
 

 

 

 

Artificial Intelligence, Data Sovereignty, and Interoperability Challenges in Clinical Trials in Low-

Resource Settings 

Sophie McDonagh 

Norman Patterson School of International Affairs, Carleton University 

INAF5706: Global Health Policy 

Professor Percival  

November 30, 2025 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Introduction 
Artificial intelligence (AI) is increasingly woven into all facets of global health, frequently touted as a 

quick-fix solution to funding, knowledge, and technical deficiencies. Within the global health research 

and development sector, clinical health trials are key to testing medical, surgical or behavioral 

interventions. In low-resource settings in particular, where the burden of disease is high, clinical trials 

are essential for achieving equitable and effective health solutions, generating evidence for context-

appropriate settings.  

Despite the rapid expansion of AI across health sectors, a notable gap persists in understanding 

how AI models can be responsibly integrated into clinical research in low-resource environments. In 

particular, the intersection of AI with data sovereignty requirements poses significant challenges for 

protecting local populations while enabling meaningful scientific collaboration. This paper asks “In 

clinical trials in low-resource settings, how do data sovereignty requirements and cross-border 

restrictions shape the interoperability and communication protocols needed for AI analysis?”.  

To explore this question, a review with qualitative synthesis was performed using peer-reviewed 

studies retrieved from major databases. This paper argues that Artificial Intelligence cannot be 

effectively or ethically integrated into clinical trials in low-resource settings because national sovereignty 

requirements directly conflict with the interoperability and communication standards required for AI 

systems to function. 

Methods  
A structured search strategy was developed to identify peer-reviewed and grey literature 

relevant to AI protocols, biobanking governance, data sovereignty, and global health applications of 

artificial intelligence. Searches were conducted across major academic databases including the 

MacOdrum Library, PubMed, Google Scholar, the National Library of Medicine, Frontiers, MDPI, and 

SpringerLink. To capture the policy and governance dimensions of AI, additional targeted searches were 

performed using institutional and organizational sources such as the World Health Organization, OECD, 



 

IDRC, FDA regulatory statements, and the Cloud Security Alliance. Key search terms included 

combinations of: AI protocol gaps in health care; AI governance challenges; FIPA; HL7-FHIR; global health 

AI; biobanking governance; data sovereignty; AI and public health; AI colonialism; cross-border data 

flows; digital health interoperability; and biobank regulation. Boolean operators (AND/OR) were used to 

refine results. 

Search results were screened in three stages: (1) review of the first 40 paper titles, (2) abstract 

screening of titles deemed relevant (10-20), and (3) full-text review (3-8). Inclusion criteria required that 

sources: (1) addressed AI systems, protocols, data governance, or health applications; (2) focused on 

global health, public health systems, biobanking, interoperability, or cross-border data issues; and (3) 

were published between 2015–2025 in English. Grey literature was included when it contributed 

essential regulatory, policy, or governance insights. Exclusion criteria eliminated studies focused solely 

on narrow clinical AI applications without broader relevance to governance, ethics, or system-level 

challenges. This search strategy ensured a comprehensive synthesis of both technical and governance-

oriented literature to assess gaps in AI protocols and data governance in global health. 

Artificial Intelligence  

This paper will focus on machine learning AI platforms, using multi-agent systems trained using 

federated learning. Since the 1950s, artificial intelligence (AI) has referred to technologies that enable 

computers and machines to simulate human learning, comprehension, problem-solving, decision-

making, creativity, and autonomy (Stryker & Kavlakoglu, 2025). In the 2020s, public and policy debates 

have shifted toward generative AI, which can produce text, images, and video. AI systems are built 

primarily through two approaches: machine learning, developed in the 1980s and reliant on large 

datasets to generate predictions and inferences, and deep learning, emerging in the 2010s as a subset of 



 

machine learning that uses multilayered neural networks to mimic aspects of the human brain (Stryker 

& Kavlakoglu, 2025).  

Within AI, there are Multi-Agent Systems (MAS), a core area of modern AI research, consisting 

of “multiple decision-making agents which interact in a shared environment to achieve common or 

conflicting goals” (The Allan Turning Institute, 2025). Simply put, instead of one large AI device trying to 

do everything, MAS can divide a problem into smaller tasks and assign them to different specialized 

agents (Malec, 2025). The two key components in MAS are agents which can be software bots, sensors, 

or robots, and the environment, which can be static or dynamic (Malec, 2025). When MAS is used, 

agents need to “talk”, they rely on a shared state channel and can share information in an entire chain 

of thought or through sharing the end results (Malec, 2025).  

 Machine learning models need a high volume of data to be trained and tested on, and this data 

is often shared across different places and devices which creates privacy, intellectual property rights and 

ownership concerns (Lareo, 2025). Federated learning may be a solution for machine-learning models 

where “each federated device shares its local model parameters instead of sharing whole datasets used 

to train it” (Lareo, 2025). Meaning, instead of devices sharing the data with one another, each device 

trains a small version of the model on its own data and sends model updates to others, not sharing the 

data itself (Lareo, 2025). The communication set up of the models or the topology, dictates how updates 

are shared. These updates can be centralized with every device sending updates to a central server, 

combining them to improve the model, or in a peer-to-peer or hierarchical way, where devices share 

updates with only some peers, with no central server (Lareo, 2025). The key takeaway here is that 

federated learning trains a shared AI model by sharing model updates opposed to sharing private 

training data, the data stays local. Federated learning is often presented as a promising approach to 

protecting privacy and reducing cross-border data transfers because it keeps data local and shares only 



 

model updates. While it may alleviate some concerns about data exposure, its real-world effectiveness 

depends on technical, infrastructural, and governance conditions that are uneven across global health 

contexts. 

AI systems, both machine learning and deep learning models, depend on patterns learned from 

large, diverse data sets. In health contexts, these models need very large, high-quality data sets to distill 

patterns, where patterns may be rare (Wang, Pershing, & Lee, 2020). Further, data sets must be 

harmonized, meaning they are collected in similar ways, using the same variables, units, labeling 

conventions and with standardized definitions for clinical features, diagnoses and imaging (Wang, 

Pershing, & Lee, 2020). There is especially high risk of using AI in health care, as the AI models must be 

trained, tested and validated, across diverse populations, imaging devices, laboratory conditions and 

clinical environments (Wang, Pershing, & Lee, 2020). This ensures that AI models will work across 

different demographics and conditions. The more complex the data, which is the case in healthcare, the 

more example models are needed to detect patterns (Wang, Pershing, & Lee, 2020).  

High and Low Income AI Divide 

There is a growing divide in how AI is developed and deployed across high- and low-income 

countries. The economic and social benefits of AI are heavily concentrated in high-income countries that 

already possess advanced digital infrastructure, strong data ecosystems, and substantial resources for AI 

development (Schellekens and Skilling, 2024). Although AI has the potential to contribute up to USD 

$15.7 trillion to the global economy by 2030, the majority of these gains are expected to accrue to North 

America and China, while low-income regions capture only a small share of the benefits (Yu, Rosenfeld, 

and Gupta, 2023). 

This readiness gap is reflected in global assessments. The Oxford Insights AI Readiness Index 

found that among 181 countries evaluated on their ability to integrate AI into public services, many of 



 

the lowest scoring countries were in the Global South (Yu, Rosenfeld, and Gupta, 2023). The results 

highlight that governments require adequate operating environments to support effective AI 

development (Yu, Rosenfeld, and Gupta, 2023). These environments depend on a strong technology 

sector, reliable data infrastructure, and a clear strategic vision, along with attention to governance and 

ethics at the state level (Yu, Rosenfeld, and Gupta, 2023). Without these foundations, disparities in AI 

readiness will deepen existing global inequalities. 

The unequal impacts of AI can be seen in the pervasiveness of digital colonialism. For example, 

in Africa, foreign technology companies control much of the continent’s digital infrastructure and 

dominate its online platforms, giving them significant influence over political, economic, and cultural life 

(Salami, 2024).  This external control allows these corporations to extract and store vast amounts of 

data from African users, reinforcing unequal data flows and creating dependency on Western 

technologies (Salami, 2024) As a result, AI systems and algorithms developed in the Global North are 

imposed on African contexts, often embedding harmful biases, enabling algorithmic oppression, and 

allowing powerful actors to exploit local populations (Salami, 2024).  Together, these dynamics entrench 

existing inequalities and risk deepening Africa’s marginalization in the global digital economy. These 

structural inequalities in AI development and digital ownership mirror the power imbalances already 

embedded within global biobanking networks shaping who ultimately benefits from clinical research. 

Biobanking Data 

Biobanks, dating back to the 1990s, is a critical research infrastructure in clinical trials, which 

rely on the retrieval, collection, storage, and preservation of human biological samples (Soares, 

Holzscheiter & Henrichsen, 2025). As biomedicine has expanded across borders, biobanking has become 

increasingly transnational, with human specimens and related data circulating globally despite the 

absence of international agreements governing these practices (Soares, Holzscheiter & Henrichsen, 



 

2025). Biobanks now anchor national and international research ecosystems, supporting clinical studies 

across diseases and populations. Their rapid growth, from 145 biobanks in Europe in 2010 to 618 in 

2021, demonstrates their rising importance (Soares, Holzscheiter & Henrichsen, 2025). This expansion, 

along with the movement of samples across borders, underscores how clinical trials depend on 

transnational flows of specimens and data. In the United States, access to specimens and data generally 

follows one of three models: open access, tiered access, or controlled access (Harrell & Rothstein, 2016). 

Open access allows unrestricted public availability, while controlled access limits use to approved 

researchers and protocols (Harrell & Rothstein, 2016). Tiered access occupies the middle ground, with 

restrictions based on donor consent, data sensitivity, or intended research use (Harrell & Rothstein, 

2016).  

Biobanking is undergoing a significant shift toward digitization. Biobanks are moving beyond 

physical sample repositories toward computational knowledge hubs, where large-scale datasets can be 

integrated with AI and machine learning tools (Frascarelli et al., 2023). As infrastructures grow more 

complex, combining both samples and expansive data resources, there is increasing emphasis on data 

utilization, digital transfer, and AI integration (Mayrhofer, 2025). One example of “digital biobanking” in 

practice and its power in AI research and development is in cancer research. Digital biobanking has the 

power to transform cancer research by pairing biological samples with AI-ready digital images and omics 

datasets (Frascarelli et al., 2023). 

A useful way to analyze these emerging systems is through the size, site, access, and speed 

framework, which evaluates the volume of data, the physical or virtual location of repositories, access 

conditions, and the pace of AI integration (Mayrhofer, 2025). These dimensions help assess how 

effectively digital biobanks function. This transition supports improved risk prediction, disease 

stratification, biomarker discovery, multi-omics integration with phenotypic and clinical data, and more 



 

efficient prioritization and quality control (Venturini, Faria & Cordeiro, 2025). It also enables scalability 

across samples and sites, improving pattern detection at population levels (Venturini, Faria & Cordeiro, 

2025). 

These developments, however, introduce new challenges. Data accessibility and variability 

remain major issues, as biobanks often rely on heterogeneous formats, incomplete datasets, 

inconsistent metadata, and differing sample processing protocols (Venturini, Faria & Cordeiro, 2025). 

Additional concerns include transparency and accountability, algorithmic bias, privacy and security risks, 

and gaps in governance and regulatory frameworks (Venturini, Faria & Cordeiro, 2025). 

 Biobanking in clinical trials raises significant policy challenges. National jurisdictions maintain 

divergent rules governing the use, storage, and circulation of human samples and data, creating 

persistent incompatibilities across borders (Soares, Holzscheiter & Henrichsen, 2025). The primary 

benchmarking instrument remains the 1997 Council of Europe Oviedo Convention on Human Rights and 

Biomedicine, the only international treaty to establish binding rules relevant to biobanking (Soares, 

Holzscheiter & Henrichsen, 2025). Beyond this, protections rely on a patchwork of semi-related 

agreements, including Article 12 of the Universal Declaration of Human Rights, Article 17 of the 

International Covenant on Civil and Political Rights, Article 8 of the European Convention on Human 

Rights, the 1980 OECD Privacy Guidelines (renewed in 2013), the Council of Europe Convention 108+, and 

the EU General Data Protection Regulation (Soares, Holzscheiter & Henrichsen, 2025). These fragmented 

instruments do not fully address the scale of contemporary biobanking, which increasingly involves large 

volumes of cross-border sample and data flows that directly implicate questions of data sovereignty.  

Biobanks form a direct bridge between global data inequalities and the technical demands of AI 

in clinical research. Because AI systems require large, harmonized datasets, the governance of biobanks 

defines whether biological samples and associated data can be standardized, linked, and shared across 



 

trial sites. In low-and-middle-income countries, gaps in biobank infrastructure, inconsistent consent and 

export rules, and fragmented data standards determine not only who controls biological data but also 

whether AI protocols can function at all in multi-country trials. 

Data Sovereignty  

Data sovereignty is the principle that a jurisdiction has the authority to govern data generated 

within its borders  (Imperva, 2025). In theory, states can and should regulate the collection, storage, 

processing, and distribution of data originating domestically, which directly affects AI use and 

transnational biobanking practices. Yet in the absence of clear international governance, countries 

lacking data localization requirements remain particularly vulnerable, as biological and genomic data can 

be stored, processed, or transferred abroad with limited oversight (Imperva, 2025). These vulnerabilities 

are already shaping international collaboration. China’s 2021 Data Security Law restricts the export of 

designated categories of “important data,” prompting several European research funders to pause 

collaborations with Chinese institutions due to uncertainty over data-transfer permissions (Silver, 2025). 

Similarly, in June 2025, the U.S. FDA announced new restrictions on exporting American biological 

samples to “hostile countries,” largely low-income countries, framing genomic data security as a 

national security priority (U.S. FDA, 2025). 

A further complication is that data residency does not necessarily guarantee data sovereignty. 

Hosting data within national borders does not ensure national control if the infrastructure is owned or 

operated by foreign firms (Richardson et al., 2025). Many (48%) of non-U.S. data centers, for example, 

are operated by U.S. companies, limiting the extent to which those centers fall under local legal 

authority and raising concerns about extraterritorial control (Richardson et al., 2025). This is particularly 

consequential for multi-country clinical trials that rely on biobanking infrastructure. One Cornell study, 

examining 775 of non-U.S. sites, found that many remain out of the control of foreign legal processes 



 

due to the operator’s nationality (Richardson et al., 2025). These asymmetries intensify when biological 

and genomic data from low- and middle-income countries are exported to high-income settings with 

advanced computational capacities, reinforcing global inequalities in data access, ownership, and 

benefit-sharing (Richardson et al., 2025).  

Cloud Storage 

` These sovereignty challenges are further compounded by the technical realities of cloud-based 

data storage, which weaken territorial control and complicates cross-border governance (Siry, 2019). 

Cloud architectures distribute data across multiple jurisdictions, making it difficult, even for service 

providers, to determine where specific data fragments physically reside (Siry, 2019). This undermines 

legal frameworks that rely on the physical location of data and fuels conflicting national claims over 

access and control (Siry, 2019). The absence of unified global rules on cloud based cross-border data 

flows creates legal fragmentation that exposes states to compliance risks and leaves data subjects 

vulnerable when information circulates through cloud environments (Ziyi, 2022). These cloud based 

challenges parallel the situation faced by AI-driven clinical trials that rely on biobank samples from low-

resource settings, where sovereignty rules often restrict the movement of biological and genomic data 

even as AI systems require large, harmonized datasets. Siry (2019) also demonstrates that traditional 

mechanisms for cross-border data access have become incompatible with the speed and volume of 

cloud-era data flows, which has prompted states to adopt broad extraterritorial access laws like the U.S. 

CLOUD Act and similar EU proposals.  

AI Multi-Agent Communication Protocols 

When using AI in any form, systems depend on communication protocols to operate and 

interact with other systems, including the internet (Caballar and Stryker, 2025). These protocols include 

software engineering standards such as agent communication protocols, networking protocols, and data 



 

exchange protocols. Agent protocols define how AI agents and other systems exchange information by 

specifying the syntax, structure, and sequence of messages, as well as conventions governing agent 

roles and when and how they respond to information (Caballar and Stryker, 2025). Without these 

standards, multi-agent systems cannot communicate. Effective agent protocols support interoperability, 

meaning that systems and software can exchange information in a consistent way, they reduce 

development complexity, and they support smoother system integration (Caballar and Stryker, 2025). 

Two of the most widely used agent communication languages are FIPA-ACL and KQML. These languages 

provide a structured way of sending messages between agents, which enables interoperability across 

different multi-agent systems (Kim Soon Gan et al., 2018).  

A systematic review of multi-agent AI systems in health care identified several barriers that 

directly affect their use in clinical settings (Nweke et al., 2025). The review found persistent problems 

with data bias, inconsistent data formats, and difficulty integrating diverse data sources, all of which 

limited the performance of multi-agent systems in health care (Nweke et al., 2025). Ethical concerns 

were also common, including transparency, accountability, and trust issues. Because multi-agent 

systems involve multiple autonomous agents making decisions, it was often unclear which agent was 

responsible for a specific output, creating challenges for informed consent and ethical oversight (Nweke 

et al., 2025). The authors also noted significant difficulties integrating multi-agent systems into existing 

health care infrastructures such as electronic health records. Without standardized integration 

protocols, implementations caused disruptions or incompatibilities with legacy systems (Nweke et al., 

2025). There were also concerns about real-world applicability because only a small number of systems 

in the review had been tested in clinical environments, while most remained at the simulation stage. 

This limited evidence about effectiveness, scalability, and safety (Nweke et al., 2025). Overall, the review 

shows that reliable, standardized communication protocols are essential for both AI and multi-agent 

systems. Without interoperability and consistent data foundations, the barriers identified in the review 



 

become structural obstacles that interact with national data sovereignty rules and further disrupt the 

communication standards and cross-border data flows that AI-driven clinical trials depend on.  

Interoperability and Ontologies  

There are four levels of interoperability. Foundational interoperability represents the most basic 

tier, enabling one system to send or receive data from another, relying primarily on baseline IT 

connectivity rather than shared data structures (National Library of Medicine, n.d.). Structural 

interoperability builds upon this by aligning the format and syntax of exchanged data so that 

information preserves its structure, purpose, and framework during transmission. Semantic 

interoperability is more complex and involves maintaining consistent meaning across systems through 

unified terminologies, vocabularies, and ontologies; this level ensures that clinical, laboratory, 

epidemiological, or genomic information is interpreted consistently across sites. At the highest tier, 

organizational interoperability requires coherent governance, harmonized consent processes, legal 

alignment, and integrated operational workflows so that systems can exchange and use data in a 

coordinated and trustworthy manner (National Library of Medicine, n.d.). AI systems, particularly multi-

country, biobank-supported, or multi-agent models, may function adequately when only foundational or 

structural interoperability is achieved, but they frequently fail at the semantic and organizational levels. 

Semantic failures arise when meaning is not preserved due to inconsistent metadata, incompatible 

clinical terminologies, or diverging formatting practices across health systems and biobanks, leading to 

misclassification, data loss, or reduced analytic validity. Organizational failures are even more 

pronounced in cross-border clinical research, where data sovereignty rules can block the transfer of 

biological or genomic data, consent requirements vary across jurisdictions, and legal frameworks conflict 

or lack clarity. These challenges become further compounded when cloud infrastructure is operated by 

foreign firms, when governance capacity is limited, or when institutional workflows remain siloed and 



 

poorly integrated (National Library of Medicine, n.d.). These limitations reinforce why interoperability 

frameworks alone cannot guarantee seamless data exchange or reliable AI performance across regions. 

This is where ontologies become essential. Ontologies determine the meaning and relationships of 

concepts within a given domain and therefore provide the semantic structure by which clinical and 

biomedical knowledge can be contextualized and interpreted consistently (Ambalavanan et al., 2025). 

By delivering a shared, machine-readable vocabulary, ontologies serve as the semantic bridge between 

AI and healthcare, enabling harmonized data interpretation, automated reasoning, and precise clinical 

decision support (Ambalavanan et al., 2025). Standardized ontologies, aligned with international 

terminologies such as HL7 FHIR, SNOMED CT, LOINC, and ICD, ensure consistent representation of 

medical concepts and enable seamless data exchange across providers, research networks, and 

countries. In this sense, ontologies complement technical interoperability frameworks by embedding 

shared meaning into data and creating the semantic and organizational stability necessary for reliable AI 

training, cross-border analytics, and equitable integration of digital health innovations (Ambalavanan et 

al., 2025). 

Global Standard for Health Data Exchange 

Clinical research data must be traceable, accessible, interoperable, reproducible, and high 

quality for research findings to be meaningful and generalizable across regions (Pétavy, Seigneuret and 

Hudson, 2019). When data is collected in inconsistent formats across different sites, it becomes difficult 

to compare or aggregate results, which is especially problematic in multi-country trials that operate 

across heterogeneous healthcare systems, regulatory regimes, and data infrastructures (Pétavy, 

Seigneuret and Hudson, 2019). Approximately 85 percent of research studies fail to translate into 

meaningful clinical discoveries (Pétavy, Seigneuret and Hudson, 2019). Adopting a common set of data 

standards is therefore essential for improving reproducibility, reducing evidence gaps, and enabling 

cross-regional data integration (Pétavy, Seigneuret and Hudson, 2019). 



 

Health Level Seven (HL7) provides an internationally recognized suite of standards for 

exchanging and integrating electronic health information (Mahon, 2023). HL7 Version 2 structures the 

content of messages exchanged between health systems, while Version 3 introduces more complex 

modeling for clinical and administrative data. HL7 Fast Healthcare Interoperability Resources (FHIR) 

focuses on simplicity, modularity, and web-based integration, allowing diverse systems to exchange data 

more efficiently. The Clinical Document Architecture (CDA) standardizes the structure of clinical 

documents, and the Continuity of Care Document (CDC) summarizes patient information for transitions 

between care settings. Together, these standards supply a common language that supports accurate 

and consistent data exchange across laboratories, electronic health records, imaging systems, pharmacy 

systems, and pathology workflows (Mahon, 2023).  

These global health standards support the large and harmonized datasets required for machine 

learning, but despite possible advantages, adoption remains uneven (Osamika et al., 2025). Many 

institutions continue to rely on legacy architectures or fragmented data systems, and persistent 

inconsistencies in semantics, structure, and governance limit the ability to pool or repurpose data for 

research or AI training. These challenges are even more pronounced in low-resource settings where 

infrastructure, regulatory alignment, and data-governance capacity are limited (Osamika et al., 2025). 

Analyses of digital public health infrastructures show that many countries still struggle with 

fragmented data governance, inconsistent standards, and uneven data quality, which restrict the 

integration of advanced analytics and multi-agent AI tools (Slawomirski et al., 2023). Before the COVID-

19 pandemic, governments attempted to establish foundational governance structures to support 

standardized data sharing, especially for immunisation and respiratory disease surveillance (Slawomirski 

et al., 2023). The pandemic revealed major limitations, including inadequate data availability for 

marginalized and Indigenous populations, limited linkability across decentralized systems, and 



 

inconsistent reporting mechanisms that hindered real-time analysis (Slawomirski et al., 2023). These 

gaps showed that limited interoperability undermines both crisis response and the routine use of digital 

tools in public health practice. 

In response, many governments are now pursuing long-term strategies to build secure and 

equitable digital infrastructures. These efforts include establishing independent data stewardship 

authorities, investing in digital skills for health workers and data specialists, and developing unified 

standards for high-quality and privacy-conscious data exchange. Examples from New Zealand and the 

United Kingdom, as well as Australia’s national digital capacity-building initiatives and Canada’s 

interoperability mandates, illustrate how governance, workforce capacity, and technical standards must 

evolve together to enable effective data use (Slawomirski et al., 2023). These developments highlight a 

central point for AI and biobank-supported clinical research. Without coherent governance and 

standardized datasets, health systems cannot maintain the data stability required for reliable AI training, 

validation, or deployment across clinical contexts. 

A comparative study of FHIR and openEHR  illustrates the real-world complexity of 

interoperability (Allwell-Brown, 2016). Both standards support robust Application Programming 

Interfaces, extensible modelling, and consistent data semantics. However, their usability depends 

heavily on implementation capacity. openEHR, an open standard for electronic health records, offers 

highly detailed and semantically rich modelling that allows precise representation of patient data, but 

this complexity creates steep implementation requirements that many systems, especially in low-

resource settings, cannot meet (Allwell-Brown, 2016). FHIR is easier to deploy due to its lightweight 

design, but it offers less semantic depth, which limits the detail available for AI models that rely on 

harmonized and high-resolution data (Allwell-Brown, 2016). When tested in a controlled acute-care 

decision support scenario, both standards performed reliably only under stable and well-resourced 



 

conditions. Mapping heterogeneous clinical data into either standard proved difficult due to the 

diversity of modern health data, which includes structured fields, free-text notes, imaging, and device 

outputs. These findings show that interoperability standards do not, on their own, resolve data 

fragmentation (Allwell-Brown, 2016). They require institutional capacity, consistent modelling practices, 

and coherent governance. In multinational or biobank-supported AI research, particularly in low-

resource settings, these implementation burdens underscore that technical standards alone cannot 

overcome the structural and organizational gaps that affect cross-border AI reliability (Allwell-Brown, 

2016). 

 Discussion 

Artificial intelligence systems require stable communication protocols, harmonized data 

formats, and shared ontologies to function across institutions and national borders. Protocols such as 

FIPA ACL and KQML define how multi-agent systems exchange structured messages, while standards like 

HL7 and HL7 FHIR specify how clinical data should be formatted and transmitted so that AI systems can 

interpret it consistently. However, across global health settings and particularly in low-resource 

environments, these technical requirements clash with fragmented infrastructure, inconsistent data 

vocabularies, and limited interoperability capacity. Systematic reviews of multi-agent AI systems 

repeatedly show that inconsistent data formats, fragmented sources, and biased or incomplete datasets 

undermine AI performance and reliability in clinical contexts (Nweke et al., 2025). These are not isolated 

technical errors but structural characteristics of many health systems where governance capacity, digital 

infrastructure, and standardization remain uneven (Slawomirski et al., 2023; Mahmoud et al., 2025). 

Biobanks illustrate these tensions most clearly. Although contemporary biobanking has evolved 

into a transnational, data-intensive research infrastructure, national data sovereignty laws increasingly 

restrict how biological samples and genomic data can move across borders. Sovereignty frameworks are 



 

meant to protect privacy, prevent extractive practices, and ensure local control over valuable biological 

resources. Policies such as China’s Data Security Law and the United States’ restrictions on exporting 

American biological data demonstrate how governments are consolidating authority over genomic data 

and biological materials. These protections are justified by long histories of exploitation, unequal 

benefit-sharing, and digital colonialism. Yet they directly conflict with the data-hungry nature of AI 

systems, which require large, diverse, and harmonized datasets to produce accurate and generalizable 

models. As Mayrhofer (2025) notes, both AI and biobanking depend on scale and diversity, but 

sovereignty, consent requirements, and governance constraints increasingly limit the ability to combine 

or share this data across borders. In multi-country clinical trials, this creates practical obstacles for 

models that require pooled biospecimen data, harmonized metadata, or cross-site training datasets. 

Interoperability gaps further amplify these constraints. Although HL7 and FHIR offer 

standardized data structures, implementation in real clinical systems remains highly uneven. Many 

institutions continue to rely on siloed databases or legacy systems that cannot communicate 

meaningfully with AI architectures that expect structured, machine-readable data. Allwell-Brown’s 

comparison of FHIR and openEHR demonstrates that even modern standards work reliably only under 

well-resourced conditions, and mapping heterogeneous clinical data into these frameworks is 

technically complex (Allwell-Brown, 2016). In low-resource settings, the challenge is magnified by 

limited digital infrastructure, inconsistent metadata quality, and variable adherence to modeling 

standards (Osamika et al., 2025). Without semantic consistency, AI models trained in one context cannot 

be safely deployed in another, and federated approaches still require shared ontologies and governance 

agreements to align local data sources. 

These technical barriers interact with deeper geopolitical and sovereignty concerns. Countries in 

the Global South face genuine risks of digital colonialism, unequal data extraction, and loss of 



 

governance control over genomic data. Biobank networks and AI-driven research can reproduce 

historical patterns of extraction when data is centralized outside the originating country, governed by 

foreign institutions, or used for commercial gains without equitable benefit-sharing. As a result, 

governments impose stricter controls over data export, which protects local interests but restricts the 

cross-border data flows required for AI-supported clinical trials. 

Taken together, the evidence reveals a structural bottleneck. AI in global health research and 

development depends on interoperability, harmonized data, and cross-site communication, yet the 

systems needed to support this are constrained by legal restrictions, inconsistent standards, legacy 

infrastructure, and sovereignty-based protections. These obstacles are most pronounced in low-

resource settings, where interoperability frameworks are unevenly implemented, governance systems 

are fragmented, and digital infrastructure lags behind. The result is that AI models cannot be reliably 

trained, validated, or deployed across borders, particularly within multi-country clinical trials dependent 

on biobank specimens and genomic data. 

Policy Recommendations  

Effective and equitable integration of artificial intelligence into global health research requires 

policy responses that directly address the structural barriers identified in this paper. First, governments 

and research institutions should establish internationally aligned governance frameworks that clarify 

consent, data use, and benefit sharing for biobank supported AI research. This includes adopting 

dynamic or tiered consent models (such as in the U.S.)  that allow participants to understand and 

authorize future AI uses of their biological samples and associated data. Second, multi-country trials 

should adopt interoperable data standards such as HL7 and HL7 FHIR and ensure that trial sites in low 

resource settings have the technical and regulatory capacity to integrate these standards into existing 

systems. Investments in digital infrastructure, standardized protocols, and workforce development are 



 

essential for data harmonization and for supporting AI that is reliable and reproducible. Third, countries 

should create coordinated data sovereignty agreements that protect local control over sensitive health 

and genomic data while still enabling responsible cross border scientific collaboration. Policymakers 

should prioritize models such as federated learning and compute data arrangements which allow AI 

analysis without the movement of raw biospecimens or personal data outside national boundaries. 

Fourth, national governments and global funders should commit to building independent health data 

stewardship bodies that can oversee ethical data use, manage access requests, and ensure 

accountability and transparency. These bodies should reflect local values and protect marginalized and 

underrepresented groups whose data is often at risk of exploitation. Finally, global health agencies, 

including the WHO, should convene an international working group to align regulatory approaches for AI 

enabled clinical trials, since inconsistent national rules on data export, biospecimen handling, and cloud 

storage currently impede multi-country research. Policy leadership at the international level is necessary 

to prevent fragmented standards from reinforcing existing inequities in AI readiness across regions. 

Conclusion 

AI, biobanking, and global health research are increasingly intertwined, yet this convergence exposes 

deep inequalities in data governance, digital capacity, and the ability of different countries to shape the 

direction of emerging technologies. This paper has shown that AI systems depend on harmonized, high 

quality, and interoperable datasets, but many low resource settings lack the infrastructure, regulatory 

coordination, and data governance systems required to support them. Biobanks have transitioned from 

physical repositories to complex computational infrastructures, and their value for AI supported 

research depends on the consistent application of standards, ethical oversight, and equitable 

approaches to data sharing. At the same time, national data sovereignty laws, concerns over cross 

border data flows, and geopolitical tensions increasingly shape how and where biological samples and 

genomic data can be used. These dynamics create obstacles for multi-country clinical trials and 



 

undermine efforts to create AI tools that are valid, safe, and generalizable across populations. Without 

coherent governance frameworks and interoperable systems, AI risks amplifying global inequities rather 

than reducing them. 

Strengthening governance, supporting equitable data infrastructures, and enabling responsible 

models for international data collaboration are essential if AI is to contribute to global health in 

meaningful and just ways. The policy recommendations outlined here offer a pathway toward aligning 

technical standards with ethical and geopolitical realities. By investing in data stewardship, 

harmonization, and sovereignty respecting collaboration, the international community can create 

conditions in which AI enhanced research benefits populations in low and high resource settings alike. In 

doing so, global health systems can move toward a future where innovation is matched with 

accountability, and where the use of AI supports, rather than undermines, principles of equity and trust. 
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