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Introduction
Artificial intelligence (Al) is increasingly woven into all facets of global health, frequently touted as a

quick-fix solution to funding, knowledge, and technical deficiencies. Within the global health research
and development sector, clinical health trials are key to testing medical, surgical or behavioral
interventions. In low-resource settings in particular, where the burden of disease is high, clinical trials
are essential for achieving equitable and effective health solutions, generating evidence for context-
appropriate settings.

Despite the rapid expansion of Al across health sectors, a notable gap persists in understanding
how Al models can be responsibly integrated into clinical research in low-resource environments. In
particular, the intersection of Al with data sovereignty requirements poses significant challenges for
protecting local populations while enabling meaningful scientific collaboration. This paper asks “In
clinical trials in low-resource settings, how do data sovereignty requirements and cross-border
restrictions shape the interoperability and communication protocols needed for Al analysis?”.

To explore this question, a review with qualitative synthesis was performed using peer-reviewed
studies retrieved from major databases. This paper argues that Artificial Intelligence cannot be
effectively or ethically integrated into clinical trials in low-resource settings because national sovereignty
requirements directly conflict with the interoperability and communication standards required for Al
systems to function.

Methods
A structured search strategy was developed to identify peer-reviewed and grey literature

relevant to Al protocols, biobanking governance, data sovereignty, and global health applications of
artificial intelligence. Searches were conducted across major academic databases including the
MacOdrum Library, PubMed, Google Scholar, the National Library of Medicine, Frontiers, MDPI, and
SpringerLink. To capture the policy and governance dimensions of Al, additional targeted searches were

performed using institutional and organizational sources such as the World Health Organization, OECD,



IDRC, FDA regulatory statements, and the Cloud Security Alliance. Key search terms included
combinations of: Al protocol gaps in health care; Al governance challenges; FIPA; HL7-FHIR; global health
Al; biobanking governance; data sovereignty; Al and public health; Al colonialism; cross-border data
flows; digital health interoperability; and biobank requlation. Boolean operators (AND/OR) were used to

refine results.

Search results were screened in three stages: (1) review of the first 40 paper titles, (2) abstract
screening of titles deemed relevant (10-20), and (3) full-text review (3-8). Inclusion criteria required that
sources: (1) addressed Al systems, protocols, data governance, or health applications; (2) focused on
global health, public health systems, biobanking, interoperability, or cross-border data issues; and (3)
were published between 2015-2025 in English. Grey literature was included when it contributed
essential regulatory, policy, or governance insights. Exclusion criteria eliminated studies focused solely
on narrow clinical Al applications without broader relevance to governance, ethics, or system-level
challenges. This search strategy ensured a comprehensive synthesis of both technical and governance-

oriented literature to assess gaps in Al protocols and data governance in global health.

Artificial Intelligence

This paper will focus on machine learning Al platforms, using multi-agent systems trained using
federated learning. Since the 1950s, artificial intelligence (Al) has referred to technologies that enable
computers and machines to simulate human learning, comprehension, problem-solving, decision-
making, creativity, and autonomy (Stryker & Kavlakoglu, 2025). In the 2020s, public and policy debates
have shifted toward generative Al, which can produce text, images, and video. Al systems are built
primarily through two approaches: machine learning, developed in the 1980s and reliant on large

datasets to generate predictions and inferences, and deep learning, emerging in the 2010s as a subset of



machine learning that uses multilayered neural networks to mimic aspects of the human brain (Stryker

& Kavlakoglu, 2025).

Within Al, there are Multi-Agent Systems (MAS), a core area of modern Al research, consisting
of “multiple decision-making agents which interact in a shared environment to achieve common or
conflicting goals” (The Allan Turning Institute, 2025). Simply put, instead of one large Al device trying to
do everything, MAS can divide a problem into smaller tasks and assign them to different specialized
agents (Malec, 2025). The two key components in MAS are agents which can be software bots, sensors,
or robots, and the environment, which can be static or dynamic (Malec, 2025). When MAS is used,
agents need to “talk”, they rely on a shared state channel and can share information in an entire chain

of thought or through sharing the end results (Malec, 2025).

Machine learning models need a high volume of data to be trained and tested on, and this data
is often shared across different places and devices which creates privacy, intellectual property rights and
ownership concerns (Lareo, 2025). Federated learning may be a solution for machine-learning models
where “each federated device shares its local model parameters instead of sharing whole datasets used
to train it” (Lareo, 2025). Meaning, instead of devices sharing the data with one another, each device
trains a small version of the model on its own data and sends model updates to others, not sharing the
data itself (Lareo, 2025). The communication set up of the models or the topology, dictates how updates
are shared. These updates can be centralized with every device sending updates to a central server,
combining them to improve the model, or in a peer-to-peer or hierarchical way, where devices share
updates with only some peers, with no central server (Lareo, 2025). The key takeaway here is that
federated learning trains a shared Al model by sharing model updates opposed to sharing private
training data, the data stays local. Federated learning is often presented as a promising approach to

protecting privacy and reducing cross-border data transfers because it keeps data local and shares only



model updates. While it may alleviate some concerns about data exposure, its real-world effectiveness
depends on technical, infrastructural, and governance conditions that are uneven across global health

contexts.

Al systems, both machine learning and deep learning models, depend on patterns learned from
large, diverse data sets. In health contexts, these models need very large, high-quality data sets to distill
patterns, where patterns may be rare (Wang, Pershing, & Lee, 2020). Further, data sets must be
harmonized, meaning they are collected in similar ways, using the same variables, units, labeling
conventions and with standardized definitions for clinical features, diagnoses and imaging (Wang,
Pershing, & Lee, 2020). There is especially high risk of using Al in health care, as the Al models must be
trained, tested and validated, across diverse populations, imaging devices, laboratory conditions and
clinical environments (Wang, Pershing, & Lee, 2020). This ensures that Al models will work across
different demographics and conditions. The more complex the data, which is the case in healthcare, the

more example models are needed to detect patterns (Wang, Pershing, & Lee, 2020).

High and Low Income Al Divide

There is a growing divide in how Al is developed and deployed across high- and low-income
countries. The economic and social benefits of Al are heavily concentrated in high-income countries that
already possess advanced digital infrastructure, strong data ecosystems, and substantial resources for Al
development (Schellekens and Skilling, 2024). Although Al has the potential to contribute up to USD
$15.7 trillion to the global economy by 2030, the majority of these gains are expected to accrue to North
America and China, while low-income regions capture only a small share of the benefits (Yu, Rosenfeld,

and Gupta, 2023).

This readiness gap is reflected in global assessments. The Oxford Insights Al Readiness Index

found that among 181 countries evaluated on their ability to integrate Al into public services, many of



the lowest scoring countries were in the Global South (Yu, Rosenfeld, and Gupta, 2023). The results
highlight that governments require adequate operating environments to support effective Al
development (Yu, Rosenfeld, and Gupta, 2023). These environments depend on a strong technology
sector, reliable data infrastructure, and a clear strategic vision, along with attention to governance and
ethics at the state level (Yu, Rosenfeld, and Gupta, 2023). Without these foundations, disparities in Al

readiness will deepen existing global inequalities.

The unequal impacts of Al can be seen in the pervasiveness of digital colonialism. For example,
in Africa, foreign technology companies control much of the continent’s digital infrastructure and
dominate its online platforms, giving them significant influence over political, economic, and cultural life
(Salami, 2024). This external control allows these corporations to extract and store vast amounts of
data from African users, reinforcing unequal data flows and creating dependency on Western
technologies (Salami, 2024) As a result, Al systems and algorithms developed in the Global North are
imposed on African contexts, often embedding harmful biases, enabling algorithmic oppression, and
allowing powerful actors to exploit local populations (Salami, 2024). Together, these dynamics entrench
existing inequalities and risk deepening Africa’s marginalization in the global digital economy. These
structural inequalities in Al development and digital ownership mirror the power imbalances already

embedded within global biobanking networks shaping who ultimately benefits from clinical research.

Biobanking Data

Biobanks, dating back to the 1990s, is a critical research infrastructure in clinical trials, which
rely on the retrieval, collection, storage, and preservation of human biological samples (Soares,
Holzscheiter & Henrichsen, 2025). As biomedicine has expanded across borders, biobanking has become
increasingly transnational, with human specimens and related data circulating globally despite the

absence of international agreements governing these practices (Soares, Holzscheiter & Henrichsen,



2025). Biobanks now anchor national and international research ecosystems, supporting clinical studies
across diseases and populations. Their rapid growth, from 145 biobanks in Europe in 2010 to 618 in
2021, demonstrates their rising importance (Soares, Holzscheiter & Henrichsen, 2025). This expansion,
along with the movement of samples across borders, underscores how clinical trials depend on
transnational flows of specimens and data. In the United States, access to specimens and data generally
follows one of three models: open access, tiered access, or controlled access (Harrell & Rothstein, 2016).
Open access allows unrestricted public availability, while controlled access limits use to approved
researchers and protocols (Harrell & Rothstein, 2016). Tiered access occupies the middle ground, with
restrictions based on donor consent, data sensitivity, or intended research use (Harrell & Rothstein,

2016).

Biobanking is undergoing a significant shift toward digitization. Biobanks are moving beyond
physical sample repositories toward computational knowledge hubs, where large-scale datasets can be
integrated with Al and machine learning tools (Frascarelli et al., 2023). As infrastructures grow more
complex, combining both samples and expansive data resources, there is increasing emphasis on data
utilization, digital transfer, and Al integration (Mayrhofer, 2025). One example of “digital biobanking” in
practice and its power in Al research and development is in cancer research. Digital biobanking has the
power to transform cancer research by pairing biological samples with Al-ready digital images and omics

datasets (Frascarelli et al., 2023).

A useful way to analyze these emerging systems is through the size, site, access, and speed
framework, which evaluates the volume of data, the physical or virtual location of repositories, access
conditions, and the pace of Al integration (Mayrhofer, 2025). These dimensions help assess how
effectively digital biobanks function. This transition supports improved risk prediction, disease

stratification, biomarker discovery, multi-omics integration with phenotypic and clinical data, and more



efficient prioritization and quality control (Venturini, Faria & Cordeiro, 2025). It also enables scalability
across samples and sites, improving pattern detection at population levels (Venturini, Faria & Cordeiro,

2025).

These developments, however, introduce new challenges. Data accessibility and variability
remain major issues, as biobanks often rely on heterogeneous formats, incomplete datasets,
inconsistent metadata, and differing sample processing protocols (Venturini, Faria & Cordeiro, 2025).
Additional concerns include transparency and accountability, algorithmic bias, privacy and security risks,

and gaps in governance and regulatory frameworks (Venturini, Faria & Cordeiro, 2025).

Biobanking in clinical trials raises significant policy challenges. National jurisdictions maintain
divergent rules governing the use, storage, and circulation of human samples and data, creating
persistent incompatibilities across borders (Soares, Holzscheiter & Henrichsen, 2025). The primary
benchmarking instrument remains the 1997 Council of Europe Oviedo Convention on Human Rights and
Biomedicine, the only international treaty to establish binding rules relevant to biobanking (Soares,
Holzscheiter & Henrichsen, 2025). Beyond this, protections rely on a patchwork of semi-related
agreements, including Article 12 of the Universal Declaration of Human Rights, Article 17 of the
International Covenant on Civil and Political Rights, Article 8 of the European Convention on Human
Rights, the 1980 OECD Privacy Guidelines (renewed in 2013), the Council of Europe Convention 108+, and
the EU General Data Protection Regulation (Soares, Holzscheiter & Henrichsen, 2025). These fragmented
instruments do not fully address the scale of contemporary biobanking, which increasingly involves large

volumes of cross-border sample and data flows that directly implicate questions of data sovereignty.

Biobanks form a direct bridge between global data inequalities and the technical demands of Al
in clinical research. Because Al systems require large, harmonized datasets, the governance of biobanks

defines whether biological samples and associated data can be standardized, linked, and shared across



trial sites. In low-and-middle-income countries, gaps in biobank infrastructure, inconsistent consent and
export rules, and fragmented data standards determine not only who controls biological data but also

whether Al protocols can function at all in multi-country trials.

Data Sovereignty

Data sovereignty is the principle that a jurisdiction has the authority to govern data generated
within its borders (Imperva, 2025). In theory, states can and should regulate the collection, storage,
processing, and distribution of data originating domestically, which directly affects Al use and
transnational biobanking practices. Yet in the absence of clear international governance, countries
lacking data localization requirements remain particularly vulnerable, as biological and genomic data can
be stored, processed, or transferred abroad with limited oversight (Imperva, 2025). These vulnerabilities
are already shaping international collaboration. China’s 2021 Data Security Law restricts the export of
designated categories of “important data,” prompting several European research funders to pause
collaborations with Chinese institutions due to uncertainty over data-transfer permissions (Silver, 2025).
Similarly, in June 2025, the U.S. FDA announced new restrictions on exporting American biological
samples to “hostile countries,” largely low-income countries, framing genomic data security as a

national security priority (U.S. FDA, 2025).

A further complication is that data residency does not necessarily guarantee data sovereignty.
Hosting data within national borders does not ensure national control if the infrastructure is owned or
operated by foreign firms (Richardson et al., 2025). Many (48%) of non-U.S. data centers, for example,
are operated by U.S. companies, limiting the extent to which those centers fall under local legal
authority and raising concerns about extraterritorial control (Richardson et al., 2025). This is particularly
consequential for multi-country clinical trials that rely on biobanking infrastructure. One Cornell study,

examining 775 of non-U.S. sites, found that many remain out of the control of foreign legal processes



due to the operator’s nationality (Richardson et al., 2025). These asymmetries intensify when biological
and genomic data from low- and middle-income countries are exported to high-income settings with
advanced computational capacities, reinforcing global inequalities in data access, ownership, and

benefit-sharing (Richardson et al., 2025).

Cloud Storage

These sovereignty challenges are further compounded by the technical realities of cloud-based
data storage, which weaken territorial control and complicates cross-border governance (Siry, 2019).
Cloud architectures distribute data across multiple jurisdictions, making it difficult, even for service
providers, to determine where specific data fragments physically reside (Siry, 2019). This undermines
legal frameworks that rely on the physical location of data and fuels conflicting national claims over
access and control (Siry, 2019). The absence of unified global rules on cloud based cross-border data
flows creates legal fragmentation that exposes states to compliance risks and leaves data subjects
vulnerable when information circulates through cloud environments (Ziyi, 2022). These cloud based
challenges parallel the situation faced by Al-driven clinical trials that rely on biobank samples from low-
resource settings, where sovereignty rules often restrict the movement of biological and genomic data
even as Al systems require large, harmonized datasets. Siry (2019) also demonstrates that traditional
mechanisms for cross-border data access have become incompatible with the speed and volume of
cloud-era data flows, which has prompted states to adopt broad extraterritorial access laws like the U.S.

CLOUD Act and similar EU proposals.

Al Multi-Agent Communication Protocols

When using Al in any form, systems depend on communication protocols to operate and
interact with other systems, including the internet (Caballar and Stryker, 2025). These protocols include

software engineering standards such as agent communication protocols, networking protocols, and data



exchange protocols. Agent protocols define how Al agents and other systems exchange information by
specifying the syntax, structure, and sequence of messages, as well as conventions governing agent
roles and when and how they respond to information (Caballar and Stryker, 2025). Without these
standards, multi-agent systems cannot communicate. Effective agent protocols support interoperability,
meaning that systems and software can exchange information in a consistent way, they reduce
development complexity, and they support smoother system integration (Caballar and Stryker, 2025).
Two of the most widely used agent communication languages are FIPA-ACL and KQML. These languages
provide a structured way of sending messages between agents, which enables interoperability across

different multi-agent systems (Kim Soon Gan et al., 2018).

A systematic review of multi-agent Al systems in health care identified several barriers that
directly affect their use in clinical settings (Nweke et al., 2025). The review found persistent problems
with data bias, inconsistent data formats, and difficulty integrating diverse data sources, all of which
limited the performance of multi-agent systems in health care (Nweke et al., 2025). Ethical concerns
were also common, including transparency, accountability, and trust issues. Because multi-agent
systems involve multiple autonomous agents making decisions, it was often unclear which agent was
responsible for a specific output, creating challenges for informed consent and ethical oversight (Nweke
et al., 2025). The authors also noted significant difficulties integrating multi-agent systems into existing
health care infrastructures such as electronic health records. Without standardized integration
protocols, implementations caused disruptions or incompatibilities with legacy systems (Nweke et al.,
2025). There were also concerns about real-world applicability because only a small number of systems
in the review had been tested in clinical environments, while most remained at the simulation stage.
This limited evidence about effectiveness, scalability, and safety (Nweke et al., 2025). Overall, the review
shows that reliable, standardized communication protocols are essential for both Al and multi-agent

systems. Without interoperability and consistent data foundations, the barriers identified in the review



become structural obstacles that interact with national data sovereignty rules and further disrupt the

communication standards and cross-border data flows that Al-driven clinical trials depend on.

Interoperability and Ontologies

There are four levels of interoperability. Foundational interoperability represents the most basic
tier, enabling one system to send or receive data from another, relying primarily on baseline IT
connectivity rather than shared data structures (National Library of Medicine, n.d.). Structural
interoperability builds upon this by aligning the format and syntax of exchanged data so that
information preserves its structure, purpose, and framework during transmission. Semantic
interoperability is more complex and involves maintaining consistent meaning across systems through
unified terminologies, vocabularies, and ontologies; this level ensures that clinical, laboratory,
epidemiological, or genomic information is interpreted consistently across sites. At the highest tier,
organizational interoperability requires coherent governance, harmonized consent processes, legal
alignment, and integrated operational workflows so that systems can exchange and use data in a
coordinated and trustworthy manner (National Library of Medicine, n.d.). Al systems, particularly multi-
country, biobank-supported, or multi-agent models, may function adequately when only foundational or
structural interoperability is achieved, but they frequently fail at the semantic and organizational levels.
Semantic failures arise when meaning is not preserved due to inconsistent metadata, incompatible
clinical terminologies, or diverging formatting practices across health systems and biobanks, leading to
misclassification, data loss, or reduced analytic validity. Organizational failures are even more
pronounced in cross-border clinical research, where data sovereignty rules can block the transfer of
biological or genomic data, consent requirements vary across jurisdictions, and legal frameworks conflict
or lack clarity. These challenges become further compounded when cloud infrastructure is operated by

foreign firms, when governance capacity is limited, or when institutional workflows remain siloed and



poorly integrated (National Library of Medicine, n.d.). These limitations reinforce why interoperability
frameworks alone cannot guarantee seamless data exchange or reliable Al performance across regions.
This is where ontologies become essential. Ontologies determine the meaning and relationships of
concepts within a given domain and therefore provide the semantic structure by which clinical and
biomedical knowledge can be contextualized and interpreted consistently (Ambalavanan et al., 2025).
By delivering a shared, machine-readable vocabulary, ontologies serve as the semantic bridge between
Al and healthcare, enabling harmonized data interpretation, automated reasoning, and precise clinical
decision support (Ambalavanan et al., 2025). Standardized ontologies, aligned with international
terminologies such as HL7 FHIR, SNOMED CT, LOINC, and ICD, ensure consistent representation of
medical concepts and enable seamless data exchange across providers, research networks, and
countries. In this sense, ontologies complement technical interoperability frameworks by embedding
shared meaning into data and creating the semantic and organizational stability necessary for reliable Al
training, cross-border analytics, and equitable integration of digital health innovations (Ambalavanan et

al., 2025).

Global Standard for Health Data Exchange

Clinical research data must be traceable, accessible, interoperable, reproducible, and high
quality for research findings to be meaningful and generalizable across regions (Pétavy, Seigneuret and
Hudson, 2019). When data is collected in inconsistent formats across different sites, it becomes difficult
to compare or aggregate results, which is especially problematic in multi-country trials that operate
across heterogeneous healthcare systems, regulatory regimes, and data infrastructures (Pétavy,
Seigneuret and Hudson, 2019). Approximately 85 percent of research studies fail to translate into
meaningful clinical discoveries (Pétavy, Seigneuret and Hudson, 2019). Adopting a common set of data
standards is therefore essential for improving reproducibility, reducing evidence gaps, and enabling

cross-regional data integration (Pétavy, Seigneuret and Hudson, 2019).



Health Level Seven (HL7) provides an internationally recognized suite of standards for
exchanging and integrating electronic health information (Mahon, 2023). HL7 Version 2 structures the
content of messages exchanged between health systems, while Version 3 introduces more complex
modeling for clinical and administrative data. HL7 Fast Healthcare Interoperability Resources (FHIR)
focuses on simplicity, modularity, and web-based integration, allowing diverse systems to exchange data
more efficiently. The Clinical Document Architecture (CDA) standardizes the structure of clinical
documents, and the Continuity of Care Document (CDC) summarizes patient information for transitions
between care settings. Together, these standards supply a common language that supports accurate
and consistent data exchange across laboratories, electronic health records, imaging systems, pharmacy

systems, and pathology workflows (Mahon, 2023).

These global health standards support the large and harmonized datasets required for machine
learning, but despite possible advantages, adoption remains uneven (Osamika et al., 2025). Many
institutions continue to rely on legacy architectures or fragmented data systems, and persistent
inconsistencies in semantics, structure, and governance limit the ability to pool or repurpose data for
research or Al training. These challenges are even more pronounced in low-resource settings where

infrastructure, regulatory alignment, and data-governance capacity are limited (Osamika et al., 2025).

Analyses of digital public health infrastructures show that many countries still struggle with
fragmented data governance, inconsistent standards, and uneven data quality, which restrict the
integration of advanced analytics and multi-agent Al tools (Slawomirski et al., 2023). Before the COVID-
19 pandemic, governments attempted to establish foundational governance structures to support
standardized data sharing, especially for immunisation and respiratory disease surveillance (Slawomirski
et al., 2023). The pandemic revealed major limitations, including inadequate data availability for

marginalized and Indigenous populations, limited linkability across decentralized systems, and



inconsistent reporting mechanisms that hindered real-time analysis (Slawomirski et al., 2023). These
gaps showed that limited interoperability undermines both crisis response and the routine use of digital

tools in public health practice.

In response, many governments are now pursuing long-term strategies to build secure and
equitable digital infrastructures. These efforts include establishing independent data stewardship
authorities, investing in digital skills for health workers and data specialists, and developing unified
standards for high-quality and privacy-conscious data exchange. Examples from New Zealand and the
United Kingdom, as well as Australia’s national digital capacity-building initiatives and Canada’s
interoperability mandates, illustrate how governance, workforce capacity, and technical standards must
evolve together to enable effective data use (Slawomirski et al., 2023). These developments highlight a
central point for Al and biobank-supported clinical research. Without coherent governance and
standardized datasets, health systems cannot maintain the data stability required for reliable Al training,

validation, or deployment across clinical contexts.

A comparative study of FHIR and openEHR illustrates the real-world complexity of
interoperability (Allwell-Brown, 2016). Both standards support robust Application Programming
Interfaces, extensible modelling, and consistent data semantics. However, their usability depends
heavily on implementation capacity. openEHR, an open standard for electronic health records, offers
highly detailed and semantically rich modelling that allows precise representation of patient data, but
this complexity creates steep implementation requirements that many systems, especially in low-
resource settings, cannot meet (Allwell-Brown, 2016). FHIR is easier to deploy due to its lightweight
design, but it offers less semantic depth, which limits the detail available for Al models that rely on
harmonized and high-resolution data (Allwell-Brown, 2016). When tested in a controlled acute-care

decision support scenario, both standards performed reliably only under stable and well-resourced



conditions. Mapping heterogeneous clinical data into either standard proved difficult due to the
diversity of modern health data, which includes structured fields, free-text notes, imaging, and device
outputs. These findings show that interoperability standards do not, on their own, resolve data
fragmentation (Allwell-Brown, 2016). They require institutional capacity, consistent modelling practices,
and coherent governance. In multinational or biobank-supported Al research, particularly in low-
resource settings, these implementation burdens underscore that technical standards alone cannot
overcome the structural and organizational gaps that affect cross-border Al reliability (Allwell-Brown,

2016).

Discussion

Artificial intelligence systems require stable communication protocols, harmonized data
formats, and shared ontologies to function across institutions and national borders. Protocols such as
FIPA ACL and KQML define how multi-agent systems exchange structured messages, while standards like
HL7 and HL7 FHIR specify how clinical data should be formatted and transmitted so that Al systems can
interpret it consistently. However, across global health settings and particularly in low-resource
environments, these technical requirements clash with fragmented infrastructure, inconsistent data
vocabularies, and limited interoperability capacity. Systematic reviews of multi-agent Al systems
repeatedly show that inconsistent data formats, fragmented sources, and biased or incomplete datasets
undermine Al performance and reliability in clinical contexts (Nweke et al., 2025). These are not isolated
technical errors but structural characteristics of many health systems where governance capacity, digital

infrastructure, and standardization remain uneven (Slawomirski et al., 2023; Mahmoud et al., 2025).

Biobanks illustrate these tensions most clearly. Although contemporary biobanking has evolved
into a transnational, data-intensive research infrastructure, national data sovereignty laws increasingly

restrict how biological samples and genomic data can move across borders. Sovereignty frameworks are



meant to protect privacy, prevent extractive practices, and ensure local control over valuable biological
resources. Policies such as China’s Data Security Law and the United States’ restrictions on exporting
American biological data demonstrate how governments are consolidating authority over genomic data
and biological materials. These protections are justified by long histories of exploitation, unequal
benefit-sharing, and digital colonialism. Yet they directly conflict with the data-hungry nature of Al
systems, which require large, diverse, and harmonized datasets to produce accurate and generalizable
models. As Mayrhofer (2025) notes, both Al and biobanking depend on scale and diversity, but
sovereignty, consent requirements, and governance constraints increasingly limit the ability to combine
or share this data across borders. In multi-country clinical trials, this creates practical obstacles for

models that require pooled biospecimen data, harmonized metadata, or cross-site training datasets.

Interoperability gaps further amplify these constraints. Although HL7 and FHIR offer
standardized data structures, implementation in real clinical systems remains highly uneven. Many
institutions continue to rely on siloed databases or legacy systems that cannot communicate
meaningfully with Al architectures that expect structured, machine-readable data. Allwell-Brown’s
comparison of FHIR and openEHR demonstrates that even modern standards work reliably only under
well-resourced conditions, and mapping heterogeneous clinical data into these frameworks is
technically complex (Allwell-Brown, 2016). In low-resource settings, the challenge is magnified by
limited digital infrastructure, inconsistent metadata quality, and variable adherence to modeling
standards (Osamika et al., 2025). Without semantic consistency, Al models trained in one context cannot
be safely deployed in another, and federated approaches still require shared ontologies and governance

agreements to align local data sources.

These technical barriers interact with deeper geopolitical and sovereignty concerns. Countries in

the Global South face genuine risks of digital colonialism, unequal data extraction, and loss of



governance control over genomic data. Biobank networks and Al-driven research can reproduce
historical patterns of extraction when data is centralized outside the originating country, governed by
foreign institutions, or used for commercial gains without equitable benefit-sharing. As a result,
governments impose stricter controls over data export, which protects local interests but restricts the

cross-border data flows required for Al-supported clinical trials.

Taken together, the evidence reveals a structural bottleneck. Al in global health research and
development depends on interoperability, harmonized data, and cross-site communication, yet the
systems needed to support this are constrained by legal restrictions, inconsistent standards, legacy
infrastructure, and sovereignty-based protections. These obstacles are most pronounced in low-
resource settings, where interoperability frameworks are unevenly implemented, governance systems
are fragmented, and digital infrastructure lags behind. The result is that Al models cannot be reliably
trained, validated, or deployed across borders, particularly within multi-country clinical trials dependent

on biobank specimens and genomic data.

Policy Recommendations

Effective and equitable integration of artificial intelligence into global health research requires
policy responses that directly address the structural barriers identified in this paper. First, governments
and research institutions should establish internationally alighed governance frameworks that clarify
consent, data use, and benefit sharing for biobank supported Al research. This includes adopting
dynamic or tiered consent models (such as in the U.S.) that allow participants to understand and
authorize future Al uses of their biological samples and associated data. Second, multi-country trials
should adopt interoperable data standards such as HL7 and HL7 FHIR and ensure that trial sites in low
resource settings have the technical and regulatory capacity to integrate these standards into existing

systems. Investments in digital infrastructure, standardized protocols, and workforce development are



essential for data harmonization and for supporting Al that is reliable and reproducible. Third, countries
should create coordinated data sovereignty agreements that protect local control over sensitive health
and genomic data while still enabling responsible cross border scientific collaboration. Policymakers
should prioritize models such as federated learning and compute data arrangements which allow Al
analysis without the movement of raw biospecimens or personal data outside national boundaries.
Fourth, national governments and global funders should commit to building independent health data
stewardship bodies that can oversee ethical data use, manage access requests, and ensure
accountability and transparency. These bodies should reflect local values and protect marginalized and
underrepresented groups whose data is often at risk of exploitation. Finally, global health agencies,
including the WHO, should convene an international working group to align regulatory approaches for Al
enabled clinical trials, since inconsistent national rules on data export, biospecimen handling, and cloud
storage currently impede multi-country research. Policy leadership at the international level is necessary

to prevent fragmented standards from reinforcing existing inequities in Al readiness across regions.

Conclusion

Al, biobanking, and global health research are increasingly intertwined, yet this convergence exposes
deep inequalities in data governance, digital capacity, and the ability of different countries to shape the
direction of emerging technologies. This paper has shown that Al systems depend on harmonized, high
quality, and interoperable datasets, but many low resource settings lack the infrastructure, regulatory
coordination, and data governance systems required to support them. Biobanks have transitioned from
physical repositories to complex computational infrastructures, and their value for Al supported
research depends on the consistent application of standards, ethical oversight, and equitable
approaches to data sharing. At the same time, national data sovereignty laws, concerns over cross
border data flows, and geopolitical tensions increasingly shape how and where biological samples and

genomic data can be used. These dynamics create obstacles for multi-country clinical trials and



undermine efforts to create Al tools that are valid, safe, and generalizable across populations. Without
coherent governance frameworks and interoperable systems, Al risks amplifying global inequities rather

than reducing them.

Strengthening governance, supporting equitable data infrastructures, and enabling responsible
models for international data collaboration are essential if Al is to contribute to global health in
meaningful and just ways. The policy recommendations outlined here offer a pathway toward aligning
technical standards with ethical and geopolitical realities. By investing in data stewardship,
harmonization, and sovereignty respecting collaboration, the international community can create
conditions in which Al enhanced research benefits populations in low and high resource settings alike. In
doing so, global health systems can move toward a future where innovation is matched with

accountability, and where the use of Al supports, rather than undermines, principles of equity and trust.
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