It comprises

three force components: drag, hydrodynamic mass and the Froude-Krylov force. For

a non-stationary body in a flow normal to the body surface, the total hydrodynamic

force is [30]

fH =
1

2
ρfCDAf |Vf −Vb|(Vf −Vb) + ρfCmV (V̇f − V̇b) + ρfV V̇f (13)

where ρf is the fluid density, CD is the normal drag coefficient, Cm is the hydrody-

namic mass coefficient, Vf is the flow velocity, Vb is the body velocity, Af is the

frontal area of the body, and V is the volume of the body. The first term in Equa-

tion 13 is the viscous drag force, the second term is the hydrodynamic added mass

force and the third term is the Froude-Krylov force. The hydrodynamic mass force

accounts for the inertia of the fluid in the immediate vicinity of the body [30]. When
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the body accelerates relative to the fluid it must also accelerate the surrounding fluid.

Conversely, the Froude-Krylov force occurs as a result of the pressure-gradient created

by the absolute acceleration of the fluid in the outer-flow region. In a steady-flow,

the Froude-Krylov force becomes zero.

For a cylinder that is inclined to the flow, the Morison equation can be applied

by replacing the velocity vectors in Equation 13 with their normal components [31].

Accordingly, it is often assumed that the drag coefficient CD is independent of the

angle between the flow and the cylinder. This assumption is referred to as the “inde-

pendence principle” [31]. Equation 13 can be written as

fH,n =
1

2
ρfCD,nAf |Vn|Vn + ρfCmV V̇n + ρfV V̇n (14)

where CD,n is the normal drag coefficient, Vn is the normal component of the relative

velocity Vf −Vb given by

Vn = (Vf −Vb)− |Vf −Vb| cos(η)ut, (15)

where η is the angle of attack between the relative flow vector and the cable centerline

and ut is the unit vector tangent to the cable centerline as shown in Figure 7.

Figure 7: Flow velocity vector and angle of attack.

Additionally, it is common to consider the drag force acting tangential to the

cylinder due to skin friction, which will be referred to as the tangential drag force.
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Calnan defines the drag given as

fH,t =
1

2
ρfdCD,t|Vt|Vt (16)

where CD,t is the tangential drag coefficient and Vt is the tangential component of

the relative velocity.

In Calnan’s simulations, the flow vector is decomposed into the cable segment’s

body-fixed coordinate frame, where one axis is aligned with the cable longitudinal axis

and the other axes are normal to the cable. The independence principal is applied and

constant normal and tangential drag coefficients are assumed to be constant. Calnan

expresses the cable’s added mass as

ma = ρfπr
2l. (17)

where r is the cable radius and l is the length of the cable segment. The added mass

value corresponds to the mass of the fluid displaced by the body and is added to the

inertial mass of the cable segment.

Calnan’s implementation of the drag and added mass forces has several aspects

which may contribute to simulation error:

1. The values of drag coefficients are assumed which introduces large amount of

uncertainty in the simulation as it relies on prior knowledge of the fluid dynam-

ics.

2. The dependence of the drag coefficient on flow velocity and body orientation is

neglected;

3. The added mass definition neglects the variation of added mass with respect to

the direction of the relative acceleration. For example, if the direction of the

cable acceleration is purely axial, minimal fluid will be displaced and thus the
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added mass force should be neglected.

4. The hydrodynamic forces are calculated based on the velocity and acceleration

of the center of gravity of the cable segment. The variation of hydrodynamic

forces along the length of each element is neglected. Furthermore, the hydro-

dynamic forces are applied only if the center of gravity of the cable segment is

below the waterline, otherwise they are set to zero. This will produce impulses

on the cable as elements enter and leave the fluid.

This thesis seeks to improve upon these shortcomings of Calnan’s cable model.

The standard Morison equation can be improved by incorporating a dynamic

drag coefficient that depends on the Reynold’s of the flow. For example, Choo and

Casarella [32] define the normal drag coefficient for a circular cable as

CD =


1.45 + 8.55Re−0.9, 1 ≤ Re < 30

1.1 + 4Re−0.5, 30 ≤ Re ≤ 105

(18)

based on experimental data collected by Goldstein [33]. Furthermore, by visualiz-

ing the flow around an inclined cylinder Kozakiewicz et al. [34] identified a critical

angle of attack of approximately 35 degrees below which the independence principle

does not hold. For systems with arbitrary orientations of the cable relative to the

flow, alternative formulations of the drag forces can be used. In particular, several

researchers such as Driscoll and Nahon [20] have developed empirical “loading func-

tions” that describe the nonlinear breakup of the flow into normal and tangential

components. The normal and tangential drag forces are then typically defined [20]

FD,n =
1

2
ρfdCD|V |2fn(η) (19a)

FD,t =
1

2
ρfdCD|V |2ft(η) (19b)
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where CD is a common drag coefficient, V is the total relative velocity vector, fn and

ft are the normal and tangential loading functions.

For modelling submerged and towed cables, many cable modeling approaches have

been employed. Early towed cable models utilizing the finite difference method, such

as Choo and Casarella’s model of a towcable with ship motion along a circular path

[35], were restricted to limited towing scenarios. Ablow and Schechter [16] used a finite

difference method to model a towed cable array, defined the boundary conditions such

that any arbitrary maneuver could be implemented as long as the tow-point position

and velocity are known.

In Choo and Casarella’s model, the towed body is spherical. The cable is treated

as inextensible and has zero bending stiffness. The model incorporates the fluid drag

with variable drag coefficients as defined in Equation 18. The model demonstrated

good agreement with experimental measurements of the steady-state behavior of the

system for stranded wire cables, but poor performance for nylon cables which ex-

perience significant vortex shedding effects. Ablow and Schechter’s model was used

to predict the change in towbody depth during a circular maneuver to within 2%

of the measured value. The main limitations of these models are that they utilize

various simplifications, including neglecting the bending stiffness of the cable, and

have simple boundary conditions.

Driscoll et al. [20] utilized their lumped finite element model to simulate a vertical

cable connecting a ship to a caged ROV system. The top node was constrained

based on measurements of the ship motion. Only vertical motion and deformations

were considered. The drag coefficient of the cage was calibrated based on empirical

measurements. The position of the cage was predicted by the model with a standard

deviation of 0.07 m or 8% of the RMS value of the measured data. The cable tension

was also predicted with a standard deviation of 4 kN or 16% of the RMS value.

Buckham et al. [36] developed a lumped finite element model of a system consist-
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ing of a semi-submersible vehicle, a towcable and an actively controlled towbody. The

dynamics of both the towing vehicle and the towbody were included in the model.

Additionally, nonlinear loading functions were used to describe the drag forces acting

on the cable. The model was later validated by Lambert et al. [37]. During a steady

tow, the cable tension at the towing vehicle was under-predicted by about 10% com-

pared to sea trial data. They note that 90% of the cable tension results from the

drag on the cable, thus the error can be largely attributed to uncertainty in the drag

forces.

Nonlinear formulations have also been used to model submerged cables. Sun et al.

[38] use a nonlinear finite element method with straight elements to model a towed

body system during a turning maneuver. The model includes the rigid body dynamics

of the towed body and cable drag correlations based on the angle of incidence. The

towed body depth differs from the empirical values by up to 12m and the cable tension

is over estimated by about 10 kN compared to a mean value of approximately 35 kN.

There is limited discussion of possible sources of error in their work.

The Absolute Nodal Coordinate Formulation has also been used in recent studies.

Takehara et al. [39] developed a planar model a submerged rubber tether using the

ANCF with nonlinear loading functions developed by Driscoll and Nahon [20]. An

intermediate body fixed coordinate frame was used to define the cable mass matrix,

which allows for the incorporation of the added fluid inertia only in the normal di-

rection. The model was validated based on small-scale measurements of the tether

undergoing pendulum motion and showed good agreement with experimental results.

Kim et al. [40] and Park and Kim [41] have developed three-dimensional models of

submerged cables using the ANCF, however they did not perform any experimental

validation.

Since submerged cable dynamics is typically dominated by the external fluid

forces, the formulation of the hydrodynamic forces provide a significant source of
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uncertainty in most models. In many finite element and finite segment models, the

fluid forces are concentrated at the element nodes, which can also contribute signif-

icantly to the simulation error. Additionally, for low tension cable dynamics, the

bending stiffness of the cable may also affect the accuracy of the simulation. The

ANCF finite element method is thus a suitable choice for modelling the tow cable

in the proposed model, since the fluid forces can be defined continuously along the

length of the cable and bending-stiffness effects are inherent to the model.

Experimental validation of towed cable model is limited, particularly for ANCF

finite element models and systems with active heave compensation. In the current

study, the ANCF model will be validated using the data obtained in Calnan’s flume

tank trials [2].

2.4 Cable-Sheave Interactions

In Calnan’s model [2], the attachment of the cable to the ship is implemented using a

prismatic joint which actuates the cable end along a line based on the AHC setpoint

and the winch dynamics. The contact between the cable and the sheave and winch

are neglected. In Kamman and Huston’s model [22], variable length elements are

used to capture the reel-in and out of the cable. No models have been found in the

literature that include the sheave and winch contact in a towed-cable model.

Several models have been developed, however, for other types of cable-pulley sys-

tems. These include reciprocating cable-pulley systems, such as weightlifting ma-

chines and elevators, belt-drives, and catenary-pantograph systems. There are two

main formulations that are used to model the contact forces, penalty methods and

Lagrange multiplier methods [11]. Both approaches can be used to describe normal

contact as well as sliding (frictional) contact; however, this section focuses on normal

contact as sliding friction effects are not expected to be a significant factor in the

towed cable system.
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For a body in contact with a surface, a penalty method is implemented by allowing

the body to penetrate the surface. Figure 8 shows three possible contact cases: open

contact, closed contact without penentration, and closed contact with penetration.

Figure 8A shows the open contact case, where the bodies are separated and the

penetration δ has a negative value. Figure 8B illustrates closed contact where the

bodies are non-penetrating and the pentration δ is equal to zero. Figure 8C illustrates

closed contact where the bodies are penetrating and the pentration δ is greater than

zero. The normal contact penalty forces are then defined as a function of the relative

penetration [42]. The surface thus act like a spring or spring-damper. A simple

formulation is given by the Hertz contact theory, where the normal force FN acting

on the body is defined [43]

FN = kδb (20)

where k is the contact stiffness, δ is the relative penetration and b is a positive constant

between 1 and 2. In order to model unilateral contact, where the normal force can

act in only one direction, the condition δ ≥ 0 can be used. Thus if the value of the

penetration is negative the bodies are not in contact and no force is applied.

Figure 8: Open and closed contact cases.

Penalty methods have a number of disadvantages. Firstly, the penalty results in

ill-conditioning of the system of equations and the numerical solution can be com-
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putationally expensive as a result [44]. The model may exhibit a large sensitivity

to the contact stiffness, which is not a physical property of the system. Lastly, con-

servation of energy is violated due to the energy stored in the spring. Despite these

disadvantages, penalty methods are widely used as a result of their simplicity [11].

Leamy and Wasfy [45] present an early model of a belt-drive system using a

contact penalty. The model used straight truss (spring) elements with the normal and

tangential contact forces concentrated at the nodes. As a result of using a lumped

approach, the model required a very fine discretization of the cable; 100 elements (202

degrees of freedom) were used for each length of the belt equal to half of the pulley

circumference. In a separate study [46] a three node element was used to incorporate

the cable bending stiffness. Both the tangential and normal force distributions and

the wrap angle of the cable around the pulley exhibited a strong dependence on the

bending stiffness. Additionally, when the cable element was modified to include the

cable bending stiffness [46], only 38 elements per half circumference (154 degrees of

freedom) were used.

Lugris et al. present an ANCF model of an elevator with vertically suspended

loads on either side of the pulley [7]. The ANCF model uses a contact penalty to

determine the normal contact force and a nonlinear friction law for the tangential

force. The researchers used 32 elements for a 180◦ contact arc. They note that the

model worked with as few as 3 elements, but if the elements were long they would

poorly adapt to the curvature of the pulley at the transitions onto or off of the surface.

The poor adaptation of the elements to the surface introduced spurious vibrations into

the system as elements entered or exited the contact surface. In contrast, Kerkkannen

et al. [47] developed a nonlinear belt drive model using the shear-deformable ANCF

elements. With the shear-deformation included only four elements were required for

half of the pulley circumference.

Buĺın et al. [9] modeled a cable pulley system with one cable end actuated by a
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motor and a mass sliding on an inclined plane using the ANCF method. The wrap

angle of the cable around the pulley experienced small changes of less than 5 degrees

throughout the motion. Ten elements were used to model the segment of the cable

in contact with the pulley. Reasonable agreement was found between the simulation

and experimental measurements of the motion of the load. Ten ANCF elements were

used for a contact arc of 150◦. The sensitivity of the numerical results to the cable

bending stiffness was also examined. While the contact force distribution becomes

increasingly nonlinear for increasing values of the bending stiffness, the simulated

motion shows only a small dependence on the stiffness value.

In contrast to penalty methods, Lagrange multiplier methods are based on a

condition of impenetrability [48]. In Figure 8A, the positions of the contact points

on the body and the surface are defined by the coordinates gA and gB, respectively.

Considering a body in closed contact with a surface, Figure 8B, the impenetrability

condition is defined using a holonomic constraint equation

Φ = gB − gA = 0. (21)

Thus, the distance between the two contact points along the surface normal vector

must be zero for the constraint to be satisfied. In the case of unilateral contact, the

constraint becomes

Φ = gB − gA ≥ 0 (22)

such that bodies can separate.

The forces required to satisfy the constraint acting on the body and the surface,

respectively, are [49]

FB = − ∂Φ

∂gB
λ. (23a)
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FA = − ∂Φ

∂gA
λ. (23b)

The Lagrange multiplier method increases the number of unknowns in the system

as λ must be calculated in addition to the coordinates gA and gB. The constraint

equation Φ and the equations of motion of the body form a set of differential algebraic

equations. During closed contact, there must also be a condition to check whether

the bodies are transitioning from closed to open contact. If the relative acceleration

of the bodies g̈ = g̈A − g̈A is greater than zero, the bodies are separating thus the

Lagrange multiplier λ is set to zero and no force is applied [48].

A main disadvantage of the Lagrange multiplier method in comparison to a penalty

method arises when the contact occurs over a distributed area. The penalty method

can be used to describe the contact force as a continuous function of spatial or ma-

terial coordinates, for example the arc parameter p in the ANCF method. With the

Lagrange multiplier method, the forces are only determined at a discrete set of contact

points, posing a number of challenges. First, each contact point defined must have

a Lagrange multiplier associated with it. Each Lagrange multiplier adds a degree

of freedom to the resulting governing equations, thus adding to the computational

effort required. Secondly, as the cable moves or deforms relative to the surface, the

contact points on the surface will no longer match and must be continuously recalcu-

lated. Additionally, a unilateral constraint can repeatedly switch from open to closed

contact, resulting in a spurious vibration or “chatter” [50].

Lagrange multiplier methods have been used in more limited scenarios than penalty

methods. For example, Seo et al. [6] model the bilateral contact between a catenary

and a pantograph using a sliding constraint at a single point. Peng et al. [51] model

a system with a cable wrapped around multiple pulleys. Motors at each end reel

the cable in or out. Instead of modeling the sliding contact along the pulley sur-

faces, the cable is constrained at each transition point. Variable length elements are
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used to simulate that reeling behavior, thus avoiding the computational inefficiency

of modeling the contact forces.

For existing models of cable-pulley systems, the penalty method is most widely

used. It is reasonable to conclude that penalty methods are desirable for systems

with large distributed contact areas as the contact forces can be distributed along the

element length. The Lagrange multiplier method may be preferable when the number

of contact points is limited as it avoids the ill-conditioning issues present in penalty

methods.

Experimental validation of cable-pulley models using penalty methods is sparse.

Some researchers such as Cepon et al. [5], Takehara et al. [52] and Buĺın et al. [9]

have performed experiments to validate ANCF models, but focus mainly on sliding

behavior of the cable such as cable slip. In this thesis, the focus is mainly on variations

in normal contact forces. The study by Buĺın et al is the only study found in the

literature of cable-pulley contact where the wrap angle of the cable around the pulley

changes throughout the motion. In their study, the wrap angle changed by only

5◦, estimated based on the geometry provided, whereas in the current study large

changes in wrap angle are expected due to the motion of the ship in waves. Another

area that has been unexplored in the literature is the contact between the cable and

the three-dimensional groove of a sheave. Most cable-pulley models examine only

planar contact.

2.5 Summary

In this chapter, various methods for modelling flexible cables, submerged cable dy-

namics and cable-surface contact were described. The Absolute Nodal Coordinate

Formulation was found to be advantageous as continuous distributions of the exter-

nal hydrodynamic and contact forces along the length of the element can be used. In

this thesis, the cable will be modeled using the ANCF method.
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A contact penalty method will be used to define contact forces acting on the

cable, as it provides a simple and effective method to define unilateral contact forces

that are distributed along the length of the element. Thus, the cable may come into

and out of contact with the sheave surface at any point along its length. This will

facilitate simulations of systems where the wrap angle of the cable around the sheave

varies over time or where the cable detaches entirely from the sheave. Since the ship

undergoes translations and rotations in three dimensions, the cable may detach from

the sheave by sliding up the walls of the sheave groove. A model of the contact forces

accounting for the shape of the groove will also be developed.

The following chapter describes the formulation of the cable model, the hydrody-

namic loads and the normal contact forces.
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3 Cable Model and Simulation

In this chapter, the development of the finite element cable model and computer

simulation are described. The three-dimensional cable model is based on the Abso-

lute Nodal Coordinate Formulation (ANCF). The hydrodynamic forces are described

using the semi-empirical Morison equation and a nonlinear contact penalty method

is implemented to describe the normal contact with the winch and sheave surfaces.

Section 3.1 outlines the geometry and kinematics of the ship. In Section 3.2, the

formulation of the ANCF cable element and its structural matrices are described.

Section 3.3 details the model of the hydrodynamic loading based on the Morison

equation. In Section 3.4, the contact penalty method is implemented to provide the

cable-sheave and cable-winch interactions. Section 3.5 describes the formulation of

the kinematic constraints, which are used to fix the cable to the winch drum and

eliminate redundant coordinates. Lastly, Section 3.7 shows the complete governing

equations and describes the numerical solution.

3.1 Ship Geometry and Kinematics

Figure 9 shows two coordinate frames, the x, y, and z axes which make up the inertial

frame and the X, Y, and Z axes comprising the body-fixed frame. The position of

the ship’s center of gravity is represented by a position vector rCG in the absolute (or

inertial) coordinate frame. In the ship’s body-fixed coordinate frame, the origin is

located at the center of gravity of the ship. Position vectors in the body-fixed frame

are denoted s = [X Y Z]T . Three euler angles - yaw, pitch, and roll or α, β and γ,

respectively - are used to describe the orientation of the ship.

The transformation between the body fixed frame and the inertial frame is

r = RI
B(α, β, γ)s + rCG = Rz(α)Ry(β)Rx(γ)s + rCG (24)
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Figure 9: Schematic of the inertia coordinate frame (x, y, z) and body fixed coordi-
nate frame (X, Y, Z)

with

Rz(α) =


cosα − sinα 0

sinα cosα 0

0 0 1

 (25a)

Ry(β) =


cos β 0 sin β

0 1 0

− sin β 0 cos β

 (25b)

Rx(γ) =


1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 . (25c)

The equations of motion of the finite element cable model were developed in the

inertial coordinate frame. The finite element formulation is described in the following

section.
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3.2 ANCF Cable Model and Internal Forces

The Absolute Nodal Coordinate Formulation, introduced by Shabana [23], is a widely

used method based on the Euler-Bernoulli beam theory for modeling flexible cables.

Each ANCF element consists of two nodes. The position of an arbitrary point on the

element in the inertial coordinate frame is described by a parametric function

r(p) = [x(p) y(p) z(p)]T (26)

with p ∈ [0, L] where L is the undeformed element length. The generalized coordinate

vector q consists of the absolute positions of the nodes and slope vectors at each node:

q = [r(0) rp(0) r(L) rp(L)]T (27)

where rp is the derivative of r and is a vector tangent to the cable centerline. Figure

10 shows a deformed cable element at the top and the equivalent undeformed element

at the bottom with the nodes represented by closed circle. The position vector r of

an arbitrary point on the cable is measured to the centerline of the cable and can be

interpolated from the generalized coordinates using the equation

r(p) = S(p)q, (28)

where S(p) is the shape function which represents the cubic polynomial given by

S(p) =

[
(1− 3ξ2 + 2ξ3)I3 (ξ − 2ξ2 + ξ3)I3 (3ξ2 − 2ξ3)I3 (ξ2 − ξ3)I3

]
, (29)

where I3 is a 3x3 identity matrix and ξ = p/L is the arc parameter normalized

by the element length. This definition of the cable element does not include shear

deformation. The cross-section of the cable element is always perpendicular to the
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cable centerline.

Figure 10: Deformed cable element and equivalent undeformed element in the iner-
tial coordinate frame.

Using the standard matrix form of the Newton-Euler equations, the element equa-

tions of motion are

Mq̈ = Qext −Qint (30)

where M is the mass matrix, Qext is the net vector of generalized external forces, and

Qint is the generalized internal force. The generalized internal force Qint is given by

the sum

Qint = Ql + Qt + Qd (31)

where Ql is the longitudinal (tensile) elastic force, Qt is the transverse (bending)

elastic force and Qd is the internal damping force. The net generalized external force

is given by the sum
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Qext = Qg + QH + QN (32)

where Qg is the generalized gravitational force, QH is the generalized hydrodynamic

force, and QN is the generalized normal contact force. Additionally, the first element

is constrained to the winch surface using a kinematic constraint. The governing

equations for the first element are

Mq̈ = Qext −Qint + Qc (33)

where Qc is the generalized constraint force.

Given a distributed force per unit length fi(p), the generalized force vector Qi

can be determined by premultiplying by the transpose of the shape function and

integrating over the length of the element [53]:

Qi =

∫ L

0

ST fi(p)dp. (34)

For example, the generalized gravitational force Qg is given by

Qg =

∫ L

0

STρA[0 0 −g]Tdp (35)

where ρ is the cable density, A is the cross-sectional area, and g is the acceleration

due to gravity. The formulation of the remaining generalized forces and the mass

matrix are described in the following sections.

3.2.1 Mass Matrix

Using the variational mass lumping approach the mass matrix M is derived from the

kinetic energy of the element K [23]. The kinetic energy of an infinitesimal cable

segment is
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dK =
1

2
ρA |ṙ(p)|2 dp, (36)

where ρ is the cable density, A is the cross-sectional area and ṙ(p) is the velocity of

the cable at an arbitrary point. Integrating the differential kinetic energy dK over

the interval 0 to L and substituting ṙ(p) = S(p)q̇ gives the total kinetic energy of the

element:

K =

∫ L

0

1

2
ρA ṙ(p)T ṙ(p) dp =

1

2
ρA

∫ L

0

q̇TS(p)TS(p)q̇ dp. (37)

The mass matrix is then given by the second derivative of the kinetic energy with

respect to the generalized velocity vector q̇ [23]:

M =
∂2K

∂q̇∂q̇
= ρA

∫ L

0

S(p)TS(p) dp. (38)

The above formulation results in a constant mass matrix M which can be evaluated

symbolically prior to the simulation.

3.2.2 Longitudinal Elastic Force

The longitudinal stiffness force represents the tensile stiffness of the element. Berzeri

and Shabana [29] derive the stiffness from the longitudinal strain energy Ul given by

Ul =
1

2

∫ L

0

EAε2dp (39)

where E is the Young’s modulus, A is the cross-sectional area, ε is the longitudinal

strain. The generalized longitudinal force Ql is then given by the derivative of the

strain energy with respect to the generalized coordinates:

Ql =

(
∂Ul

∂q

)T

= EA

∫ L

0

ε
∂ε

∂q
dp (40)
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where Ql represents the longitudinal component of the elastic force and Qt represents

the transverse or bending component.

Berzeri and Shabana define ε as the Green-Lagrange strain given by

ε =
1

2
(rp

T rp − 1). (41)

However, using the above strain definition results in coupling of the longitudinal

strains to the element curvature, since the slope vector rp defines not only the shape

of the element, but the distribution of strain across the element. As a result, an

element with no overall strain (i.e. an arc length equal to the unstretched length L)

but a non-zero curvature will have non-zero strain along its length. The coupling of

the longitudinal and bending deformations leads to increased stiffness of the numerical

solution in addition to erroneous cable tensions in elements with significant curvatures.

It is thus desirable to decouple the longitudinal strains from the curvature. Yue

et al. [54] present an alternative stiffness force definition that alleviates the coupled

behavior. First a secondary set of generalized coordinates q∆, representing only the

longitudinal deformation of the ANCF cable element, is defined:

q∆ =

[
0 |r′(0)|

∫ L

0

|r′(p)|dp |r′(L)|
]T
. (42)

This formulation represents a one-dimensional cable element that is parameterized

equivalent to the full ANCF element. Thus, the longitudinal coordinate of an arbi-

trary point on the element is given by

r∆ = S∆q∆ (43)

where S∆ is the one-dimensional shape function

S∆ =

[
(1− 3ξ2 + 2ξ3) (ξ − 2ξ2 + ξ3) (3ξ2 − 2ξ3) (ξ2 − ξ3)

]
. (44)
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The one-dimensional coordinate r∆ is then substituted into the Green-Lagrange

strain (Equation 41) giving a decoupled longitudinal strain ε∆

ε∆ =
1

2

[(
∂r∆

∂p

)2

− 1

]
=

1

2

[
(S∆

p q∆)T (S∆
p q∆)− 1

]
(45)

where the subscript p represents the derivative with respect to p. Yue et al. [54] then

define the longitudinal elastic force Ql by substituting the decoupled strain ε∆ into

Equation 40 as

Ql = EA

∫ L

0

ε∆∂ε
∆

∂q
dp =

1

2
EA

∫ L

0

(q∆TS∆TS∆q∆−1)(S∆
p q∆)

(
∂q∆

∂q

)T

S∆T
p dp (46)

where ∂q∆/∂q is a 4x12 Jacobian matrix given by

∂q∆

∂q
=



01x12

rp(0)T

|rp(0)|
Sp(0)

∫ L

0

rp(p)
T

|rp(p)|
Sp(p)dp

rp(L)T

|rp(L)|
Sp(L)



. (47)

In this work, each of the integrals in Equations 42, 46, and 47 are evaluated using

a numerical quadrature with trapezoidal weights.

3.2.3 Transverse Stiffness

Similar to the longitudinal stiffness, the transverse elastic force is derived from the

strain energy Ut given by
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Ut =

∫ L

0

EIκ2dp (48)

where E is the Young’s modulus, I is the second moment of area and κ is the curvature

[29]. The curvature follows the Seret-Frenet definition and is given by

κ =

∣∣∣∣dr2

ds2

∣∣∣∣ =
|rp × rpp|
|rp|3

(49)

where s is the arc length and rp and rpp are the first and second partial derivatives

of r with respect to p [29]. The transverse elastic force is then given by

Qt =
∂Ut

∂q
= EI

∫ L

0

κ
∂κ

∂q
dp. (50)

Significant simplification of Equation 50 can be achieved by assuming that the

longitudinal deformations are small (i.e. |rp| ≈ 1) and thus the arc length s is

approximately equal to the parameter p, in which case the curvature simplifies to [29]

κ ≈ |rpp|. (51)

Substituting Equation 51 into Equation 50, the transverse elastic force becomes

Qt =

[
EI

∫ L

0

Spp(p)
TSpp(p)dp

]
q. (52)

As with the mass matrix, the integral in Equation 52 is a constant matrix and

can be evaluated symbolically prior to the simulation.

3.2.4 Damping

The internal damping force Qd serves to include internal energy dissipation as well

as improve the numerical stability of the simulation. For submerged cables it is

common to neglect the internal cable damping [55] since the external fluid damping
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dominates. However, in the current work the inclusion of internal damping was found

to have a significant effect on the numerical stiffness and stability of the simulation.

Additionally, the damping effects may be significant in the unsubmerged section of

the cable; thus, internal damping was implemented based on a Rayleigh dissipation

function.

The Rayleigh dissipation function represents one-half of the energy dissipated

during the motion and has a general form

R = 1/2

∫
cu̇2dV (53)

where c is a damping factor and u is a generalized coordinate [56]. The generalized

coordinate is chosen to be the gradient rp = ∂r/∂p, where r is the absolute position

of a cable segment, such that energy is dissipated if the velocity of a differential cable

segment differs from the velocity of adjacent segments. Thus, damping will occur

during bending and axial deformations. The energy dissipation will also occur during

rigid body rotations, however the additional dissipation can be viewed as viscous

damping due to air or water resistance. The Rayleigh dissipation function becomes

R = 1/2

∫ L

0

c(ṙp · ṙp)dp (54)

The damping force Qd is then given by

Qd =
∂R

∂q̇
= c

∫ L

0

ST
p Spdp q̇. (55)

The damping coefficient c is not an intrinsic material property and must therefore

be estimated on a case-by-case basis based on a measurable property such as the

cable damping ratio. The estimation of the damping coefficient for the flume-scale

and full-scale cable models is further discussed in Sections 4.3 and 5.1, respectively.

The next section describes the hydrodynamic force model used for the flume and
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full-scale systems.

3.3 Hydrodynamic Forces

The external hydrodynamic force per unit length fH consists of three components:

the drag force fD, the inertia force fI and the buoyancy force fB, such that

fH = fD + fI + fB. (56)

The buoyancy force is given by Archimedes’ principal,

fB = −ρfAg (57)

where g = [0 0 −9.81]T m/s2 is the gravitational acceleration vector, ρf is the

fluid density and A is the cable corss-sectional area. The drag force follows Driscoll

and Nahon’s [20] definition, utilizing nonlinear loading functions and is defined in

Section 3.3.1. Section 3.3.2 shows the derivation of the inertia force from the Morison

equation (Equation 13). The integration of the distribution of hydrodynamic forces

over the length of each element is outlined in Section 3.3.3. Finally the forces acting

on the towed body are defined in Section 3.3.4.

3.3.1 Nonlinear Drag Force

The drag forces used in this work are based on the model employed by Driscoll

and Nahon [20] and Buckham et al. [36]. The model accounts for the nonlinear

decomposition of the drag force into normal and tangential components and exhibits

good agreement with experimental studies of drag forces on towed cables over a wide

range of towing conditions [20]. The components of the drag force are

fD,n = −1

2
ρfdCD|V|2

Vn

|Vn|
fn (58a)
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fD,t = −1

2
ρfdCD|V|2

Vt

|Vt|
ft sgn(Vt · ut) (58b)

where d is the cable diameter, CD is a common drag coefficient, V = Vf − ṙ is the

relative velocity between the cable and flow, fn and ft are normal and tangential

empirical loading functions, Vn and Vt are the normal and tangential components of

V given by

Vt = (V · ut)ut (59a)

Vn = V −Vt (59b)

and ut = rp/|rp| is the unit tangent vector along the cable centerline [36]. Figure

11 illustrates the absolute and relative flow velocity vectors and their components

normal and tangential to the cable element. The absolute flow velocity vector Vf is

shown as a solid blue line, the relative flow velocity vectors V is shown as a solid red

line and their component vectors are shown as dotted lines.

Figure 11: Absolute and relative flow velocity vectors in relation to a cable element
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The empirical loading functions are given by Driscoll and Nahon [20] as

fn = 0.5− 0.1 cos η + 0.1 sin η − 0.4 cos 2η − 0.11 sin 2η (60a)

ft = 0.01
(
2.009− 0.3858η + 1.9159η2 − 4.1615η3 + 3.5064η4 − 1.1873η5

)
(60b)

where η ∈ [0 π/2] is the angle between the flow vector and the cable centerline

in radians. Relationships developed by Choo and Casarella [32] between the drag

coefficient CD and Reynold’s number Re for towed cables are

CD(Re) =



8π

ReS
(1− 0.87S−2), 0 < Re ≤ 1

1.45 + 8.55Re−0.9, 1 < Re < 30

1.1 + 4Re−0.5, 30 ≤ Re < 105

(61)

where

S = −0.077215665 + ln(8Re−1) (62)

and

Re =
ρfdVn

µ
(63)

Various experimental studies of submerged cables [57, 58] show that the mean

drag acting on the cable can be much higher than for rigid cylinders. The increase in

drag is a result of vibration of the cable due to vortex shedding. An additional force

fD,amp is applied to the cable to capture the drag amplification due to vortex-induced

vibrations (VIV). It is defined

fD,amp = G(fD,n + fD,t) (64)
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where G is an amplification factor and fD,n and fD,t are the steady state values of

normal and tangential drag forces, which are obtained using Equation 58 with the

cable velocity ṙ set to zero. In this way, only the mean component of the drag force

is amplified and not the transient components.

The total drag force per unit length fD from Equation 56 is

fD = fD,n + fD,t + fD,amp. (65)

3.3.2 Added Mass and Inertia Force

Within Equation 56, the non-drag terms in the Morison equation are collectively

referred to as the inertia force fI given by

fI = ρfACm(V̇f,n − r̈n) + ρfAV̇f,n (66)

where Cm is the hydrodynamic mass coefficient, V̇f,n is the acceleration of the flow

normal to the cable, and r̈n is the normal component of the cable acceleration [30].

The first term in the above equation ρfACm(V̇f,n− r̈n) is the hydrodynamic mass

force. When the cable accelerates relative to the fluid it must also accelerate the

fluid surrounding it. If the relative acceleration is normal to the cable’s centerline the

volume of fluid displaced is equal to that of the cable, however, if the cable moves

tangential to its own centerline, then a minimal amount of fluid is displaced. Thus, the

hydrodynamic mass force consists only of the component of the acceleration normal

to the cable centerline. While the hydrodynamic mass force accounts for the inertia

of the fluid in the immediate vicinity of the body, the second term in Equation 66,

referred to as the Froude-Krylov force, occurs as a result of the pressure-gradient

created by the absolute acceleration of the fluid in the outer-flow region.

The normal acceleration vector r̈n can be obtained using the following relation
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r̈n = r̈− r̈t

= r̈− ut(u
T
t r̈)

= Sq̈− ut(u
T
t Sq̈)

= (1− uT
t ut)Sq̈

(67)

where ut is the unit vector tangent to the cable centerline and S is the element shape

function and q̈ is the generalized acceleration vector.

Note that the inertia force fI contains the cable acceleration r̈ = Sq̈ and the

governing equations shown in Equation 30 are implicit as the generalized acceleration

q̈ appears on both sides of the equations. The governing equations can be written in

explicit form by isolating the component of the inertia force proportional to the cable

acceleration and moving it to the left side of Equation 30. Thus explicit numerical

integration methods such as MATLAB’s ode15s can be used. The component of the

inertia force proportional to r̈n is denoted fa and the remaining terms are denoted f ′I ,

thus

fI = fa + f ′I , (68)

where

fa = −ρfACmr̈n. (69a)

f ′I = ρfA(Cm + 1)(V̇f,n) + ρfAV̇f,n. (69b)

The explicit form of the governing equations will be further detailed in the follow-

ing section where the definitions of the generalized hydrodynamic forces are described.

3.3.3 Generalized Hydrodynamic Force

The total generalized hydrodynamic force QH is given by the integral over the length

of the element as
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QH =

∫ L

0

S(p)T fHdp =

∫ L

0

S(p)T (fD + f ′I + fa + fB)dp (70)

The component of containing the added mass force fa is isolated giving the gen-

eralized added mass force Qa:

Qa =

∫ L

0

S(p)T fadp = −ρfACm

∫ L

0

S(p)T r̈ndp (71)

Subsituting the expression for the normal acceleration r̈n from Equation 67, Qa

becomes

Qa = −ρfACm

∫ L

0

ST (1− uT
t ut)Sdp q̈ (72)

The generalized added mass force Qa has a form similar to the inertial force of

the cable, Mq̈, and can thus be written

Qa = −Maq̈ (73)

where Ma is the added mass matrix,

Ma = ρwCmA

∫ L

0

ST (1− uT
t ut)Sdp. (74)

The equations of motion for the element from Equation 30 can then rewritten as

explicit ODEs of the form

(M + Ma)q̈ = Qext −Qint. (75)

where the generalized external force Qext now excludes the added mass force Qa:

Qext = Qg + QN + Qh. (76)
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The remaining terms in Equation 70 are denoted Qh:

Qh =

∫ L

0

S(p)T (fD + f ′I + fB)dp (77)

The generalized force Qh can be approximated using a numerical quadrature with

equally-spaced integration points. Three possible conditions are considered for each

element: the element is fully submerged below the waterline, the element is partially

submerged, or the element is unsubmerged. Figure 12 shows a partially submerged

element with the waterline shown as a dotted line and the integration points shown

as open circles, except for the nodes which are shown as closed circles. The index of

the first integration point below the waterline is denoted j∗.

Figure 12: Partially submerged cable element.

For each condition, the generalized force Qh is
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Qh =


012×1, if unsubmerged

L
NI

∑NI

j=1 S(pi)
T fh(pi)wi + Q∗h, if partially sugmerged

L
NI

∑NI

j=1 S(pi)
T fh(pi)wi, if fully sugmerged.

(78)

where NI is the number of integration points, pj is the parameter value corresponding

to the integration point and wj is the quadrature weight. The quadrature weights wj

are defined using the trapezoidal rule and are given by

wj =


0, z(pj) ≥ zWL

0.5, z(pj) < zWL and j ∈ {1, j∗, N}

1, z(pj) < zWL and j ∈ {2, 3, ..., N − 1}\j∗

(79)

where z is the vertical position of the point and zWL is the vertical position of the

waterline.

In Figure 12 the interval between point j∗ and the waterline is shown as a light

grey segment. The additional force Q∗h in the partially submerged case accounts for

the force acting on the light grey interval and is found by taking the trapezoidal area

of the force distribution between point j∗ and the waterline:

Q∗h =
1

2
[S(p∗)T fH(p∗) + S(pWL)T fH(pWL)](p∗ − pWL). (80)

where p∗ is the value of the arc parameter p at point j∗ and pWL is the value of the

arc parameter at the waterline.

Similarly, the added mass matrix Ma in Equation 75 is replaced with a quadrature.

If the element is unsubmerged the added mass matrix is given by

Ma = 012×12, (81)
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if the element is fully submerged, the added mass is

Ma = ρwCmA
L

N

N∑
j=1

wjS(pj)
T [1− ut(pj)

Tut(pj)]S(pj), (82)

and if the element is partially submerged the added mass matrix is

Ma = ρwCmA
L

N

N∑
j=1

wjS(pj)
T [1− ut(pj)

Tut(pj)]S(pj) + M∗
a. (83)

The same quadrature weights defined in Equation 79 are used in Equations 82 and

83.

The additional added mass component M∗
a in the partially submerged case cor-

responds to the segment of cable between point j∗ and the waterline and is given by

the trapezoidal area of the integral in Equation 74 over the interval from point j∗ to

the waterline:

M∗
a =

1

2
ρwCmA

{
S(p∗)T [1− ut(p

∗)Tut(p
∗)]S(p∗)

+S(pWL)T [1− ut(pWL)Tut(pWL)]S(pWL)
}

(p∗ − pWL). (84)

In addition to the hydrodynamic forces acting on the cable, the fluid flow also acts

on the towed sphere. In the next section the forces acting on the sphere are defined.

3.3.4 Towed Body Forces

The towed body is treated as a lumped mass located at the end of the cable. The

total force acting on the towed body is given by the sum of the buoyancy, gravita-

tional, d’Alembert and hydrodynamic forces, which follow from the Morison equation

(Equation 13). The net force is

Fb = Fb,g + Fb,D + Fb,I + Fb,m. (85)
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where Fb,g is the net force due to gravity and buoyancy, Fb,I is the inertia force, Fb,m

is the force due to hydrodynamic added mass and the d’Alembert force due to the

body’s inertia.

The gravitational and buoyancy force Fb,g is given by

Fb,g = (−ρfV +mb)g, (86)

where V is the volume of the body and mb is the mass.

The drag force Fb,D is

Fb,D =
1

2
ρf (Ab ◦CD,b) ◦ |Vf −Vb|(Vf −Vb), (87)

where Vf is the flow velocity and Vb is the velocity of the end of the cable where

the towed body is located. Since the geometry of the body may vary along each axis,

Ab is a vector of areas found by projecting that volume of the body onto the inertial

planes, CD,b is a vector of drag coefficients for each coordinate axis, and ◦ represents

the entry-wise product.

The inertia force Fb,I is given by

Fb,I = ρfV (Cm,b + 1) ◦ V̇f , (88)

where Cm,b is a vector of inertia coefficients for each coordinate axis.

The force due to the hydrodynamic added mass and the d’Alembert force due to

the body’s inertia Fb,m given by

Fb,m = −(mb + ρfV Cm,b)V̇b. (89)

The equivalent generalized force Qb acting on the towbody is
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Qb = S(L)TFb = S(L)T (Fb,g + Fb,D + Fb,I + Fb,m) (90)

The last term in Equation 90 can be rewritten as

S(L)TFb,m = −Mbq̈ (91)

where Mb is the mass matrix of the body given by

Mb = (mb + ρfV Cm,b)S(L)TS(L) (92)

The mass matrix of the nth cable element is augmented by adding the mass matrix

Mb. This augmentation is further described in Section 3.7. In the next section, the

formulation of the surface contact forces is described.

3.4 Surface Contact

In order to model the cable-sheave and cable-winch interactions, a contact penalty

is used. The cable is allowed to “penetrate” the sheave surface and the normal force

is defined as a function of the relative penetration δ. The normal force per unit

length fN acting at a single point on the element is defined using a contact force

model developed by Hunt and Crossley [59], which has been used by Bul̀ın et al. [9]

and Lugris et al. [7] to model cable-pulley interactions in ANCF cable simulations.

The Hunt-Crossley contact model represents the surface as a nonlinear spring-damper

with the force per unit length acting on the cable given by [59]

fN = kNδ
n(1 +Dδ̇)uN (93)

where uN is the unit vector normal to the sheave surface at the point of contact, kN

is the contact stiffness, δ is the relative “penetration” of the node into the surface, D
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is a damping coefficient and n is a positive constant. The value of n is typically based

on empirical investigations of the evolution of the contact force between two bodies

during an impact and may be a function of body geometry and material properties

[42]. In the present analysis, a value of n of 1.5 is used based the value used by Buĺın

et al. [9] to model cable-sheave contact.

The relative position vector between an arbitrary “contact point” on the cable

and the center of the sheave or winch srel is

srel = s− sw (94)

where s is the position of the cable segment in the ship’s body-fixed frame and sw is the

position of the centroid of the winch or sheave. Figure 13 shows the transformation

of the contact point onto the Y Z plane by rotating the relative position srel about

the winch axis of rotation. The angle between srel is denoted θY Z and the rotated

vector, shown as a red arrow, is denoted p. The contact forces are calculated first by

transforming the relative position srel onto a fixed plane by rotating about the axis of

rotation of the winch or sheave. The fixed plane is selected to be the Y Z plane. The

planar contact forces are then calculated based on the two-dimensional cross-section

of the surface in the Y Z plane. Lastly, the contact force is then transformed to the

inertial frame.

The rotation angle θY Z is

θY Z = sgn(Xrel) cos−1

(
srel · [0 0 1]T

X2
rel + Z2

rel

)
(95)

where Xrel and Zrel are the components of srel in the X and Z axes. The rotated

vector p is

p = Ry(θY Z)srel (96)
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Figure 13: Transformation of contact point to ZY plane

where Ry is the rotation matrix defined in Equation 25b, which rotates about the Y

axis. The penetration δ of the cable into the surface is

δ = −(p− p0) · n (97)

where n is a unit vector normal to the contact surface in the Y Z-plane and p0 is a

nominal vector given by

p0 = [0 0 r + d/2]T (98)

and r is the radius of the winch or sheave (in the latter case, measured to the root of

the sheave groove).

Figure 14 illustrates the sheave (left) and winch (right) contact surfaces. The

winch is idealized as an infinite cylinder. Note that since the contact forces are

applied at the cable centerline, the “contact surface”, shown as a dotted line, is offset

from the actual surface by the radius of the cable. The unit vector normal to the

winch contact surface in the Y Z-plane is
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nw = [0 0 1]T . (99)

Figure 14: Sheave (left) and winch (right) surface cross-sections. Real surfaces are
shown as solid lines. Offset contact surfaces are shown as dotted lines.

In order to accurately model the interaction between the cable and the sheave, the

angled and curved surface of the sheave groove is represented by two straight lines

parallel to the straight walls of the groove. Figure 14 shows the contact surfaces as

dotted lines and the actual surface of the groove as a solid line. Figure 15 shows the

penetration of the cable centerline below the contact surfaces. The contact surfaces,

labeled s1 and s2, intersect at the point p0 and have normal vectors ns1 and ns2:

ns1 = [cos(θg/2) 0 sin(θg/2)]T (100a)

ns2 = [− cos(θg/2) 0 sin(θg/2)]T (100b)

where θg is the throat angle of the groove. Figure 16 illustrates the dimensions of

the groove. The groove surface is idealized such that the radius of curvature of the

groove rg is assumed to be equal to the radius of the cable. The two contact surfaces
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intersect at the center of curvature of the groove.

Figure 15: Sheave groove contact.

If the cable centerline lies below either of the dotted lines, a penalty force is

produced proportional to the penetration. If the centerline lies above both lines, no

normal force is applied. In Figure 16, the depth of the groove is denoted hg. The

distance h between point p and p0 in the Z-axis is

h = (p− p0) · k. (101)

If the cable centerline goes above the top of the groove (i.e. h > hg), then no force

is applied. The unit vector uN gives the direction of the force in the inertial frame,

and is found by rotating the surface normal vector n by the inverse of the rotation

Ry(θY Z) applied in Equation 96 and then rotating from the body-fixed frame to the

inertial frame with the rotation matrix RI
B(α, β, γ) where α, β and γ are the roll,

pitch and yaw of the ship. The unit normal in the inertial frame is thus
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Figure 16: Dimensions of sheave groove.

uN = RI
B(α, β, γ)Ry(θY Z)−1n. (102)

The generalized contact force QN is given by the sum of the contact forces normal

to each contact surface integrated over the length of the element is

QN =
∑∫ L

0

S(p)T fNdp =

∫ L

0

S(p)T (f s1N + f s2N + fwN)dp. (103)

where the superscripts indicate the contact surface. The normal force per unit length

is evaluated at NI discrete points points per element and the generalized contact force

is approximated using a numerical quadrature. An element can have no contact with
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the surface, partial contact or full contact. For these three cases, the quadrature is

QN =


012×1, if no contact

L
NI

∑NI

j=1 S(pj)
T [
∑
wjfN(pj)] + Q∗N , if partial contact

L
NI

∑NI

j=1 S(pj)
T [
∑
wjfN(pj)], if full contact.

(104)

where 012×1 is a 12× 1 null matrix, wj is the quadrature weight. Figure 17 illustrates

the partial contact case and the equivalent undeformed element. The contact surface

is shown as a dotted line. The integration points are shown as open circles, except for

the element nodes which are shown as close circles. The arc parameter p is measured

from the first node (j = 1). The index j of the last integration point that has a

positive penetration (i.e. closed contact) is denoted j∗.

Figure 17: Sheave groove contact forces at discrete integration points.

To evaluate the numerical quadrature in Equation 104, the trapezoidal rule is used

to define the quadrature weights which are

wj =


0, if δj ≤ 0 or hj ≥ hg

0.5, if δj > 0 and hj ≥ hg and j ∈ {1, j∗, NI}

1, if δj > 0 and hj ≥ hg and j ∈ {2, 3, ..., NI − 1}\j∗.

(105)
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Note that each contact surface has a distinct set of quadrature weights.

In the partial contact case, the additional generalized force Q∗N account for the

force acting on the interval between point j∗ and the point where the cable intersects

the contact surface:

Q∗N = 0.5|p∗ − p0|
[
S(p∗)T fN(p∗) + S(p0)T fN(p0)

]
(106)

where p∗ is the value of the arc parameter p at point j∗ and p0 is the arc parameter

at the intersection point.

In this section, the formulation of the normal contact forces between the cable

and the sheave and winch surfaces was described. Since the focus of the research is

on examining variations in normal contact forces between the cable and sheave, the

tangential contact forces were neglected. The sheave was thus idealized as having a

frictionless surface or, equivalently, having zero rotational inertia. In the next section,

the kinematic constraint forces which constrain the end of the cable to the surface of

the winch are described.

3.5 Kinematic Constraints

The end of the cable is constrained to an arbitrary point on the surface of the winch,

such that the rotation of the winch will reel the cable in or out. The augmented

(Lagrange multiplier) formulation [60] is used to define the generalized constraint

force. In the augmented formulation, a constraint force is applied to each constrained

node in order to satisfy a constraint equation of the form

Φ(q, t) = 0. (107)

The force Qc required to satisfy the constraint Φ can then defined by introducing

a vector of Lagrange multipliers λ:
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Qc = −Φq
Tλ (108)

The equations of motion from Equation 30 become differential algebraic equations

of the form

Mq̈ + Qint −Qext + Φq
Tλ = 0

Φ = 0

(109)

where M is the mass matrix of the system, Qint is the generalized internal force and

Qext is the sum of external generalized forces, excluding the constraint force Qc.

It is necessary to solve for both the system accelerations q̈ and the Lagrange

multipliers λ, thus the number of degrees of freedom increases by the number of

constraints. An additional set of governing equations is derived by taking the second

derivative of Equation 107 with respect to time gives

Φtt = −Φqq̈− (Φqq̇)qq̇− 2(Φq)tq̇. (110)

Note that the subscripts t and tt denote the first and second partial derivatives with

respect to time, while an over-dot denotes the total derivative with respect to time.

Furthermore, denoting

b := −Φtt − (Φqq̇)qq̇− 2(Φq)tq̇, (111)

the constraint is expressed at the acceleration level as

Φqq̈ = b. (112)

Equation 112 assumes that the constraint equations are satisfied exactly, which
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is only true in an ideal computational environment. Due to the error inherent to

the numerical solution of the equations of motion, the above method is numerically

unstable unless corrections are applied to prevent accumulation of error or “constraint

drift” [61].

A well-known method for “stabilization” or “regularization” of the constraint is

Baumgarte’s stabilization method [62], wherein the equation

Φ̈ + 2a1Φ̇ + a2
2Φ = 0 (113)

is to be satisfied instead of Φ̈ = 0. The additional terms introduce feedback, similar

to a PD controller, if the solution drifts from the constrained value. The variable b

in Equation 112 is then replaced with

b′ = b− 2a1Φ̇− a2
2Φ (114)

where a1 and a2 are chosen constants. The governing equations can now be written

as

M Φq

Φq 0


 q̈

−λ

 =

Qext −Qint

b′

 (115)

It is desirable to eliminate the Lagrange multipliers λ from Equation 115 to keep

the equations of motion as explicit ODEs to facilitate the use of ODE solvers, such

as MATLAB’s ode15s. By rearranging Equation 115, the Lagrange multipliers can

be written

λ =
[
ΦqM

−1Φq
T
]+

(Φqa− b′) (116)

where + represents the Moore-Penrose pseudo-inverse and a is the associated accel-
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erations of the unconstrained system

a = M−1(Qext −Qint) (117)

Combining Equation 116 with Equation 108, the generalized constraint force be-

comes

Qc = −Φq
T
[
ΦqM

−1Φq
T
]+

(Φqa− b′) (118)

The equations of motion can again be written as explicit ODEs:

Mq̈ + Qint −Qext −Qc = 0. (119)

One end of the cable is constrained to the surface of the winch using the kinematic

constraint

Φ = r(1)(0)− rCG −RI
B(α, β, γ)(sw + Ry(φ)rwk) = 0 (120)

where r(1)(0) is the position of the first node of the first element, rCG is the position

of the center of gravity of the ship, sw is the position of the winch in the body-fixed

coordinate frame, RI
B is the rotation matrix from the ship’s body frame to the inertial

frame, Ry is the rotation matrix corresponding to the winch rotation of φ about its

axis and k = [0 0 1]T is the versor of the Z axis. The constraint is applied using

Baumgarte’s stabilization method where

Φ̇ = ṙ(1)(0)− ṙCG −
dRI

B

dt
(sw + Ry(φ)rwk)−RI

B

dRy(φ)

dt
rwk (121)

and

59



b = r̈CG +
d2RI

B

dt2
(sw + Ry(φ)rwk) + 2

dRI
B

dt

dRy(φ)

dt
rwk + RI

B

d2Ry(φ)

dt2
rwk. (122)

are substituted into Equation 114.

In addition to the constraint applied to the end of the cable, each element must also

be constrained to its neighbouring elements to provide connectivity between elements.

The next section describes the formulation of the inter-element connectivity.

3.6 Inter-element Connectivity

Each element making up the cable can be treated as one body of a multibody system.

Two coincident cable nodes must be constrained, such that the cable is continuous

and smooth along its length. To connect adjacent nodes together and to make the

slope of the cable continuous, the position vectors r and gradient vectors rp of adjacent

nodes are constrained by the inter-element constraint equation

Φ(i,i+1) =

r(i)(L)− r(i+1)(0)

r
(i)
p (L)− r

(i+1)
p (0)

 =

0

0

 (123)

where i and i + 1 are the indices of the elements being constrained and L is the

unstretched element length. Figure 18 shows two adjacent elements with the position

vectors r(i)(L) and r(i+1)(0) shown as solid arrows and the slope vectors r
(i)
p (L) and

r
(i+1)
p (0) indicated by dashed arrows.

For these constraints, the augmented formulation used in Section 3.5 would require

solving for all 12 degrees of freedom per element. By the definition of the constraints

in Equation 123, two constrained nodes are coincident and have the same slope.

Therefore the generalized coordinates of the two nodes are expected to have the same

value and half of the constrained coordinates are redundant. An alternative method to
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Figure 18: Adjacent elements with constrained coordinate vectors

the augmented formulation is the embedding technique [60] which serves to eliminate

the redundant coordinates, thereby improving the computational efficiency of the

simulation as well as eliminating numerical error in the constraints.

The vector q(i,i+1), which contains all generalized coordinates of elements i and

i+ 1 is

q(i,i+1) =

 q(i)

q(i+1)

 (124)

The generalized coordinate vector q for a single element is given in Equation 27. The

combined coordinate vector q(i,i+1) is partitioned by defining a set of independent

coordinates qi and the remaining dependent coordinates qd, thus

q(i,i+1) =

[
qi

T qd
T

]T
. (125)

The dependent coordinates are selected to be the position and gradient vector of

the first node of element i+ 1
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qd =

r(i+1)(0)

r
(i+1)
p (0)

 (126)

and the independent coordinates are

qi =



r(i)(0)

r
(i)
p (0)

r(i)(L)

r
(i)
p (L)

r(i+1)(L)

r
(i+1)
p (L)


. (127)

The Jacobian of Φ(i,i+1) with respect to the combined coordinate vector q(i,i+1) is

Φ(i,i+1)
q =

0 0 I 0 −I 0 0 0

0 0 0 I 0 −I 0 0

 (128)

where 0 is a 3 × 3 null matrix and I is a 3 × 3 identity matrix. The Jacobian

matrix Φ
(i,i+1)
q is also partitioned into two components Φq,i and Φq,d which contain

the columns of Φ
(i,i+1)
q corresponding to the independent and dependent coordinates

respectively. The constraint equation from Equation 123 can then be rewritten

Φq,iqi + Φq,dqd = 0 (129)

Combining Equations 125 and 129, the following expression which relates the

combined coordinate vector q(i,i+1) to the independent coordinates qi is obtained:

q(i,i+1) = Bqi, (130)

where B is a transformation matrix given by
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B =

 I

−Φq,d
−1Φq,i

 (131)

and I is an identity matrix.

The formulation shown above constrains two consecutive elements. In the full

cable model, each element is constrained to its neighbouring elements. The method

described in this section can be expanded to the full model by defining a constraint

matrix Φ(1,2,...,NE) which includes the constraints for all elements i = 1, 2, ..., NE,

where NE is the number of elements and collecting the generalized coordinates for all

elements in a single vector q(1,2,...,NE). The constraint matrix Φ(1,2,...,NE) and coordi-

nate vector q(1,2,...,NE) are then partitioned into independent and dependent compo-

nents and the transformation matrix B is determined. From an initial 12NE degrees

of freedom, the embedding technique reduces the system to 6NE + 6 independent

coordinates.

A reduced set of governing equations containing only the independent coordinates

can be defined as

(BTMB)q̈i + BT (Qint −Qext −Qc) = 0 (132)

where M is the “master” mass matrix, which is a block diagonal matrix containing the

mass and added mass matrices of each element, Qint and Qext are the master internal

and external generalized forces, and Qc is the master constraint force [60]. The

following section outlines the formulation of the master mass matrix and generalized

forces, as well as the simulation procedure.
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3.7 System Assembly and Simulation Procedure

The total mass matrix for each element is found by summing the mass and added

mass matrices, M(i) and M
(i)
A , from Equations 9 and 74, respectively, as well as the

towed body mass matrix Mb from Equation 92 for the final element. The elemental

mass matrices are then assembled block-diagonally to form the master or system mass

matrix M:

M =



M(1) + M
(1)
A 0 . . . 0

M(2) + M
(2)
A 0

. . .
...

sym. M(NE) + M
(NE)
A + Mb


(133)

The master internal force vectors Qint and Qext is formed by assembly the ele-

mental vectors Q
(i)
int (Equation 31) and Q

(i)
ext (Equation 76) vertically and adding the

external generalized towbody force Qb (Equation 90) acting on the final element:

Qint =



Q
(1)
int

Q
(2)
int

...

Q
(NE−1)
int

Q
(NE)
int


and Qext =



Q
(1)
ext

Q
(2)
ext

...

Q
(NE−1)
ext

Q
(NE)
ext + Qb


. (134)

The constraint force Qc from Equation 118 is applied only to the first element,

thus the master generalized constraint force is
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Qc =



Qc

012×1

...

012×1

012×1


(135)

where 012×1 is a 12× 1 null vector.

Furthermore, an additional degree of freedom is added representing the winch

rotation φ. The acceleration of the winch is given by a PD control equation

φ̈ = k1(φSP − φ) + k2(φ̇SP − φ̇) (136)

where k1 and k2 are chosen constants and φSP is the set-point. The winch rotations

can then be used to evaluate the constraint force Qc, which satisfies the constraint

given in Equation 120.

The complete set of ODEs are therefore

q̈i

φ̈

 =

(BMB)−1B(Qext −Qint + Qc)

k1(φSP − φ) + k2(φ̇SP − φ̇)

 . (137)

The ODEs are solved using MATLAB’s stiff ODE solver ode15s. The procedure used

to stimulate the cable motion is as follows:

1. The simulation parameters are defined, including:

(a) the time span,

(b) the cable discretization, i.e. the number of elements NE and length L(i) of

each element

(c) the initial conditions q(0), q̇(0), φ(0) and φ̇(0),

(d) the constraint Jacobian Φq, and
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(e) the embedding matrix B.

2. The system parameters, including the cable properties, system dimensions, and

fluid properties are defined. The ship motion, including the position and velocity

of the center-of-gravity and the roll, pitch and yaw angles and their derivatives

are defined as a function of time. Constant matrices such as the mass matrices

M(i) (Equation 9) and gravitational force vectors Q
(i)
e (Equation 35) can also

be evaluated for each element.

3. The ODE solver is called with the following inputs: the array of initial con-

ditions, the time span, and a structure containing the system parameters and

constant matrices.

4. The ODE solver iterates over an “ODE function” which takes an array input

of [qT
i q̇T

i φ φ̇] and performs the following steps:

(a) Evaluates the generalized longitudinal elastic force Ql (Equation 46), trans-

verse elastic force Qt (Equation 52) and the generalized damping force Qd

(Equation 55) for each element,

(b) Evaluates the generalized external hydrodynamic force Qh (Equation 78)

and contact force QN (Equation 104) for each element and the towed body

force Qb (Equation 90),

(c) Assembles the master internal and external generalized force vectors Qint

and Qext,

(d) Evaluates the added mass matrix Ma (Equation 81-83) for each element

and the towbody mass matrix Ma,b (Equation 92),

(e) Assembles the master mass matrix M,

(f) Evaluates the set-point φSP and its derivative φ̇SP based on the chosen

set-point algorithm and the ship motion data at the current time-step,
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(g) Evaluates the constraint force Qc (Equation 118) and master constraint

force Qc,

(h) Solves for q̇i and φ̈ by Equation 137.

The ODE function returns the array [q̇T
i q̈T

i φ̇ φ̈] to the ODE solver.

5. The ODE solver returns the array [qT
i q̇T

i φ φ̇] for each time step.

3.8 Summary

In this chapter, a model of a towed-cable system with winch and sheave contact was

described, contributing toward the first objective of this thesis. The formulation of

the following elements of the finite element cable model were shown:

1. the ANCF finite element, the mass matrix, the internal elastic forces and the

internal damping force,

2. the external hydrodynamic forces acting on the cable and towbody,

3. the external contact forces,

4. the kinematic constraint force which constrains the end of the cable to the

winch,

5. the inter-element connectivity using the embedding technique.

Finally, the simulation procedure was outlined.

The model was developed to predict the cable dynamics of a towed body system

with ship motion and active heave compensation. The outputs of the simulation

can be used to examine variations in the cable tension and contact forces during

the motion. In future work, the simulated tension and contact forces could be used

to examine and predict detachment of the cable from the sheave. Also, the motion

of the towed body can be simulated and used to evaluate the performance of heave
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compensation algorithms. A contribution of this thesis shown in this chapter is the

description of the contact between the cable and the sheave groove. The model

incorporates the three-dimensional geometry of the groove in order to accurately

represent the contact forces as the ship moves and rotates.

In the next chapter, the model will be validated based on small scale experimental

measurements of towbody motion and cable tension.
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4 Experimental Validation

In this chapter, the experimental validation of the cable model is described. Two

experiments were performed for small scale pulley systems with an external load

attached to one end of the cable. In the first experiment the pulley is stationary

and the experimental cable tension and wrap angle of the cable around the pulley

were compared to the simulated results. Preliminary results from the first experiment

were published in the paper entitled “Cable-Pulley Interaction with Dynamic Wrap

Angle Using the Absolute Nodal Coordinate Formulation” by C. Westin and R.A.

Irani in the Proceedings of the 4th International Conference of Control, Dynamic

Systems, and Robotics (CDSR’17) [63] and received a Best Paper award. In the

second experiment, the pulley was actuated to simulate ship motion and the recorded

and simulated cable tension were compared. Lastly, experimental towbody motion

for a small scale towed cable system with active heave compensation obtained by

Calnan [2] was utilized to validate the model.

4.1 Cable-Pulley System with Stationary Pulley

The first experiment consisted of a stationary pulley supporting a nylon fibre rope

pinned at one and and attached to a rigid load at the other end. Figure 19 illustrates

the system. The load was released from an initial angle, measured from the horizontal,

with the rope taut. The load was then allowed to swing.

The cable simulation was reduced to two dimensions since the cable and load un-

dergo planar motion only. Since the rotational inertia of the external load is significant

in this system, the lumped formulation of the attached body described in Section 3 is

insufficient to capture the rigid body dynamics. Thus, the simulation was modified by

adding a linear elastic element representing the load. The element is described by two

coordinate vectors or four translational degrees of freedom: rP = [xP yP ] representing
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Figure 19: Illustration of cable-pulley system with static pulley.

the position of the attachment point and rI = [xI yI ] representing the position of the

center of inertia of the body. The mass matrix for the load ML, derived by Jalon and

Bayo [49], is implemented here as

ML =

2mL(1− LP,G

LP,I
)I mL(

LP,G

LP,I
− 1)I

mL(
LP,G

LP,I
− 1)I mLI

 , (138)

where where mL is the mass of the load, LP,G and LP,I are the distances between the

cable attachment point and the centers of gravity and inertia, respectively, and I is a

2x2 identity matrix. The internal elastic force for the linear element is

QL,int = kL
|rp − rI | − LP,I

LP,I



1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1





xP

yP

xI

yI


(139)

where kL is the tensile stiffness of the load. Additionally, a spherical constraint was
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used to constrain the end of the cable to the attachment point on the load.

During the experiment, the tension was measured using a 100 kg load cell. The

angle of the rope relative to the horizontal axis was measured via a vision system to

determine the wrap angle of the cable on the pulley. Colored markers were placed at

two points along the rope and camera footage of the rope motion was collected at 60

frames per second. Using the image processing tools in MATLAB, the recorded frames

were converted to Hue-Saturation-Value (HSV) colormaps, then each pixel with a

hue and saturation value within predefined ranges was identified. The coordinates

of each matching pixel were then averaged to find the centroid of each marker. The

orientation of the line connecting the centroids of the two markers relative to the

horizontal was then calculated. The calculated angle approximates the wrap angle of

the cable around the pulley. A low-pass Butterworth filter was applied to both the

tension and angle measurements.

The experiment was repeated for varying loads and initial wrap angles. The pa-

rameters of the system recorded during the experiments are given in Table 1. These

values were also used to perform the corresponding simulations. The elastic modulus

of a nylon fiber has a value of approximately 2 GPa [64]. Due to the fibrous construc-

tion of the rope, the bending stiffness is very small. Similar to the convergence shown

by Buĺın et al. [9], the second moment of area was selected by lowering the value

until the contact forces converged to a constant distribution and was held constant at

4.0×10−14 m4 for all simulations. The rope length was measured along the centerline

from the top of the pulley to the load attachment point and had a value of 44 cm. A

minimal value of the damping coefficient c of 1× 10−3 Ns was selected by increasing

the coefficient until the high frequency vibration modes of the cable were attenuated

and stability of the numerical solution was obtained.

A convergence study was performed using the parameters listed for Configuration

1 in Table 1. Simulations were performed to determine the cable tension and wrap
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Table 1: Model parameters for cable-pulley experiment with stationary pulley.

Configuration 1 2 3

Pulley radius, R (cm) 4.62 4.62 4.62

Rope diameter, d (cm) 0.884 0.884 0.884

Rope linear density (g/cm) 0.59 0.59 0.59

Rope modulus of elasticity, E (GPa) 2.0 2.0 2.0

Rope second moment of area, I (m4) 4.0× 10−14 4.0× 10−14 4.0× 10−14

External load mass, mL (kg) 9.43 18.50 27.57

External load length, LP,I (cm) 26.9 25.9 24.5

External load length, LP,G (cm) 25.8 24.5 23.2

Initial wrap angle, θ0 (deg) 34.9 40.4 49.4

angle while varying the number of elements from 10 to 25 elements. Each simulation

was performed with 10 integration points per element. Figure 20 shows the simulated

wrap angle (left) and cable tension (right) for the first 1 s of motion. Increasing the

mesh beyond 10 elements had no significant effect on the simulated wrap angle or

cable tension, thus ten elements were used for the final simulations.

Figure 20: Simulated wrap angle (left) and cable tension (right) with 10 and 20
elements.

For each configuration, the simulation was performed for 10 seconds of motion.

Figure 21 compares the experimental and simulation wrap angles for configuration 1.

The standard deviation of the error was determined to be 1.37 degrees with a max-
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imum error of 2.77 degrees as the wrap angle varied between 36.7 and 146 degrees.

Similarly, the standard deviation of the error was 3.73 degrees with a maximum error

of 9.24 degrees as the wrap angle varied between 43.3 and 139 degrees for Configura-

tion 2. The standard deviation of the error was 2.14 degrees with a maximum error of

4.30 degrees as the wrap angle varied between 52.4 and 129 degrees for Configuration

3.

Figure 21: Comparison between experimental and simulated wrap angle for station-
ary pulley experiment.

Figure 21 compares the experimental and simulation cable tensions for configu-

ration 1. The standard deviation of the error was determined to be 6.22 N with a

maximum error of 21.2 N. The measured tension varied between 49.2 and 162 N.

Similarly, the standard deviation of the tension error was 14.64 N with a maximum

error of 40.9 N for Configuration 2 where the measured tension varied between 119 N

and 285 N. The standard deviation of the tension error was 14.6 N with a maximum
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error of 56.7 N for Configuration 3 where the measured tension varied between 204

and 367 N.

Figure 22: Comparison between experimental and simulated cable tension for sta-
tionary pulley experiment.

These results indicate a good agreement of the model implementation to the phys-

ical results over the given time period. A potential source of error in these results is

the assumed elastic modulus of the cable. Additionally, the cable damping coefficient

can be tuned to match the decay rate of the experimental motion and reduce the

error in the simulation.

A contribution the this thesis is the validation of the model for a system undergoing

large variations in the wrap angle of the cable around the pulley. It was demonstrated

that the model can accurately reproduce the behavior of the system while the wrap

angle varied by as much as 110 degrees from peak to peak. The next section examines

the validation of the cable tension for a system with sheave motion.
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4.2 Cable-Pulley System with Pulley Motion

A second experiment was performed with a moving pulley in order to further validate

the simulated tension. Figure 23 illustrates the system consisting of a pulley attached

to a cantilevered arm and supporting a fibre rope with a load attached to one end,

while the other end of the cable is fixed to the cantilevered arm. An electric linear

actuator was used to rotate the arm about a hinge. The cable tension was measured

with a load cell and the actuator extension was recorded using an encoder to determine

the positions of the pulley and the attachment point of the cable to the arm.

Figure 23: Illustration of cable-pulley system with moving pulley. A linear actuator
is used to rotate the cantilever about the pin joint.

Table 2 lists the experimental parameters. The position of the centroid of the

pulley relative to the pin joint when the arm is horizontal was [0.887, -0.0075] m. The

position of the attachment point of the cable to the cantilever was [0.188, -0.0325]

m. The length of the cable measured from the attachment point was 132 cm.

A PD controller was used to extend and retract the actuator based on a sinusoidal

set-point with a frequency of 1 Hz. Figure 24 shows the angle of rotation θ of the

cantilever as shown on Figure 23 for 10 seconds of motion. The experimental tension
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Table 2: Model parameters for cable-pulley experiment with moving pulley.

Pulley radius, R 3.18 cm

Rope diameter, d 0.884 cm

Rope linear density 0.59 g/cm

Rope modulus of elasticity, E 2.0 GPa

Rope second moment of area, I 4.0× 10−14 m4

External load mass, mL 4.749 kg

External load length, LP,I 8.55 cm

External load length, LP,G 6.85 cm

data was filtered using an FIR filter with a pass-band edge frequency of 3 Hz.

Figure 24: Rotation of cantilevered arm as function of time.

As the rope used was identical to the experiment in Section 4.1, the same cable

properties were used. Following the convergence study in Section 4.1, the ratio be-

tween the element length and the pulley radius was 0.95. To determine an appropriate

number of elements to be used in the simulation for this experiment, the ratio was

kept the same and forty-four elements were used.

The simulation was performed for 10 seconds of motion. Figure 25 compares the

simulated and measured tension as a function of time. The standard deviation of the

error between the simulated and experimental tension was 1.79 N with a maximum
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error of 6.40 N as the tension varied from 36.9 N to 51.5 N over the given time

frame. While the peak tension is significantly under-predicted by the simulation, the

minimum tension value predicted by the simulation shows good agreement with the

experimental measurements.

Figure 25: Comparison of measured and simulated cable tension for moving pulley
experiment.

These results indicate that the simulation can reproduce the cable tension for

systems with a moving pulley with reasonable accuracy. The simulation demonstrated

good accuracy when the cable tension was at a minimum. Since detachment of

a cable from a sheave is most likely to occur during low tension conditions, the

ability of the model to accurately predict the minimum tension is advantageous when

examining cable detachment behavior. Possible future work could focus on increasing

the accuracy of the simulation for predicting peak cable tensions during periodic
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motions and snap loading. In the next section, the model is validated using previously

recorded measurements of towed body motion in a flume tank.

4.3 Flume Tank Experiment

Calnan [2] performed an experiment to quantify the efficacy of the AHC algorithms.

The experiments were performed in a recirculating flume tank. The system consisted

of a thin nylon monofilament cable connected to a small winch. A spherical towbody

was attached to the end of the cable. A 3 degree-of-freedom mechanism was used to

translate the winch to simulate ship motion. Video recordings of the towbody motion

were taken using two cameras, one perpendicular to the flow and one facing in the

direction of the flow and submerged in the flume tank. The two videos were used

to produce a three dimensional trace of the towbody motion. In the current study,

Calnan’s recorded towbody motion was used to validate the ANCF cable model.

Figure 26 shows a schematic of the system consisting of a winch, cable and a

spherical towbody. The system did not include a sheave. The waterline is located 46

cm below the top of the sheave in its nominal position. Table 3 lists the parameters

of the flume scale experiment. Note that the cable length is measured from the top

of the sheave. For the current study, the origin of the inertial frame is located at the

top of the winch when in its nominal position.

Calnan utilized ship motion data digitized from an Australian Defence Science

and Technology Organisation (DSTO) report [65]. The data was used to determine

the 3 degree-of-freedom translational motion of a winch located at the ship’s stern

and was then scaled to fit within the flume tank environment. Figure 27 shows the

displacement of the winch along each axis as a function of time. In the current study,

the MATLAB function spapi was used to produce a third-order piece-wise polynomial

fit of the winch motion data. As the ODE solver ode15s uses a variable time step, the
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Figure 26: Flume tank system. The origin of the inertial frame is located at the
top of winch in its nominal position. The y-axis is directed out of the page.

piece-wise polynomial allows the position and velocity of the winch to be evaluated

at any time t during the numerical integration.

Additionally, Calnan measured the flow velocity at several depths below the sur-

face of the water in the flume tank. A empirical linear relationship between the mean

flow velocity Vf and depth was found to be

Vf = −0.5873(z − zWL)− 0.3302 (140)

where z is the vertical position in the inertial frame and ZWL is the position of

the waterline. The standard deviations of the flow along the x, y and z axes were

found to be 0.0300 m/s, 0.0262 m/s, and 0.0152 m/s, respectively. Calnan applied a

Chebyshev II low-pass filter with 80dB attenuation to a white noise signal in order to

approximate the frequency spectrum of the measured velocity and scaled the filtered

signal to match the measured variances in each axis. Following Calnan’s work, a

Chebyshev II filter was used in the current study to generate a time series of the flow

velocity at a frequency of 100 Hz prior to the simulation. As with the sheave motion,
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Figure 27: Winch displacement as a function of time from Calnan’s flume tank
experiment [2].

a piece-wise polynomial was fit to the data using the spapi function such that the

flow velocity can be evaluated at any frequency required by the ODE solver.

In his flume-scale study, Calnan used a state-space model of a DC motor with

position control to convert the PD controller output to a rotational acceleration. The
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Parameter Value

Cable diameter 0.45 mm

Linear cable density 0.2 g/m

Nominal cable length 1.01 m

Sphere diameter 10 mm

Sphere mass 1.33 g

Water density 1026 kg/m3

Water viscosity 1.2×10−3 Pa·s
Winch radius 17.35 mm

Table 3: Flume scale system parameters.

PD gains were tuned based to obtain a 90% rise time of 0.2 s in response to a step

input of 0.5764 rad. The length of cable reeled in or out by the winch tracked the AHC

set point to within 1 mm for the majority of the motion. In the current study, the

system was simplified such that the angular acceleration is given directly by the PD

output of Equation 136. The proportional and derivative gains k1 and k2 were tuned

manually to obtain tracking errors within approximately 1mm and a 90% rise time of

0.2s, following Calnan’s experimental results. The proportional and derivative gains

were selected to be 200 and 20, respectively. The standard deviation of the tracking

error in the simulation was 0.42 mm. Figure 28 shows the error between the amount

of cable reeled out and the simplified sheave set point.

The added mass coefficients of the cable and the towed sphere Cm and Cm,b were

selected based on theoretical values of 1 and 0.5 [66], respectively, which are consistent

with the values used by Calnan [2]. The following additional parameters were identi-

fied using the ANCF cable model: cable bending stiffness EI, damping coefficient c

and drag amplification factor G. The estimation of these parameters is described in

the following section. Additionally, a convergence study was performed to ensure the

accuracy of the simulations.
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Figure 28: Error between winch reel distance and simplified sheave setpoint.

4.3.1 Parameter Estimation

The cable used in the flume tank tests was nylon fishing line [2]. Calnan assumed an

elastic modulus E of 3 GPa. Reported values of the elastic modulus for Nylon 6-6, a

material commonly used in fishing lines, range from 0.7 to 5 GPa [67]. As the elastic

modulus E and the bending stiffness EI are proportional, error in the value of E can

result in an unrealistic curvature at the winch transition. It is therefore necessary to

estimate the bending stiffness empirically.

A test was conducted to approximate the elastic modulus by clamping one end of a

small length of cable horizontally with a mass attached at the free end. A photograph,

Figure 29 was taken of the cable profile in front of a grid of known spacing. Twenty-

five points were selected graphically on the photograph and converted from pixel

coordinates to spatial coordinates based on the grid spacing. The points could then

be compared to the simulated cable profile. Figure 29 shows the photograph of the

clamped cable with the selected points overlaid as red circles. The shadow visible in

the figure was neglect in post-processing.

For each point on the photograph, the position in each axis is projected onto the

cable profile. Figure 30 shows the cable profile as a blue line and the data point as
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Figure 29: Photograph of clamped cable with selected points as red circles.

an open circle with a position pk in spatial coordinates, where k is the index of the

point. The horizontal and vertical distances x̄ and z̄ between the data point and the

cable profile were then estimated for each point.

An optimization was performed to determine the value of EI that minimizes the

function

ε(EI) =
25∑
k=1

(x̄2
k + z̄2

k). (141)

The cable had a length of 46.4 mm measured from the fixed point to the center

of the sphere. The minimization was performed using a golden section search over a

range of 2×10−6 to 6×10−6 Nm2. Conservatively, twenty cable elements were used to

determine the profile of the cable at equilibrium. The optimal value of EI was found

to be 2.82 × 10−6 Nm2 with a total error ε of 2.54×10−7 m2. The Young’s modulus
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Figure 30: Projection of data point from photograph onto cable profile

was then be estimated to be 1.40 GPa by dividing the bending stiffness EI by the

moment of inertia I for a solid cylinder of 2.01×10−15 m4. Figure 31 shows the final

simulated cable profile as an orange line and the points selected from the photograph

as blue circles.

Calnan identified an empirical damping ratio of the cable of 0.061 [2]. In order

to determine an appropriate damping coefficient c from Equation 55 for the current

study, a simplified model was introduced to approximate the relationship between

the intrinsic damping and the damping coefficient. The simplified system consists of

a vertical cable clamped at the top. The bottom of the cable is free and attached

to a lumped mass. The cable properties and mass properties were kept the same

as the parameters of the flume tank experiment listed in Table 3. The cable was

deflected a small amount and then released. The damping ratio ζ is determined from

the oscillating horizontal displacement using the equation

ζ =
1

2π
ln

(
x1

x2

)
(142)

where x1 and x2 are the displacements of successive peaks. The observed damping
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Figure 31: Simulated profile of clamped cable and points selected from photograph.

ratio was determined for a range of damping coefficients from 1 × 10−4 to 10× 10−4

Ns. The damping ratio ζ and damping coefficient c were found to have a linear

relationship over the range. The equation of the line of best fit was determined to

be ζ = 112.72c. Based on the damping ratio of 0.061 determined experimentally by

Calnan, the damping coefficient was selected to be 5.4×10−4 Ns.

The drag amplification due to vortex shedding is quantified in the model by the

amplification factor G from Equation 64. This parameter was tuned based on the

mean tow body position recorded in the flume tank experiments with no applied mo-

tion. The centroid of the experimental towbody motion was [−0.708,−0.008,−0.685]

m. The steady state position of the was obtained by running the simulation with no

noise or winch motion. The system was considered to have reached equilibrium when
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the maximum velocity of any point on the cable is less than 1× 10−4 m/s. The error

was taken as the Euclidean distance between the steady-state towbody position and

the centroid of the experimental data. The amplification factor was estimated using

a golden-section search method over a range from 1 to 2. The optimized value of the

amplification factor G was 1.737 with an error of 5.0 mm.

4.3.2 Cable Mesh

Since the elements in contact with the winch will have a much larger curvature than

the rest of the cable, it is desirable to use a variable mesh such that smaller ele-

ments are used for the contact region and larger elements are used elsewhere. A

variable mesh will minimize the number of elements required to obtain convergence

and thereby reduce the computational requirements of the simulation.

The cable is thus divided into two segments as shown in Figure 32. Segment 1

comprises all points on the cable that may come into contact with with winch surface

throughout the motion and segment 2 is remaining length of cable. A nominal winch

rotation φnom measured from the vertical axis is defined, such that when the winch is

in the nominal position the length of the cable measured from the top of the sheave

be equal to the nominal length Lnom of 1.01 m. The total cable length includes the

nominal length Lnom and the length of cable in contact with the winch:

Ltotal = Lnom + φnomrw (143)

where rw is the winch radius. The length of the segment 1 is defined based on the

maximum amount of cable to be reeled in. The nominal rotation angle was defined

as π/2 rad and the length of the first segment was defined as 3/4 of the winch

circumference or 81.8 mm. These values were selected based on the expected winch

rotations for the simplified sheave case, such the the pin joint will not pass the top

of the winch when fully reeled out and the second cable segment will not contact the
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winch when fully reeled in.

Figure 32: Cable segments and winch rotation.

Next, a convergence study was performed by successively increasing the number

of elements in the two sections. The mesh for segment 1 was refined first, keeping the

number of elements in segment 2 constant at 4 elements. Simulations were performed

using the simplified sheave algorithm and a length of 20 s with the number of elements

in the first segment ranging from 4 to 16. Figure 33 plots the sheave angle θ over time

for each mesh. The change in the sheave angle was found to be insignificant between

the 12 element and 16 element simulations with a maximum difference of 2.7×10−4

rad. Thus 12 elements was selected for the first segment.

The mesh for the second segment was then refined, keeping the number of elements

in the first segment constant at 12 elements. Again, 20s simulations were performed

with the number of elements ranging from 4 to 16. Figure 34 plots the vertical

position of the towed sphere. The change in the cable motion was again found to

be insignificant between the 12 element and 16 element simulations with a maximum

difference of 0.05 mm, thus 12 elements was selected for the second segment.
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Figure 33: Sheave angle over time with the number of elements n1 in the first
segment varied between 4 and 12. Computation times are shown in the legend.

Figure 34: Vertical position of towed sphere over time with the number of elements
n2 in the second segment varied between 4 and 12. Computation times are
shown in the legend.
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4.3.3 Test Cases and Results

For each simulation, an ellipsoid was fit to the trace of the towbody motion such that

it contained 95% of the data points. Calnan’s ellipsoid fitting algorithm was used to

fit the ellipsoid to the data. Figure 35 illustrates the principal axes of the ellipsoid

XE, YE and ZE. The ellipsoid fitting algorithm consists of centering the ellipsoid

coordinate frame at the centroid of the simulated data. A best fit line and best fit

plane are then fit to the data. The ellipsoid frame is rotated such that the XE axis

is aligned with the best fit line and the XE and YE axes are coplanar with the best

fit plane. The radii of the ellipsoid are scaled proportional to the variance along each

axis until 95% of the points are contained within the volume.

Figure 35: Ellipsoid principal axes and inertial coordinate frame.

The simulation was first performed without motion of the winch and the motion

of the towbody was determined. Figure 36 shows the simulated towbody motion as

a blue line viewed from the side of the flume tank. The experimental body motion

is plotted as an orange line and Calnan’s simulated towbody motion as a yellow line.

Table 4 gives the results of the ellipsoid fitting and the standard deviation of the

motion along each ellipsoid axis. The percent errors compared to the experimental
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results are given in parentheses. While Calnan’s simulation underpredicted the ellip-

soid volume by 58 percent, the current ANCF simulation overpredicted the volume

by a similar amount. The ANCF simulation better predicted the centroid of the tow-

body motion. The distance between the centroid of the experimental motion and the

simulation motion was 0.48 cm for the ANCF simulation and 1.59 cm for Calnan’s

simulation.

Figure 36: Motion of towed sphere with no winch motion.

Experimental Calnan’s Simulation ANCF Simulation

Ellipsoid Volume (cm3) 4.82 2.04 (-58%) 7.76 (61%)

XE Std. Dev. (cm) 1.19 1.43 (20%) 1.56 (31%)

YE Std. Dev. (cm) 0.78 0.43 (-45%) 1.23 (58%)

ZE Std. Dev. (cm) 0.13 0.05 (-62%) 0.07 (-49%)

Table 4: Results for no winch motion test case. Error relative to experimental values
in parentheses.
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Next, the simulation was first performed with winch motion but without heave

compensation. Figure 37 shows the experimental and simulation motion traces. Table

5 compares the ellipsoid fitting results for the simulated and experimental motion.

The ANCF simulation agreed closely with experimental ellipsoid volume with an error

of only 1.7 percent, a significant improvement over Calnan’s simulation which had an

error of -24 percent. Again, an improvement was seen in the location of centroid of

the towbody motion. The distance between the centroid of the experimental motion

and the simulation motion was 2.15 cm for the ANCF simulation and 3.25 cm for

Calnan’s simulation.

Figure 37: Motion of towed sphere for uncompensated case with winch motion.

Finally, the motion was simulated utilizing the rigorous sheave and simplified

sheave heave compensation algorithms described in Section 2.1. Figure 38 shows the

towed body motion for the rigorous sheave test case. Tables 6 and 7 give the ellipsoid
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Experimental Calnan’s Simulation ANCF Simulation

Ellipsoid Volume (cm3) 182.84 138.51 (-24%) 185.96 (1.7%)

XE Std. Dev. (cm) 2.73 2.20 (-20%) 2.14 (-21%)

YE Std. Dev. (cm) 1.36 1.41 (3.8%) 1.55 (14%)

ZE Std. Dev. (cm) 0.88 1.04 (19%) 0.97 (10%)

Table 5: Results for uncompensated case with winch motion. Error relative to
experimental values in parentheses.

fitting results for the simplified and rigorous sheave test cases, respectively. In both

cases the ellipsoid volume predicted by the ANCF simulation was smaller than the

experimental volume, but a significant improvement over Calnan’s simulation was

observed. For the simplified sheave case, the ellipsoid volume was 27% smaller for the

ANCF simulation and 51 percent smaller for Calnan’s simulation. For the rigorous

sheave case the volume was 22% smaller for the ANCF simulation and 56 percent

smaller for Calnan’s simulation. The standard deviation of the motion along the ZE

axis of the ellipsoid was significantly smaller in the simulation than in the experimental

results for both simulations.

The ANCF simulation and Calnan’s simulations showed similar errors in the cen-

troid of the motion in both cases. For the simplified sheave case, the distance between

the centroid of the experimental motion and the simulation motion was 1.88 cm for

the ANCF simulation and 2.14 cm for Calnan’s simulation. For the rigorous sheave

case, the distance between the centroid of the experimental motion and the simulation

motion was 2.62 cm for the ANCF simulation and 2.32 cm for Calnan’s simulation.

In general, the ANCF simulation performed significantly better at predicting the

ellipsoid volume than Calnan’s simulation. Also, the ANCF simulation demonstrated

less error in the location of the centroid of the motion for most test cases. The ANCF

performed best for the uncompensated case, with an error in the ellipsoid volume of

only 1.7 percent. The highest error was observed in the case with no motion, with an

error of 61 percent. One possible source of error in the simulations can be attributed
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Figure 38: Motion of towed sphere for rigorous sheave test case.

Experimental Calnan’s Simulation ANCF Simulation

Ellipsoid Volume (cm3) 36.55 18.00 (-51%) 26.68 (-27%)

XE Std. Dev. (cm) 2.58 2.07 (-20%) 2.82 (9%)

YE Std. Dev. (cm) 1.29 1.18 (-8.5%) 1.67 (30%)

ZE Std. Dev. (cm) 0.28 0.13 (-52.5%) 0.12 (-58%)

Table 6: Results for simplified sheave case. Error relative to experimental values in
parentheses.

Experimental Calnan’s Simulation ANCF Simulation

Ellipsoid Volume (cm3) 24.92 11.07 (-56%) 19.55 (-22%)

XE Std. Dev. (cm) 2.42 2.08 (-13.9%) 2.42 (0.3%)

YE Std. Dev. (cm) 1.15 1.14 (-1.2%) 1.48 (28%)

ZE Std. Dev. (cm) 0.28 0.06 (-78%) 0.10 (-66%)

Table 7: Results for rigorous sheave case. Error relative to experimental values in
parentheses.
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to the fact that the noise component of the flow velocity is the same at every point

in the tank at a given time. Only the mean component of the flow was varied as

a function of depth. In reality, the turbulence in the flow velocity is not uniform

throughout the tank. This source of error is likely to be most significant in the case

with no winch motion, as the motion of the towbody is governed only by the variation

in the flow.

In the next chapter, a case study of a full-scale sheave and winch system is de-

scribed.
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5 Full Scale Case Study

To demonstrate the capabilities of the techniques developed in this thesis for a full

scale system a case study was performed. The system consists of a towed body

connected to the vessel by a wire rope, as described in Chapter 1. Both winch and

sheave contact are included in the system, with the winch actuated to provide active

heave compensation. The parameters used in the simulation are based on a real towed

body system where the depth of the towed body, towing speed and the length of cable

are known. Table 8 lists the known system parameters.

Parameter Value

Cable Diameter 10 mm

Cable Mass per unit length 0.389 kg/m

Cable length (nominal) 450 m

Towbody net weight 445 N

Towbody mass 250 kg

Towbody depth (nominal) 108 m

Flow velocity [-2.2, 0, 0] m/s

Sheave radius 0.25 m

Sheave groove depth 10 mm [68]

Sheave throat angle 60◦ [68]

Winch radius 0.30 m

Faired cable section length 150 m

Sheave position relative to ship CG [-36.8, 0, 3.7] m

Winch position relative to ship CG [-28.8, 0, 3.1] m

Table 8: Full scale system parameters.

The motion of the ship was taken from the Australian DSTO report [65] consisting

of linear velocities in the inertial frame and roll, pitch and yaw attitudes over 118 s.

The linear rates were integrated using the trapezoidal method to obtain the position of

the ship’s center of gravity as a function of time. The linear positions and orientations

of the ship were fit with third order piece-wise splines using the MATLAB function
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spapi. Figures 39 and 40 show the time series of the ship translation and rotations,

respectively. The origin of the inertial coordinate frame is located at the waterline.

The center of gravity of the ship was assumed to be located at the midpoint of the

ship’s longitudinal axis and coincident with the origin in the nominal position.

Figure 39: Ship translational motion from DSTO report [65]
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Figure 40: Ship rotational motion from DSTO report [65]

5.1 Cable Properties

The cable consists of an insulated copper conductor surround by steel wire “armour.”

The bending stiffness of the copper conductor and insulation were assumed to be

negligible compared to the steel strands as the conductor wires are much smaller in

diameter than the steel strands. For determining the axial and bending stiffnesses,
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the cable is treated as a standard 1x37 construction as the wire diameter and number

of steel wires are similar to the armoured cable.

The equivalent elastic modulus of a wire rope with a 1x37 construction is approx-

imately 117 GPa and the metallic area for a 10 mm diameter cable is 5.8×10−5 m2

[68]. A minimum estimate of the bending stiffness can be calculated by neglecting

the friction between individual wires and assuming the total bending stiffness is the

sum of the bending stiffnesses of the individual wires [69]. Using the average wire

diameter dw, the bending stiffness is

EI = E
∑ πdw

4

64
. (144)

From the metallic area, the average wire diameter with 37 wires is 1.4 mm. As-

suming an elastic modulus of the steel wire of 200 Gpa, the bending stiffness is 1.40

Nm2.

Damping ratios for wire ropes can range from less than 0.1% when under tension

[70] to 37% for slack cables [71]. A damping ratio of 1% was assumed for this analysis

in which the tension is substantial during towing operations. The damping coeffi-

cient c was estimated using the same process described in Section 4.3.1 for the flume

scale experiment. The relationship between the damping ratio ξ and the damping

coefficient was found to be ξ = 3.05 × 10−5c + 5.5 × 10−4. The damping coefficient

corresponding to a damping ratio of 0.01 is thus 3.1× 102 Ns.

5.2 Hydrodynamic Loading

The length of the cable is 450m. The final 150m of the cable has “ribbon fairing”

attached, which are flexible ribbons that serve to suppress vortex-induced vibration

of the cable. Empirical loading functions fn and ft specific to cables with ribbon

fairing were used for the faired section and are given by
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fn = 0.498609− 0.2499 cos(η) + 0.2527 sin(η)− 0.2487 cos(2η) (145a)

fn = −0.2255 + 0.3417 cos(η) + 0.255 sin(η)− 0.0811 sin(2η) (145b)

where η is the angle of attack between the cable and the flow [72]. For the bare cable

section, the loading functions given in Equation 60 were used.

The towed body consists of a cylindrical shell with a hydrofoil attached which

produces a downwards force. The cylindrical shell and hydrofoil are treated indepen-

dently for the purposes of determining the drag force coefficient and interference drag

between the bodies is neglected. It is also assumed that the orientation of the body

is constant throughout the motion and the axis of the cylindrical shell is align with

the flow along the x-axis of the inertial coordinate frame.

The cylindrical shell has a diameter of 300 mm and a length of 3 m. For axial flow

along the horizontal x-axis the drag coefficient for a blunt cylinder is 0.85 [73]. For

flow normal to the cylinder, along the y and z-axes, the drag coefficient is 1 [74]. For

the hydrofoil, a NACA2412 cross-section with an area of 0.5 m2 and angle-of-attack

of -6◦ is assumed. For flow along the vertical z-axis, the hydrofoil is treated as a flat

plate with a drag coefficient of 1.17 [73]. For flow along the x-axis, the drag coefficient

of the wing is 0.008 [74]. The drag on the hydrofoil is assumed to be negligible for flow

along the y-axis. The lift acting on the hydrofoil is calculated using a lift coefficient

of -0.6 [74], giving a lift force of -722 N at steady state.

The cable is towed at a speed of approximately 4.3 knots (2.2 m/s) with 450

m of cable reeled out and the observed depth is 108 m, representing a severe and

undesirable drag condition. An initial simulation was performed where the system

was allowed to reach steady state and the depth of the towed body was determined.

Using the drag parameters outlined above the depth of the towed body was 213.7

m. A drag amplification factor G was applied to the cable as shown in Equation 64
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such that the simulated towbody depth matched the known depth of 108 m. The

simulation was performed with the cable pinned at the top of the winch and with

twenty cable elements. The amplification factor was tuned manually and a value of

3.54 was determined to achieve a depth of 108 m. This result indicates a significant

level of uncertainty in the cable drag. Some of the uncertainty can be attributed to

strumming of the bare cable section due to vortex induced vibration (VIV). Cable

VIV has been shown to increase the mean cable drag by as much as 130 percent [75].

Figure 41 shows the profile of the cable without amplification of the drag force as a

dotted line and the profile with amplification as a solid line. With drag amplification,

the nominal angle of the cable measured from vertical as it leaves the sheave is 74.0◦.

This nominal angle is used to evaluate the simplified sheave setpoint described in

Section 2.1.

Figure 41: Cable profile with and without drag amplification

5.3 Initialization

Figure 42 shows the sheave and winch in the body fixed frame with the cable as a

solid blue line. Four points are defined as shown on Figure 42: point 0 is the point

of tangency for the cable at the nominal sheave angle θnom, points 1 and 2 are the
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tangency points of the outer tangent between the sheave and the winch, and point

3 is the point corresponding to the end of the cable in the nominal position with a

wrap angle φnom.

In order to initialize the model, an initial set of generalized coordinates were

generated for a straight cable tangent to the sheave surface at point 0. A path was

then created originating at point 0 and consisting of 3 stages: moving along the

surface of the sheave to point 1, moving linearly to point 2, and moving along the

surface of the winch to point 3. A velocity profile starting and ending at rest is created

with an integral area equal to the total length of the path. The velocity profile is

then integrated and mapped onto the path to give a position vector as a function of

time. Using a spherical kinematic constraint, the end of the cable is constrained to

move along the path until reaching the nominal position at point 3. The system is

then allowed to reach steady state and the final vector of generalized coordinates is

then stored, to be used during the final simulation.

Figure 42: Sheave and winch in the ship’s body fixed frame
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5.4 Cable Mesh

The cable was divided into five segments. Figure 43 shows the cable segments and the

number of elements used for each segment. Segments 1 and 3 consist of the points

on the cable that may come into contact with the winch and sheave, respectively,

throughout the motion. Segment 2 connects segments 1 and 3. Segment 4 and 5

comprise the remaining length of cable where segment 5 is the faired length of cable

and segment 4 is un-faired.

Based on the winch rotations generated by the simplified sheave algorithm, the

lengths of segments 1 and 3 were selected to be 2.5m each and the nominal winch

angle φnom was selected to be 3.8 radians. The length of segment 2 is the distance

between points 1 and 2 minus the length of segment 1, which was calculated to be

5.02 m. The lengths of segments 4 and 5 are 300 m and 150 m, respectively.

Figure 43: Cable segments and number of elements used (not to scale).

Due to the computational expense of initializing and simulating the system, a

simplified mesh convergence study was performed. Using only segments 4 and 5, with

the end of segment 4 pinned at the top of the winch, the simulation was performed and

20 seconds of the motion was recorded. First, the number of elements in segment 5 was
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varied from four to eight, with the elements in segment 4 held constant at four. Figure

44 shows the vertical motion of the towbody as a function of time. The computation

time for each simulation is shown in the legend. Increasing the number of elements

had no significant effect on the towbody motion, but resulted in a 5.3% increase in

the computation time. Six elements were used for all subsequent simulations. Next,

the elements in segment 4 were varied from four to ten elements. Figure 45 shows

the vertical motion of the towbody as a function of time. No significant change in

the motion of the towbody was observed beyond eight elements, thus eight elements

were used in the subsequent simulations.

Figure 44: Vertical motion of towbody with number of elements in segment 5 varied.
Computation times are shown in the legend.

For segment 3, the effect of the element size on the contact force distribution

was considered. Figure 46 shows the contact force distribution as a function of the

wrap angle measured from the vertical axis. The number of elements was varied from

twenty to fifty. The distribution converges at approximately forty elements.

Since the contact forces between the cable and the winch are not specifically of
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Figure 45: Vertical motion of towbody with number of elements in segment 4 varied.
Computation times are shown in the legend.

Figure 46: Contact force distribution as a function of angle with number of elements
in segment 3 varied.

interest, the number of elements in segment 1 was set to 10. Additionally, segment 2

was not expected to undergo significant bending deformations and is mainly loaded

in tension only, thus only five elements were used.

The convergence study demonstrated in this section uses a simplified mesh to

assess the convergence in the towbody motion for Segments 4 and 5. The convergence
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in Segment 3 was assessed by examining only the contact distribution at equilibrium.

Since Segments 1 and 2 were not expected to significantly influence the dynamics, the

spatial convergence of those segments was not examined. The above procedure was

selected in order to limit the total computation time required and make the analysis

feasible on readily available hardware. If a significant amount of computational power

is available, such as using a computer cluster, a more comprehensive convergence

convergence analysis could be performed. For instance, the motion of the full system

could be simulated while varying the number of elements in each of the five cable

segments. The mesh could then be refined until the change in a particular variable

of interest (e.g. the contact force between the cable and the sheave) is smaller than

a desired tolerance.

5.5 Simulations and Results

Three test cases with different set point algorithms were considered in this analysis:

no heave compensation, the simplified sheave algorithm, and the rigorous sheave

algorithm. Table 9 lists the simulation parameters used.

Parameter Value

Nominal sheave angle, θnom 74.0 deg

Winch proportional gain, k1 250

Winch derivative gain, k2 50

Contact stiffness, kN 1× 106 N/m

Integration points per element, NI 10

Constraint stabilization coefficients, a1 = a2 10

Table 9: Full scale simulation parameters.

Figure 47 shows the simulated towbody motion in the XZ plane for the uncom-

pensated case as a dotted blue line and for the simplified sheave test case as a solid

orange line. No significant difference was observed between the simplified sheave and
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rigorous sheave cases since the variation in the sheave angle was small. Thus, only

the results for the simplified sheave case are depicted. When considering all axes, the

three-dimensional ellipsoid volume containing 95% of the data points was 0.197 m3 for

the uncompensated case, 0.021 m3 for the simplified sheave case and 0.020 m3 for the

rigorous sheave case. The reduction in ellipsoid volume from the uncompensated case

was 89.3 percent for the simplified sheave algorithm and 89.8 percent for the rigorous

sheave algorithm. The reduction in the ellipsoid volume is comparable to the values

found in the small scale simulations. The reductions in volume are nearly identical for

the simplified and rigorous sheave algorithms, supporting Calnan’s conclusion that

real-time measurement of the sheave angle is not required for most applications [2].

Figure 47: Towbody motion for uncompensated and simplified sheave test cases.

Figure 48 compares the cable tension at the sheave as a function of time for the

uncompensated and simplified sheave test cases. The average cable tension was 3.71
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kN in both cases. The inclusion of motion compensation has a significant effect on

the simulated cable tension, reducing the standard deviation of the tension from 262.8

N in the uncompensated case to 23.5 N in the simplified sheave case. The tension

ranged from 3.07 kN to 4.70 kN in the uncompensated case and from 3.50 kN to

2.83 kN with compensation. Without compensation, the drag acting on the cable

and towbody induces a large variation in the cable tension as the ship moves. With

compensation, the winch rotation reduces the variation by reeling cable out when the

tension is increasing and reeling cable in when the tension is decreasing.

Figure 49 compares the total contact force between the cable and the sheave as a

function of time for the uncompensated and simplified sheave test cases. Both cases

demonstrate similar variations in the contact force with the force ranging from 1.24

kN to 2.03 kN in the uncompensated case and 1.28 kN to 2.08 kN in the compensated

case. The standard deviation of the contact force is 140 N in the uncompensated case

and 105 N in the compensated case.

Figure 48: Cable tension at the sheave for uncompensated and simplified sheave
test cases.

An additional case study was performed examining the effect of vortex-induced
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Figure 49: Total contact force between the cable and sheave for uncompensated and
simplified sheave test cases.

vibration due to wind loading on a ship-board cable-sheave system. The study was

published in a paper entitled “Vortex-Induced Vibrations of a Low-tension Cable-

Sheave System Modeled using Nonlinear Finite Elements” by C. Westin and R.A Irani

in the Proceedings of The Canadian Society for Mechanical Engineering International

Congress 2018. Wind loading was found to have an insignificant effect on the cable

dynamics. The complete study is given in Appendix A.

5.6 Summary

In this section, the full scale simulation of a towed cable system was demonstrated.

The initialization of the model and the mesh convergence were outlined. Simulations

were performed for three test cases consisting of no heave compensation, compensation

using the simplified sheave algorithm and compensation using the rigorous sheave

algorithm. The simulation demonstrated similar reductions in towbody motion as

observed in the flume scale study in Section 4.3. Finally, the ability of the model

to predict variations in cable tension and the contact force between the cable and
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the winch was demonstrated. In future work, the variations in the cable tension

and contact forces predicted by the model can be used to examine cable detachment

behavior during more severe towing conditions. The simulation could also be validated

using experimental measurements of a full-scale system.
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6 Conclusions

The key objectives of this thesis were:

1. To develop a three-dimensional finite element model of a flexible cable with

winch and sheave surface interactions to simulate the cable dynamics of a towed-

body system with active heave compensation.

2. To assess the performance of the model by comparing the simulated cable be-

havior with experimental measurements of small scale systems.

3. To demonstrate the capability of the simulation to exhibit dynamic contact

behavior for a full scale system.

6.1 Objective One

In Chapter 3, the formulation of the cable model was described. The nonlinear ab-

solute nodal coordinate formulation was used to model the cable dynamics. Existing

formulations for the internal elastic forces, hydrodynamic loading and kinematic con-

straints were implemented. Also, an internal damping force model was developed

using the Rayleigh dissipation function. The main contributions of this thesis related

to the first objective are the inclusion of winch and sheave contact in a towed-cable

model and the development of a three-dimensional description of contact forces be-

tween the cable and the sheave and winch surfaces described in Section 3.4. The

model incorporates the three-dimensional geometry of the sheave, in order to accu-

rately represent the contact forces as the ship undergoes motion along six degrees

of freedom. A nonlinear contact penalty method was used to formulate the contact

forces.
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6.2 Objective Two

In Sections 4.1 and 4.2, the results of two experiments were presented and used to

assess the accuracy of the simulation. In the first experiment, a cable-pulley system

with a swinging load was used to verify the accuracy of the predicted cable tension and

wrap angle of the cable around the pulley. In the second experiment, a system with a

moving pulley simulating ship motion was used and the experimental and simulated

cable tension were compared. The simulation demonstrated good agreement with

the experimental wrap angle and tension measurements in the first experiment. The

simulation demonstrated a significant level of error in predicting peak cable tension

with a moving pulley, but the minimum tensions were predicted with good accuracy.

In Section 4.3, existing experimental data of a small-scale towed body system with

active heave compensation was used to further validate the model. The simulation

demonstrated good agreement with the experimental towbody motion, predicting the

volume of the enclosing ellipsoid volume to withing 2% for the un-compensated test

case and within 27% for the cases with motion compensation. The contribution of the

thesis related to this objective is the validation of the cable model for systems where

the contact wrap angle between the cable and the pulley undergoes large variations

throughout the dynamic motion. Peak-to-peak variations in the wrap angle up to 110

degrees were examined in Section 4.1.

6.3 Objective Three

In Chapter 5, the results of a case study of a full scale system were shown. The

simulation was performed with and without heave compensation. The simulation

demonstrated similar reductions in tow body motion using the active heave compen-

sation algorithms as observed in the small scale experiments. The simulation was

used to examine the variations in cable tension and contact between the cable and

the winch during the motion of the ship. With compensation, the standard deviation
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in the tension was significantly reduced compared to the uncompensated case. The

contribution of the thesis related to this objective is the method outlined to examine

the cable tension and contact forces during towing operations. The method can be

employed in future studies to examine detachment of the cable from the sheave during

severe operating conditions.

6.4 Future Work

The following are suggestions for potential avenues of future work based on the work

shown in this thesis:

1. Experimental quantification of the cable bending stiffness and elastic modulus

can be used to improve the accuracy of the simulation.

2. Experimental measurements could be used to develop more accurate models

for the hydrodynamic coefficients and loading functions for a given system and

operating conditions.

3. A more accurate formulation of the internal elastic forces which captures com-

plex behaviors of wire rope, such as shear deformation and nonlinear elasticity,

could be implemented and compared to the current formulation.

4. In the current work the model is implemented in MATLAB using the built-

in ODE solver ode15s. The numerical implementation of the model could be

further developed by deriving the analytical Jacobian of the system and using

alternative ODE solvers which can provide greater performance and numerical

stability.

5. Full scale experiments could be performed to further validate the simulation.

6. A sensitivity analysis can be performed to assess the sensitivity of the model to

various system parameters. The analysis can be used to identify which parame-
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ters most significantly affect the simulation output. Further work can then also

focus on the accurate determination of those parameters.

6.5 List of Publications

The following papers were published based on the work shown in this thesis:

1. Westin C., Irani R. A. (2018) “Vortex-Induced Vibrations of a Low-tension

Cable-Sheave System Modeled using Nonlinear Finite Elements,” in Proceedings

of The Canadian Society for Mechanical Engineering International Congress

2018, Toronto, Canada, May 27-30, 2018.

2. Westin C., Irani R. A. (2017) “Cable-Pulley Interaction with Dynamic Wrap

Angle Using the Absolute Nodal Coordinate Formulation,” in Proceedings of

the 4th International Conference of Control, Dynamic Systems, And Robotics,

Toronto, Canada, August 21-23rd, 2017.
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[62] M. Hajžman and P. Polach, “Application of stabilization techniques in the dy-

namic analysis of multibody systems,” Applied and Computational Mechanics,

vol. 1, no. 2, pp. 479–488, 2007.

120



[63] C. Westin and R. A. Irani, “Cable-pulley interaction with dynamic wrap angle

using the absolute nodal coordinate formulation,” in Proceedings of the 4th

International Conference on Control, Dynamic Systems, and Robotics, Toronto,

Canada, 2017.

[64] M. Jenkins and N. Mills, Plastics: Microstructure and Engineering Applications.

Elsevier, 2005, p. 442.

[65] A. M. Arney, “FFG-7 ship motion and airwake trial. part II. removal of ship

motion effects from measured airwake data.,” Defence Science and Technology

Organization, Melbourne, Australia, Tech. Rep., 1994.

[66] R. D. Blevins, Formulas for Dynamics, Acoustics and Vibration. John Wiley &

Sons, 2015.

[67] MatWeb, Overview of materials for nylon 66, unreinforced, [Online] Avail-

able: http : / / www . matweb . com / search / datasheet . aspx ? matguid =

a2e79a3451984d58a8a442c37a226107, 2018.

[68] “U.S. Navy wire-rope handbook volume 1,” Naval Sea Systems Command, Tech.

Rep. ADA955305, 1976.

[69] K. Spak, G. Agnes, and D. Inman, “Cable parameters for homogenous cable-

beam models for space structures,” in Dynamics of Civil Structures, vol. 4,

Springer, 2014, pp. 7–18.

[70] N. Barbieri, O. H. de Souza Junior, and R. Barbieri, “Dynamical analysis of

transmission line cables. part 1 – linear theory,” Mechanical Systems and Signal

Processing, vol. 18, no. 3, pp. 659–669, 2004.

[71] Z. Zhu and S. Meguid, “Nonlinear fe-based investigation of flexural damping of

slacking wire cables,” International Journal of Solids and Structures, vol. 44,

no. 16, pp. 5122–5132, 2007.

121



[72] R. Folb and J. Nelligan, “Investigation of the hydrodynamic loading on ribbon

towcable,” Applied Research of Cambridge Ltd, Tech. Rep., 1982.

[73] S. F. Hoerner, Fluid-Dynamic Drag: Theoretical, Experimental and Statistical

information. Hoerner Fluid Dynamics, 1965.

[74] J. D. Anderson Jr, Fundamentals of Aerodynamics. Tata McGraw-Hill Educa-

tion, 2010.

[75] R. Skop, O. Griffin, and S. Ramberg, “Seacon II strumming predictions.,” Naval

Research Laboratory, Washington, DC, Tech. Rep., 1976.

[76] R. Gabbai and H. Benaroya, “An overview of modeling and experiments of

vortex-induced vibration of circular cylinders,” Journal of Sound and Vibration,

vol. 282, no. 3, pp. 575–616, 2005.

[77] X. Bai and W. Qin, “Using vortex strength wake oscillator in modelling of vortex

induced vibrations in two degrees of freedom,” European Journal of Mechanics-

B/Fluids, vol. 48, pp. 165–173, 2014.

[78] M. Ciftci, “Flexible multibody analysis using absolute nodal coordinate for-

mulation,” Master’s thesis, Middle East Technical University, Ankara, Turkey,

2014.
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A Analysis of Vortex-Induced Vibrations

The following work was published in Proceedings of The Canadian Society for Me-

chanical Engineering International Congress 2018 as “Vortex-Induced Vibrations of a

Low-tension Cable-Sheave System Modeled using Nonlinear Finite Elements,” by C.

Westin and R.A. Irani.

A.1 Introduction

Cable-sheave systems are commonly used in marine applications for towing and lifting.

The cable is subjected to highly dynamic loading due to the ship motion, hydrody-

namic forces and wind loading which can result in the cable falling off the sheave.

Cables exposed to external fluid flow experience vortex induced vibrations (VIV) re-

sulting from the periodic shedding of vortices in the cables wake. The vortex shedding

produces oscillating lifting and drag forces on the cable, which can excite a resonance

response in the cable if the shedding frequency matches the fundamental frequency

of the cable. Excessive cable vibrations can result in wear of both the cable and

the sheave and possible detachment of the cable from a sheave. It is thus useful to

quantify the vibration amplitudes due to wind loading using a dynamic model and

assess the potential for vortex shedding to lead to cable detachment.

Gabbai and Benaraoya [76] give an overview of the various modeling approaches

used to predict the response of cylinders to the vortex shedding forces. One mod-

elling approach known as a wake-oscillator model utilizes a second order differential

equation, such as the Van der Pol equation, to represent the flow in the wake. The

oscillator is coupled with the structural dynamics of the cable using forcing terms in

both equations. This modelling approach does not require numerical modeling of the

flow field and can be easily incorporated into existing dynamic cable models. Exiting

studies of cable vibrations using wake oscillator models typically utilize continuous
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equations to represent the cable structural dynamics. The coupling of wake-oscillator

models to finite element cable models has not been extensively studied. Additionally,

the researchers have not found any studies incorporating both VIV and cable-sheave

interactions.

This paper presents the construction of a finite element model using the absolute

nodal coordinate formulation (ANCF). The model has been developed to include three

dimension contact with the sheave grooves. Additionally, oscillating lift and drag

forces using an existing wake-oscillator model [77] have been incorporated. Cases of

low cable tension are considered as cable detachment is more likely to occur when the

cable is slack. Section A.2 of the paper describes the cable model and the formulation

of the external forces. Case studies examining the potential for VIV to lead to cable

detachment are presented in Section A.3. The paper ends with concluding remarks

in Section A.4.

A.2 Finite Element and External Load Model

The finite element model is comprised of N two node cable elements. Each node

has 6 degrees of freedom consisting of a position vector and a vector tangent to

the cable centerline. All degrees of freedom are defined in the absolute coordinate

frame. An additional parameter p ∈ [0, l] is used to interpolate between nodes. The

absolute coordinates r of a point on the cable is defined using a vector of generalized

coordinate q and a cubic shape function S(p) which interpolates between the nodes

of each element:

r(p) = S(p)q = [x y z]T . (A1)

For a fully parameterized ANCF beam element of unstretched length l, the gen-

eralized coordinates consist of the Cartesian coordinates r and the parametric slopes
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∂r/∂p at each node:

q =

[
r1

T (∂r/∂p)1
T r2

T (∂r/∂p)2
T

]T
(A2)

where subscripts 1 and 2 represent the respective nodes of the element or parameter

values of p = 0 and p = l, respectively. The shape function representing a cubic spline

is

S(p) =



(1− 3(p/l)2 + 2(p/l)3) I

((p/l)− 2(p/l)2 + (p/l)3) I

(3(p/l)2 − 2(p/l)3) I

((p/l)2 − (p/l)3) I



T

(A3)

where I is a 3x3 identity matrix.

The standard form of the Newton-Euler equations are given for a single element

as

Mq̈ + Kq + Cq̇−Q = 0, (A4)

where M is the mass matrix, K is the elastic stiffness matrix, C is the damping

matrix, Q is an external force vector, and q is the vector of generalized coordinates

defined in Equation A2. The equations of motion for the full system are formulated

from Equation A4 using the embedding technique described in [60]. The Newton-

Euler equations are solved using a numerical ODE integrator to determine the cable

motion over time. The matrices M, K and C and force vector Q will be defined in

the following sections.
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Mass Matrix

Using a variational mass lumping approach the mass matrix is derived directly from

the element kinetic energy [23] and is given by

M =
∂2ET

∂q̇∂q̇
=

∫ l

0

ρAS(p)TS(p)dp (A5)

where ET is the kinetic energy of the element, ρ is the cable density and A is the

cable cross-sectional area.

Stiffness

Similarly, the stiffness matrix is derived from the strain energy ES of the element

given by [29]:

ES =
1

2

∫ l

0

[
EAε2l (p) + EIκ2(p)

]
dp (A6)

where E is the Young’s modulus of the cable material, A is the cross-sectional area,

I is the second moment of area, εl is the longitudinal strain, and κ is the curvature of

the element. The internal stiffness force is then given by the derivative of the strain

energy with respect to the coordinate vector q. The force vector can by separated

into longitudinal and transverse components, Ql and Qt. In order to simplify the

computation of these forces it is assumed that the longitudinal strain εl is small and

also constant throughout the element. The forces can then be derived as shown by

Berzeri et al. [29]:

Ql =

[
EAεl

∫ l

0

S′
T
S′dp

]
q (A7)

where S′ is the derivative of S with respect to the parameter p. The longitudinal

strain is determined from the arc length s of the element [63]:
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εl(q) =
s(q)− l

l
(A8)

where s is the arc length and l is the unstretched element length. The arc length

is defined by integrating the norm of ∂r/∂p with respect to p over the length of the

element [78]. The arc length s is approximated using a numerical quadrature

s(q) =

NI∑
i=1

wi

√
r′(pi)T r′(pi)

l

NI

(A9)

where i denotes the integration point, NI is the total number of integration points,

wi is the quadrature weight. The trapezoidal rule is used with quadrature weights

defined

wi =


0.5, i = 1, NI

1, i = 2, 3, . . . , NI − 1

(A10)

The transverse stiffness force Qt is defined [29]

Qt =

[∫ l

0

EIS′′
T
S′′dp

]
q (A11)

where I is the second moment of area. The general stiffness matrix K from Equation

A4 is then given by

K =

∫ l

0

EIS′′
T
S′′dp+ εl(q)EA

∫ l

0

S′
T
S′dp. (A12)

Damping

The damping matrix C from Equation A4 serves both to include energy dissipation

and attenuate high frequency vibrational modes. The cable model uses the Rayleigh-

damping approach [79], wherein the damping matrix is defined as a linear combination

128



of the mass and stiffness matrices:

C = αM + βK (A13)

where α and β are scalar damping coefficients. The mass-proportional damping term

represents external viscous damping while the stiffness-proportional damping term

represents internal frictional damping. Since the external fluid damping can be incor-

porated into the aerodynamic drag force, the mass-proportional term will be neglected

by setting α equal to zero.

Given a specified damping ratio ξ, the corresponding value of the remaining coef-

ficient β is given by [80]

β = 2ξ
1

ωn

(A14)

where ωn is the natural frequency of the cable.

Contact Force

In order to model the cable-sheave interaction, a contact penalty is used. The cable

is allowed to “penetrate” the sheave surface and the normal force os defined as a

function of the of the relative penetration δ. The normal force per unit length fN

acting at a single point on the element is defined using the Hunt-Crossley model [59],

which represents the surface as a non-linear spring-damper:

fN = kNδ
n(1 +Dδ̇)un (A15)

where un is the unit vector normal to the sheave surface at the point of contact, kN

is the contact stiffness, δ is the relative “penetration” of the node into the surface,

D is a damping coefficient and n is a positive constant with a value between 1 and

1.5 from the Hertz contact theory [43]. In the present analysis, a contact stiffness of
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1.5×107 N/m and a value of n of 1.5 is used based on the values used by Bulin et al

[9] and the researchers’ previous work [63].

The radius of curvature of the groove is assumed to be equal to the radius of the

cable. Two surfaces are then defined that intersect at the center of curvature of the

groove. In the cross-sections shown in Figure A1, the two surfaces can be considered

straight lines (shown as solid lines) parallel to the straight walls of the groove (shown

as dotted lines). If the cable lies below either of the lines, a penalty force is produced

proportional to the penetration of the cable node into the surface. If the cable node

lies above both lines, no normal force is applied. The contact penalty is illustrated

in Figure A1. The normal force per unit length is evaluated at NI discrete points

points per element. The generalized distributed force in the element coordinates is

then calculated from the discrete force distribution.

Drag Force

The drag force per unit length acting at a given point on the cable

fD = −1

2
CDρwd|Vn|Vn (A16)

where CD is the drag coefficient, d is the cable diameter, Vn is the normal component

of the relative velocity V , and µ is the dynamic viscosity of the fluid. The relative

Figure A1: Sheave groove cross-section
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velocity and its normal component are calculated as follows:

V = ṙ−U (A17a)

Vt = (V · ut)ut (A17b)

Vn = V −Vt (A17c)

where U is the velocity of the free stream, ṙ is the velocity of the point on cable

centerline. The unit vector tangent to the cable centerline ut is equivalent to r′

|r′| .

The drag coefficient CD is given by

CD = 1.1 + 4Re0.8, 30 < Re < 105 (A18)

where Re is the Reynolds number.

Wake Oscillator Model

A two-degree of freedom wake-oscillator developed by Bai and Qin [77] is used to

describe the vortex shedding forces on the cable. The variable w(t) is introduced,

with the function d2ẇ(t), where d is the cable diameter, corresponding to the vortex

strength of the wake. The evolution of w over time satisfies a van der Pol equation

of the form

ẅ + a1ωst

[
1− a2(ẇ)2

ω2
st

]
ẇ + ωstw =

a3ωst

d
Ẏ (A19)

where a1, a2 and a3 are empirical parameters, ωst is the Strouhal frequency in rad/s,

and Y is the displacement of the cable in the cross-flow direction. Typical values for

a1, a2 and a3, proposed by Facchinetti [81] and Bai and Qin [77] are 0.3, 0.2 and 12,

respectively.

The force acting on the structure due to the vortex shedding is then evaluated:
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fSW = − CD0ρd
4

32π3St3U
ẇẅ (A20a)

fCF =
CL0ρUd

2

8πSt
ẇ (A20b)

where fSW is the force per unit length acting in the stream-wise direction, fCF is

the force per unit length acting in the cross-flow direction, CD0 and CL0 are the

drag and lift coefficients associated with the vortex shedding, with assumed values of

0.2 and 0.3, respectively. In the absolute coordinate frame, the cross-flow direction

corresponds to the y-axis, while the stream-wise direction corresponds to the z-axis.

For each node on the cable exposed to the wind as shown in Fig. A2, a degree

of freedom representing the wake variable w is added to the system equations of

motion. The wake coefficients are interpolated linearly to provide the discrete force

distributions along each element.

Total Distributed Force

The force distributions determined for the normal contact, stationary drag and os-

cillating drag and lift are added together to give the total force distribution f . The

force acting on the element in the element coordinates Q is then found by integrating

over the length of the cable element:

Q =

∫ l

0

S(p)T fdp. (A21)

Again, a numerical quadrature is used to approximate the integral:

Q =

NI∑
i=1

wiS(p)T fi
l

NI

(A22)

where i denotes the integration point, NI is the total number of integration points

and wi is the quadrature weight. Ten integration points per element were used for all
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simulations described in this report.

The gravitational body forces are defined similarly with f =

[
0 −ρAg 0

]T
where

ρ is the cable density and g is the acceleration due to gravity. Since the gravitational

force is constant, the integration can be performed symbolically using Equation A21

prior to the simulation.

A.3 Case Studies

Model Parameters

The system consists of a cable suspended by two identical sheaves. Each cable end

is attached to a point mass as shown in Fig. A2. The static drag and oscillating

lift and drag are applied only to the portion of the cable suspended between the two

sheaves. A number of case studies were performed. The system properties used for

the simulations are listed in Table A1. The cable properties used are for a wire rope

with 6x37 construction, commonly used for marine lifting and hoisting applications,

given in [68]. The sheave diameters are calculated using the minimum recommended

sheave-to-rope diameter ratio of 18 [68].

Values for the cable bending stiffness EI and damping ratio ξ are not readily

available, thus conservative values were used. A minimum bending stiffness value can

be calculated by neglecting the friction between individual wires and assuming the

total bending stiffness is the sum of the bending stiffnesses of the individual wires [69].

Using the average diameter davg and assuming the lay angle θ is small, the bending

stiffness becomes

EI = E
∑ πdw

4

64
cosθ = ENw

πdavg
4

64
(A23)

where Nw is the number of wires. Based on the parameters listed in Table A1,

the bending stiffness is estimated to be 0.73 Nm2. Damping ratios for wire ropes
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Table A1: Model parameters.

Cable diameter, d 20 mm

Cable mass per unit length, µ 1.38 kg/m

Damping ratio, ξ 0.10

Cable tension, T 200 N

Cable elastic modulus, E 75.8 GPa

Cable bending stiffness, EI 0.73 Nm2

Cable metallic area, A 1.64× 10−4 m2

Sheave radius at root, R 0.18 m

Sheave groove angle 30 degrees

undergoing bending vary with cable tension and have been shown to be as high as

37% for slack cables [71]. A conservative damping ratio of 10% was used for the

simulations.

The natural frequency of the catenary is estimated by treating the cable as a thin

Euler-Bernoulli beam pinned at both ends and is given by [82]

ωn =
(π
L

)2

√√√√EI

m

[
1 +

T

EI

(
L

π

)2
]

(A24)

where L is the beam length, m is the mass per unit length, T is the axial tension,

and EI is the bending stiffness. The vortex shedding frequency can be calculated

using the Strouhal relation [77]:

fSt =
StU

d
=
ωSt

2π
(A25)

where St is the Strouhal number, assumed to have a value of 0.2 [81], U is the free

stream velocity and d is the cable diameter.

Simulations were performed for three cases; the model parameters specific to each

case are given in Table A2. In each case, the wind velocity was chosen such that the
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Table A2: VIV case study parameters.

Case 1 2 3 4

Span length (m) 2 5 5 5

Cable Tension (N) 200 200 500 1000

Natural frequency (rad/s) 19.9 7.57 12.0 16.9

Wind velocity (m/s) 0.302 0.121 0.190 0.269

Figure A2: Diagram of cable-sheave system

shedding frequency matches the estimated natural frequency of the cable.

Mesh Convergence

The cable was divided into five segments as shown in Fig. A2: the two free cable

ends with point masses attached, the two segments in contact with the sheaves and

the catenary suspended between the sheaves. The wind load is applied only to the

catenary (segment 3). Each segment was further divided into elements. A smaller

element length is desirable for the elements in contact with the sheave as the curva-

ture is greater. A mesh convergence was performed by allowing the system to reach

equilibrium with no wind load applied and iteratively reducing the length of the el-

ements in the contact arc and comparing the contact force at the top of the sheave.

The number of elements was found to have a minimal effect on the contact force.

For the segment 3, the convergence is determined by simulating 20 seconds of
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motion with the wind load applied. The maximum amplitudes of the motion at the

mid-point of the span were compared. Convergence was considered to occur when

the change in the output was less than 1%. The results are shown in Fig. A3. For

the final simulations, 5 elements were used for each of the contact segments while 12

and 16 elements were used for the 2 and 5 m cable spans. The free cable ends were

assumed not to undergo significant transverse motion, thus only 2 elements were used

for each.

Figure A3: Convergence curves for segment 3

Results

For each case in Table A2, the motion was simulated until a steady oscillation was

obtained. Figure A4 displays the vertical motion at midpoint of the span the for Case

4. The results for each test case are shown in Table A3. The maximum amplitude

at the midpoint of the span was 4.5× 10−6 for Case 4. At the sheave, the maximum

amplitude was 3.3× 10−6.
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Table A3: Simulated vibration amplitudes.

Case 1 2 3 4

Vertical, Mid-span (10−6 m) 4.1 3.8 4.4 4.5

Streamwise, Mid-span (10−6 m) 0.30 0.35 0.30 0.30

Vertical, Sheave (10−6 m) 0.48 1.38 3.3 2.3

Figure A4: Mid-span vertical displacement for Case 4

A.4 Conclusion

In this paper a dynamic finite element model of a low-tension cable sheave system

was used to simulate the vortex-induced vibration of the cable due to wind loading

and assess the potential for wind loading to lead to detachment of the cable from

the sheave. The model, constructed using the absolute nodal coordinate formulation,

utilized a wake-oscillator model to describe the vortex shedding forces. Also, three-

dimensional contact with the sheave grooves was introduced. Several case studies were

performed for systems of varying span length and cable tension with the wind velocity

selected to excite the fundamental mode of the cable. The vibration amplitudes were

determined to be small – the maximum amplitude observed at the sheave was only

3.3 × 10−6 m – thus wind loading alone is unlikely to lead to cable detachment.
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In future work, the wake-oscillator parameters can be tuned based on wind tunnel

experiments. Scenarios where more severe vibrations are likely, such as cables with ice

accretion, can also be examined in this manner. Also, the model could potentially be

applied to a submerged cable system, in order to examine drag amplification effects

due to VIV.
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