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Abstract

Cable-sheave systems are commonly used on marine vessels for lifting and tow-

ing applications. As a result of the motion of the vessel, the cable can detach

from the surface of the sheave. This paper presents a finite element model of a

towed cable system based on the Absolute Nodal Coordinate Formulation. The

model includes the interaction of the cable with the sheave surface in order to

examine variations in the contact forces. Furthermore, a three-dimensional de-

scription of the sheave geometry is implemented in order to accurately model the

contact forces as the vessel undergoes six degree-of-freedom motion. To assess

the performance of the model, the simulated cable behavior is compared to small

scale experimental measurements. Finally, a case study which demonstrates the

simulated cable detachment behavior for a full scale system is discussed.

Key words: Towed cables, modelling, dynamic contact, non-linear finite

elements, cable-sheave interaction, detachment

1. Introduction

Cable-pulley systems are commonly used in marine lifting applications and

towing of sensor bodies for oceanographic research. Figure 1 illustrates a vessel

towing a submerged sensor with a cable. A sheave is used to position the cable
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over the stern of the vessel, while a winch is used to pay-out and reel-in the cable.5

The cable experiences hydrodynamic drag, forming a catenary as shown in the

figure, as well as forces transmitted through the sheave due to the motion of the

ship. As a result of the ship motion, the cable can experience large variations in

tension and is susceptible to loss of contact with the sheave surface if the tension

becomes small. For many systems it may not be possible to constrain the cable10

in the sheave mechanically. It is thus desirable to model the cable dynamics

and interactions with the sheave and winch surfaces in order to predict cable

detachment and avoid unsafe conditions.

Figure 1: Diagram of ship and towed cable

Various modelling methods including both Finite Difference Methods (FDM)

and Finite Element Methods (FEM) have been used to simulate the dynamics of15

marine cables, however nonlinear finite element models are prevalent for model-

ing cable-pulley systems. The continuous nature of curved element formulations

is advantageous, as the contact forces can be defined as continuous functions of

the cable position, velocity. Thus, only a small number of elements are required

to accurately model the cable-pulley interaction compared to linear methods.20

In the recent literature, the Absolute Nodal Coordinate Formulation (ANCF) is

common for modeling both submerged cables [1, 2] and cable-pulley interactions

[3–5].

Finite element models of submerged cables typically use a revolute joint to

model the attachment of the cable to the ship. A model of a submerged cable25
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that includes the interaction of the cable with the winch and sheave has not

been found in the literature. However, a number of systems consisting of a cable

with surface contact have been examined including belt-drives [6, 7], catenary-

pantograph interactions [8] and loaded cable-pulley systems [3–5]. These studies

usually only consider static loads or simple, planar cable motions. Also, the30

cable motion in these systems is often purely reciprocal and the area of contact

between the cable and the surface remains constant. A small number of studies

have examined cable-pulley interactions with dynamic contact [5, 9].

A model of a towed cable system which includes both the dynamics of the

submerged cable, the towbody and the normal contact between the cable and35

the sheave could be used to examine dynamic contact behavior and cable detach-

ment during towing operations. This paper presents a mathematical model and

simulation of a towed cable which utilizes the nonlinear ANCF finite element

method. Moreover, this paper outlines how the ANCF model was parameter-

ized, tuned and implemented. The research builds upon previous marine cable40

models by introducing the interaction between the cable and the sheave and

winch surfaces using a penalty contact formulation. Additionally, in contrast

to the planar cable-pulley models found in the literature, a three dimensional

formulation of the contact forces between the cable and the sheave groove is de-

veloped. The three dimensional formulation enables accurate modelling of the45

contact forces during six degree-of-freedom ship motion. Finally, the ability of

the contact formulation to simulate dynamic contact behavior and detachment

of the cable from the sheave during towing operations is examined.

Section 2 of this paper details the formulation of the cable model and its

computer implementation. In Section 3, the results of a small scale experiment50

are compared to the simulated cable behavior. A full scale case study which

demonstrates the cable detachment behavior is described in Section 4. The

paper ends with concluding remarks and recommendations for future work in

Section 5.
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2. Modelling55

The finite element model follows the Absolute Nodal Coordinate Formulation

[10] and is composed of two node cable elements. Each node has 6 degrees of

freedom consisting of a 3×1 position vector r and a 3×1 slope vector r′ tangent

to the cable centerline. All degrees of freedom are defined in the absolute (or

inertial) coordinate frame. Figure 2 shows a deformed cable element with arc60

length s at the top and the equivalent undeformed element with unstretched

length L at the bottom. The nodes located at either end of the element are

represented by closed circles.

Figure 2: Deformed cable element and equivalent undeformed element in the inertial coordi-
nate frame.

The absolute coordinates r of an arbitrary point on the cable can be in-

terpolated from the set of nodal degrees of freedom using the arc parameter65

p ∈ [0, L]:

r(p) = S(p)q = [x y z]
T . (1)

where S(p) is a shape function matrix and q is a column vector of generalized

coordinates collecting the 12 element degrees of freedom. The generalized
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coordinates consist of the Cartesian coordinates r and the parametric slopes

rp = ∂r/∂p at each node,70

q =
[
r(0)

T
rp(0)

T
r(L)

T
rp(L)

T
]T
. (2)

The shape function matrix S(p) representing a cubic Hermite spline is

S(p) =



(
1− 3ξ2 + 2ξ3

)
I(

ξ − 2ξ2 + ξ3
)
I(

3ξ2 − 2ξ3
)
I(

−ξ2 + ξ3
)
I



T

(3)

where I is a 3x3 identity matrix and ξ = p/L is the parameter p normalized by

the unstretched element length.

The generalized Newton-Euler equations are given for a single element as

Mq̈ + Qint −Qext = 0, (4)

where M is the mass matrix, Qint is a generalized internal force vector, Qext75

is a generalized external force vector. The internal forces consist of the elastic

forces Qe and a damping force Qd. The external forces consist of hydrodynamic,

contact and gravitational forces.

Given a distributed force per unit length f(p), the generalized force vector

Q can be determined by premultiplying by the transpose of the shape function80

and integrating over the length of the element [11]:

Qi =

∫ L

0

ST fi(p)dp. (5)

In this work, the integral is approximated using a numerical quadrature

Qi ≈
L

NI

NI∑
0

wiS
T f(pi), (6)

where NI is the number of integration points, pi is the value of the arc parameter
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at point i and wi represent the trapezoidal weights given by

wi =

0.5, i = 1, NI

1, i = 2, ..., NI − 1

. (7)

The following section outlines the various force components found in Equa-85

tion 4.

2.1. Mass Matrix and Internal Forces

Using a variational mass lumping approach the mass matrix M is derived

directly from the element kinetic energy [10] and is given by

M =
∂2K

∂q̇∂q̇
=

∫ L

0

ρAS(p)
T
S(p)dp (8)

where K is the kinetic energy of the element, ρ is the cable density and A is the90

cable cross-sectional area.

Similarly, the elastic forces Qe are derived from the strain energy U of the

element and are given by [12]:

Qe =
∂U

∂q
=

∫ L

0

[
EAε

∂ε

∂q
+ EIκ

∂κ

∂q

]
dp (9)

where E is the Young’s modulus of the cable material, A is the cross-sectional

area, I is the second moment of area, ε is the longitudinal strain, and κ is the95

curvature of the element.

Berzeri and Shabana [12] define ε as the Green-Lagrange strain given by

ε =
1

2
(rp

T rp − 1). (10)

However, using the above strain definition results in coupling of the longitudinal

strains to the element curvature, since the slope vector rp defines not only the

shape of the element, but the distribution of strain across the element. As100

a result, an element with no overall strain (i.e. an arc length equal to the

unstretched length L) but a non-zero curvature will have non-zero strain along
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its length. The coupling of the longitudinal and bending deformations leads

to increased stiffness of the numerical solution in addition to erroneous cable

tensions in elements with significant curvatures.105

It is desirable to decouple the longitudinal strains from the curvature. Yue et

al. [13] present an alternative stiffness force definition that alleviates the coupled

behavior. First a secondary set of generalized coordinates q∆, representing only

the longitudinal deformation of the ANCF cable element, is defined as

q∆ =

[
0 |r′(0)|

∫ L

0

|r′(p)|dp |r′(L)|

]T
. (11)

This formulation of the coordinates represents a one-dimensional cable element110

that is parameterized equivalent to the full ANCF element. Thus, the longitu-

dinal coordinate of an arbitrary point on the element is given by

r∆ = S∆q∆ (12)

where S∆ is the one-dimensional shape function

S∆ =
[
(1− 3ξ2 + 2ξ3) (ξ − 2ξ2 + ξ3) (3ξ2 − 2ξ3) (−ξ2 + ξ3)

]
. (13)

The one-dimensional coordinate r∆ is then substituted into the Green-Lagrange

strain (Equation 10) giving a decoupled longitudinal strain ε∆
115

ε∆ =
1

2

[(
∂r∆

∂p

)2

− 1

]
=

1

2

[
(S∆

p q∆)T (S∆
p q∆)− 1

]
(14)

where the subscript p represents the derivative with respect to p. The decoupled

strain ε∆ is then substituted for ε in Equation 9.

Berzeri and Shabana [12] utilize the Seret-Frenet definition of the element

curvature κ given by

κ =

∣∣∣∣dr2

ds2

∣∣∣∣ =
|rp × rpp|
|rp|3

(15)
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where s is the arc length and rp and rpp are the first and second partial deriva-120

tives of r with respect to p [12]. Berzeri and Shabana [12] also propose a

simplification of Equation 9 by assuming that the longitudinal deformations are

small (i.e. |rp| ≈ 1), in which case the curvature simplifies to

κ ≈ |rpp|. (16)

The simplified curvature is used in the current study to reduce the computa-

tional cost of the simulation.125

The internal damping force Qd serves to include internal energy dissipation

as well as improve the numerical stability of the simulation. For submerged

cables it is common to neglect the internal cable damping [14] since the exter-

nal fluid damping dominates. However, in the current work the inclusion of

internal damping was found to have a significant effect on the numerical stiff-130

ness and stability of the simulation. Additionally, the damping effects may be

significant in the unsubmerged section of the cable; thus, internal damping was

implemented based on a Rayleigh dissipation function.

The Rayleigh dissipation function represents one-half of the energy dissi-

pated during the motion and has a general form135

R = 1/2

∫
cu̇2dV (17)

where c is a damping factor and u̇ is the rate of change of a chosen coordinate

u [15]. In the current study, the generalized coordinate u is chosen to be the

gradient rp = ∂r/∂p, where r is the absolute position of a cable segment, such

that energy is dissipated if during bending and axial deformations. The energy

dissipation will also occur during rigid body rotations, however the additional140

dissipation can be viewed as viscous damping due to air or water resistance.

Substituting u = rp into Equation 17, the Rayleigh dissipation function becomes

R = 1/2

∫ L

0

c(ṙp · ṙp)dp. (18)
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The damping force Qd is then given by

Qd =
∂R

∂q̇
= c

∫ L

0

ST
p Spdp q̇. (19)

The estimation of the damping coefficient c based on the cable damping ratio is

further discussed in Section 3.2. In the next section, the external hydrodynamic145

forces are defined.

2.2. Hydrodynamic Forces

For the portion of the cable that is submerged in water, the external hydro-

dynamic force per unit length fH consists of three components: the drag force

fD, the inertia force fI and the buoyancy force fB , such that150

fH = fD + fI + fB . (20)

For the cable segment above the waterline, fH is set to zero.

The buoyancy force is given by Archimedes’ principal,

fB = −ρfAg (21)

where g = [0 0 −9.81]T m/s2 is the gravitational acceleration vector, ρf is

the fluid density and A is the cable corss-sectional area.

The drag forces used in the current work are based on the model employed155

by Driscoll and Nahon [16] and Buckham et al. [17]. The model accounts for

the nonlinear decomposition of the drag force into normal and tangential com-

ponents and exhibits good agreement with experimental studies of drag forces

on towed cables over a wide range of towing conditions [16]. The components

of the drag force are160

fD,n = −1

2
ρfdCD|V|2

Vn

|Vn|
fn (22a)

fD,t = −1

2
ρfdCD|V|2

Vt

|Vt|
ft sgn(Vt · ut) (22b)
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where d is the cable diameter, CD is a drag coefficient, V = Vf − ṙ is the

difference between the flow velocity Vf and the cable velocity ṙ, fn and ft are

normal and tangential empirical loading functions, Vn and Vt are the normal

and tangential components of V given by

Vt = (V · ut)ut (23a)

Vn = V −Vt (23b)

and ut = rp/|rp| is the unit tangent vector along the cable centerline [17]. Figure165

3 illustrates the absolute and relative flow velocity vectors and their components

normal and tangential to the cable element. The absolute flow velocity vector

Vf is shown as a solid blue line and the relative flow velocity vectors V is shown

as a solid red line. The normal and tangential components of the fluid velocity

Vf,n and Vf,t and of the relative velocity Vn and Vt are shown as dotted lines.170

Figure 3: Absolute flow and relative flow velocity vectors in relation to a cable element. The
cable velocity ṙ, fluid velocity Vf and relative velocity between the cable and fluid V are
shown as solid lines. The normal and tangential components of the fluid velocity Vf,n and
Vf,t and of the relative velocity Vn and Vt are shown as dotted lines.
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Various experimental studies of submerged cables [18, 19] show that the

mean drag acting on the cable can be much higher than for rigid cylinders. The

increase in drag is a result of vibration of the cable due to vortex shedding. An

additional force fD,amp is applied to the cable to capture the drag amplification

due to vortex-induced vibrations (VIV). The additional force is defined as175

fD,amp = G(fD,n + fD,t) (24)

where G is an amplification factor and fD,n and fD,t are the steady state values

of normal and tangential drag forces, which are obtained using Equation 22

with the cable velocity ṙ set to zero. In this implementation, only the mean

component of the drag force is amplified and not the transient components.

The total drag force per unit length fD from Equation 20 is180

fD = fD,n + fD,t + fD,amp. (25)

Within Equation 20, the non-drag terms in the Morison equation are collectively

referred to as the inertia force fI given by

fI = ρfACm(V̇f,n − r̈n) + ρfAV̇f,n (26)

where Cm is the hydrodynamic mass coefficient, V̇f,n is the acceleration of the

flow normal to the cable, and r̈n = (1 − uT
t ut)Sq̈ is the normal component of

the cable acceleration [20].185

Note that the component of the inertia force fI that is proportional to the

cable’s normal acceleration r̈n can be combined with the d’Alembert force Mq̈

to form a modified mass matrix M′

M′ = M + ρfACm

∫ L

0

(1− uT
t ut)S(p)dp, (27)

thereby retaining the explicit form of the equations of motion shown in Equation

4. The hydrodynamic forces acting on the towbody are described in the following190

section.
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2.3. Towbody

The towbody is treated as a lumped mass coincident with the last node

of the cable. The total force acting on the towbody is given by the sum of

the buoyancy, gravitational, d’Alembert and hydrodynamic forces, which follow195

from the Morison equation. The net force is

Fb = Fb,g + Fb,D + Fb,I + Fb,m, (28)

where Fb,g is the net force due to gravity and buoyancy, Fb,I is the inertia force,

Fb,m is the force due to hydrodynamic added mass and the d’Alembert force

due to the body’s inertia.

The gravitational and buoyancy force Fb,g is given by200

Fb,g = (−ρfV +mb)g, (29)

where V is the volume of the body and mb is the mass.

The drag force Fb,D is

Fb,D =
1

2
ρf (Ab ◦CD,b) ◦ |Vf −Vb|(Vf −Vb), (30)

where Vf is the flow velocity and Vb is the velocity of the end of the cable

where the towbody is located. Since the geometry of the body may vary along

each axis, Ab is a vector of areas found by projecting that volume of the body205

onto the absolute planes, CD,b is a vector of drag coefficients for each coordinate

axis. The symbol ◦ represents the entry-wise product, where for C = A ◦B the

i-th element of C is defined as Ci = AiBi.

The inertia force Fb,I is given by

Fb,I = ρfV (Cm,b + 1) ◦ V̇f , (31)

where Cm,b is a vector of inertia coefficients for each coordinate axis.210

The force due to the hydrodynamic added mass and the d’Alembert force

12

PREPRIN
T



due to the body’s inertia Fb,m given by

Fb,m = −(mbI3×1 + ρfVCm,b) ◦ V̇b. (32)

Thus, the equivalent generalized force Qb acting on the final cable element is

Qb = S(L)TFb = S(L)T (Fb,g + Fb,D + Fb,I + Fb,m). (33)

Additionally, the modified mass matrix M′ from Equation 27 can be further

modified to include the towbody inertia force Fb,m as follows:215

M′′ = M′ + S(L)T diag(mbI3×1 + ρfVCm,b)S(L). (34)

In the following section, the cable-surface interactions and normal contact

forces are described.

2.4. Normal Contact

In order to model the cable-sheave and cable-winch interactions, a contact

penalty is used. The cable is allowed to “penetrate” the sheave surface and the220

normal force is defined as a function of the relative penetration δ. The normal

force per unit length fN acting at a single point on the element is defined using

a contact force model developed by Hunt and Crossley [21], which has been used

by Bul̀ın et al. [5] and Lugris et al. [3] to model cable-pulley interactions in

ANCF cable simulations. The Hunt-Crossley contact model [21] represents the225

surface as a nonlinear spring-damper with the force per unit length acting on

the cable given by

fN = kNδ
n(1 +Dδ̇)uN (35)

where uN is the unit vector normal to the sheave surface at the point of contact,

kN is the contact stiffness, δ is the relative “penetration” of the node into the

surface, D is a contact damping coefficient and n is a positive constant. The230

value of n is typically based on empirical investigations of the evolution of the
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contact force between two bodies during an impact and may be a function of

body geometry and material properties [22]. In the present analysis, a value of

n = 1.5 is used based the value used by Buĺın et al. [5] to model cable-sheave

contact.235

The relative position vector between an arbitrary “contact point” on the

cable and the center of the sheave or winch srel is

srel = s− sc (36)

where s is the position of the cable segment in the ship’s body-fixed frame and

sc is the position of the centroid of the winch or sheave. The contact forces

are calculated first by transforming the relative position srel from the XY Z240

coordinate frame onto a fixed plane by rotating about the axis of rotation of the

winch or sheave. The fixed plane for the current work is selected to be the Y Z

plane. Figure 4 shows the transformation of the contact point from XY Z space

onto the Y Z plane by rotating the relative position srel about the winch/sheave

axis of rotation, as viewed along the Y -axis. The angle between srel is denoted245

θY Z and the rotated vector p is shown as a red arrow. The planar contact forces

are then calculated based on the two-dimensional cross-section of the surface in

the selected plane. Lastly, the contact force is then transformed to the absolute

frame.

The rotation angle θY Z is250

θY Z = sgn(Xrel) cos−1

(
Zrel

X2
rel + Z2

rel

)
(37)

where Xrel and Zrel are the components of srel in the X and Z axes. The

rotated vector p is

p = Ry(θY Z)srel (38)

where Ry is the rotation matrix about the Y axis. The penetration δ of the
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Figure 4: Transformation of contact point from XY Z space to the Y Z plane as viewed along
the Y -axis. Note that the Y component is unchanged by the transformation.

cable into the surface is

δ = −(p− p0) · n (39)

where n is a unit vector normal to the contact surface in the Y Z-plane and p0255

is a nominal vector given by

p0 = [0 0 r + d/2]T (40)

and r is the radius of the winch or sheave. In the latter case, r is measured to

the root of the sheave groove.

Figure 5 illustrates the sheave (top) and winch (bottom) contact surfaces.

The winch is idealized as an infinite cylinder. Note that since the contact forces260

are applied at the cable centerline, the “contact surface”, shown as a dotted

line, is offset from the actual surface by the radius of the cable. The unit vector

normal to the winch contact surface in the Y Z-plane is

nw = [0 0 1]T . (41)

In order to accurately model the interaction between the cable and the

15
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(a)

(b)

Figure 5: Sheave (a) and winch (b) surface cross-sections. Real surfaces are shown as solid
lines. Offset contact surfaces are shown as dotted lines.

sheave, the angled and curved surface of the sheave groove is represented by

two straight lines parallel to the straight walls of the groove. Figure 5 shows the

contact surfaces as dotted lines and the actual surface of the groove as a solid

line. Figure 6 shows the penetration of the cable centerline below the contact

surfaces. The contact surfaces, labeled s1 and s2, intersect at the point p0 and

have normal vectors ns1 and ns2:

ns1 = [0 cos(θg/2) sin(θg/2)]T (42a)

ns2 = [0 − cos(θg/2) sin(θg/2)]T (42b)
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where θg is the throat angle of the groove. The groove surface is idealized such

that the radius of curvature of the groove is assumed to be equal to the radius265

of the cable. The two contact surfaces intersect at the center of curvature of the

groove.

Figure 6: Sheave groove contact.

If the cable centerline lies below either of the dotted lines (δ > 0), a penalty

force is produced proportional to the penetration. If the centerline lies above

the lines (δ < 0), no normal force is applied. Additionally, if the magnitude of270

the components of p exceed specified values, no force is applied, such that the

width and height of the sheave groove is limited.

The unit vector uN gives the direction of the force in the absolute frame, and

is found by rotating the surface normal vector n by the inverse of the rotation

Ry(θY Z) applied in Equation 38 and then rotating from the body-fixed frame275

to the absolute frame with the rotation matrix RA
B(α, β, γ) where α, β and γ

are the roll, pitch and yaw of the ship. The unit normal in the absolute frame

is thus

uN = RA
B(α, β, γ)Ry(θY Z)−1n. (43)

The generalized contact force QN is given by the sum of the contact forces
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normal to each contact surface integrated over the length of the element is280

QN =
∑∫ L

0

S(p)T fNdp =

∫ L

0

S(p)T (fs1
N + fs2

N + fwN )dp. (44)

where the superscripts indicate the contact surface. A version of the sheave in-

teraction described in this section was previously presented to examine dynamic

contact due to wind induced vibrations for marine cranes [23]. In the next sec-

tion, the implementation of the winch rotation using kinematic constraints is

described.285

2.5. Winch Rotation and Kinematic Constraint

The end of the cable is constrained to an arbitrary point on the surface of

the winch, such that the rotation of the winch will reel the cable in or out.

The augmented or Lagrange multiplier formulation [24] is used to define the

generalized constraint force. In the augmented formulation, a force is applied290

to each constrained node in order to satisfy a constraint equation of the form

Φ(q, t) = 0 (45)

at the acceleration level (Φ̈ = 0). The force Qc required to satisfy the constraint

can then defined by introducing a vector of Lagrange multipliers λ:

Qc = −Φq
Tλ. (46)

The equations of motion for the constrained element becomes

Mq̈−Qext + Qint + Φq
Tλ = 0. (47)

Due to numerical error inherent to a non-ideal computational environment,295

Equation 45 can not be satisfied exactly resulting in the accumulation of er-

ror or “constraint drift.” To compensate for the numerical error, Baumgarte’s
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stabilization method [25, 26] is applied. In Baumgarte’s method, the equation

Φ̈ + 2a1Φ̇ + a2
2Φ = 0, (48)

where a1 and a2 are chosen constants, is to be satisfied instead of the original

constraint Φ̈ = 0. The additional terms introduce feedback, similar to a PD300

controller, if the solution drifts from the constrained value. For a1 = a2 > 0,

the solution is asymptotically stable [26].

Expanding the second time derivative of Φ(q, t), Equation 48 can be ex-

pressed as

Φqq̈ = b (49)

where Φq is the Jacobian of Φ and b is a column vector given by305

b = −Φtt − (Φqq̇)qq̇− 2(Φq)tq̇− 2a1Φ̇− a2
2Φ. (50)

Combining Equations 49 and 47, the Lagrange multipliers can be written

λ =
[
ΦqM

−1Φq
T
]+

(Φqa− b) (51)

where + represents the Moore-Penrose pseudo-inverse and a is the associated

accelerations of the unconstrained system

a = M−1(Qext −Qint) (52)

The constraint forces can then be determined using Equation 46.

The constraint used in the current study consists of one end of the cable310

pinned to the surface of the winch. The motion of the pin joint incorporates

the rigid body motion of the ship and the rotation of the winch about its axis

and is defined by the equation

Φ = r0 − rCG −RI
B(α, β, γ)(sw + Ry(φ)rwk) = 0 (53)
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where r0 is the position of the first node of the first element, rCG is the position

of the center of gravity of the ship, sw is the position of the winch in the body-315

fixed coordinate frame, RA
B is the rotation matrix from the ship’s body frame to

the absolute frame, Ry(φ) is the rotation matrix corresponding to the rotation

of the winch about its axis by an angle φ and k = [0 0 1]T is a unit vector

in the Z axis.

The winch rotation is used to implement motion compensation algorithms320

which serve to minimize the motion of the towbody by reeling the cable in and

out based on the motion of the ship. An additional degree of freedom is added

to the equations of motion representing the winch rotation φ. The acceleration

of the winch is given by a PD control equation

φ̈ = k1(φSP − φ) + k2(φ̇SP − φ̇) (54)

where k1 and k2 are chosen constants and φSP is a set-point. The set-point algo-325

rithms examined in this study were developed by Calnan et al. [27, 28] and will

be summarized in Section 3. In the next section, the computer implementation

of the model is described.

2.6. Computer Implementation

The numerical simulation of the model was performed in MATLAB using330

the stiff ODE solver ode15s. Figure 7 shows a flowchart of the overall proce-

dure. Prior to the simulation, the constant mass matrix M is computed using

Equation 8 for each element. An initial vector of vertically concatenated ele-

ment coordinates q is defined and input to the ODE solver. At each time step,

the generalized elastic forces Qe and damping forces Qd are calculated using335

Equations 9 and 19. The external force distributions are calculated as described

in Sections 2.2, 2.3, and 2.4 for a discrete set of points along each element. The

equivalent generalized forces are then computed using the numerical quadrature

defined in Equation 6. For the elements below the waterline the modified mass

matrices are calculated using Equations 27 and 34. The element mass matrices340
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are concatenated into a block diagonal matrix, while the generalized forces are

concatenated vertically.

To enforce C1 continuity of the cable profile, the generalized coordinates

of adjacent nodes are made to be equal, resulting in an independent set and

a dependent set of element coordinates. The system equations of motion can345

then be reduced to contain only the independent coordinates using the em-

bedding procedure described by Shabana [24]. Next, the winch acceleration

is determined via Equation 54 and the generalized constraint force needed to

satisfy the kinematic constraint is determined using the process described in

Section 2.4. Finally, Equation 4 is solved for the nodal accelerations q̈ which350

are returned to the ODE solver.

In order to initialize the model, an initial set of generalized coordinates is

generated. The initial configuration consists of a straight, undeformed cable

tangent to the sheave surface. Using a spherical kinematic constraint, the end

of the cable is constrained to move along a path tangent to the sheave and355

winch surfaces, coming to rest at a nominal position on the winch surface. The

system is then allowed to reach steady state and the final vector of generalized

coordinates is then stored, to be used during the final simulation.

The six axis ship motion is loaded as a time series. The MATLAB function

spapi is then used to produce a third-order piece-wise polynomial fit of the data.360

As the ODE solver ode15s uses a variable time step, the piece-wise polynomial

allows the ship position and rotations and their derivatives to be evaluated at

any time t during the numerical integration. One will notice that model formu-

lation and construction is independent of the ship dynamics, and thus the user

is required to develop the time series of the ship motion either through numer-365

ical methods such as the Cummins equation [29], via experimentally validated

software such as ShipMo3D [30] or from physical sensor data.

The following section describes the validation of the model using small scale

experimental measurements is described.
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Initialize simulation parameters, inputs and initial conditions

Determine element mass matrices (Equation 8)

Begin integration

Solve for internal and external generalized forces
(Sections 2.1 - 2.4) and concatenate vertically

Solve for the modified element mass matrices
(Equation 27 and 34) and concatenate diagonally

Use embedding procedure [24] to
eliminate redundant degrees of freedom

Determine winch acceleration (Equation 54)
and solve for the generalized constraint force
to satisfy constraint equation (Section 2.4)

Solve equations of motion (Equation 4) for the
generalized accelerations and return to the ODE solver

Terminate integration

The ODE solver
updates the
generalized
coordinates

and velocities
and increments
the time step

Figure 7: Flowchart of the simulation procedure.
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3. Model Validation370

In order to validate the model, the simulated cable behavior was compared to

experimental measurements for small scale cable systems. Previously, a system

consisting of a nylon rope running over a pulley and supporting a suspended

load was considered [31, 32]. The load was given an initial deflection and allowed

to swing. The resulting cable tension and wrap angle of the cable of the pulley375

were measured and compared to the simulated time series. Three cases with

varying load mass and variations were examined. The motion was simulated

for ten seconds. Good agreement between the simulation and experimental

measurements was found. The standard deviation of the error between the

simulated and measured wrap angle ranged from 1.37 to 3.73 degrees with peak-380

to-peak variations in the wrap angle up to 110 degrees. The standard error

ranged from 6.2 to 14.6 N for the cable tension, with peak-to-peak variations

up to 166 N.

Additional verification of the model implementation was performed by com-

paring the simulated output to experimental data obtained by Takehara et al.385

[33]. Takehara et al.’s experiment consisted of rubber tether submerged in still

water. The left side of Figure 8 illustrates the three test cases that were per-

formed, while the right side plots the error in the Euclidean position between

the simulated cable motion and the Takehara et al. data at the midpoint and

end of the tether for each case. In Cases 1 and 2, the tether was pinned at one390

end and released from a horizontal position. In Case 2, an additional spherical

mass was attached at the mid point of the cable. In Case 3, the tether was

suspended vertically and the pin joint was translated horizontally at a constant

velocity. The tether was 0.8 m long with a diameter of 3.4 mm. A linear density

of 1.273 × 10−2 kg/m and Young’s modulus of 2.79 × 107 Pa was used in the395

simulations. The spherical mass in Case 2 was 67.8 g and a diameter of 2.5 cm.

In Case 3, the pin joint was translated at a velocity of 0.5 m/s for 1 s and then

held fixed. The experimental data was extracted from the figures presented by

Takehara et al. and compared with the simulated output of the model presented
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in Section 2. The simulation results demonstrate good agreement with the ex-400

perimental data with RMS errors in the cable position, shown on the right side

of Figure8, ranging from 5.8 mm to 48.5 mm. These errors are small relative to

the overall cable length of 800 mm and are consistent with the simulated results

obtained by Takehara et al. The largest RMS error was observed for Case 2 at

the endpoint of the cable, however the position of the midpoint where the mass405

was attached was predicted more accurately with an RMS error of only 12.2

mm.

The main focus of this section is on the validation of the model for a towca-

ble system which includes cable-winch contact and winch motion. The following

sections discuss the validation of the model using previously recorded measure-410

ments of towbody motion in a flume tank.

3.1. Flume Tank Study Setup

Calnan et al. [27, 28] developed a number of Active Heave Compensation

(AHC) algorithms, which serve to minimize the disturbance to the towbody as

a result of the ship motion. The algorithms determine a winch rotation setpoint415

as a function of the ship displacement and the angle of the tow-cable as it exits

the sheave. Calnan et al. also performed an experiment (hereafter referred

to as the flume tank study) to quantify the efficacy of the AHC algorithms

using a recirculating flume tank and a small scale winch system. Figure 9

shows a schematic of the system consisting of a three degree of freedom motion420

mechanism mounted above the flume tank. The motion mechanism is used to

position a small cylindrical winch which is powered by a DC motor. A spherical

towbody is attached to the winch by a thin nylon cable; the system did not

include a sheave. The top of the winch in its nominal position was located

46 cm above the waterline. Table 1 lists the parameters of the flume scale425

experiment. Note that the cable length is measured from the top of the winch.

With a steady flow in the flume tank, video recordings of the towbody motion

were taken using two cameras, one perpendicular to the flow and one facing in

the direction of the flow and submerged in the flume tank. The two videos were
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Figure 8: Diagrams of test cases performed by Takehara et al. [33]. Cases 1 and 2 consist
of a falling tether pinned at one end with a spherical mass attached at the midpoint in Case
2. Case 3 consists of a hanging tether with a moving support. Plots of the error in the
Euclidean position of the end and midpoint of the tether between the experimental data and
the simulated results are shown to the right of each diagram.
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used to produce a three dimensional trace of the towbody motion. Example430

frames of the videos captured by the two cameras are shown in Figure 9.

Additionally, Calnan et al. developed a simulation of the cable motion using

rigid linear elements, also known as the finite segment method (FSM). The

ANCF cable model developed in the current study was used to simulate the

towbody motion based on the winch motion and system parameters from the435

previous flume tank study [27, 28]. The simulated motion from the ANCF model

was then compared with the experimental data and simulated motion from the

FSM model. Four cases were considered, including two motion compensation

algorithms:

1. No winch motion440

2. Winch motion without compensation

3. Winch motion with compensation (simplified sheave algorithm)

4. Winch motion with compensation (rigorous sheave algorithm)

In the rigorous case, the angle of the cable at the sheave can be measured

directly, whereas in the simplified case a nominal value of the angle is assumed.445

Two other algorithms, referred to as rigorous waterline and simplified waterline,

demonstrated poor performance and unreliability in the flume tank study and

were thus not examined in the current study.

Parameter Value
Cable diameter 0.45 mm

Linear cable density 0.2 g/m
Nominal cable length 1.01 m

Sphere diameter 10 mm
Sphere mass 1.33 g

Water density 1026 kg/m3

Water viscosity 1.2×10−3 Pa·s
Mean surface velocity 0.330 m/s

Winch radius 17.35 mm

Table 1: Flume scale system parameters [27, 28].

The ship motion used to validate the FSM and ANCF models is data digi-

tized from an Australian Defence Science and Technology Organisation (DSTO)450
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Figure 9: Illustration of the flume tank system and experimental apparatus. The origin of
the absolute frame is located at the top of winch in its nominal position. The example views
show sample images from the two orthogonal cameras.

report [34]. The data was used to determine the 3 degree-of-freedom transla-

tional motion of a winch located at the ship’s stern and was then scaled to fit

within the flume tank environment. Figure 10 shows the displacement of the

winch along each axis as a function of time.

Additionally, measurements of the flow velocity at several depths below the

surface of the water were taken. A empirical linear relationship between the

mean flow velocity Vf and depth was found to be

Vf = (−0.5873 1/s)(z − zWL)− 0.3302 m/s (55)

where z is the vertical position in the absolute frame and zWL is the position of455

the waterline in meters. The standard deviations of the flow along the x, y and

z axes were found to be 0.0300 m/s, 0.0262 m/s, and 0.0152 m/s, respectively.

A Chebyshev II low-pass filter with 80dB attenuation was to a white noise signal

in order to approximate the frequency spectrum of the measured velocity and

scaled the filtered signal to match the measured variances in each axis [35]. The460

Chebyshev II filter was used in the current study to generate a time series of
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Figure 10: Winch displacement as a function of time from Calnan’s flume tank experiment
[35].

the flow velocity at a frequency of 100 Hz prior to the simulation.

In the flume-scale study, a state-space model of a DC motor with position

control was used to convert the PD controller output to a rotational acceleration

[28]. The PD gains were tuned based to obtain a 90% rise time of 0.2 s in465

response to a step input of 0.5764 rad. The length of cable reeled in or out by

the winch tracked the AHC set point to within 1 mm for the majority of the

motion. In the current study, the system was simplified such that the angular

acceleration is given directly by the PD output of Equation 54. The proportional

and derivative gains k1 and k2 were tuned to obtain tracking errors within 1mm470

and a 90% rise time of 0.2s. The proportional and derivative gains were selected

to be 200 and 20, respectively.
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The added mass coefficients of the cable and the towed sphere Cm and Cm,b

were selected based on theoretical values of 1 and 0.5 [36], respectively, which are

consistent with the previous values [35]. The hydrodynamic loading functions

fn and ft of Equation 22 corresponding to a bare cable are

fn = 0.5− 0.1 cos η + 0.1 sin η − 0.4 cos 2η − 0.11 sin 2η (56a)

ft = 0.01
(
2.009− 0.386η + 1.9159η2 − 4.162η3 + 3.506η4 − 1.187η5

)
(56b)

where η is the angle of attack between the cable and the flow [16]. The follow-

ing additional parameters were identified using the ANCF cable model: cable

bending stiffness EI, damping coefficient c and drag amplification factor G.475

The estimation of these parameters is described in the following section. Ad-

ditionally, a convergence study was performed to ensure the accuracy of the

simulations.

3.2. Parameter Estimation

The cable used in the flume tank tests was a nylon monofilament [35]. The480

previous work [28, 35] assumed an elastic modulus E of 3 GPa, however re-

ported values of the elastic modulus for Nylon 6-6, a material commonly used

in these lines, range from 0.7 to 5 GPa [37]. It is therefore necessary to es-

timate the bending stiffness empirically to avoid unrealistic curvature at the

winch transition.485

A test was conducted to approximate the elastic modulus using the same ca-

ble used in the initial experiment performed by Calnan et al. The test consisted

of clamping one end of a small length of the cable horizontally with a spherical

mass attached at the free end. The cable had a length of 46.4 mm measured

from the fixed point to the center of the sphere. A photograph, Figure 11 was490

taken of the cable profile in front of a grid of known spacing. Twenty-five points,

indicated by red circles, were selected graphically on the photograph and con-

verted from pixel coordinates to spatial coordinates based on the grid spacing.

The points were then be compared to the simulated cable profile.
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Figure 11: Photograph of clamped cable with manually selected points (left) and simulated
cable profile (right).

A golden section search over a range of E = 2 × 10−6 Nm2 to 6 × 10−6
495

Nm2 was used to minimize the sum of the squared distance between each point

and the simulated profile. Twenty cable elements were used to determine the

profile of the cable at equilibrium. The optimal value of E found by the search

was 1.40 GPa. Figure 11 shows the final simulated cable profile as a blue line

overlaid on the photograph on the right.500

In order to determine an appropriate damping coefficient c of Equation 19

for the current study, a simplified model was introduced to approximate the

relationship between the intrinsic damping and the damping coefficient. The

simplified system consists of a vertical cable clamped at the top. The bottom of

the cable is free and attached to a lumped mass. The cable and mass properties505

were kept the same as the parameters of the flume tank experiment listed in

Table 1. The cable was deflected a small amount and then released. The

damping ratio ζ is determined from the amplitude of successive peaks in the

horizontal displacement. The observed damping ratio was determined for a

range of damping coefficients from 1×10−4 to 10×10−4 Ns. The damping ratio510
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ζ and damping coefficient c were found to have a linear relationship over the

range. The equation of the line of best fit was determined to be ζ = 112.72c

(R2 = 1). Based on the damping ratio of 0.061 determined experimentally by

Calnan [35], the damping coefficient was selected to be 5.4×10−4 Ns.

The drag amplification due to vortex shedding is quantified in the model515

by the amplification factor G of Equation 24. This parameter was tuned based

on the mean tow body position recorded in the flume tank experiments with a

steady flow in the flume and no motion applied to the winch. The centroid of

the experimental towbody motion was [−0.708,−0.008,−0.685] m. The steady

state position of the was obtained by running the simulation with no noise or520

winch motion. The system was considered to have reached equilibrium when

the maximum velocity of any point on the cable is less than 1× 10−4 m/s. The

error was taken as the Euclidean distance between the steady-state towbody

position and the centroid of the experimental data. The amplification factor

was estimated using a golden-section search method over a range from 1 to 2.525

The identified value of the amplification factor G was 1.737 with an error of 5.0

mm. Having determined the model parameters, the number of ANCF elements

in the cable mesh is examined in the following section.

3.3. Cable Mesh

Since the elements in contact with the winch will have a much larger curva-530

ture than the rest of the cable, it is desirable to use a variable mesh such that

smaller elements are used for the contact region and larger elements are used

elsewhere. A variable mesh will minimize the number of elements required to

obtain convergence and thereby reduce the computational requirements of the

simulation.535

The cable is thus divided into two segments with segment 1 comprising

all points on the cable that may come into contact with with winch surface

throughout the motion and segment 2 comprising the remaining length of cable.

Figure 12 illustrates the two segments. The lengths of the two segments and

the nominal angle of rotation of the winch φnom measured from the vertical axis540
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were selected to give a cable length of 1.01 m measured the top of the winch

when the winch is in its nominal position. The selected segment lengths were

81.8 mm and 955.5 mm and the nominal winch rotation was 1.57 rad.

Figure 12: Cable segments and winch rotation.

Next, a convergence study was performed by successively increasing the num-

ber of elements in the two sections. The mesh for segment 1 was refined first,545

keeping the number of elements in segment 2 constant at 4 elements. Simula-

tions were performed using the simplified sheave algorithm for 20 seconds with

the number of elements in the first segment ranging from 4 to 16. Table 2 lists

the computation time for each simulation as well as the mean absolute error

(MAE) in the towbody position relative to the most refined mesh. The change550

in the tow body motion was found to be insignificant between the 12 element

and 16 element simulations with a mean difference of 0.156 mm. Thus 12 ele-

ments was selected for the first segment. The mesh for the second segment was

then refined, keeping the number of elements in the first segment constant at 12

elements. Again, 20 s simulations were performed with the number of elements555

ranging from 4 to 16. Referring to Table 3, the change in the towbody motion

was again found to be insignificant between the 12 element and 16 element sim-

ulations with a mean difference of 0.05 mm. Twelve elements was selected for

the second segment.
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Number of Elements 4 8 12∗ 16
MAE in towbody position (mm) 3.310 0.615 0.156 –

Computation time (min) 11.7 14.4 16.7 18.4

* Selected value for flume-scale simulation

Table 2: Convergence results for segment 1

Number of Elements 4 8 12∗ 16
MAE in towbody position (mm) 0.442 0.131 0.048 –

Computation time (min) 16.7 21.9 26.5 29.7

* Selected value for flume-scale simulation

Table 3: Convergence results for segment 2

3.4. Test Cases and Results560

For each simulation, an ellipsoid was fit to the trace of the towbody motion

such that it contained 95% of the data points. Calnan’s ellipsoid fitting algo-

rithm was used to fit the ellipsoid to the data. Figure 13 illustrates the principal

axes of the ellipsoid XE , YE and ZE . The ellipsoid fitting algorithm consists of

centering the ellipsoid coordinate frame at the centroid of the simulated data.565

A best fit line and best fit plane are then fit to the data. The ellipsoid frame

is rotated such that the XE axis is aligned with the best fit line and the XE

and YE axes are coplanar with the best fit plane. The radii of the ellipsoid are

scaled proportional to the variance along each axis until 95% of the points are

contained within the volume.570

Figure 13: Ellipsoid principal axes and absolute coordinate frame.

The simulation was first performed without motion of the winch and the
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motion of the towbody was determined. Figure 14 shows the simulated tow-

body motion as a blue line viewed from the side of the flume tank, while the

experimental body motion is plotted as an orange line and the towbody motion

simulated using the FSM model as a yellow line. Table 4 gives the results of575

the ellipsoid fitting and the standard deviation of the motion along each ellip-

soid axis. The percent errors compared to the experimental results are given

in parentheses. While the FSM simulation underpredicted the ellipsoid volume

by 58%, the current ANCF simulation overpredicted the volume by a similar

amount. The ANCF simulation better predicted the centroid of the towbody580

motion. The distance between the centroid of the experimental motion and the

simulation motion was 0.48 cm for the ANCF simulation and 1.59 cm for the

FSM simulation. In this test case, the motion of the towbody is due entirely

to variations in the flow velocity, which can not be accurately captured by the

model. These variations are significant at small scale, but are not expected to585

significant for a full scale system.

Figure 14: Motion of towed sphere with no winch motion.

Next, the simulation was first performed with winch motion but without

heave compensation. Table 5 compares the ellipsoid fitting results for the sim-
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Experimental FSM Sim. ANCF Sim.
Ellipsoid Volume (cm3) 4.82 2.04 (-58%) 7.76 (61%)
XE Std. Dev. (cm) 1.19 1.43 (20%) 1.56 (31%)
YE Std. Dev. (cm) 0.78 0.43 (-45%) 1.23 (58%)
ZE Std. Dev. (cm) 0.13 0.05 (-62%) 0.07 (-49%)

Table 4: Results for no winch motion test case. Error relative to experimental values in
parentheses.

ulated and experimental motion. The ANCF simulation agreed closely with

experimental ellipsoid volume with an error of only 1.7%, a significant improve-590

ment over the FSM simulation which had an error of -24%. Again, an improve-

ment was seen in the location of centroid of the towbody motion. The distance

between the centroid of the experimental motion and the simulation motion was

2.15 cm for the ANCF simulation and 3.25 cm for the FSM simulation.

Experimental FSM Sim. ANCF Sim.
Ellipsoid Volume (cm3) 182.84 138.51 (-24%) 185.96 (1.7%)
XE Std. Dev. (cm) 2.73 2.20 (-20%) 2.14 (-21%)
YE Std. Dev. (cm) 1.36 1.41 (3.8%) 1.55 (14%)
ZE Std. Dev. (cm) 0.88 1.04 (19%) 0.97 (10%)

Table 5: Results for uncompensated case with winch motion. Error relative to experimental
values in parentheses.

Finally, the motion was simulated utilizing the rigorous sheave and simplified595

sheave heave compensation algorithms. Figure 15 shows the towbody motion

for the rigorous sheave test case. Tables 6 and 7 give the ellipsoid fitting results

for the simplified and rigorous sheave test cases, respectively. In both cases

the ellipsoid volume predicted by the ANCF simulation was smaller than the

experimental volume, but a significant improvement over the FSM simulation600

was observed. For the simplified sheave case, the ellipsoid volume was 27%

smaller for the ANCF simulation and 51% smaller for the FSM simulation. For

the rigorous sheave case the volume was 22% smaller for the ANCF simulation

and 56% smaller for the FSM simulation. The standard deviation of the motion

along the ZE axis of the ellipsoid was significantly smaller in the simulation605

than in the experimental results for both simulations.
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Figure 15: Motion of towed sphere for rigorous sheave test case.

Experimental FSM Sim. ANCF Sim.
Ellipsoid Volume (cm3) 36.55 18.00 (-51%) 26.68 (-27%)
XE Std. Dev. (cm) 2.58 2.07 (-20%) 2.82 (9%)
YE Std. Dev. (cm) 1.29 1.18 (-8.5%) 1.67 (30%)
ZE Std. Dev. (cm) 0.28 0.13 (-52.5%) 0.12 (-58%)

Table 6: Results for simplified sheave case. Error relative to experimental values in parenthe-
ses.

Experimental FSM Sim. ANCF Sim.
Ellipsoid Volume (cm3) 24.92 11.07 (-56%) 19.55 (-22%)
XE Std. Dev. (cm) 2.42 2.08 (-13.9%) 2.42 (0.3%)
YE Std. Dev. (cm) 1.15 1.14 (-1.2%) 1.48 (28%)
ZE Std. Dev. (cm) 0.28 0.06 (-78%) 0.10 (-66%)

Table 7: Results for rigorous sheave case. Error relative to experimental values in parentheses.
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The ANCF simulations and the FSM simulations showed similar errors in the

centroid of the motion in both cases. For the simplified sheave case, the distance

between the centroid of the experimental motion and the simulation motion was

1.88 cm for the ANCF simulation and 2.14 cm for the FSM simulation. In the610

rigorous sheave case, the distance between the centroid of the experimental

motion and the simulation motion was 2.62 cm for the ANCF simulation and

2.32 cm for the FSM simulation.

In general, the ANCF simulation performed significantly better at predicting

the ellipsoid volume than the FSM simulation. Also, the ANCF simulation615

demonstrated less error in the location of the centroid of the motion for most

test cases. The ANCF performed best for the uncompensated case, with an

error in the ellipsoid volume of only 1.7%. The highest error was observed in

the case with no motion, with an error of 61%. One possible source of error in

the simulations can be attributed to the fact that the noise component of the620

flow velocity is the same at every point in the tank at a given time. Only the

mean component of the flow was varied as a function of depth. In reality, the

turbulence in the flow velocity is not uniform throughout the tank. This source

of error is likely to be most significant in the case with no winch motion, as the

motion of the towbody is governed only by the variation in the flow.625

In the next section, a case study of a full-scale sheave and winch system is

described which highlights the dynamic cable-sheave interaction.

4. Full Scale Simulation and Case Study

To demonstrate the capabilities of the techniques outlined in this paper for a

full scale system, a case study was performed. The system consists of a towbody630

connected to the vessel by a wire rope, as illustrated in Figure 1. In this case

study an overboarding sheave is considered. Table 8 lists the system parameters

used in the simulations. For a 30m test vessel, the ship motion was generated

using the experimentally validated ShipMo3D software package [30, 38], which

has also been used in NATO studies [39]. The wave conditions were modelled635
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using a unidirectional Bretschneider spectrum with a significant wave height of

3.25 m and a peak wave period of 9.7 s. Twelve test cases consisting of various

headings and ship speeds were used. The conditions at which cable detachment

are likely to occur were then determined.

Parameter Value
Cable Diameter 10 mm

Cable Mass per unit length 0.389 kg/m
Cable length (nominal) 450 m

Towbody net weight 445 N
Towbody mass 250 kg
Sheave radius 0.25 m

Sheave groove depth 10 mm [40]
Sheave throat angle 60◦ [40]

Winch radius 0.30 m
Sheave position relative to ship CG [-15, 0, 3.5] m
Winch position relative to ship CG [-12, 0, 3] m

Table 8: Full scale system parameters.

The length of the cable is 105m and consists of steel wire rope with hard

streamlined fairings attached. Hard fairings serve to reduce the drag force acting

on the cable, thereby increasing the depth of the towbody and also having the

effect of reducing the cable tension. For cables with hard fairings, the emprical

loading functions fn and ft of Equation 22 are

fn = −1.572 + 1.737 cos η + 2.407 sin η − 0.165 cos 2η − 0.781 sin 2η (57a)

ft = −0.116 + 0.464 cos η + 0.116 sin η (57b)

where η is the angle of attack between the cable and the flow [41]. These loading640

functions are based on a constant drag coefficient CD of 0.25.

The towbody consists of a cylindrical shell with a hydrofoil attached which

produces a downwards force. The cylindrical shell and hydrofoil are treated

independently for the purposes of determining the drag force coefficient and

interference drag between the bodies is neglected. It is also assumed that the645

orientation of the body is constant throughout the motion and the axis of the
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cylindrical shell is align with the flow along the x-axis of the absolute coordinate

frame. The cylindrical shell has a diameter of 300 mm and a length of 3 m. For

axial flow along the horizontal x-axis the drag coefficient for a blunt cylinder

is 0.85 [42]. For flow normal to the cylinder, along the y and z-axes, the drag650

coefficient is 1 [43]. For the hydrofoil, a NACA2412 cross-section with an area of

0.5 m2 and angle-of-attack of -6◦ is assumed. For flow along the vertical z-axis,

the hydrofoil is treated as a flat plate with a drag coefficient of 1.17 [42]. For

flow along the x-axis, the drag coefficient of the wing is 0.008 [43]. The drag

on the hydrofoil is assumed to be negligible for flow along the y-axis. The lift655

acting on the hydrofoil is calculated using a lift coefficient of -0.6 [43], giving a

lift force of -722 N at steady state. An added mass coefficient of 1, based on the

strip theory solution for a cylinder in normal flow [44], is used for accelerations

along the y and z-axes. Added mass along the axis of the towbody is neglected.

An experiment by Ramberg and Griffin [45] examined the internal damping660

of marine cables and showed that their is an inverse relationship between cable

tension and the damping ratio. Damping ratios for wire ropes can range from

less than 0.1% when under tension [46] up to 37% for slack cables [47]. A

damping ratio of 10% was assumed for this principal simulations documented in

Section 4.2. Additionally, the effect of varying the damping ratio on the cable665

behavior will be examined. The relationship between the damping coefficient

c and the damping ratio ξ was estimated using the same process described

in Section 3.2 for the flume scale system. The relationship was found to be

c = 1.196× 103ξ (R2 = 1).

4.1. Convergence Analysis670

To ensure that the selected mesh size would provide accurate results, a con-

vergence study was performed. The cable was first divided into two segments

to allow for the mesh size for the region in contact with the sheave and winch

and the region submerged behind the vessel to be selected separately. A more

refined mesh can thus be used in the contact regions to ensure that the contact675

forces are calculated accurately, while larger elements can be used elsewhere, in
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order to provide a reasonable computational efficiency. Figure 16 illustrates the

two cable segments, where segment 1 has a length of 5m and segment 2 has a

length of 100m.

Figure 16: Cable segments for full scale simulation

The number of elements in segment 2 was varied first with the elements in680

segment 1 held constant at 10. Table 9 gives the mean cable tension for each

mesh configuration as well as the computation time to simulate 30 seconds of

motion. For each configuration, the cable tension time series was compared to

the time series for the 30 element configuration and the mean absolute error

between the two was calculated. From these results, it is observed that increas-685

ing the number of elements from 8 to 30 results in a mean change of only 1.26

N, but a 54% increase in the computation time. As this change is insignificant

compared to the mean cable tension, 8 elements are used in the final simula-

tions. The process was repeated for segment 1, the portion of cable in contact

with the sheave and winch. In addition to the change in tension, the change690

in the contact force between the cable and the sheave was examined. In order

to quantify an “overall” contact force magnitude, the norm of the contact force

vector is integrated over the length of the element and then summed for each

element making up the cable:

Fcontact =
∑

i∈{1,2,...,Ne}

∫ L

0

||fN (p)||dp, (58)
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where Ne is the total number of elements. The results for segment 1 are shown695

in Table 10. Very little change in the tension is observed. Increasing the number

of elements from 60 to 100 results in a mean change of 12.1N, which is less than

1% of the average contact force over the 30s interval, but results in a significant

increase (58%) in computation time. Thus, 60 elements were used in the final

simulations.700

Number of elements 2 4 6 8∗ 10 20 30
Mean Tension (N) 1682 1671 1667 1664 1662 1662 1663

MAE in Tension (N) 19.63 9.04 4.03 1.26 0.70 1.18 –
Comp. Time (s) 921 966 1007 1025 1029 1255 1583

* Selected value for full scale simulation

Table 9: Convergence results for segment 2

Number of elements 20 40 60∗ 80 100
Mean Tension (N) 1661 1661 1661 1661 1661

MAE in Tension (N) 0.257 0.084 0.022 0.012 –
Mean Contact Force (N) 1869 1867 1858 1851 1846

MAE in Contact Force (N) 33.8 23.8 12.1 4.8 –
Computation Time (s) 1342 1730 2289 2796 3616

* Selected value for full scale simulation

Table 10: Convergence results for segment 1

4.2. Results

The cable motion was simulated for a total of 12 test cases with ship speeds

of 6, 8 and 10 knots and various ship headings relative to the wave direction.

For each case, the motion was simulated for 60s. The time series of cable tension

at the sheave was then calculated for each case. Additionally, it was determined705

whether or not the cable detached from the sheave by observing if the overall

contact force given by Equation 58 reached a value of zero during the simulation.

Table 11 summarizes the results.

Cable detachment was observed in only one test case: Run 2. Figure 17

shows the time series of the contact force for Run 2. Detachment, in which the710

contact force disappears, is observed at 32.3 s. Figure 18 is a graphical repre-
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Run 1 2 3 4 5 6
Ship Velocity (knots) 6 6 6 6 8 8

Ship Heading (degrees) 30 60 120 165 30 60
Minimum Tension (kN) 0.263 0.026 0.921 1.163 0.693 0.252

Mean Tension (kN) 1.711 1.660 1.658 1.621 2.034 2.040
Maximum Tension (kN) 4.642 4.245 2.518 2.043 3.909 4.037

Detachment No Yes No No No No
Run 7 8 9 10 11 12

Ship Velocity (knots) 8 8 10 10 10 10
Ship Heading (degrees) 120 165 30 60 120 165
Minimum Tension (kN) 1.544 1.736 1.145 1.295 2.118 2.101

Mean Tension (kN) 2.000 1.981 2.577 2.557 2.521 2.556
Maximum Tension (kN) 2.577 2.170 4.022 4.290 2.923 3.066

Detachment No No No No No No

Table 11: Results of full scale simulations

sentation of the cable and winch during Run 2 and illustrates the detachment as

a function of time. A main limitation of these results is that only 60 seconds of

motion was simulated for each case, which may not represent the worst possible

ship motion under the conditions examined in the twelve test cases.715

Since there is a great deal of uncertainty regarding the internal damping

ratio of the cable, which is largely dependent on the cable tension, additional

simulations were performed with different damping ratios. Damping ratios of

2.5, 5, 10 and 20% were used and the ship motion was consistent with Run 2

from Table 11. Table 12 summarizes the results for each case. Detachment is720

observed with damping ratios of 10 and 20%. As the damping ratio is increased,

the observed minimum tension decreases, thus increasing the likelihood of de-

tachment. As noted before, the damping ratio increases with decreasing tension.

This relationship between the tension and damping is likely to exacerbate the

occurrence of cable detachment, and is thus an important area of interest for725

future work.

The conditions considered in this study—a small vessel in rough seas—

represent a very severe case. Detachment of the cable from the sheave is thus

unlikely during most towing operations when the body is at depth. The likeli-

hood of detachment would be more significant during the launch and recovery730
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Figure 17: Cable tension and contact force as a function of time for Run 2.

Damping Ratio 2.5% 5% 10% 20%
Minimum Tension (kN) 0.114 0.057 0.026 -0.007

Mean Tension (kN) 1.673 1.673 1.660 1.645
Maximum Tension (kN) 4.215 4.215 4.245 4.211

Detachment No No Yes Yes

Table 12: Results of full scale simulations with damping ratio varied.

stage, when the length of cable payed out is small. With a short length of cable

the total drag acting on the cable and therefor the cable tension are significantly

reduced. Additionally, reeling out the cable would cause the cable to slacken,

which may lead to detachment. Actuation of the winch when applying motion

compensation may also influence the variations in tension. Motion compensa-735

tion was not examined in this study as the low tension and high damping caused

the cable to exhibit undesirable rotations at the pin joint connecting the cable

to the winch drum. A more accurate model of the cable-winch interaction—

one which incorporates the tangential friction forces and pretensioning of the

cable—is required in order to accurately model the cable behavior with motion740

compensation.
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Figure 18: Graphical depiction of cable detachment for Run 2. The sheave and winch are
depicted as red circles. Axes are in meters.
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5. Conclusion

In this work, a finite element model of a towed cable system with dynamic

cable-sheave and cable-winch interactions was presented. The Absolute Nodal

Coordinate Formulation was utilized for modelling the cable elements and a745

contact penalty approach was used to describe the contact forces. A novel three-

dimensional formulation of the contact between the cable and sheave groove was

shown. Additionally, the model incorporates hydrodynamic drag and added

mass and internal cable damping.

The performance of the simulation at predicting the towbody motion was750

assessed based on existing small-scale data. The ANCF simulation was com-

pared both with the experimental towbody motion and the results of a previous

Finite Segment Method (FSM) simulation. The ANCF model demonstrated

good agreement with the experimental motion, predicting the volume of the

enclosing ellipsoid to within 2% for the un-compensated case and within 27%755

for the cases with motion compensation. The ANCF model also demonstrated

a significant improvement over the FSM model. Finally, a case study was con-

ducted to examine the behavior of the model at full scale and to demonstrate

dynamic contact behavior between the cable and sheave, including detachment

of the cable from the sheave, during towing operations. Twelve test cases were760

considered and detachment was observed in one case.

Future work is suggested to address the variation of cable damping with

tension. Additionally, the simulation may be further developed to examine the

potential for cable detachment during launch and recovery. A more complex

cable-winch interaction which incorporates the tangential contact forces is also765

needed in order to accurately model the cable behavior with motion compensa-

tion. Finally, additional validation of the model may be performed at full scale

using measurements of the towbody motion and cable tension during a towing

operation.
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[5] Buĺın R, Hajžman M, Polach P. Nonlinear dynamics of a cable-pulley sys-

tem using the absolute nodal coordinate formulation. Mechanics Research790

Communications. 2017;82:21–28.
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