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Abstract— This paper presents a continuously differentiable
friction model based on the Quinn regularization of the
Coulomb model in order to improve numerical performance
for simulating dynamic systems using implicit ODE solvers.
The implementation of the friction model for simulations of
cable-pulley and cable-winch contact is demonstrated using the
nonlinear Absolute Nodal Coordinate Formulation. Frictional
contact between the cable and a dynamic surface is imple-
mented using a Lagrange multiplier formulation. Examples of
simple a capstan and a motorized pulley system are provided
to demonstrate the stick-slip behavior of the model and the
performance improvement over the original Quinn model,
respectively. Using the ODE solver odel5s, the computation time
was reduced by factors of 4.5 to 18.8 depending on the model
parameters. The proposed model can be used to model and
verify the behavior of dynamics systems in control applications.

I. INTRODUCTION

Accurate simulation of mechanical systems often requires
incorporating the dissipative and sticking effects due to
friction. Implementing friction in numerical simulations can
be difficult due to its discontinuity at zero velocity. Many
approaches for modeling friction have been developed in-
cluding continuous velocity-dependent models such as the
Dahl [1] and LuGre [2] models, which are simple to imple-
ment in simulations but do not capture the sticking behavior.
Elastic or bristle friction models permit an elastic pre-sliding
displacement in the sticking phase [3], however they tend to
be inefficient due to their complexity and oscillatory behavior
[4]. Regularizations of the classical Coulomb friction model
have been developed by Karnopp [5] and Quinn [6] in order
to balance accuracy and numerical performance, while also
preserving the desired sticking behavior.

In particular, Quinn [6] proposed a continuous regulariza-
tion of the Coulomb model to eliminate chattering behavior
exhibited by discontinuous models such as the Karnopp
model [5]. However, due to fact that the model is not con-
tinuously differentiable, one may encounter poor numerical
performance using implicit ODE solvers which require the
computation of the Jacobian of the external forces. Thus, a
contribution of this work is a modified model, referred to as
the Continuously Differentiable Quinn (CDQ) model, which
ensures differentiability of the friction force over the entire
domain.

The proposed model can be used in place of the Quinn
model and other Coulomb regularizations to simulate the
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behavior of dynamic systems which exhibit stick-slip behav-
ior such as robot joints, actuators and clutches. Simulations
could then be used to develop and tune control algorithms in
order to avoid undesirable behavior. Additionally, the friction
model may be suitable for nonlinear model-based control
methods such as Internal Model Control in which smoothness
of the dynamic model is required [7].

One potential application is for simulating the cable-
surface interactions in winch and pulley systems. The friction
model can be used to simulate dynamics variations in the ca-
ble strain and contact forces. A simulation of these behaviors
can then inform the development of control algorithms in
order to mitigate undesirable behavior such as “bird-caging”
due to detachment of the cable from the winch surface. The
model can also be used to improve towed and vertical Active
Heave Compensation systems [8], [9].

The authors previously developed a simulation [10] -
[12] of cable-pulley and cable-winch systems utilizing the
Absolute Nodal Coordinate Formulation (ANCF) to model
the cable dynamics. The previous model did not include
tangential friction, thus the second contribution of this work
is an implementation of stick-slip friction between the cable
and winch surface for ANCF cable elements. The proposed
approach utilizes Lagrange multipliers to determine the mag-
nitude of the force required to enforce the desired stiction
behavior.

The next section contains a description of the Coulomb
model of friction along with the Karnopp, Quinn and CDQ
regularizations. Section III describes the ANCF cable model
and the implementation of the friction force. In Section 1V,
simulations are performed to examine the model behaviors
for simple systems and the computational performance of
each friction model are compared. The paper ends with
concluding remarks in Section V.

II. FRICTION MODELLING

The classical model of friction or the Coulomb model
comprises two cases, sliding and sticking. In the sliding case,
the relative velocity v between the two surfaces is non-zero
and the friction force Fy is

F; = —puFnsgn(v), (1)

where (i is the friction coefficient and Fy is the normal force.
In the sticking state, the relative velocity is equal to zero and
the friction force is

Fy = —min(uFy, |[Feg|)sgn(Feq), 2)
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Fig. 1: Surface plots of (a) Coulomb model, (b) Karnopp model, (c) Quinn model, and (d) proposed Continuously
Differentiable Quinn model with o« = 0.9 and g = 1.1. The curve at v = 0 is shown as a solid blue line.

where F¢, is the sum of all other forces acting on the body
in the direction tangential to the surface. Fig. la illustrates
the Coulomb friction model and the relationship between F,
F,y and v. The blue line represents the friction force curve
at zero velocity from (2). At a non-zero velocity the friction
force is independent of the applied forces F,, and has a
constant magnitude, depending only on the direction of the
sliding velocity v.

In a dynamic simulation, the sliding velocity v will not
reach an exact value of zero due to limited numerical pre-
cision, thus implementations of stick-slip friction typically
utilize a regularization of the Coulomb model, such as the
Karnopp model [5]. Using the same axes as before, Fig. 1b
illustrates the Karnopp friction model where a finite region
—e < v < € is defined in which the velocity is treated as
having a value of zero. Thus, the friction force is defined

_Fe 5 lf v S €
Fr=9_ % vl= 3)
—uFpnsgn(v), otherwise.

The numerical solution of dynamics problems utilizing the
Karnopp friction law can be difficult due to the discontinuity
of the model at |v| = € resulting in chattering, or repeated
transitions between sticking and slipping states. In order to
address this shortcoming of the Karnopp model, various con-
tinuous definitions of the friction force have been developed.

To eliminate the discontinuity in the Karnopp model,
Quinn [6] proposed a new regularization of the Coulomb
friction model which has the form

pEND e
—_— flo] <
LR "
—uFysgn(v), if || > €
where
eF, .
v+ 7 if |Foq| < uN
5= 1 Fx |Feq| < p 5)
v+ esgn(Fey), if [Feq| > uN.
Fig. 1c illustrates the Quinn model along the v, F, and F

axes. The discontinuities of the Karnopp model are removed,
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while the behavior of the Coulomb model at zero velocity,
represented by the solid blue line, is preserved exactly. A
shortcoming of Quinn’s model is that it is not continuously
differentiable, due to the piece-wise definitions of the friction
force F'y and velocity parameter ©. The slope discontinuities
can make numerical solution of the equations of motion dif-
ficult when using implicit time-stepping algorithms, such as
MATLAB’s ODE suite [13], as the Jacobian of the external
forces may become undefined due to the slope discontinuity.
Thus, a modifications to Quinn’s model is proposed in the
following section in order to ensure the friction force is
continuously differentiable in the entire domain.

A. Proposed Regularization

Equivalent to the form of the Quinn friction model in
equation (4), a proposed alternate form is written as

Fy = —pFyh(D/e), (6)

where h(v/€) is a piece-wise linear sigmoid function given
x7

by
XL

Using equation (7), the equation for the modified velocity v
can also be written

if 2| <1

otherwise.

)

®)

In order to make a continuously differentiable friction
model, a modification to the Quinn model is proposed by
replacing the piece-wise linear sigmoid function h(z) with
a smooth sigmoid function defined

v = v+ eh( eq/ﬂFN)

x, if |2| <«
, ifa<z<
T ©)
po(z), if —a>xz>-0
sgn(z), if|z|>p

where o and 3 are parameters which define the boundaries
of the linear and nonlinear regions and p;(z) and pa(x) are
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cubic polynomial functions satisfying p;(a) = —pa(—a) =
o, p1(B) = —pa(—B) = 1, pi(a) = ph(—a) = 1, and
p1(8) = p5(—p) = 0. Fig. 2 illustrates the proposed sigmoid
function along with the piece-wise linear function used in
Quinn’s model along with the boundaries of the piece-wise
segments.

In the region —a < x < a, the proposed sigmoid function
is identical to the original piece-wise function. Thus, the
sticking behavior of the Coulomb friction model, where the
friction force exactly opposes the externally applied forces, is
preserved in the region |Feq|/puF'n < . Furthermore, in the
limit as @« — 1 and 8 — 1, the proposed model converges
to the original Quinn model. Fig. 1d illustrates the proposed
friction model with a = 0.9 and 8 = 1.1. Note that at zero
velocity, the friction force saturates at a velocity smaller than
the Coulomb force magnitude. As the system begins to slip
and the sliding velocity increases the force quickly converges
to the desired magnitude.

To examine the behavior of the proposed friction model
and demonstrate its potential applications, the Quinn and
CDQ friction models are implemented in a previously de-
veloped simulation of a flexible cable using nonlinear ANCF
finite elements.

III. ANCF CABLE MODEL

The cable model used to examine the proposed friction
model utilizes the Absolute Nodal Coordinate Formulation
[14] with each element comprising two nodes. Fig. 3 illus-
trates the ANCF element where the shape of the element
is defined as a function of the parameter p € [0,L] by
a cubic Hermite spline. Four vectors make up the element
degrees of freedom: the Cartesian (absolute) position of each
node r(0) and r(L) and a slope vector tangent to the cable
centerline at each node r,(0) and r, (L), where r, = Or/0p.
The coordinates of an internal point on the element can
be obtained by interpolating between the nodal coordinates
using a cubic shape function matrix S(p),

2]T.

r(p) =S(pla=[z y (10)

where L is the unstretched cable length, q is the vector of
generalized coordinates given by

a=[rO" 50" (@0 Lo ay

h(x)

= Smooth

==== Piecewise Linear

—a

Fig. 2: Smooth sigmoid function (solid) and piece-wise linear
sigmoid function (dashed)
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Fig. 3: Tllustration of a planar ANCF element.

and the shape function S(p) is

(1-3¢2+2¢3) 1"
(-2 + &)1
(362 — 2631
(& +&)1
where £ = p/L is the arc parameter normalized by the
element length and I is an identity matrix.
The generalized Newton-Euler equations are given for a
single element as

S(p) = (12)

Mq + Qint - Qext - Qc = 07

where M is the mass matrix, Qi,¢ is a generalized internal
force vector, Qext is a generalized external force vector and
Q. is a constraint force. The internal force comprises the
axial and transverse elastic forces and a damping force. The
external force is the sum of the gravitational self-weight and
the normal contact force. The constraint force will be used
to enforce the stiction behavior of the surface contact. The
definitions of each force is described in the following section.

13)

A. Mass Matrix and Internal Forces

Using a variational mass lumping approach the mass
matrix M is derived directly from the element kinetic energy
PK

[14] and is given by
pAS(p
" 0494 /

where K is the kinetic energy of the element, p is the cable
density and A is the cable cross-sectional area.
Similarly, the elastic forces Q. are derived from the strain
energy U of the element [15] and are given by
ou Ok
BAcZE +Elk 7q

L
07(1:/0 [ dq

where F is the Young’s modulus of the cable material, A is
the cross-sectional area, [ is the second moment of area, ¢ is
the longitudinal strain, and k is the curvature of the element.
The element curvature can be approximated by [15]

(p)dp, (14)

Oe

Q. = 5)

dp,

(16)

K& [Tppl.

For the longitudinal strain €, Berzeri and Shabana [15]
suggest the Green-Lagrange strain defined as

1

=3 (17)

[(Spa)” (Spa) — 1] .
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The internal damping force Qg serves to include internal
energy dissipation as well as improve the numerical stability
of the simulation. The damping force is based on a Rayleigh
dissipation function R representing one-half of the power
dissipated during the motion given by

L
R=1/2 [ cli, i) ()
0
where c is a damping parameter and 1, is the rate of change
of the slope vector. Thus, energy is dissipated when the cable
undergoes bending or axial deformations. The damping force
can be written as

OR Lo .
The integral in equation (15) is evaluated using a five point
Guassian quadrature at each time step, whereas the integrals
in equations (14) and (19) are constant and are evaluated
symbolically at the start of the simulation.

B. External Forces

The external force vector Q.. is the sum of the gravita-
tional force Qg and the normal contact force Q.

The gravitational force is determined by integrating over
the length of the element

L
Qg = pA /O S gdp, (20)
where pA is the mass per unit length and g is the gravity ac-
celeration vector. As with the mass matrix, the gravitational
force is constant and the integral is evaluated symbolically.
The normal contact force, in contrast, is concentrated at
the first node of each element and is given by

Qy =S(0)"Fy,

where F  is a point force determined using a elastic penalty
contact model. In the penalty method, the node is allowed to
penetrate into the surface. The contact force is then defined
as a function of the relative penetration §. This work utilizes
the Hunt-Crossley contact model [16] where the surface is
represented as a nonlinear spring-damper and the contact
force Fp is

21

Fy = kno"(1+ Dd)uy, (22)

where up is the unit vector normal to the sheave surface at
the point of contact, ky is the contact stiffness, § is the
relative penetration of the node into the surface, D is a
contact damping coefficient and n is a positive constant. For
planar cable-winch or cable-pulley contact, the penetration ¢
is

5: HI‘*I‘OH*R, 1f||r7r0‘|<R (23)
0, otherwise,
where R is the radius of the winch or pulley.
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The magnitude of the contact force Fy = ||F /|| is used
to determine the magnitude of the tangential friction force as
described in Section II. The implementation of the tangential
friction force in the ANCF model is described in the next
section.

C. Friction Force

The friction forces are incorporated in the model in the
form of an acceleration constraint using a method proposed
by Udwadia and Kalaba [17] to calculate the magnitude
of the constraint force. In the Udwadia-Kalaba method, a
constraint of the form

A(q,q,t)q =b(q,q,t) (24)

is defined. The force Q. applied to the system in order to
satisfy the acceleration constraint is defined by introducing
a vector of Lagrange multipliers A such that

Q.=-A"\ (25)

The Lagrange multipliers are obtained by substituting q =
A~1b from equation (24) and the definition of the constraint
force from equation (25) into equation (13). The Lagrange
multipliers are thus

A=[AM A7) (Aa—D), (26)

where a is the associated accelerations of the unconstrained
system,

a= M71 (Qemt - ant) .

To implement the tangential friction using the Udwadia-
Kalaba, the following acceleration constraint equation, which
relates the axial acceleration of the node to the tangential
surface acceleration, is proposed:

27)

t7'S(0)§ — a; = 0, (28)

where S(0)q is the acceleration of the node, t is the unit
tangent vector aligned with the cable’s longitudinal axis,
and a; is the tangential acceleration of the surface at the
contact point. The constraint can be put directly in the form
of equation (24) with A = t7S(0) and b = a;.

Once the vector of Lagrange multipliers is obtained, they
are modified according to the friction models described in
Section II in order to allow for the sliding behavior. Since
the Lagrange multiplier represents the magnitude of the force
in violation of the constraint, it can be substituted for the
external force F,. The normal force Fy is obtained from the
magnitude of the penalty force determined by equation (22).
Finally, the magnitude of the friction force F; calculated
from equation (6), is then substituted for —\ in equation
(25).

For a cable-winch system, the surface acceleration is given
by

ar = wR, (29)
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where w is the rotational velocity of the winch and R is the
winch radius. The sliding velocity v is determined from

v=1t7S(0)q — wR. (30)

In this work, the winch acceleration w is determined from
a desired time-varying setpoint 64(¢) using a PD control law,

w= kp(é)d — 9) + kd(wd — w), 31

where k, and k; are constant gains and 6 is the angular
position of the winch, measured from the vertical axis. In the
following section, simple cable-winch systems are simulated
to examine the behavior of the friction implementation.

IV. SIMULATIONS AND RESULTS

To demonstrate the behavior and performance of the
ANCF implementation and to compare the proposed friction
model with the Quinn model, two scenarios are examined.
First, a fixed drum or capstan with forces applied to the cable
ends is simulated to demonstrate the stick-slip behavior of
the friction model. Second, a rotating pulley is simulated
and the computational performance of the proposed model
is compared with the Quinn model. The simulations are
performed in MATLAB. The ODE solver used for the
simulations is the implicit, adaptive solver odel5s.

The cable parameters used for this analysis were taken
from previous work [10] and are listed in Table L.

TABLE I: Simulation parameters.

Parameter Value
Winch radius, R 0.25 m
Contact penalty, kn 5 x 10 N/m
Contact damping parameter, D 1 Ns/m
Contact exponent, n 1.5
Coefficient of friction, p 0.25
Friction regularization coefficient, € 0.01 m/s
Cable longitudinal stiffness, £ A 9.2 x 106 N
Cable cable bending stiffness, £ 0.7 Nm?
Cable density, p 5.8 x 1073 kg/m3
Cable diameter, d 0.01 m

Scenario I: Capstan (Static Surface)

In the first scenario, the winch is fixed with disparate
loads applied to the two ends of the cable. The winch thus
functions as a capstan, where the friction serves to resist the
load applied to one end of the cable. Fig. 4a illustrates the
system consisting of a cylindrical drum supporting a cable
with loads F; and F5 applied to the two cable ends. The
capstan equation gives the ratio between the load F5, and the
holding force F} at the point of slipping

Fy/Fy = et?, (32)

where p is the coefficient of friction and ¢ is the wrap angle
of the cable around the drum. For the system shown in Fig.
4a, the wrap angle has a nominal value of ¢ = 7. With a
coefficient of friction of p = 0.25, the maximum ratio before
slipping occurs is thus 2.19.
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(a)

(b)

Fig. 4: Diagram of (a) capstan system and (b) motorized
pulley system.

In order to demonstrate the ability of the friction imple-
mentation to capture the desired stick-slip behavior, tests are
performed by fixing the holding force F) and varying the
loading force F5, until the cable begins to slip. For these
tests, the holding force F} was set at 98.1 N. Forty elements
were used for the simulations. For the CDQ friction model,
the friction parameters « and [ were selected such that
B = 2 — «. Simulations were performed with « values of
0.5, 0.75, 0.9, 0.95 and 0.99.

Table II summarizes the results of the simulations under
the Scenario I column. For the Quinn friction model, the
cable began to slip at a force ratio of 2.24, while the
proposed model slipped at ratios between 1.52 and 2.22.
As expected, the proposed model sustains a lower amount
of force, as the force saturates at a value smaller than the
Coulomb force pFy, whereas the Quinn model saturates at
the Coulomb force. As the parameter « is increased and
the CDQ model converges towards the Quinn model, the
force ratio increases. It is also noteworthy that the Quinn
model overestimates the slipping point. This error is likely
due to nonlinearity in the normal contact force distribution
that are not considered in the capstan equation. Fig. 5 shows
the contact force distribution as a function of the contact
angle of a 20, 40, and 60 element ANCF model and the
linear assumption used in the capstan equation. The capstan
equation considers only a linear distribution of the contact
force, however in the ANCF simulation the contact force is
nonlinear due to the bending stiffness and elastic definition
of the normal forces. As the number of elements in the
model increases, the amplitude of the variations diminishes,
however the nonlinearity cannot be removed entirely. The
ANCEF model therefore will not exactly replicate the slipping
behavior predicted by the capstan equation.

Scenario II: Motorized Pulley (Dynamic Surface)

The second scenario shown in Fig. 4b consists of a rotating
pulley with a small mass attached to both ends of the cable.
The desired rotation of the winch as a function of time 6(t)
is selected to follow a cycloidal profile with amplitude a =
7/4 and simulation time 7 = 10 s and can be written as

4

w(t) = = — L sin(2rt /7).

T 27 (33)

Fig. 6 shows the simulated displacement of one of the
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Fig. 5: Contact force distribution as a function of contact
angle for the ANCF model with varying number of elements
and linear model.

Scenario 1 Scenario 2
Model Force Comp. RMS
Ratio Time (s) Error (m)

Quinn 224 22804 -
CDQ (o = 0.99) 222 5029 2.30 x 10~°
CDQ (a = 0.95) 2.16 1938 3.82 x 107°
CDQ (a = 0.90) 2.08 1741 5.74 x 1075
CDQ (o = 0.75) 1.80 1428 7.94 x 1075
CDQ (o = 0.50) 1.52 1216 1.64 x 10~4

TABLE II: Simulation results for Scenarios 1 and 2. RMS
error for Scenario 2 is calculated relative to the Quinn friction
model.

masses for the Quinn model and the CDQ model with
o 0.9 as a function of time. Table II summarizes
the results for the simulations in the Scenario II columns.
The results obtained using the CDQ model are effectively
identical to the Quinn model, with RMS errors ranging from
2.3 x 107% to 1.6 x 10™* m; however, the Quinn model
required a computation time of 22804 s using odel5s, while
computation times for the proposed model ranged from only
1216 to 5029 s, an improvement by a factor of 4.5 to 18.8.

E 02

E ——CDQ Model (a=0.9)
E 0.15 = = =Quinn Model

=)

]

C‘i

5 01

S

2

&

A 0.05

=

2

5

> 0 -

=]

]

4 6

Time (s)

Fig. 6: Vertical displacement of load for motorized pulley
simulation.

V. CONCLUSION

In this paper, a method was proposed for incorporating
stick-slip friction models in simulations of cable-pulley
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and cable-winch interactions. In addition, a continuously
differentiable regularization of the Coulomb friction model
was proposed. The results of this study demonstrate the
feasibility of the proposed approach. For a simple test case
using the implicit ODE solver odel5s, the proposed model
exhibited an improvement in the computation time over the
standard Quinn model by a factor of at least 4.5 and up to a
factor of 18.8. Future work will focus on implementing the
friction model in a full scale simulation of a shipboard winch
system [10]. Alternative ODE solvers may also be examined
and implemented in order to improve the computational
performance. Finally, the proposed model should be validated
using experimental measurements for critical applications.
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