
Efficient Semi-Implicit Numerical Integration of ANCF
and ALE-ANCF Cable Models with Holonomic

Constraints

Cassidy Westin∗, Rishad A. Irani

Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel
By Drive, Ottawa, Canada, K1S 5B6

Abstract

In this paper, a method for integrating the equations of motion for Abso-

lute Nodal Coordinate Formulation (ANCF) cable models using the Arbitrary

Lagrangian-Eulerian (ALE) framework is described. The proposed semi-implicit

method, based on a linearization of the generalized forces, eliminates the need

for iterative solution methods required by implicit integrators and incorporates

rigid holonomic constraints. Both the constraint forces and the generalized

accelerations can be obtained in a single step using a linear solver greatly im-

proving the computational efficiency. Four semi-implicit integrators are de-

rived based on popular implicit methods. The paper examines the suitability of

the four semi-implicit integrators for real-time cable simulations through three

benchmark studies, comparing both the accuracy and computation speed of the

method with the fully implicit Newmark method. The efficiency of the method

is demonstrated by obtaining stable real-time simulations in each scenario con-

sidered.
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1. Introduction

Dynamic simulations of flexible bodies such as cables and ropes enable engi-

neers to examine their behavior under a variety of conditions. Real-time Finite

Element (FE) simulations have been suggested [1] as a way to produce simulated

data such as cable tension and displacement during an operation, eliminating5

the need for physical measurements; however, these real-time simulations have

yet to be realized. In order to achieve a real-time FE simulation, both the

FE model and the numerical integration method for incrementing the dynamic

model at each time-step must be considered. This paper addresses the need for

an efficient algorithm to achieve real-time simulations of flexible cables.10

Various methods have been proposed to model flexible cables, including con-

tinuous mathematical models [2, 3], rigid body models [4], and discrete FE

methods [5]. The Absolute Nodal Coordinate Formulation (ANCF) [6] is a pop-

ular nonlinear FE method which has been employed by numerous researchers to

model various cable systems including marine towed cables [7, 8], cable-pulley15

systems [9, 10, 11], and mooring lines [12].

Hong et al. [13] proposed a generalization of the ANCF method which

utilizes an Arbitrary-Lagrangian Eulerian (ALE) formulation. The ALE-ANCF

decouples the motion of the cable material from the motion of the Finite Element

mesh. Using the ALE method, element lengths can change dynamically and20

material can flow through fixed FE nodes. As a result, fewer elements are

required to model complex cable systems such as cranes [14], reeving systems

[15], and variable-length, deployable cables [16, 17]. In a trade study evaluating

various cable modelling techniques, Fotland et al. [14] identify the ALE-ANCF

as the most suitable option for creating a real-time simulation of a shipboard25

crane due to its efficiency, accuracy and the ability to dynamically vary the

cable-length, however the method was not implemented by the researchers.

Few studies have examined simulating cables in real-time using ANCF and

ALE-ANCF methods. One of the principal challenges in developing a real-

time simulation is finding an appropriate numerical integration method. The30
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majority of numerical integration techniques can be described as either explicit

or implicit. Explicit methods use only the system states at the current time-

step to determine the states at the next time-step. For implicit methods, the

solution is a function of the states at both the current and next time-steps.

In general, simulations of stiff bodies such as cables utilize implicit time-35

stepping equations which are solved using an iterative algorithm [18] as implicit

methods often provide unconditional stability [19]. Implicit methods typically

utilize a variable time-step in order to satisfy a user-specified error tolerance.

Additionally, they require an iterative solution method, such as the Newton-

Raphson algorithm, in order to solve the implicit time-stepping equations. Im-40

plicit methods are thus undesirable for real-time simulation as the computation

time required to increment the model a certain period of time may vary signif-

icantly based on the number of iterations required at each time-step and the

size of the time-step itself. Numerous studies have utilized implicit integra-

tors for offline cable simulations. Fotland and Haugen [20] suggest the implicit45

fourth order Runge-Kutta and Generalized-α methods as potential integrators

for real-time cable simulations using the ALE-ANCF method, however they do

not report absolute computation times in their study.

Explicit integration methods, in contrast, are less computationally expensive

than implicit methods, since the explicit equations can be solved in a single step50

without iteration, but typically have poor stability characteristics and often

require very small time-steps [19]. Several semi-implicit methods have been

developed in order to strike a balance between implicit and explicit methods by

capturing the stability characters of fully implicit methods, while requiring only

a single iteration per time-step.55

1.1. Semi-Implicit Integration

Semi-implicit methods have been widely used in the computer graphics do-

main for simulating cloth and other flexible objects. A seminal method for

simulating cloth proposed by Baraff and Witkin [21] stems from the implicit
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Backward Euler (BE) method, given by the equations60

qn+1 = qn + hvn+1 (1a)

vn+1 = vn + hM−1Q(qn+1,vn+1) (1b)

where q is a vector of generalized coordinates, v = ∂q/∂t is a vector of general-

ized velocities, h is the step size, M is the system mass matrix, Q is the vector

of generalized coordinates. The subscript n represents the time-step.

In order to obtain an exact solution of Equation 1 an iterative algorithm, such

as the Newton-Raphson method, is required. A more computationally efficient65

alternative proposed by Baraff and Witkin is to approximate the generalized

forces Q at time-step n+ 1 using a Taylor series expansion,

Qn+1 ≈ Qn +
∂Q

∂q
(qn+1 − q) +

∂Q

∂v
(vn+1 − vn), (2)

which is substituted into Equation 1b to obtain

(
M− h

∂Q

∂v
− h2 ∂Q

∂q

)
(vn+1 − vn) = hQn + h2 ∂Q

∂q
vn. (3)

Using Equation 3, the generalized velocities vn+1 can be obtained in a single

step and the generalized coordinates qn+1 can be found using Equation 1a.70

A primary drawback of Baraff and Witkin’s method is the presence of ficti-

tious damping arising from the integrator itself rather than from the dynamic

model. The amount of dissipation is tied to the time-step which can result in

excessive attenuation of the motion and degrade the physical accuracy of the

simulation when a large time-step is selected. Other researchers have proposed75

similar methods based on other implicit integration schemes in order to reduce

the amount of dissipation. Choi and Ko [22] utilize the order-2 Backwards

Differentiation Formula (BDF2), which exhibits less dissipation and similar sta-

bility as the order-1 BDF, which is synonymous with the implicit Euler method.

Choi and Ko employ the same linearization of the generalized forces (Equation80
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2) proposed by Baraff and Witkin to obtain a semi-implicit form of the BDF2

integrator. As with Baraff and Witkin’s study, the researchers do not validate

the method, however they note that time-steps as large as 0.2s can be used to

produce visually “believable” animations.

Only a small number of researchers have applied a semi-implicit integration85

method to an ANCF cable model. Sugiyama and Shabana [23] implement two

methods, the Rosenbrock method and a method based on the semi-implicit mid-

point rule. Both methods utilize linearizations similar to Baraff and Witkin’s

method. The researchers use an adaptive time-stepping scheme to control the

simulation error and compare the two integrators to both explicit and implicit90

integration schemes for a variety of benchmark scenarios. There is limited dis-

cussion, however, of the computational performance of the methods and the

use of adaptive time-stepping makes their applicability to real-time simulations

unclear.

Hewlett et al. [24] develop an ANCF cable model utilizing a semi-implicit95

formulation developed by Servin et al. [25]. The elastic forces and external con-

tact forces are defined as quadratic potentials representing a flexible constraint.

The semi-implicit integrator simultaneously updates the nodal velocities while

solving for the magnitude of the constraint forces. While Hewlett et al. account

for applied forces that are not generated by a quadratic potential, only grav-100

itational forces which are constant throughout the simulation are considered

in their study. The method also demonstrates significant numerical damping.

Despite these limitations Hewlett et al. produced faster than real-time simula-

tions of flexible pendulums. However, there is no discussion of the accuracy of

the proposed method relative to the fully implicit integrator and it is uncertain105

whether their method could be applied to ALE-ANCF elements.

1.2. Paper Summary

The principal objective of the paper is to develop a framework for applying

semi-implicit numerical integration to ANCF and ALE-ANCF cable models.

The proposed method comprises a generalization of Baraff and Witkin’s semi-110
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implicit algorithm which can be applied with a variety of implicit methods.

Additionally, the method addresses two challenges specific to the integration

of ANCF and ALE-ANCF cable models. Firstly, an Implicit-Explicit (IMEX)

scheme is proposed to handle complex or non-differentiable generalized forces.

Second, the method incorporates rigid holonomic constraints, which are neces-115

sary to ensure a unique solution can be obtained for the ALE-ANCF dynamic

equations.

The work also examines the utility of semi-implicit numerical integration

techniques for simulating cables by comparing the accuracy and computational

performance of various semi-implicit methods derived using the proposed frame-120

work to a popular full-implicit algorithm. Four benchmark studies compare the

semi-implicit methods to a fully implicit Newmark solver for a variety of condi-

tions and external forces. Unlike previous studies, the relationship between the

accuracy and computation time of each method is examined to evaluate their

suitability for real-time applications.125

In Section 2, the ALE-ANCF cable model is described. The proposed nu-

merical integration method is presented in Section 3. Section 4 discusses the

implementation of the model and includes the results of four benchmark prob-

lems. Concluding remarks and recommendations for future work are given in

Section 5.130

2. ALE-ANCF Cable Model

Figure 1 illustrates the ALE-ANCF element in its initial undeformed state

and in a deformed configuration. Each element consists of two nodes, each with

seven degrees of freedom including the position of the in the absolute coordinate

frame r, a slope vector tangent to the centerline of the cable r′ and a material135

coordinate p. The material coordinate represents the position of a point on the

element, measured along the length of the unstretched cable from a reference or

head point. The head point is shown in the figure as an open circle.

The vector of generalized coordinates for the element is

6

PREPRIN
T



Figure 1: Deformed ALE-ANCF cable element and equivalent undeformed element in the

absolute coordinate frame.

q = [rT1 (r′1)
T p1 rT2 (r′1)

T p2]
T (4)

A second vector consisting only of the mesh coordinates is defined140

qe = [rT1 (r′1)
T rT2 (r′1)

T ]T . (5)

The Euclidean position of a point on the element can be found by interpolating

between the element nodes

r(p) = Seqe, (6)

where Se is a cubic shape function given by

Se = [S1I3 S2I3 S3I3 S4I3], (7)

and

S1 =
(p− p2)

2(2p− 3p1 + p2)

(p2 − p1)3
, (8a)
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S2 =
(p− p1)(p− p2)

2

(p1 − p2)2
, (8b)

S3 =
(p− p1)

2(2p+ p1 − 3p2)

(p1 − p2)3
, (8c)

S4 =
(p− p2)(p− p1)

2

(p1 − p2)2
. (8d)

The unstretched length of the element le is given by the difference of the material

coordinates at the two nodes:

le = p2 − p1. (9)

Additionally, the velocity of a point on the cable is

ṙ = Seq̇e +

(
∂Se

∂p1
ṗ1 +

∂Se

∂p2
ṗ2

)
qe = Sq, (10)

where the shape function S is

S = [S1I3 S2I3
∂Se

∂p1
qe S3I3 S4I3

∂Se

∂p2
qe]. (11)

The governing equations proposed by Hong et al. [13] are

Mq̈+Qp +Qe +Qf +Cq
Tλ = 0 (12a)

C(q, t) = 0 (12b)

where M is the element mass matrix, Qp is a generalized force representing

the inertial force of the cable due to changes in the material coordinates p1145

and p2, Qe is a generalized force representing the internal elastic potential,

Qf represents the externally applied forces and C represents a set of holonomic

constraints. The force required to satisfy the constrains are given by the product

of the constraint Jacobian Cq
T and a vector of Lagrange multipliers λ.

The element mass matrix M is given by

M =

∫ p2

p1

ρAST r̈pdp, (13)
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where ρ is the cable density and A is the cross-sectional area. The additional

intertia force Qp is

Qp =

∫ p2

p1

ρASTSdp. (14)

The generalized elastic forces are

Qe =

∫ p2

p1

EA

(
∂ε

∂q

)T

εdp+
1

2

∫ p2

p1

EI

(
∂κ

∂q

)T

κdp, (15)

where ε is the longitudinal strain, κ is the element curvature and E is the elastic150

modulus of the cable. In the current study the strain and curvature follow the

authors’ previous work [8] and are defined as

ε = (rTp rp − 1), (16)

κ = |rpp|. (17)

Finally, external distributed forces f(p) have a corresponding generalized force

calculated as

Qf = −
∫ p2

p1

ST fdp. (18)

The kinematic constraints represented by the constraint matrixC can be used to155

implement boundary conditions, such as pin joints, or to constrain the material

coordinates of the element. If the material coordinates p1 and p2 of the element

are held fixed, the ALE-ANCF method is equivalent to the traditional gradient-

deficient ANCF method proposed by Shabana [6]. Additionally, the ALE-ANCF

mass matrix given by Equation 13 is rank-deficient. Constraints must therefore160

be carefully selected such that the equations of motion (Equations 12a and b)

have a unique solution. Since a force acting axially along the cable could effect

motion of the finite element mesh or the cable material moving independent of

the mesh, either the mesh coordinates r or the material coordinates p must be

constrained to eliminate the redundancy. The application of these constraints is165

discussed further in the following section along with the numerical integration

method.
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3. Proposed Integration Method

A general method is proposed which can be used to apply a semi-implicit

form of an implicit ODE solver to solve multibody dynamics problems including170

ANCF and ALE-ANCF models. While the method can be derived for a variety

of implicit integrators, the derivation of the proposed semi-implicit integrator

using the Newmark method is shown below.

The Newmark method is described by two equations for updating the gen-

eralized coordinates and their velocities from time-step n to time-step n + 1:

vn+1 = vn + (1− γ)han + γhan+1 (19a)

qn+1 = qn + hvn +
h2

2
[(1− 2β)an + 2βan+1] (19b)

where γ and β are parameters which define the variation of acceleration over

the time-step (γ = 0.5 and β = 0.25 represent the commonly used trapezoidal175

rule).

For a multibody system with holonomic constraints, the generalized equa-

tions of motion are defined as a set of Differential Algebraic Equations (DAEs)

given by

Ma−Cq
Tλ = Q (20a)

C(q, t) = 0 (20b)

where C is an vector of constraint equations, Cq is the Jacobian matrix of the180

constraint equations with respect to the generalized coordinates q, and λ is

a vector of Lagrange multipliers representing the magnitude of the constraint

force.

Taking Equation 19a at time-step n + 1 and applying the Taylor series ex-

pansion proposed by Baraff and Witkin we obtain185
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Man+1 +Cq
Tλn+1 = Qn + Jq(qn+1 − qn) + Jv(vn+1 − vn) (21)

where Jq = ∂Q/∂q and Jv = ∂Q/∂v. The mass matrix M is assumed to be

constant. Substituting Equations 19a and b and grouping the terms containing

an+1:

(
M− h2βJq − γhJv

)
an+1 +Cq

Tλn+1 =

Qn + Jv(1− γ)han + Jq

[
hvn +

h2

2
(1− 2β)an

]
(22)

To ensure that the constraint Jacobian Cq has a known at time-step n+1, the

constraint equations C are restricted to those of the form190

C(q, t) = ATq− b(t) = 0 (23)

where A is a constant matrix and b is a known function of time. To mitigate

drift of the constraint due to numerical error, constraint stabilization [26] is

applied by replacing Equation 20b with

C̈+ 2a1Ċ+ a22C = 0 (24)

where a1 and a2 are chosen constants. The constraint is thus enforced at the ac-

celeration level with proportional and derivative feedback terms to compensate195

for any accumulated error.

Combining Equations 22–24, the following linear system of equations is ob-

tained: Hn AT

A 0

an+1

λn+1

 =

 Rn

b̈n+1 − 2a1Ċn − a22Cn

 (25)

where, at time-step n, Hn and Rn are defined for convenience as

Hn = Mn − h2βJq,n − γhJv,n (26a)

Rn = Qn + Jv,n(1− γ)han + Jq,n

[
hvn +

h2

2
(1− 2β)an

]
. (26b)
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Note that the second and third terms of Equation 24 are calculated using the

system states at time-step n, since their values at the forthcoming time-step

are unknown. Equation 25 can be solved for an+1 and λn+1 using a common

linear solver such as MATLAB’s linsolve. Finally, an+1 can be substituted into200

the time-stepping equations (Equations 19a and b) to determine the generalized

coordinates and velocities at time-step n+ 1.

The proposed integrator, represented by Equation 25, can be formulated

based on a variety of implicit solvers. In this study, the Backward Euler, BDF2

and Hilber-Hughes-Taylor (HHT) methods are considered in addition to the

Newmark method shown above. For the HHT method, the equations of motion

utilized by Negrut et al. [27] are used in place of Equation 20a, and are given

by

Man+1 + α(Cq
Tλ−Q)n + (1− α)(Cq

Tλ−Q)n+1 = 0 (27)

where α is a free parameter to adjust the numerical damping. If an α value of 0

is selected, the method is identical to the Newmark method. Table 1 summarizes

the equations derived for each of the four methods. In the remainder of this205

paper, the four methods in their Semi-Implicit (SI) forms are notated as SI

Backward Euler, SI BDF2, SI Newmark and SI HHT.

In some cases where the generalized forces are complex or are not continu-

ously differentiable, the Jacobian matrices Jq and Jv may be difficult to calcu-

late analytically. A common approach used in other semi-implicit schemes is to210

partition the generalized forces into “stiff” and “non-stiff” components, QS and

QNS , respectively. The non-stiff forces are then treated as if they are constant

throughout the time-step and are thus handled explicitly by the integrator. This

partitioning of the forces is referred to as an Implicit-Explicit (IMEX) method.

The Taylor series expansion of the generalized forces becomes215

Qn+1 = QS,n+1 +QNS,n+1

≈ QS,n +
∂QS

∂q
∆q+

∂QS

∂v
∆v +QNS,n

(28)
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Since the non-stiff forces are held constant, they do not contribute to the Jaco-

bian matrices. In the present study, the internal elastic and inertial forces are

considered stiff. External forces which are purely dissipative, such as hydrody-

namic and friction forces, are considered non-stiff.

4. Simulations and Results220

Three benchmark cases are considered in this section. The first consists

of a flexible tether pinned at one end and released from a horizontal position.

The second benchmark study consists of a flexible tether submerged in water.

In both cases, all material coordinates are fixed, reducing the model to the

traditional ANCF method. In the final case the ALE-ANCF method is utilized225

to simulate a flexible cable sliding over the edge of a table. The second and

third cases demonstrate the IMEX integration method, as the hydrodynamic

and surface friction forces are handled explicitly.

For each benchmark, the proposed semi-implicit methods are compared

against the fully implicit Newmark method, chosen for its high accuracy and230

minimal numerical damping. The implementation of the Newmark method is

taken from Negrut et al.’s implementation of the HHT method [27] with no

added numerical damping, i.e. an α value of zero. Negrut et al. propose an

adaptive time-stepping algorithm, where the time-step varies to keep the sim-

ulation error below a user specified tolerance. In this work an absolute error235

tolerance of 1× 10−6 is selected. Full details of the fully implicit algorithm can

be found in Negrut et al.’s paper [27].

The ALE-ANCF model was coded in MATLAB where the generalized elas-

tic forces Qe and inertial forces Qp were derived using MATLAB’s symbolic

toolbox. The Jacobian matrices for each force were then determined using sym-240

bolic differentiation. The symbolic functions are then converted to MATLAB

functions to be called during the simulation. All simulations were performed on

an Intel Core i7-6700 processor with 16GB of RAM.

For each test, the cable considered has a diameter of 1 cm, a linear density
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of 5000 kg/m and a moment of inertia of 1 × 10−8 m4. Various values of the245

elastic modulus E are considered to examine the model under varying levels of

stiffness. With a bending stiffness EI of approximately 1 Nm2 (E = 1 × 108

Pa), the cable is expected to behave similar to a steel wire rope. In each case,

the cable is composed of ten ALE-ANCF elements.

4.1. Benchmark 1: Flexible Pendulum250

The first benchmark study consists of an unloaded flexible cable pinned at

one end which is released from an initial horizontal position and allowed to

swing. The cable has a length of 1 m. Three values of the elastic modulus E

were considered (1×107, 1×108 and 1×109 Pa) in order to evaluate the accuracy

and performance of the proposed methods for various levels of stiffness. For each255

of the four integration methods chosen, the cable motion was simulated using

various time-steps ranging from 1 × 10−4 to 1 × 10−2 s for a total simulation

time of 10 s. Additionally, the simulations were performed with the fully implicit

Newmark method with adaptive time-stepping.

Figure 2a shows the cable profile at various points in time for the simulation260

with E = 1× 107 and E = 1× 109 Pa. For the former case, the cable behaves

like a flexible rope or tether due to the low stiffness. With a higher stiffness,

the cable behaves closer to a rigid rod, with limited transverse deformation.

For each of the semi-implicit integration methods, the computation times

of the simulations are approximately equal. Table 2 presents the computation265

times for the fully implicit and semi-implicit Newmark methods. For the fully-

implicit Newmark, the computation time varies significantly depending on the

cable stiffness, ranging from 89 to 566 s for 10 s of simulated motion. For the

proposed SI Newmark method, the computation times are shown for each of

the time-steps considered. Real-time simulations are obtained for time-steps of270

2.5 × 10−3 s or greater. For all time-steps greater than or equal to 2.5 × 10−4

the computations times were smaller using the proposed method compared to

the fully-implicit Newmark.

The Mean Absolute Error (MAE) of the vertical position the cable tip was

15
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(a)

(b)

Figure 2: Flexible pendulum motion simulated using the implicit Newmark method with (a)

E = 1× 107 Pa and (b) E = 1× 109 Pa . Element nodes are shown as open circles.

calculated for each simulation relative to the results obtained using the fully-275

implicit method. Tables 3, 4 and 5 present the results for the three elastic

moduli considered. In all three cases, the SI BE method demonstrated the

largest error of the four methods. The errors for the SI Nemark, SI HHT, and

SI BDF2 were comparable for each of the three cases. However, the SI Newmark

demonstrated instability for three of the simulations performed. The additional280

damping provided by the HHT and BDF2 algorithms serves to stabilize the

simulations without a significant increase in error.

In all cases, the error increased with larger time-steps due to the increase

in numerical damping. This energy loss due to numerical damping likely stems

from the truncation error created by the Taylor series approximation in Equation285
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Table 2: Computation times of flexible pendulum simulation for the proposed method and

fully-implicit Newmark method. The length of each simulation was 10 s. The computation

times for the fully-implicit method are reported for each of the three Elastic moduli (1× 107

Pa, 1 × 108 Pa, and 1 × 109 Pa). Computation times for the proposed method are averages

of all simulations using the SI Newmark method.

Time-step, h (s) Computation Time (s)

Fully-implicit (adaptive) 566.3/89.1/105.3

1× 10−4 158.0

2.5× 10−4 63.0

5× 10−4 32.1

1× 10−3 15.6

2.5× 10−3 6.5

5× 10−3 3.7

1× 10−2 1.7

Table 3: Mean Absolute Error (MAE) in mm of proposed methods relative to the fully-implicit

Newmark method for flexible pendulum simulation with E = 1× 107

Time step, h (s) SI Newmark SI HHT SI BDF2 SI BE

1× 10−4 19.25 21.45 24 55.06

2.5× 10−4 18.63 31.38 15.65 72.26

5× 10−4 31.47 21.09 30.52 91.46

1× 10−3 * 20.23 53.76 147.84

2.5× 10−3 81.02 52.10 112.85 154.69

5× 10−3 148.94 145.74 135.31 189.42

1× 10−2 * 157.08 156.40 292.51

* Simulation unstable

2. Figure 3 plots the total energy of the cable as a function of time for the SI

Newmark method with an elastic modulus of 1×108 Pa. Minimal energy loss is
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Table 4: Mean Absolute Error (MAE) in mm of proposed methods relative to the fully-implicit

Newmark method for flexible pendulum simulation with E = 1× 108

Time step, h (s) SI Newmark SI HHT SI BDF2 SI BE

1× 10−4 0.35 0.35 0.33 24.64

2.5× 10−4 0.39 0.38 0.35 59.19

5× 10−4 0.86 0.79 0.65 110.79

1× 10−3 5.51 4.98 4.87 192.08

2.5× 10−3 76.14 69.40 73.91 312.99

5× 10−3 301.84 291.60 299.36 370.51

1× 10−2 428.64 417.92 424.03 460.45

Table 5: Mean Absolute Error (MAE) in mm of proposed methods relative to the fully-implicit

Newmark method for flexible pendulum simulation with E = 1× 109

Time step, h (s) SI Newmark SI HHT SI BDF2 SI BE

1× 10−4 0.065 0.061 0.075 24.47

2.5× 10−4 0.79 0.71 0.67 59.49

5× 10−4 6.23 5.63 5.90 114.32

1× 10−3 47.52 43.11 46.75 211.08

2.5× 10−3 314.78 306.36 313.93 348.15

5× 10−3 434.85 424.54 430.55 447.67

1× 10−2 * 506.05 508.43 511.75

* Simulation unstable

observed for small time-steps, however higher time-steps produce nearly critical

damping of the pendulum motion. Figure 4 shows the energy loss for the four

proposed integrators with a time-step of 1 × 10−3 s. The three second order290

methods exhibit nearly identical damping behavior, while the first order BE

integrator exhibits much greater dissipation than the other methods. Thus the

large errors demonstrated by the SI BE method relative to the fully-implicit
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method can be explained by the increase in numerical damping.

The computation times indicate that the proposed method is suitable for295

real-time applications. Stable real-time simulations were obtained using all four

methods, however the SI Newmark method demonstrated instability in several

cases and is thus not recommended. Comparing the results obtained using the

semi-implicit and fully-implicit methods, illustrates the relationship between

accuracy and time-step. As the time-step increases, the amount of numerical300

dissipation increases, attenuating the pendulum motion. It is therefore impor-

tant to use the smallest time-step possible in order to maintain the accuracy of

the simulation. In systems with significant physical damping, such as submerged

cables or systems with surface friction, the impact of the numerical damping

may be lessened. The following two benchmark studies will examine these types305

of systems. Since the SI HHT method demonstrated the smallest errors overall

for the flexible pendulum case, it will be used in the two remaining benchmark

studies.

Figure 3: Total energy of flexible pendulum as a function of time for the SI Newmark method.
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Figure 4: Total energy of flexible pendulum as a function of time for the four semi-implicit

methods with h = 1× 10−3 s and E = 1× 108 Pa.

4.2. Benchmark 2: Submerged Tether

The second benchmark is inspired by the physical experiments performed310

by Takehara et al. [28] to validate their ANCF cable model. The simulation

consists of a cable or tether with an elastic modulus E = 1× 108 Pa submerged

in water and pinned at one end. Two scenarios are considered and illustrated

in Figure 5. First, the cable is initially horizontal and released. In the second

case, the cable is initially horizontal with a linear motion applied to the pin315

connection.

The external forces applied to the cable include gravitational and hydrody-

namic drag and added mass forces. These forces are treated as non-stiff, since

they are purely dissipative. The generalized external force shown in Equation 18

is approximated using a five-point Gaussian quadrature. A detailed description320

of the hydrodynamic force model is given in [8].

For the first test case, 2.5 s of motion is simulated. Figure 6 shows the

vertical motion of the cable tip for the fully-implicit Newmark and SI HHT

methods. In the second case, the base of the tether is translated at a constant

velocity of 0.5 m/s for 2 seconds and then brought to rest. A total of 10 s of325
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(a) (b)

Figure 5: Illustrations of the submerged pendulum for (a) Case 1 and (b) Case 2.

motion was simulated. Figure 7 compares the horizontal position of the cable

tip for the two integrators.

Figure 6: Simulated vertical position of the cable tip for submerged tether (Case 1).

Simulations were again performed using the SI HHT method with a range of

time-steps. The computation time and error for each simulation is presented in

Table 6. The error between the fully and semi-implicit simulations is calculated330
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Figure 7: Simulated horizontal position of the cable tip and base for submerged tether (Case

2).

based on the Euclidean position of the cable tip. For both test cases, the semi-

implicit HHT method demonstrated significantly higher computation speeds,

with minimal error. For Case 1, the MAE for a time-step of 1 × 10−2 s was

2.58 mm or 0.26% of the full range of motion and a 770 times improvement in

computation time was obtained over the fully-implicit method. Similar results335

were obtained for Case 2, with a maximum error of 9.62 mm or 0.96% of the full

range of motion with computation times as low as 6.5 s compared to 3453 s for

the fully-implicit method. As expected, in the presence of significant external

damping the numerical damping has less of an effect on the simulation accuracy

as the time-step increases. Faster-than-real-time simulations were obtained with340

errors of only 1% of the full range of motion, indicating the proposed method is

suitable for applications involving submerged cables.

4.3. Benchmark 3: Sliding Tether

The final case study consists of a flexible cable partially resting on a flat

surface with a second segment hanging vertically. Figure 8 illustrates the sys-345

tem. The finite element nodes are shown as closed circles. The open circle
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Table 6: Computation times and Mean Absolute Error of the proposed method compared to

the fully-implicit Newmark method for the submerged tether system. Errors are calculated

as the Euclidean distance of the cable tip between the two simulations. The total simulation

time was 2.5 s for Case 1 and 10 s for Case 2.

Case 1 Case 2

Time-step, h (s) Time (s) MAE (mm) Time (s) MAE (mm))

Fully-implicit (adaptive) 1242.4 – 3453.0 –

1× 10−4 173.4 0.028 640.0 1.27

2.5× 10−4 71.5 0.071 266.8 1.20

5× 10−4 30.6 0.14 145.9 0.88

1× 10−3 15.2 0.28 64.2 1.74

2.5× 10−3 6.2 0.69 25.7 2.16

5× 10−3 3.1 1.36 13.0 7.46

1× 10−2 1.6 2.58 6.5 9.62

represents a transition node, which is fixed in space. The material coordinate

p1 corresponding to the transition node is unconstrained allowing material to

flow between the adjacent elements. This flow of material emulates the cable

sliding over the edge of the surface, without the need to model the curvature of350

the cable at the transition. The simulations start with 0.5 m of cable resting on

the surface and 0.5 m of cable hanging vertically.

Since the tether is assumed to bend over the edge of the surface with zero

radius of curvature, a small bending stiffness of 0.1 Nm2 (E = 1×107 Pa) is used

to make this assumption realistic. On the vertical cable segment, gravitational355

forces are applied. On the segment in contact with the surface, a tangential

friction force is applied. The friction force per unit length is calculated as

f =

−µρg sgn(v), |v| > ϵ

−µρgv/ϵ, |v| ≤ ϵ

(29)
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Figure 8: Illustration of sliding tether system.

where v is the sliding velocity, µ is a friction coefficient, and ϵ is a regularization

parameter. The friction force is treated as non-stiff for the purpose of calculating

the force Jacobians. Simulations are performed both without friction and with360

a friction coefficient of µ = 0.4. The regularization parameter ϵ is selected to

be 0.001 m/s.

Figure 9 shows the simulated tether displacement as a function of time for

the fully-implicit Newmark and SI HHT methods. For the simulations without

friction, 0.4 s of motion was simulation, whereas 0.8 s of motion was simulated365

with friction. The computation time and MAEs of the SI method compared to

the fully-implicit Newmark are shown in Table 7. For the case without friction

the error remains relatively constant regardless of the time-step and are within

1% of the full range of motion for every time-step considered. For the case with

friction, the errors are small for time-steps of 1× 10−3 s or smaller but increase370

as a result of numerical damping for larger time-steps. Real-time simulations are

obtained with errors of 13.3 mm (5.5% of the full range of motion) for time-steps

of 1× 10−2 s as the numerical dissipation increases.
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Figure 9: Cable displacement as a function of time for sliding tether simulation.

Table 7: Computation times and Mean Absolute Error of the proposed method and fully-

implicit Newmark method for sliding tether system. Errors are calculated based on the dis-

placement of the first cable node. The total simulation time was 0.4 s for Case 1 and 0.8 s for

Case 2.

Case 1 (µ = 0) Case 2 (µ = 0.4)

Time-step, h (s) Time (s) MAE (mm) Time (s) MAE (mm))

Fully-implicit (adaptive) 931.14 – 1251.70 –

1× 10−4 17.23 2.30 35.53 1.20

2.5× 10−4 7.35 2.34 13.66 0.82

5× 10−4 3.47 2.39 7.21 0.65

1× 10−3 1.80 2.52 3.38 3.03

2.5× 10−3 0.79 2.57 1.47 10.11

5× 10−3 0.39 2.16 0.76 13.28

1× 10−2 0.23 3.83 0.40 27.89
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5. Conclusion

In this paper, a framework for integrating the equations of motion of ANCF375

and ALE-ANCF cable models using semi-implicit methods is presented. Four

semi-implicit methods are derived from popular implicit integration methods.

Finally, the proposed methods were compared against the fully implicit New-

mark method for a variety of benchmark tests.

For the first test, a falling pendulum was simulated using the four semi-380

implicit methods and compared to the fully-implicit Newmark. For time-steps

of 2.5 × 10−4 s or greater, the proposed semi-implicit method was faster than

the fully-implicit method. In general, the SI HHT, SI BDF2 and SI Newmark

exhibited similar amounts of error, however the SI Newmark method demon-

strated instability in several cases. For all methods, the error increased with the385

time-step as a result of increased numerical damping, thus the time-step should

be minimized to reduce the amount of dissipation. The SI BE method demon-

strated significantly higher dissipation than the other methods considered, and

thus demonstrated the highest errors. The variation in error was also examined

as a function of the elastic modulus of the cable.390

The final two benchmark studies incorporated more complex external forces.

In Benchmark 2, a submerged pendulum was considered. In Benchmark 3, a

tether sliding over the edge of a surface was simulated using the ALE-ANCF

method. The SI HHT method was compared against the fully-implicit integra-

tor. In both cases, the SI HHT demonstrated only small errors and significant395

improvements in computation times over the Newmark method.

The results demonstrate that the proposed semi-implicit method is a vi-

able strategy for real-time simulations of ANCF and ALE-ANCF cable models.

While the utility of the method is impacted by the numerical dissipation which

limits the accuracy of the simulations for large time-steps, the computation400

times demonstrated in the current study were obtained using a preliminary im-

plementation of the method in MATLAB. To improve the speed of the simula-

tions, a compiled programming language and parallel processing may be utilized,
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allowing for more accurate real-time applications. Future work will also exam-

ine other types of implicit integrators using the framework given in this paper,405

which may exhibit reduced numerical damping. Alternative methods which may

be examined include higher order integrators such as the Runge-Kutta meth-

ods and multi-step methods such as Adams-Moulton methods. Ultimately, the

amount of error which is acceptable for a given simulation depends on the use

case. The model and the chosen integrator should be validated using physical410

experiments in order to quantify the accuracy of the combined method.
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