
Slide 1:

Leveraging AI Chatbots for HIV Support in LMICs:
Navigating the Duty of Care Imperative

Gabrielle Aubin
Nathan Junseok Lee
Kenniesha O'Leary

Slide 2:

AI Chatbots: Promise (Ngcobo et al., 2024)

- 24/7, stigma-free HIV information and support
- Expands reach in resource-limited health systems
- Acts as a force multiplier for overburdened providers

The Emerging Crisis: Duty of Care Gap

- Rapid deployment outpacing safety, ethics, and governance
- Documented failures:
 - Incorrect HIV testing guidance
 - Non-contextualized risk advice
 - Misinterpretation of local language & behaviours
- Small technical errors can lead to real-world clinical harm

Why This Threatens Global Health Security

- Direct Harm (Olawade et al., 2025)
- Amplified Inequity (Wong et al., 2025)
- Cross-Border Risks (Olawade et al., 2025)

Slide 3:

Five Systemic Duty-of-Care Gaps

1. Normative Gap (Murphy et al., 2021)

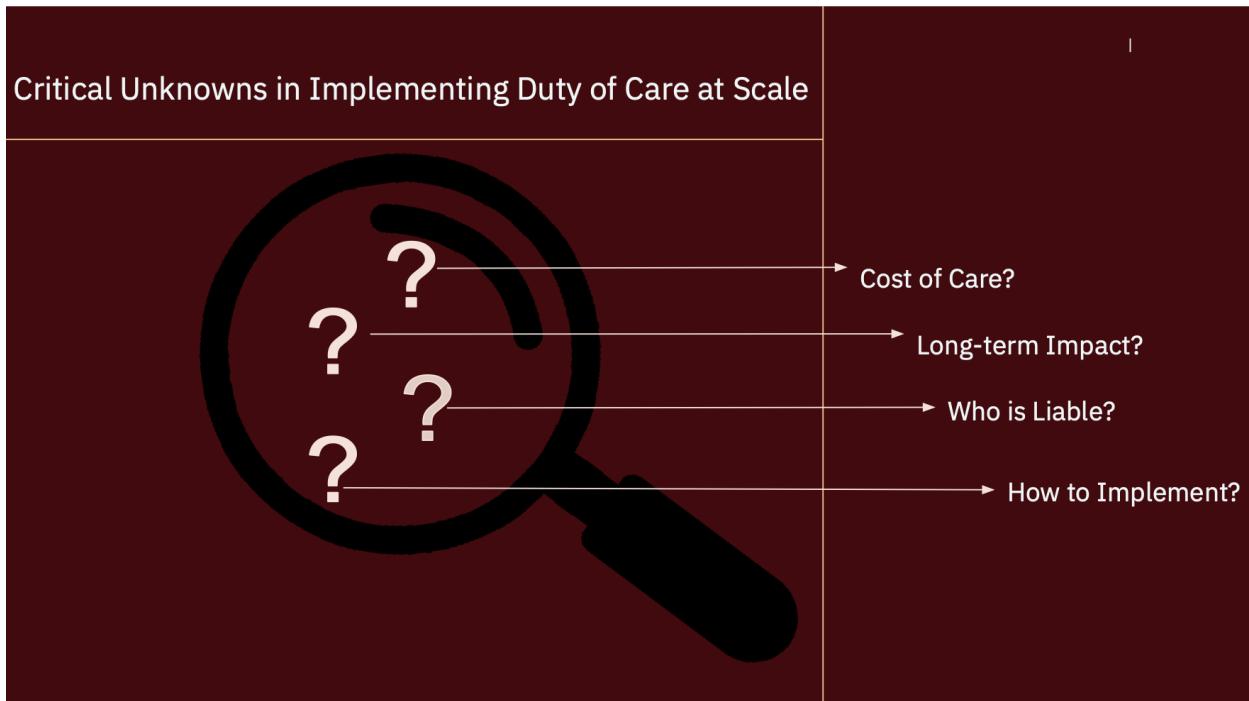
- Global AI ethics principles are abstract and not operationalizable
- Lack of context-specific duty-of-care obligations for LMIC settings

2. Data Injustice (Celi et al., 2022)

- Dominant model of extractive data collection = “data colonialism”
- Breaches duty to protect and empower the communities generating the data
- Many AI HIV tools rely on incomplete datasets

3. Design Exclusion (Davis et al., 2023)

- Top-down design fails to anticipate context-specific harms
- Risks include: violence, stigma, and misinterpretation of behaviour or identity
- Without community-led and participatory testing, chatbots misinterpret: local language, idioms, and risk behaviours

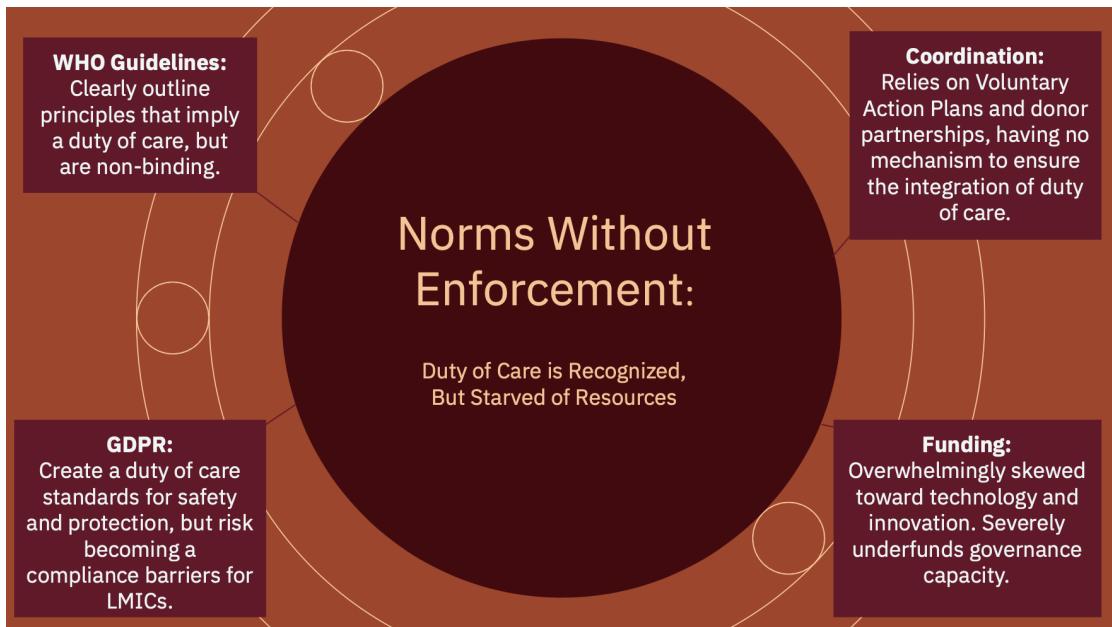

4. Governance Neglect (Naidoo et al., 2022)

- AI tools often bypass review by being labeled “innovation,” not health service delivery
- Creates regulatory blind spots and accountability gaps

5. Infrastructure Failure (Aboye et al., 2023)

- Chatbot-only solutions assume universal digital access
- Poor connectivity → inequitable access and inconsistent service
- Violates duty to ensure equitable, reliable care

Slide 4:



Key Knowledge Gaps (Operationalizing Duty of Care)

1. What is the true cost of care? We lack robust models for cost-effective duty of care protocols. What does a sustainable human-in-the-loop system look like within an LMIC clinic's budget? We don't know.
2. What are the long-term impacts? We have almost no longitudinal data on how duty of care failures—or successes—affect long-term trust and clinical outcomes. Does a privacy breach today correlate with lower testing rates five years from now? We cannot say (Espino Carrasco et al., 2025; Murphy et al., 2021).
3. Who is liable when harm occurs? The accountability mechanisms are opaque. In the event of harm, where does a patient go for redress? What are the liability frameworks? This is a legal gray zone, highlighted in studies of Nigerian ethics committees (Olawade et al., 2025; Naidoo et al., 2022).
4. How do we implement ethical frameworks? There is a gap in contextual ethical translation. How do principles like Ubuntu concretely inform chatbot design and grievance mechanisms? Scholars call for it but note the lack of practical blueprints (Ochasi et al., 2025; Ferlito et al., 2024).

The takeaway is unambiguous: the current evidence base demands a precautionary, governance-first approach. Scaling AI for HIV without answering these questions is not innovation—it is irresponsible experimentation.

Slide 5:

Strong global norms exist, but implementation in LMICs is weak and fragmented. The duty of care is recognized in principle but starved of resources in practice.

1. Normative Foundation vs. Implementation Gap:

- Strong Norms: WHO AI Ethics Guidelines (2021, 2024) provide clear principles for human oversight, accountability, equity (WHO, 2021; WHO, 2024).
- Critical Gap: For LMICs, these remain non-binding. The “how” of implementation (funding, local capacity, legal integration) is missing, creating a vacuum.

2. Broken Coordination Mechanisms:

- Relies on voluntary National Action Plans (NAPs) & ad-hoc donor partnerships.
- Result: Leads to fragmented, project-specific solutions, not system-wide governance. Digital health ecosystems remain siloed and unsustainable without centralized coordination (Chepkirui et al., 2025; Muliokela et al., 2025).

3. Misaligned and Volatile Funding:

- Skewed priorities: Funding is overwhelmingly directed at technology development and discrete innovations (Dzinamarira et al., 2025; EUPHA, 2025).
- Underfunded Foundations: Core infrastructure (e.g., 67% of Kenyan facilities have unreliable connectivity) receives fraction of the investment in new tech, while architecture for oversight (regulatory training, community monitoring) is chronically underfunded (Chepkirui et al., 2025; Wong et al., 2025).

The global system is designed to fund the tool, not build the system of trust and accountability required for ethical and effective deployment.

Case Study: Nigerian Chatbot Pilot

Core Example: Nigerian HIV chatbot pilot (Mathur et al., 2025) demonstrates both the promise of co-design and the peril of incomplete duty of care planning.

Promising Aspects (Duty of Care Strengths):

- Co-Design: Actively involved cisgender women and transgender men; feedback led to adaptations (audio, fonts) (Mathur et al., 2025).
- Anonymity: Addressed stigma, found comfortable/non-stigmatizing by users (Mathur et al., 2025).

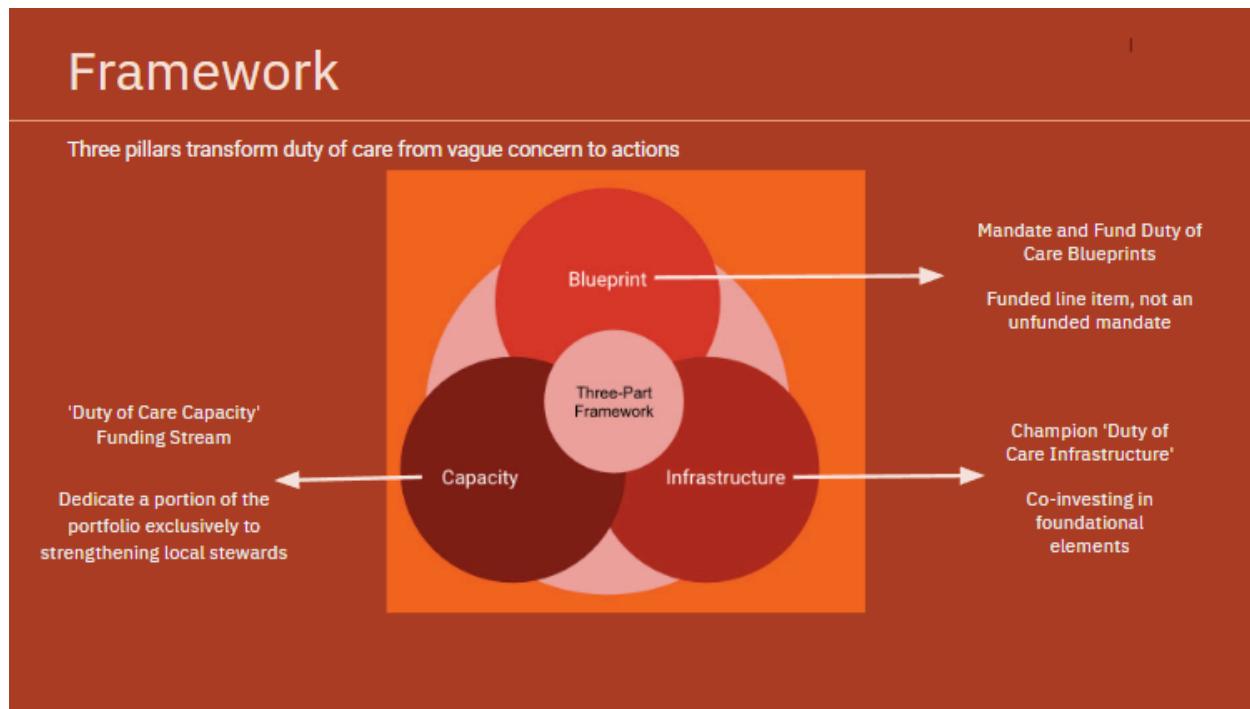
Critical Duty of Care Gaps Exposed:

1. Crisis Protocol Gap: Unclear escalation pathway for users in distress (e.g., violence, suicidality) (Davis et al., 2023).
2. Data Stewardship Gap: No specified long-term data governance plan post-grant (Tiffin et al., 2019).
3. Regulatory Pathway Gap: Undefined approval/monitoring/integration channel into national health system (Naidoo et al., 2022).
4. Clinical Integration Gap: No method for handoff to human clinicians, breaking continuity of care (Olaboye et al., 2024).

Make Duty of Care the Core of Funding Logic

Redefine innovation Success

Build duty of care at all stages of funding cycle


Create tiered oversight mechanism based on risks

The core recommendation for Grand Challenges Canada:

Don't stop innovating, instead, fundamentally redefine what successful innovation looks like in Global Health AI initiatives (Farlow et al., 2023).

GCC is uniquely positioned to catalyze a paradigm shift. The evidence compels a move from funding isolated *technology projects*, to creating a responsible, ethically governed health ecosystem, directly addressing the systemic gaps identified in our review (Shaw et al., 2024).

- GCC should embrace the role as the 'Duty of Care Architect.' This means the creation & integrating of a mandatory, fundable, and actionable Duty of Care Framework into the very DNA of the organization's funding logic.

Concretely, we propose a three-part strategic framework, with each element directly addressing the evidence-based gaps we've diagnosed, these three pillars transform duty of care from a peripheral concern into the central pillar.

1. **Mandate & Fund 'Duty of Care' Blueprints:** Requiring every AI health grant proposal to include detailed, budgeted plan covering: crisis escalation protocols (Davis et al., 2023), data sovereignty and governance plans (Tiffin et al., 2019), funding the program, independent auditing mechanisms, and clear user redress pathways at the application stage, closing design & accountability gaps identified in pilots like the Nigerian case study (Mathur et al., 2025).
2. **Creating Dedicated 'Duty of Care Capacity' Funding Stream:** Allocate a portion of your portfolio explicitly to strengthen the local stewards of ethics. This funds the training of RECs (Olawade et al., 2026), supports AI oversight within health ministries (Naidoo et al., 2022), and empowers civil society watchdogs. These are the entities that uphold standards long after a pilot ends, transforming voluntary norms into enforceable practice.
3. **Champion 'Duty of Care Infrastructure':** Use GCC's influence and coinvestment to build foundational elements by securing local data governance systems, interoperable multi-modal platforms like SMS/USSD (Aboye et al., 2023), and regulatory sandboxes where tools can be safely tested under supervision. This tackles the infrastructure failure and equity gap detailed by Wong et al. (2025).

Conclusion

Key Takeaways

- Duty of care vacuum carries highest risk to ethical & effective usage of AI, carrying risks to health systems, patients and global ramifications.
- Opportunity for GCC to set standards through building duty of care into the fabric of AI health projects from their inception.
- Funding & creating a clearly written & followable mandatory funding duty of care framework will be needed to set precedence.
- GCC's funding capabilities can prioritize efforts into closing this gap.

In conclusion, the duty of care vacuum outlined is the single greatest unmanaged risk to the ethical & effective usage of AI for HIV in LMICs. It's a risk to individual patients, to health system integrity, and to global health integrity. But this vacuum also represents GCC's most significant opportunity for transformational leadership. By embedding this framework into the organization's funding architecture, by mandating blueprints, building capacity, and co-investing in infrastructure, GCC can do more than fund good projects, GCC can raise the standard for the entire field of AI in global health.

This is the critical path from extractive, short-term innovation to responsible, long-term stewardship (Ochasi et al., 2025). It ensures every dollar invested into a promising AI tool is equally an investment into the local capacity to govern it, the infrastructure to support it, and the mechanisms to protect the people who use it.

Slide 10:

Thank you!

Any questions?

References

Aboye, G. T., Haimovich, F., & Martin, G. (2023). mHealth in sub-Saharan Africa and Europe: A systematic review comparing the use and availability of mHealth approaches in sub-Saharan Africa and Europe. *Digital Health*, 9. <https://doi.org/10.1177/20552076231180972>

Celi, L. A., Cellini, J., Charpignon, M. L., Dee, E. C., Dernoncourt, F., Eber, R., ... (2022). Sources of bias in artificial intelligence that perpetuate healthcare disparities—a global review. *PLOS Digital Health*, 1(3), e0000022. <https://doi.org/10.1371/journal.pdig.0000022>

Chepkirui, M., Muinga, N., Ochieng, R., Oduor, C., Gisore, P., & Mwaura, J. (2025). Missed opportunities for digital health data use in healthcare decision-making: A cross-sectional digital health landscape assessment in Homa Bay county, Kenya. *PLOS Digital Health*, 4(6), e0000870. <https://doi.org/10.1371/journal.pdig.0000870>

Davis, S. L. M., Pham, T., Kpodo, I., Imalingat, T., Muthui, A. K., Mjwana, N., & Coyle, J. (2023). Digital health and human rights of young adults in Ghana, Kenya and Vietnam: A qualitative participatory action research study. *BMJ Global Health*, 8(5), e011254. <https://doi.org/10.1136/bmjgh-2022-011254>

Dzinamarira, T., Rwibasira, G., Mwila, L., Moyo, E., Mangoya, D., Moyo, P., Oladele, E., Akinjeji, A., Chimene, M., & Muvunyi, C. M. (2025). Advancing sustainable HIV services through integration in primary healthcare in Sub-Saharan Africa: A perspective on practical recommendations. *Healthcare*, 13(2), Article 192. <https://doi.org/10.3390/healthcare13020192>

EUPHA Public Health Policy and Politics section, EUPHA Public Health Economics section, & Greer, S. (2025). *10.F. Round Table: Global Health Implications of US Foreign Aid Review for EU in Global Health Governance* [Conference session abstract]. European Journal of Public Health, 35(Supplement_4). <https://doi.org/10.1093/eurpub/ckaf161.594>

Espino Carrasco DK, Palomino Alcántara MDR, Arbulú Pérez Vargas CG, Santa Cruz Espino BM, Dávila Valdera LJ, Vargas Cabrera C, Espino Carrasco M, Dávila Valdera A, Agurto Córdova LM. (2025) Sep 4, *Sustainability of AI-Assisted Mental Health Intervention: A Review of the Literature from 2020-2025*. *Int J Environ Res Public Health.*;22(9):1382. doi: 10.3390/ijerph22091382. PMID: 41007526; PMCID: PMC12469610.

Farlow, A., Hoffmann, A., Tadesse, G. A., Mzurikwao, D., Beyer, R., et al. (2023). Rethinking global digital health and AI-for-health innovation challenges. *PLOS Global Public Health*, 3(4), e0001844. <https://doi.org/10.1371/journal.pgph.0001844>

Mathur, S., Eromhonsele, A. F., Vallarino, Z., Savel, C., Oche, E., Ononye, O., ... Tun, W. (2025). "Let's chat!" Piloting a digital chatbot for HIV prevention among cisgender women and transgender men in Nigeria. *AIDS Care*, 37(6), 1015–1025. <https://doi.org/10.1080/09540121.2025.2470318>

Muliokela, R., Banda, K., Hussen, A., Malumo, S., Kashoka, A., Mwiche, A., Chiboma, I., Barreix, M., Nyirenda, M., Sithole, Z., Ratanaprayul, N., Endehabtu, B., Telake, H., Weldeab, A., Probert, W., Tunçalp, Ö., Maya, E., Woldetsadik, M., ... Tilahun, B. (2025). Implementation of WHO SMART guidelines-digital adaptation kits in pathfinder countries in Africa: Processes and early lessons learned. *JMIR Medical Informatics*, 13, e58858. <https://doi.org/10.2196/58858>

Murphy, Kathleen, et al. (2024). "Artificial Intelligence for Good Health: A Scoping Review of the Ethics Literature." *BMC Medical Ethics*, vol. 22, no. 1, 14, <https://doi.org/10.1186/s12910-021-00577-8>.

Naidoo, S., Mahomed, O., & Moshabela, M. (2022). Artificial intelligence in healthcare: Proposals for policy development in South Africa. *South African Journal of Bioethics and Law*, 15(1), 11–16. <https://doi.org/10.7196/SAJBL.2022.v15i1.797>

Ngcobo, S., Mntla, E. M., Shock, J., Louw, M., Mbonambi, L., Serite, T., & Rossouw, T. (2024). Artificial intelligence for HIV care: A global systematic review of current studies and emerging trends. *Journal of the International AIDS Society*, 27(7), e70045. <https://doi.org/10.1002/jia2.70045>

Olaboye, J. A., Maha, C. C., Kolawole, T. O., & Abdul, S. (2024). Artificial intelligence in monitoring HIV treatment adherence: A conceptual exploration. https://www.researchgate.net/publication/381435155_Artificial_intelligence_in_monitoring_HIV_treatment_adherence_A_conceptual_exploration

Olawade, David B., et al. (2025). "Ethical Oversight of Artificial Intelligence in Nigerian Healthcare: A Qualitative Analysis of Ethics Committee Members' Perspectives on Integration and Regulation." *International Journal of Medical Informatics (Shannon, Ireland)*, vol. 206, 106140, 2026, <https://doi.org/10.1016/j.ijmedinf.2025.106140>.

Ochasi, A., Ekezie, W., & Mburu, C. (2025). Reframing Justice in Healthcare AI: An Ubuntu-Based Approach for Africa. *Developing World Bioethics*. Advance online publication. <https://doi.org/10.1111/dewb.70007>

Olawade, David B., et al. (2025). "Perceptions and Challenges of Artificial Intelligence Adoption in Nigerian Public Healthcare: Insights from Consultant Doctors across Five Tertiary Hospitals." *Clinical Epidemiology and Global Health*, vol. 36, 102200, 2025, <https://doi.org/10.1016/j.cegh.2025.102200>.

Shaw, James, et al. (2025). "Research Ethics and Artificial Intelligence for Global Health: Perspectives from the Global Forum on Bioethics in Research." *BMC Medical Ethics*, vol. 25, no. 1, 46, 2024, <https://doi.org/10.1186/s12910-024-01044-w>.

Tiffin, N., George, A., & LeFevre, A. E. (2019). How to use relevant data for maximal benefit with minimal risk: Digital health data governance to protect vulnerable populations in low-income and middle-income countries. *BMJ Global Health*, 4(2), e001395. <https://doi.org/10.1136/bmjgh-2019-001395>

Wong, E., Bermudez-Cañete, A., Campbell, M. J., & Rhew, D. C. (2025). Bridging the digital divide: A practical roadmap for deploying medical artificial intelligence technologies in low-resource settings. *Population Health Management*, 28(2), 105–114. <https://doi.org/10.1089/pop.2024.0222>

World Health Organization. (2021). *Ethics and governance of artificial intelligence for health: WHO guidance*. World Health Organization. <https://iris.who.int/handle/10665/341996>

World Health Organization. (2024). Ethics and governance of artificial intelligence for health: Guidance on large multi-modal models. <https://www.who.int/publications/i/item/9789240084759>

Yu, L., & Zhai, X. (2024). Use of artificial intelligence to address health disparities in low- and middle-income countries: A thematic analysis of ethical issues. *Public Health*, 234, 77–83. <https://doi.org/10.1016/j.puhe.2024.05.029>