
Julian Nadeau
Production Engineer

Servers & Developers



2

Provisioning & Orchestration of Servers
Setting a server up

Packer - one server at a time
Chef - all servers at once

Containerization
What are Containers?
A look at Kubernetes

Developer Environments
Similar to production?

Local vs Remote
Can containers be used?



3

Servers & Stuff



4

Imagine your job is to setup servers. You want a 
web-app to run.

● Install a few dependencies, maybe Ruby, PHP, 
Node.

● Get a web server up and running (maybe Nginx or 
Apache?).

● Open up a few firewall ports…. and Done!

This is called an artisanally set up server. In server-land, 
artisanal is generally not a good idea.

Setting a server up



5

Imagine you need to set that server up again, will you 
remember how to? Maybe you’ll script it (more on this in 
a moment).

Now, imagine that you have 10 servers and for some 
reason you need to update Ruby on all everything, but 
this causes some issues with another dependency.

Now imagine that with 50 servers, 100 servers, 1000 
servers.

Setting a server up (cont)



6

2
DATACENTRES

500+
WEB SERVERS

70+
JOB SERVERS

+++
DATABASE SERVERS, CACHING SERVERS, 

LOAD BALANCERS

Server Stats for Shopify



7

Cool, so now that we’ve established that artisanally 
crafted servers aren’t the best idea, what can we do?

Let’s script it.

Choosing a set of scripts and settings for a server is 
called a “configuration”. Applying that configuration is 
called “provisioning”.

We’ll talk about both in the next few slides.

Setting a server up (cont)



8



- Packer is a great tool for managing the initial provisioning of a 
server, but what if you have a fleet of many servers?

- Chef allows you to manage many servers through a centralized 
“Chef Server”. The master server tells the provisioning node what 
scripts and programs it should run, and allows for iteration to 
happen

- The provisioning node checks in on a schedule to see if anything 
new is needed

9



10



1
1

Containerization



12

• Containers are a method of operating system virtualization 
that allow you to run an application and its dependencies in 
resource-isolated processes.

• This means that we can basically group off a system into 
“containers” and have many things running at the same 
time.

• Without containers, processes can fight for resources 
(memory, CPU, etc) or run one service per computer.

• With containers, processes can be pre-allocated a set 
amount of resources so we can run many per host without 
the worry of them competing.

What are containers?



13

• As mentioned, we can restrict resource usage so we don’t have one 
thing taking everything up

• Since the containers are pre-built images, we get consistency despite 
just running the image

• We have different versions of container images, so if something breaks 
we can revert to using an older image

What are they good for?



14

• Kubernetes is a tool from Google that allows us to manage 
containers without caring too much about the servers.

• We have a “cluster” (collection) of “nodes” (servers) where we run 
our application.

• “Pods” (a set of containers) run selected list of “services” 
(database, cache, webserver etc).

• For example, we may see a simple app run a database container 
and webserver in the same pod.

• For those that want a deeper look on their own, this is an 
abstraction of Borg and Omega in Google’s internal container 
orchestration.



15

• Kubernetes is told to run a system as you define it. This means 
that if a container dies, it will be brought back up somewhere else. 
It also means that it will kill something that is no longer in your 
system definition.

• This means that you no longer need to worry and freak out if a 
specific server dies as Kubernetes will just give the workload to 
another server instead.

• This allows us to “treat servers like cattle” (aka they’re all 
replaceable and are a means to an end)



1
6

Developer 
Environments



17

• Developer environments are similar to production server provisioning 
as they have to install and maintain dependencies as well

• The main difference is that we may need multiple versions of the same 
dependency depending on the project (i.e. Ruby 2.3.3 vs Ruby 2.4.0, 
iOS 9 vs iOS 10, etc).

• For many cases, a system can only have one version that is active at a 
time.

• We also don’t know the state of the system as people may have 
installed custom environment-impacting programs, scripts, profiles, etc

• This is an example for 2 projects, 3 dependencies, 2 versions per 
dependency. In reality, there will be many more projects, many more 
dependencies, and many more versions.

Similar to Production



18



19

• Separate environments are possible (one server per 
project).

• Mitigates the dependency hell.

• You have to have a remote-compatible IDE/text 
editor and always be online, or be SSHed into a 
server at all times.

• File system is not local, so syncing errors can occur

Local vs Remote

• Can work offline, therefore can code anywhere (like 
an airplane)

• Dependencies can clash between projects.

• Low barrier of entry for text editors and IDEs.

• Low latency, the file system is local to it is quick to 
update.



20

• We’ve been talking a lot about environments conflicting with each 
other, whether by dependency or resource (cpu, ram, etc)

• If we could containerize applications and their dependencies, we would 
be able to solve a lot of these problems.

• Currently, containerizing makes the code also be separated to a 
different system (in the container), which means we have to SSH in 
(giving us the problems of remote developer environments)

• This is a problem we’re currently thinking about, we have not solved it. 
MiniKube is a potential candidate (let’s you run Kubernetes locally) that 
is showing promise.

Containerizing Dev 
Environments?



@jules2689
julian@shopify.com

Thanks!


