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In today’s world, it is nearly impossible to go an entire day without hearing about, let alone 

interacting with, Artificial Intelligence (AI). From our reliance on AI-embedded smartphones to 

the growing presence of AI chatbots on numerous websites and services, AI is increasingly 

shaping how individuals navigate their daily lives. Unsurprisingly, its influence extends well 

beyond the micro level. AI is now a presence in economic systems, governance and even 

political movements. Global health is no exception. In this vein, the use of AI in global health 

raises the question of whether the individuals advancing global health research are the same ones 

who are developing AI systems. While some overlap exists, most activity occurs in distinctly 

separate spaces. Technology companies and private industry largely drive AI research and 

development (R&D). In contrast, global health research remains primarily situated within 

epistemic communities, often rooted in public-sector and academic institutions.1 This framing 

illustrates the siloization of AI and global health research, leading to the research question this 

paper seeks to answer: How does the siloization of AI and global health research impact AI's 

utility for global health solutions? 

 

This paper aims to contribute to the checks and balances necessary to ensure that AI 

technological advancements serve people equitably and responsibly. It does so by arguing that 

the structural siloization of industry-led AI R&D and global health research, conducted by 

epistemic communities, driven by the factors of unequal funding, talent migration, and 

problematic data systems, undermines trust, equity, and the practical utility of AI in global 

health. Bridging this divide requires integrating AI innovation within open, publicly accountable 

research ecosystems that support interdisciplinary collaboration and equitable data sharing.  

                                                
1 Stryker, Cole, and Eda Kavlakoglu, “What Is Artificial Intelligence (AI)?” IBM Think, Accessed November 10 
2025, https://www.ibm.com/think/topics/artificial-intelligence.  
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The primary method of information gathering for this research was a literature review conducted 

in October 2025. Before presenting the literature review and subsequent analysis, the paper will 

first define key terms and concepts that provide a foundation for the following sections. In Part 1, 

the paper will examine three core factors identified in the literature as driving siloization. This 

will be followed by Part 2, an analysis of how these factors shape trust and equity, two essential 

considerations when evaluating the utility of AI in global health. Part 3 will follow to show what 

policy organizations are currently doing to address the issue. The paper will conclude with a case 

study of AI for AMR in Africa to contextualize the theoretical aspects discussed above, 

including contextually relevant policy implications, and identification of remaining knowledge 

gaps.  

 

Literature Review Search Strategy 

A systematic literature search was conducted in October 2025 across MacOdrum Library 

databases, Google Scholar, Scopus, and grey literature sources. 2 Terms related to AI, global 

health, siloization, and AMR were used with peer-reviewed studies, recent grey literature (2021–

present), and reports/policy papers from governments and international organizations being 

included. Older materials were retained only when essential for context. Searches were 

documented, screened for rigor and relevance with both qualitative and quantitative materials 

included. In November 2025, a supplemental, targeted search using Google Scholar and 

MacOdrum Library was conducted to support the African-focused AMR case study. 

 

                                                
2 Documented search results and further details on search strategy see Appendix A.  
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Defining Concepts Important in Framing the Issue 

Given the variability of definitions in this field, it is important to define the concepts on which 

the arguments are based. AI is the ability of computer systems to mimic human intelligence 

through the performance of complex tasks such as reasoning, decision-making, creating, etc.3 

Most contemporary AI systems rely on generative, adaptive, or deep learning methods that allow 

them to learn directly from data rather than relying on rules defined by human experts.4 It is 

important to remember that AI is a technology created with social, political and economic 

influences and is therefore inherently not neutral or objective.5 AI tools are developed using 

massive amounts of data, meaning that the quality of the data, including its bias and 

representativeness, directly influences the real-world effectiveness of the resulting systems and 

tools. With this in mind, AI solutions for global health have been framed as potentially 

transformative yet structurally constrained, as AI’s capabilities are limited by the quality of the 

available data and the strength of the public health system it is intended for. According to the 

World Health Organization (WHO) Ethics and Governance of Artificial Intelligence for Health 

(2021), AI has the potential to strengthen health systems and expand access to care, particularly 

in low-resource settings, if it is developed and governed in ways that ensure equity, transparency, 

and accountability.6   

 

                                                
3 National Aeronautics and Space Administration, “What Is Artificial Intelligence?” May 13 
2024, https://www.nasa.gov/what-is-artificial-intelligence/. 	
4 Srivastava, Divya, “AI: A Use Case for Global Health,” LSE Public Policy Review 3, no. 3 (2024): 2. 
5Lanyi	Yu	and	Xiaomei	Zhai,	“Use	of	Artificial	Intelligence	to	Address	Health	Disparities	in	Low-	and	Middle-Income	
Countries:	A	Thematic	Analysis	of	Ethical	Issues,”	Public	Health	234	(2024):	81.	
6 World Health Organization, “Ethics and Governance of Artificial Intelligence for Health: WHO Guidance,” 
Geneva: World Health Organization, 2021,  Accessed November 1 
2025, https://www.who.int/publications/i/item/9789240029200.  
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Siloization is defined as the “process of isolating groups, data, or departments in a way that 

hinders communication and cooperation between them.”7 As noted above, AI R&D is being 

conducted primarily by industry-led technology companies. Illustrating the growing dominance 

of private firms in AI research, Google, Microsoft, and Meta contributed more than double the 

number of accepted papers compared to the top academic institution at NeurIPS 2022.8 This shift 

has created an industry-led AI R&D silo, where research is often driven by corporate priorities 

rather than open, public scientific inquiry.9  

 

In contrast, global health, the area of research committed to the study and practice of prioritizing 

improving health and equity for people worldwide, is largely driven by epistemic communities, 

often funded by academic institutions and the public sector.10 In global health, epistemic 

communities function as networks of experts who share norms, evidence standards, and policy 

goals that guide international health decision-making; however, critiques have observed how 

epistemic communities have prioritized institutional expertise over regional voices, particularly 

in low- and middle-income countries (LMIC).11 While cross-sector collaboration occurs through 

initiatives like the OECD12 and WHO platforms, these exchanges remain insufficient to bridge 

                                                
7 Merriam-Webster, “Silo,” Merriam-Webster.com Dictionary, Accessed November 1, 2025. https://www.merriam-
webster.com/dictionary/silo  
8 Roman Jurowetzki, Sebastian T. Scherdin, Marianne Starzer, Ole Teuteberg, and Keyvan Vakili, “The Private 
Sector Is Hoarding AI Researchers: What Implications for Science?” AI & Society (2024): 4146.	
9 Nur Ahmed, Muntasir Wahed, and Neil C. Thompson, “The Growing Influence of Industry in AI 
Research,” Science 379, no. 6635 (2023): 885. 
10Rutgers Global Health Institute, “What Is Global Health?” Rutgers Global Health Institute, Accessed October 28, 
2025, https://globalhealth.rutgers.edu/what-we-do/what-is-global-health.  
11 Adebisi, Yusuff Adebayo, “Decolonizing Epidemiological Research: A Critical Perspective,” Avicenna Journal of 
Medicine 13, no. 2 (2023): 71. 
12 Divya, “Use Case for Global Health,” 4: “The OECD AI expert group in health is an international collaborative 
platform to build on existing understanding across countries working on AI and bringing in the health-specific 
requirements to support a proactive policy space informed by evidence and underpinned by cross-country 
learnings.”   
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the entrenched divide between industry-driven AI development and epistemic communities 

focused on global health. 

 

Part 1: Factors Perpetuating Siloization  

The next section will elaborate on the factors which the literature review has identified as 

perpetuating the siloization of AI and global health research. 

 

(1) Funding Asymmetry  

In 2021, the United States (US) government allocated $1.5 billion USD, and the European 

Commission reserved $1.2 billion USD for non-defense AI spending.13 In the same year, 

industry and the private sector invested more than $340 billion USD in AI.14 To contextualize 

how great this public-private investment disparity is, research funding over the past decades for 

the pharmaceutical industry has roughly been divided evenly between the private and public 

sectors.15 The AI funding stream is further narrowed by the fact that over 90% of funding for AI 

startups comes from either the US or China.16 A significant amount of this funding originates 

from a small number of technology giants, such as Google, IBM and Microsoft. Together, these 

figures demonstrate the overwhelming concentration of AI R&D momentum within the private 

sector. 

 

                                                
13	Ahmed, “Influence of Industry,” 884.	
14	Ahmed, “Influence of Industry,” 884.	
15	Ahmed, “Influence of Industry,” 884.	
16 Kenneth P. Seastedt, “Global healthcare fairness: We should be sharing more, not less, data” PLOS Digital 
Health, 1:10 (2022): 8. 
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At the same time as the seemingly endless stream of funding for AI R&D, the global health 

community is facing significant financial constraints. The recent shift in US foreign aid policy 

has left the WHO with an anticipated $1.7 billion USD budget gap for 2026-2027.17 This is in 

addition to the dismantling of USAID and the overall 67% drop in spending on development 

assistance for health of.18 The devastating impacts of these cuts are going to be felt 

disproportionately by specific LMICs.19 While the funding will most directly impact the delivery 

of health assistance and programming, it will also limit the pool of available funds for global 

health research.  

 

The deep but narrow funding of AI R&D has a significant influence on which technologies are 

being developed for, and why. If global health research is outpaced by the current flood of AI 

investment, the resulting imbalance risks reinforcing inequities. Thus, leaving LMICs dependent 

on externally designed tools that may not reflect their health priorities, data realities, or 

regulatory needs. 

 

(2) The Academia-to-Industry Brain Drain 

The second factor perpetuating the siloization is an academic-to-industry "brain drain" that is 

occurring across many STEM fields20 disciplines, but is particularly evident in the AI R&D 

space. This phenomenon occurs when researchers leave roles in academia, once considered the 

                                                
17 Clancy, Dawn, “The WHO Has to Close a Billion-Dollar Gap. Can Private Funding Help?” Swissinfo, July 21, 
2025, https://www.swissinfo.ch/eng/geneva-organisations/the-who-has-to-close-a-billion-dollar-gap-can-private-
funding-help/89695552. 
18 Loveluck, Louisa, “State of Global Health Funding — August 2025.” Think Global Health, August 
2025, https://www.thinkglobalhealth.org/article/state-global-health-funding-august-2025.  
19 Loveluck, “Health Funding.”	
20 Science, Technology, Engineering, and Mathematics. 
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most prestigious positions, to more lucrative opportunities within industry.21 For instance, prior 

to 2014, the majority of major machine learning models were developed and released by 

academic institutions; however, since then, industry players have increasingly taken the lead.22 

 

Recent evidence shows that the private sector increasingly recruits high-impact academic 

researchers, those with high citation counts within established domains, while showing less 

interest in novel or exploratory research.23 This “cherry-picking” of academic talent has elevated 

the industry's research visibility, with industry researchers tending to receive twice as many 

citations while publishing less.24  

 

Research by Jurowetzki et al. (2025) highlights several key concerns arising from the brain drain 

phenomenon, three of which are directly relevant to global health. First, the financial incentives 

and compensation schemes common in industry may favour work with immediate applications 

and commercial potential.25 As a result, AI health tools suited to LMICs, where purchasing 

power is limited, may be overlooked, mirroring the market failures that have long driven 

underinvestment in diagnostics and treatments for neglected diseases.26 Second, private sector 

goals often diverge from societal priorities and may overlook the broader socio-economic 

consequences of technological innovation.27 Thirdly, the private sector has not always prioritized 

integrating robust safety measures and guardrails into its technologies to protect users' privacy 

                                                
21 Andreopoulos Spyros, “The Unhealthy Alliance between Academia and Corporate America,” Western Journal of 
Medicine 175, no. 4 (October 2001): 225. 
22 Jurowetzki, “Private Researchers,” 4146. 
23 Jurowetzki, “Private Researchers,” 4147. 
24 Jurowetzki, “Private Researchers,” 4147. 
25 Jurowetzki, “Private Researchers,” 4147. 
26 Leah Shipton and Lucia Vitale, “Artificial Intelligence and the Politics of Avoidance in Global Health,” Social 
Science & Medicine 359 (2024): 3. 
27 Jurowetzki, “Private Researchers,” 4147. 
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and safety.28 This is particularly important for large AI models using generative AI for health, as 

the consequences of misuse and or misinformation can be devastating. These risks are amplified 

in LMIC, where weakened public health systems may increase reliance on newly available tools, 

while stringent and enforceable regulatory frameworks to ensure those tools function as intended 

are often lacking.29  

 

As the brain drain continues, the STEM community is also seeing more industry-academia 

funding collaborations. While beneficial in funding sources, these collaborations raise questions 

on the ability of academia to fulfill its traditional role of independent evaluator and ethical 

counterbalance to private sector influence.30 Such partnerships risk blurring the boundaries 

between public scholarship and corporate interest. For example, a Novartis–University of 

California deal illustrates this tension. Even the appearance of conflict can erode public trust in 

the independence and integrity of academic research; however, in this collaboration, Novartis 

representatives sit on governance boards and hold rights to a share of discoveries.31 

 

(3) Problematic Data: Non-Open Source and Proprietary Systems 

As discussed above, AI tools require large amounts of data to be properly trained. When 

considering the siloization of industry-led AI and epistemic communities in global health, it is 

essential to understand what data is being used and who owns it. The private sector has access to 

large, current, proprietary datasets, as their operations often produce an ongoing consumer 

                                                
28 Jurowetzki, “Private Researchers,” 4147. 
29 Shipton, “Politics of Avoidance,” 3-4. 
30 Jurowetzki, “Private Researchers,” 4151. 
31 Andreopoulos, “Corporate America,” 225. 
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relationship in which data is continually reported back from devices and user interactions.32 

These large datasets also translate into larger AI models capable of processing larger amounts of 

data. In 2021, for example, the average industry model was roughly 29 times larger than its 

academic counterpart, underscoring the disparity in computational power between the two 

sectors.33 In contrast, those in the global health epistemic community, with public sector and 

academic affiliations, are often reliant on open-source datasets, which are limited in size and how 

static they can be.34 Although an increase in funding would help public research institutions with 

their competitive edge, there remains large inefficiency concerns if these institutions were to try 

to replicate industry datasets and model capacities already in existence.35 

 

The value of the data itself also plays a role in furthering the divide between industry and public 

research institutions. While many are concerned as to whether LMIC populations will be 

adequately considered in the development of AI tools for global health, an equally serious 

concern arises from the opposite problem. As Zuboff (2018) explains, the commercial value of 

proprietary data is central to surveillance capitalism, which “transforms private human 

experience—which previously existed outside the market—into a commodity that can be bought 

and sold as behavioural data.”36 This commercial incentive, absent in public research institutions, 

may increasingly drive technology companies to target LMICs with weak regulatory controls for 

their untapped data.37 As noted above, even when LMICs provide the data used to develop AI 

tools, they are unlikely to benefit from them in the absence of a commercial incentive. Without 

                                                
32 Ahmed, “Influence of Industry,” 884. 
33 Ahmed, “Influence of Industry,” 884. 
34 Jurowetzki, “Private Researchers,” 4145. 
35 Jurowetzki, “Private Researchers,” 4145 
36 Shoshana Zuboff, “The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of 
Power” (New York: Public Affairs, 2019), 8. 
37 Shipton, “Politics of Avoidance,” 4. 
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robust and enforceable regulatory frameworks, such practices risk reproducing historical patterns 

of extractive health interventions, deepening data and power inequalities between those who 

control data and those who merely supply it. 

 

As AI R&D becomes dominated by those controlling proprietary data, a two-tiered research 

ecosystem emerges in which global health researchers operate in constrained data environments, 

limiting their ability to influence AI R&D. 

 

Part 2: The Impact of Siloization on the Utility of AI in Global Health 

It is rarely disputed that AI technologies have the capacity to address significant global 

challenges. What remains contested is the extent to which these technologies can actually deliver 

on that promise. The following section analyzes how the siloization described above shapes the 

utility of AI for global health. The focus will be on trust and equity, themes noted throughout the 

literature, as two critical determinants of AI’s utility in this context. 

 

 (1) Trust In Artificial Intelligence  

In the era of rapid technological advancements, how useful and user-friendly a technology is is 

important for its adoption. That being said, one of the most critical factors in determining a 

technology's uptake is trust in the technology and its provider.38 The success of AI solutions, 

especially in times of crisis, depends less on their technological sophistication and more on the 

level of trust the public holds for them.39 There is no one accepted definition of trust; however, 

                                                
38Sage Kelly, Sherrie-Anne Kaye, and Oscar Oviedo-Trespalacios, “What factors contribute to the acceptance of 
artificial intelligence? A systematic review,” Telematics and Informatics 77 (2023): 3.  
39 Kelly, “Acceptance of AI,” 3.   
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for the purposes of this paper, trust in technology will be understood to be “the attitude that a 

[technology] will help achieve an individual's goals in a situation characterized by uncertainty 

and vulnerability.”40 In regard to AI, this means having confidence that the system will perform 

as intended, make decisions transparently and fairly, and not expose users to undue risk or harm 

despite the complexity or opacity of its underlying processes.41 This definition of trust is then 

broken down and examined in light of how siloization affects each of its constituent parts, 

opacity, reliability, and accountability. The next paragraphs first explore how AI relates to these 

trust components and then how siloization between AI and global health shapes those dynamics. 

 

Opacity: The processing speeds of AI technologies are so fast and complex that it is impossible 

for humans to have a complete understanding of the process.42 For this reason, many AI models 

are labelled as "black box" or epistemically opaque. The use of epistemically opaque tools in 

research is common but requires an ability to trust the decision-maker behind the tool.43 

Unfortunately, when it comes to AI tools, they are opaque not only to the users but also to the 

developers.44 Therefore, the historical method of reducing the opacity of new technology is not 

available. This then limits the ability to verify or contest the reasoning behind AI outputs, thus 

challenging the foundation of trust necessary for its use. The silos between industry-led AI and 

epistemic global health communities further these concerns as limited access to proprietary data, 

models, and decision-making processes prevents independent validation and oversight.  

                                                
40 Jie Xu, Kim Le, Annika Deitermann, and Enid N H Montague, “How different types of users develop trust in 
technology: A qualitative analysis of the antecedents of active and passive user trust in a shared technology” Applied 
Ergonomics 45:6 (2014): 1495. 
41 Lee, John D., and Katrina A., “Trust in Automation: Designing for Appropriate Reliance,” Human Factors, 46 no. 
1 (2004): 50–80. 
42 Inkeri Koskinen, “We Have No Satisfactory Social Epistemology of AI-Based Science,” Social Epistemology, 
38:4 (2024): 458. 
43 Koskinen, “Social Epistemology,” 464. 
44 Koskinen, “Social Epistemology,” 464. 
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Reliability: Reliance is a necessary component of trust.45 For AI to be trusted, it must reliably 

produce accurate and useful outputs. Remembering that, while AI is not a simple algorithm, it is 

still only as good as the data it is trained upon. Therefore, the reliability of an AI tool is 

intimately tied to the quality of the data available to the developers. As discussed, the AI-

industry silo contains large proprietary datasets, while public-sector and academic researchers 

often operate with more limited open-source data. This imbalance not only affects model quality 

but also erodes the reliability necessary for trust, as it limits external validation and may result in 

systems that perform inconsistently across different global health contexts. 

 

Accountability: While opacity and reliability are essential components of trust that rely on 

developer-led initiatives, accountability is primarily an area of governance. Effective governance 

helps ensure that the anticipated benefits of AI technologies are met.46 Frameworks for 

accountability must have both proactive and retroactive rules surrounding oversight and 

transparency mechanisms for the entire lifecycle of an AI technology.47 The greater the legal 

certainty of accountability frameworks, the more trust the public should have in AI systems. 

While consistent, reliable governance structures are still catching up with the rapid expansion of 

AI technologies, several key initiatives now demonstrate meaningful progress. For example, the 

OECD AI Principles, the European Union’s (EU) Artificial Intelligence Act, and UNESCO48 

Recommendations on the Ethics of Artificial Intelligence provide guidance on oversight aimed at 

                                                
45 Hosseini Shoabjareh, Azamsadat, Milad Ghasri, Tom Roberts, Andrew Lapworth, Ned Dobos, and Christine 
Boshuijzen-van Burken, “The Role of Trust and Distrust in Technology Usage: An In-Depth Investigation of Traffic 
Information Apps Usage for Mandatory and Non-Mandatory Trips,” Travel Behaviour and Society 37 (2024): 2. 
46 Claudio Novelli, Mariarosaria Taddeo, and Luciano Floridi, “Accountability in artificial intelligence: what it is 
and how it works,” AI & Society, 39 (2024): 1880. 
47 Novelli, “Accountability,” 1879-1880. 
48 United Nations Educational, Scientific and Cultural Organization. 
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building public trust in AI.49 Until legally enforceable standards exist and are applied 

internationally, the siloed development of AI away from global health research will produce 

uneven accountability, widening governance gaps, and undermining the trust needed for 

equitable and ethical integration of AI into global health systems. 

 

 (2) Equity: Bias and Fairness 

Bias is another important lens to analyze how siloization affects the utility of AI in global health. 

Bias can shape who benefits from technologies, from whose data informs development to how 

equitably its outcomes are distributed.  

 

Algorithmic bias is when an AI technology produces unfair or incorrect outcomes due to human 

bias embedded in the data or the algorithm's design.50  The intentional inclusion of algorithmic 

bias in an AI tool is considered a prohibited practice and carries significant penalties. For 

example, uunder the EU AI Act, non-compliance with prohibited practices can result in fines of 

up to 35 million euros.51 Because of the awareness of this algorithmic bias and the deterrents in 

place for it, the more significant concern lies in unintentional contextual bias. This occurs when 

AI technologies are developed and trained using datasets not representative of all people who 

could benefit or may use the tool.52 Most often this means AI trained on datasets of high income 

countries (HIC), which introduces biases into the model that then leads to poor performance or 

                                                
49 Organisation for Economic Co-operation and Development, “AI Principles,” OECD. 
https://www.oecd.org/en/topics/sub-issues/ai-principles.html; European Union, “Regulation (EU) 2024/1689 of the 
European Parliament and of the Council on artificial intelligence (Artificial Intelligence Act),” Official Journal of 
the European Union, https://artificialintelligenceact.eu/; UNESCO, “Recommendation on the Ethics of Artificial 
Intelligence,” Paris: UNESCO, 2021, https://www.unesco.org/en/artificial-intelligence/recommendation-ethics.  
50 Jonker, Alexandra, and Julie Rogers, “What Is Algorithmic Bias?” IBM Think, Accessed October 28 
2025, https://www.ibm.com/think/topics/algorithmic-bias.  
51 Jonker, “Algorithmic Bias”. 
52 Shipton, “Politics of Avoidance,” 6. 
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inaccurate results in LMIC.53 This is particularly harmful in the health context, where mistakes 

can result in life or death consequences. 

 

While concerns about the scale at which data from HICs may be applied in LMICs are critically 

important, it is not the only type of unintentional bias. For example, women in LMIC are less 

likely to have access to mobile devices and the internet and are therefore even more 

underrepresented in data.54 Siloization further exacerbates these biases as industry-led AI R&D 

often prioritizes markets with commercial incentives.55 When financial motivations dictate 

research priorities, the resulting technologies reinforce existing inequities rather than addressing 

global health needs. 

 

Having looked at the impacts on global health of biased AI models trained on HIC data and used 

in LMIC, there is a reverse dynamic to consider. That is to say, when data from LMICs is used to 

develop AI tools intended primarily for use in HIC contexts. This approach is also known as 

ethical dumping, whereby technology companies collect data from populations in a manner that 

would not be permitted in other regulatory settings.56 These unethical practices are usually 

conducted at the expense of vulnerable populations.57 While being pawns in the corporate 

strategy, these populations rarely see the benefits from the tools their data helped develop.58  

                                                
53 Jenny Yang et al., “Mitigating machine learning bias between high income and low–middle income countries for 
enhanced model fairness and generalizability,” Scientific Reports, 14 (2024): 1. 
54 Lanyi Yu, and Xiaomei Zhai, “Use of artificial intelligence to address health disparities in low- and middle-
income countries: a thematic analysis of ethical issues,” Public Health, 234 (2024): 81. 
55 Bryan, Kevin A., and Florenta Teodoridis, “Balancing Market Innovation Incentives and Regulation in AI: 
Challenges and Opportunities,” Brookings Institution (Economic Studies), September 24 
2024, https://www.brookings.edu/articles/balancing-market-innovation-incentives-and-regulation-in-ai-challenges-
and-opportunities/.  
56 Yu, “LMIC disparities,” 82.   
57 Yu, “LMIC disparities,” 78.   
58 Yu, “LMIC disparities,” 82.			
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While financial incentives may drive some of this behaviour, this strategy is contingent on 

decision-makers being able to operate with limited government regulation or social 

accountability, as may be the case in some LMICs. To reiterate the theme observed throughout 

this paper, siloization amplifies these ethical concerns by concentrating AI R&D within profit-

driven industry spaces that often operate apart from public oversight. This separation enables 

practices such as data extraction from LMICs to persist with minimal accountability, reinforcing 

global inequities and undermining the ethical foundations of AI in health. 

 

Taken together, the analysis of trust and equity demonstrates that the siloization of AI and global 

health research not only undermines the effectiveness of AI technologies in addressing global 

health challenges but also erodes the foundations required for their legitimate and sustained use 

worldwide. 

 

Part 3: How Policy Organizations Are Addressing the Issue 

Although there has been no explicit reference to addressing siloization, several global and 

regional policy organizations have begun addressing the challenges created by the siloization of 

AI R&D and global health research. The WHO has issued guidance through WHO’s Ethics and 

Governance of AI for Health (2021) and more recently, Ethics and governance of artificial 

intelligence for health: Guidance on large multi-modal models (2025).59 These documents call 

for equity in AI design, transparent data governance, and accountability mechanisms suitable for 

                                                
59 World Health Organization, Ethics and Governance of Artificial Intelligence for Health: Guidance on Large 
Multi-Modal Models (Geneva: WHO, March 25 2025), https://www.who.int/publications/i/item/9789240084759; 
World Health Organization, Ethics and Governance of Artificial Intelligence for Health: WHO Guidance (Geneva: 
WHO, 2021), https://www.who.int/publications/i/item/9789240029200.  
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low-resource settings. Similarly, the OECD AI Principles promote transparency, safety, and 

responsible innovation, and provide a shared governance framework that facilitates collaboration 

between the technology sector and public-sector health research institutions.60 UNESCO’s 

Recommendation on the Ethics of Artificial Intelligence provides normative guidance on fairness, 

inclusivity, and human rights considerations, explicitly highlighting the need to provide extra 

consideration for vulnerable populations.61 

 

Regional bodies have also taken steps to address concerns with AI in global health. The EU’s 

Artificial Intelligence Act establishes legally enforceable standards for risk classification, 

transparency, and accountability, addressing opacity and reliability concerns that undermine trust 

in health-related AI systems.62 The African Union, through its Digital Transformation Strategy 

(2020-2030), emphasizes the need for digital public infrastructure, interoperable health-data 

systems, and local capacity building.63 

 

Additionally, collaborative research initiatives, such as the Fleming Initiative’s partnership with 

Google DeepMind and African-focused data science fellowships like the Capacity Accelerator 

Network (CAN), indicate emerging efforts to align AI innovation with global health needs.  

Together, these organizations are attempting to reduce the governance, funding/capacity, and 

data gaps that impact siloization. Despite this optimism, coordination remains uneven, and major 

funding gaps persist. 

                                                
60 Organization for Economic Co-operation and Development, “OECD AI Principles”, Accessed November 18 
2025, https://oecd.ai/en/ai-principles.  
61 UNESCO, Recommendation on the Ethics of Artificial Intelligence, (Paris: UNESCO, 2021), 
https://unesdoc.unesco.org/ark:/48223/pf0000381137.  
62 European Union, “Artificial Intelligence Act.” 
63 African Union, Digital Transformation Strategy for Africa 2020-2030 (Addis Ababa: African Union, 2020), 
https://au.int/sites/default/files/documents/38507-doc-dts-english.pdf.  
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Case Study: AI for AMR in Africa 

 

Antimicrobial Resistance (AMR) is one of the most pressing global health threats. AMR is the 

process by which bacteria, viruses and parasites develop the ability to resist the drugs' ability 

to kill them.64 In 2019, it was estimated that multidrug-resistant bacteria contributed to 

approximately 4.95 million deaths worldwide.65 As with most global health concerns, the 

burden is unequally distributed, with sub-Saharan Africa having the highest AMR-attributable 

mortality rate at roughly 27 deaths per 100,000 people.66 Without urgent intervention, global 

AMR deaths could reach 10 million annually by 2050.67 

 

As this paper has shown, global health research and AI R&D continue to evolve within silos, 

industry-led AI R&D on one side and publicly funded epistemic global health communities on 

the other. AMR provides a particularly compelling lens through which to examine the 

consequences of these divisions, as it is inherently cross-disciplinary. AMR sits at the 

intersection of microbiology, clinical medicine, epidemiology, data science, and global 

governance across human, animal and environmental spaces. Yet despite its integrative nature, 

AMR research and AI innovation remain shaped by the same structural siloization that 

characterizes the broader field. The following section applies the preceding analysis to the 

                                                
64 Timothy R Walsh et al., “Antimicrobial Resistance: Addressing a Global Threat to Humanity,” PLoS 
Medicine, 20:7 (2023), 1. 
65 Walsh, “AMR: Global Threat,” 1. 
66 Innocent Ayesiga et al., “Artificial intelligence-enhanced biosurveillance for antimicrobial resistance in sub-
Saharan Africa,” International Health, 17 (2025): 795.  
67 Walsh, “AMR: Global Threat,” 1. 
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AMR context in Africa, identifying ways in which these silos can be bridged and 

interdisciplinary collaboration strengthened.  

 

The Case for AI in Addressing AMR in Africa 

AI offers a powerful opportunity to strengthen AMR control in Africa by addressing one of the 

region’s most urgent challenges, the lack of reliable surveillance data. Because AI can support 

rapid detection of resistant strains, predict emerging resistance patterns, and accelerate 

genomic and susceptibility analyses, it has the potential to fill critical gaps. 68 Yet, this 

potential remains largely unrealized due to resource constraints, infrastructural gaps, and 

persistent data scarcity.69 Across the continent, surveillance systems are fragmented or absent 

and implementation of the WHO Global Action Plan70 for AMR is slow. As of 2022, of the 47 

countries in the WHO’s African region, only 15 were submitting surveillance data to the 

global database.71 

 

This persistent data void makes it difficult to understand the true scale of resistance or to 

coordinate responses. 72 In this context, AI’s potential is compelling not only because it brings 

novel technology, but because it could help close the foundational surveillance gap that 

hinders AMR control efforts.  

 

                                                
68 Ayesiga, “Biosurveillance sub-Sahharan Africa,” 795. 
69 Ayesiga, “Biosurveillance sub-Sahharan Africa,” 795. 
70 Nationally known as National Action Plans (NAP). 
71 Walter L Fuller et al., “National action plan on antimicrobial resistance: An evaluation of implementation in the 
World Health Organization Africa region,” Journal of Public Health in Africa, 13:2, (2022): 1.		
72 Obiageli Jovita Okolie, Uzoma Igwe, Sanda Umar Ismail, Uzairue Leonard Ighodalo, and Emmanuel C. Adukwu, 
“Systematic review of surveillance systems for AMR in Africa,” Journal of Antimicrobial Chemotherapy, 78 
(2023): 32.  
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Structural Factors Perpetuating AMR/AI Silos in the African Context  

First, an ongoing brain drain affects both the AI and AMR research spaces. Globally, the AMR 

research community is limited, with an estimated 3,000 active clinical AMR researchers.73 At 

the same time, AI expertise is disproportionately concentrated, as 70% of all AI R&D is 

located in only five countries, with sub-Saharan Africa producing the fewest peer-reviewed AI 

publications worldwide.74 This unequal distribution of skilled researchers is constraining 

collaboration and limiting the development and deployment of AI tools tailored to African 

surveillance needs and health-system realities. 

 

Second, and perhaps most significant, funding asymmetry continues to undermine AI-AMR 

innovation on the continent. Although most African states have drafted AMR National Action 

Plans, the majority remain unfunded and therefore unimplemented.75 Declining global 

development assistance further restricts resources for essential AMR control components such 

as laboratory strengthening, workforce development, and coordinated surveillance. Many 

African countries, some of which spend more on debt servicing than on health, lack the fiscal 

space required for sustained AMR programming.76 This is in contrast to the surge of funding 

being directed towards AI research, as detailed above. While mechanisms such as pooled 

                                                
73 AMR Industry Alliance, “Leaving the Lab: Tracking the Decline in AMR R&D Professionals,” (Geneva: AMR 
Industry Alliance, 2024), https://www.amrindustryalliance.org/mediaroom/leaving-the-lab-tracking-the-decline-in-
amr-rd-professionals.  
74 Marcopolo, “The Global AI Talent Tracker 2.0,” (Chicago: MacroPolo, 2023), 
https://archivemacropolo.org/interactive/digital-projects/the-global-ai-talent-tracker/; Ara Darzi and Anna 
Koivuniemi. “Harnessing Artificial Intelligence to Tackle Antimicrobial Resistance,” Imperial College London 
(Fleming Initiative & Google DeepMind), January 16 2025, https://www.imperial.ac.uk/Stories/harnessing-artificial-
intelligence-tackle-antimicrobial-resistance/.  
75 Antimicrobial Resistance: Accelerating national and global responses, 77th World Health Assembly, A77/5 (11 
April 2024). 
76 United Nations, Office of the Special Adviser on Africa, Unpacking Africa’s Debt: Towards a Lasting and 
Durable Solution (New York: United Nations, 14 November 2024), 41. 
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African Union AMR funds or debt-for-development swaps offer potential solutions, chronic 

underinvestment continues to fragment AMR control strategies and weaken national 

stewardship capacities.77 

 

Third, the region faces profound dataset limitations and data fragmentation, which directly 

limit AI utility. AMR surveillance remains inconsistent, with many countries dependent on 

isolated laboratory-based phenotypic testing instead of national surveillance databanks.78 Even 

where data systems exist, they are often siloed or controlled by proprietary holders, 

reproducing inequities in access to datasets.79 These dataset constraints reinforce dependence 

on models trained in high-income contexts where datasets are more extensive, limiting the 

relevance of AI outputs for African health systems.80 

 

The combined effect of these structural factors is that AI researchers, highly concentrated in a 

few high-income countries, are often disconnected from the realities of AMR in African 

settings and lack both the incentives and the accessible datasets needed to meaningfully 

address region-specific challenges. 

 

 

 

                                                
77 Darzi, “Fleming Initiative & Deep Mind.”; Sherin Paul and Mirfin Mpundu, “Reimagining Antimicrobial 
Resistance (AMR) Financing for Africa amid Global Funding Crises,” Speaking of Medicine and Health, (June 5, 
2025), https://speakingofmedicine.plos.org/2025/06/05/reimagining-antimicrobial-resistance-amr-financing-for-
africa-amid-global-funding-crises/. 
78 Okolie, “Surveillance AMR Africa,” 49.	
79	Darzi, “Fleming Initiative & Deep Mind.”	
80 Yu, “LMIC disparities,” 82.   
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Trust and Equity Implications 

As discussed earlier in Part 2, these structural factors undermine trust and equity, important 

parts of AI use. This manifests in a number of ways: incomplete and not context-relevant 

datasets produce biased models and unequal access to data perpetuates global health 

inequities.  

 

While these dynamics matter within Africa, they exist within the deeper and more immediate 

capacity constraint of resources and infrastructure. These capacity gaps remain the biggest 

barrier to deploying AI in a trustworthy and equitable way for AMR control.  

 

Silo Bridging Recommendations and Policy Implications 

Bridging the silos of AI R&D and AMR research and control in Africa requires interventions 

that 1) strengthen data and tool accessibility, 2) build infrastructure that supports integration, 

and 3) expand interdisciplinary collaboration. The following recommendations have been 

identified from the literature and AMR policy space and have then been paired with the 

necessary policy implications.  

 

Recommendation 1: Strengthen Data and Tool Accessibility 

Policy Implications: 

a. Prioritize the usability of AMR datasets from LMIC for AI tools. Tools should be 

developed that rely on data formats more available in low-resource settings, such as 

clinical or microbiological images, rather than assuming access to higher complexity “-
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omic” datasets (ie. genomics).81 This provides an interim solution to help bridge the 

gap while infrastructure capacity for more complex surveillance is developing. Tools 

like AntiMicro.ai82, which repurposes Pfizer's open-source ATLAS dataset, 

demonstrates that when global datasets are shared and adapted, LMIC researchers can 

meaningfully contribute to AI-AMR solutions.83 

b. Supporting the creation of tools that do not require stable internet connection as needed 

for low-resource settings. An example being Antibiogo84 which runs entirely on local 

devices, expanding access to antibiotic susceptibility tests essential for making 

appropriate antimicrobial stewardship decisions. 

 

Recommendation 2: Build Infrastructure that Supports Integration 

Policy Implication: Digital governance systems must be strengthened. Investments in 

strong digital public infrastructure (DPI) are foundational for enabling global data 

exchange, proper development oversight, and trustworthy AI deployment.85 Effective 

and sustainable DPI must be secure, interoperable, and built on open technologies.86 

The importance of this was cemented by the G20’s 2023 Indian Presidency.87  

 

Recommendation 3: Expand Interdisciplinary Collaboration 

                                                
81 Darzi, “Fleming Initiative & Deep Mind.” 
82 A Kenyan-led AI tool: Sarah Daniel, “Kenyan AI Doctor Shaping Global Action on Antimicrobial 
Resistance,” Ducit Blue Solutions, (October 29 2025), 
 https://www.ducitblue.com/kenyan-ai-doctor-shaping-global-action-on-antimicrobial-resistance/.  
83 Darzi, “Fleming Initiative & Deep Mind.” 
84 Antibiogo is a tool that provides reliable and accessible antibiotic susceptibility testing: Antibiogo, “Join the fight 
against antimicrobial resistance,” (Accessed November 5, 2025), https://www.antibiogo.org.  
85	Darzi, “Fleming Initiative & Deep Mind.”	
86	Darzi, “Fleming Initiative & Deep Mind.”	
87	Organisation for Economic Co-operation and Development. Digital Public Infrastructure for Digital 
Governments: OECD Public Governance Policy Papers No. 68. Paris: OECD Publishing, December 2024, 8.	
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Policy Implication: The declining AMR researcher workforce and growing AI 

investments highlight a critical gap. Stable career paths, especially in LMIC, supported 

by long-term funding, are needed to improve interdisciplinary collaboration for more 

effective solutions. Fellowships such as the CAN program for early-career African data 

scientists and the fully funded Fleming Initiative–DeepMind postdoctoral fellowship 

illustrate the type of long-term commitments needed to build regional expertise.88  

 

 

Remaining gap: Managing incentives and safeguarding fairness 

Beyond individual fellowships and training programs, stronger incentives will be needed to 

attract industry and private investment into the AMR space. Some have proposed the 

monetization of data to create priority access to shared research or surveillance resources.89 As 

noted earlier, this raises significant concerns about misuse and inequitable control of health 

data. Given the pace of AI development, LMICs must find ways to benefit from emerging 

tools now while avoiding long-term risks tied to opaque or exploitative data practices. While 

many alarm bells have been raised about this potential harm, knowledge gaps persist on 

efficient and effective accountability mechanisms to address this. Further work is needed to 

determine accountability mechanisms that would allow LMICs to participate in and benefit 

from AI-AMR innovation without compromising ethical standards or sovereignty over their 

data. 

 

                                                
88	Darzi, “Fleming Initiative & Deep Mind.”	
89	Darzi, “Fleming Initiative & Deep Mind.”	
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Conclusion 

This paper has examined how the siloization of industry-led AI research and epistemic global 

health research communities fundamentally limits the usefulness of AI tools needed to address 

global health challenges. Asymmetrical financing, academic-to-industry talent migration, and 

problematic data systems collectively erode trust and reinforce global inequities. The result is a 

concentration of AI innovation in settings disconnected from the health priorities of LMICs. AI 

carries great promise, including for challenges like surveillance of AMR in low-resource 

settings, but it can only work effectively when supported by transparent, accountable, and 

equitable systems. As examined in the African context, bridging the silos to help harness AI’s 

potential will require significant investment and strong political will to create stronger digital 

public infrastructure, open and relevant datasets, and globally coordinated oversight. In doing so, 

silos may be bridged, helping ensure that AI solutions benefit all populations rather than only 

those with the resources to access them. 

 



 

Appendix A 

Literature Review Search Strategy 
Table 1. Boolean and Search Operators by Database 
Database / Source Supported Boolean / 

Search Operators 
Notes 

Google Scholar AND, OR, -, “ ” ‘AND’ implied between words; ‘-’ functions as NOT; 
truncation not supported 

Scopus AND, OR, NOT, “ ”, *, ?, ( 
) 

Supports full Boolean logic, truncation, and single-
character wildcards 

PubMed AND, OR, NOT, “ ”, *, 
[Mesh], [tiab] 

Uses Boolean logic with controlled vocabulary and field 
tags 

WHO IRIS / UN Digital 
Library 

AND, OR, NOT, “ ”, * Standard Boolean logic and truncation supported 

MacOdrum Library  AND, OR, NOT, “ ”, * Based on EBSCO/ProQuest standards; truncation and 
phrase searching supported 

(Note: This table was generated using AI and verified against official databases where available.) 

Search Strategy Summary 
A systematic literature search was conducted in October 2025 using MacOdrum Library databases, Google Scholar, Scopus, PubMed, 
and grey sources. Boolean operators were applied to combine terms related to Artificial Intelligence, global health, silozation, and 
antimicrobial resistance (AMR). Inclusion criteria focused on peer-reviewed research, government and international organization 
reports, and recent grey literature (2021–present). Quantitative and qualitative studies with global scope were included. Articles 
predating 2021 were excluded unless offering essential context. Each search was documented and screened for methodological rigor 
and thematic relevance, when large numbers of search results were returned, the first 40 results were screened for relevance. 
Duplicates were not included if they were found in more than one search string or database/source. 
 
In November 2025, an additional search was conducted for to focus case study on AMR to the African context. This search is 
documented below in the table; however, only Google Scholar and MacOdrum Library were consulted as sufficient resources were 
retrieved through these databases. This case study does not contain a complete literature review. 
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Search Strategy Documentation Table 
Date of 
Search 

Database Used Search Terms Total # 
Articles 

Articles Included in Review for Paper 

10/10/2025 Google Scholar ("Artificial 
Intelligence" OR 
"AI") AND 
("global health" 
OR "One Health")  

17,800 Kerasidou, A. (2021). Ethics of artificial intelligence in global health: Explainability, algorithmic 
bias and trust. Journal of Oral Biology and Craniofacial Research, 11(4), 612-614. 
Murphy, K., Di Ruggiero, E., Upshur, R., Willison, D. J., Malhotra, N., Cai, J. C., & Gibson, J. 
(2021). Artificial intelligence for good health: a scoping review of the ethics literature. BMC 
medical ethics, 22(1), 14. 
Ciecierski-Holmes, T., Singh, R., Axt, M., Brenner, S., & Barteit, S. (2022). Artificial 
intelligence for strengthening healthcare systems in low-and middle-income countries: a 
systematic scoping review. NPJ digital medicine, 5(1), 162. 
Kaushik A, Barcellona C, Mandyam NK, Tan SY, Tromp J. Challenges and 
Opportunities for Data Sharing Related to Artificial Intelligence Tools in Health 
Care in Low- and Middle-Income Countries: Systematic Review and Case Study 
From Thailand. J Med Internet Res. 2025 Feb 4;27:e58338. doi: 10.2196/58338. 
PMID: 39903508; PMCID: PMC11836587. 
Hassan M, Kushniruk A, Borycki E. Barriers to and Facilitators of Artificial 
Intelligence Adoption in Health Care: Scoping Review. JMIR Hum Factors. 
2024 Aug 29;11:e48633. doi: 10.2196/48633. PMID: 39207831; PMCID: 
PMC11393514. 
 
 
 

10/10/2025 Google Scholar ("Artificial 
Intelligence" OR 
"AI") AND 
("global health") 
AND 
("integration" OR 
"silo")  

22,900 Zhang, J., Budhdeo, S., William, W., Cerrato, P., Shuaib, H., Sood, H., ... & Teo, J. T. (2022). 
Moving towards vertically integrated artificial intelligence development. NPJ digital 
medicine, 5(1), 143. 
Tan, T. F., Thirunavukarasu, A. J., Jin, L., Lim, J., Poh, S., Teo, Z. L., ... & Ting, D. S. W. 
(2023). Artificial intelligence and digital health in global eye health: opportunities and 
challenges. The Lancet Global Health, 11(9), e1432-e1443. 
Samuel, G. (2024). The Ubuntu Way: Ensuring Ethical AI Integration in Health 
Research. Wellcome Open Research, 9, 625. 
 
 

10/10/2025 Google Scholar ("Artificial 
Intelligence" OR 
"AI") AND 

6,620 Mohammed, A. M., Oleiwi, J. K., Osman, A. F., Adam, T., Betar, B. O., Gopinath, S. C., & 
Ihmedee, F. H. (2025). Enhancing antimicrobial resistance strategies: Leveraging artificial 
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("global health") 
AND ("AMR" OR 
"antimicrobial 
resistance") AND 
("integration" OR 
"silo") 

intelligence for improved outcomes. South African Journal of Chemical Engineering, 51(1), 272-
286. 
Kasse, G. E., Cosh, S. M., Humphries, J., & Islam, M. S. (2025). Leveraging artificial 
intelligence for One Health: opportunities and challenges in tackling antimicrobial resistance-
scoping review. One Health Outlook, 7(1), 51. 
Ayesiga, I., Yeboah, M. O., Okoro, L. N., Edet, E. N., Gmanyami, J. M., Ovye, A., ... & Atwau, 
P. (2025). Artificial intelligence-enhanced biosurveillance for antimicrobial resistance in sub-
Saharan Africa. International Health, 17(5), 795-803. 
Chindelevitch, L., Jauneikaite, E., Wheeler, N. E., Allel, K., Ansiri-Asafoakaa, B. Y., Awuah, W. 
A., ... & van Dongen, M. (2022). Applying data technologies to combat AMR: current status, 
challenges, and opportunities on the way forward. arXiv preprint arXiv:2208.04683. 
Pennisi, F., Pinto, A., Ricciardi, G. E., Signorelli, C., & Gianfredi, V. (2025). The role of 
artificial intelligence and machine learning models in antimicrobial stewardship in public health: 
a narrative review. Antibiotics, 14(2), 134. 
Howard, A., Aston, S., Gerada, A., Reza, N., Bincalar, J., Mwandumba, H., ... & Buchan, I. 
(2024). Antimicrobial learning systems: an implementation blueprint for artificial intelligence to 
tackle antimicrobial resistance. The Lancet Digital Health, 6(1), e79-e86. 
Perrella, A., Maffettone, A., Di Micco, P., Trama, U., Bernardi, F. F., & Bisogno, M. (2025). 
From Guidelines to Real-Time Guardrails: The Emerging Role of AI in AMR Surveillance and 
IPC Decision-Making. 
Waldock, W. J., Thould, H., Chindelevitch, L., Croucher, N. J., de la Fuente, C., Collins, J. J., ... 
& Darzi, A. (2025). Mitigating antimicrobial resistance by innovative solutions in AI 
(MARISA): a modified James Lind Alliance analysis. npj Antimicrobials and Resistance, 3(1), 
75. 
 
 

10/10/2025 Google Scholar ("Artificial 
Intelligence" OR 
"AI") AND 
("research") AND 
("silo" OR 
“private”) 

28,700 
 

Jurowetzki, R., Hain, D.S., Wirtz, K. et al. The private sector is hoarding AI 
researchers: what implications for science?. AI & Soc 40, 4145–4152 (2025). 
https://doi.org/10.1007/s00146-024-02171-z 
Ahmed, Nur, et al. “The Growing Influence of Industry in AI Research.” Science 
(American Association for the Advancement of Science), vol. 379, no. 6635, 2023, 
pp. 884–86, https://doi.org/10.1126/science.ade2420. 
 

10/10/2025 Scopus ("Artificial 
Intelligence" OR 
"AI") AND 
("global health") 
AND ("silo*") 

4  
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10/10/2025 Scopus ( "global health" ) 
AND ( "silo*" ) 

138 Correia, Tiago, et al. “Preparing for the ‘next Pandemic’: Why We Need to 
Escape from Our Silos.” The International Journal of Health Planning and 
Management., vol. 39, no. 4, 2024, pp. 973–79, 
https://doi.org/10.1002/hpm.3757. 
Kakkattil, Pradeep, et al. “Breaking the Silos: How the Health Innovation and 
Investment Exchange (HIEx) Helps Bridge the Health Innovation 
Ecosystem.” Resilient Health : Leveraging Technology and Social Innovations to 
Transform Healthcare for COVID-19 Recovery and Beyond /, Academic Press, 
2024, pp. 979–87, https://doi.org/10.1016/B978-0-443-18529-8.00082-2. 
 
 

10/10/2025 Scopus ( "Artificial 
Intelligence" OR 
"AI" ) AND ( 
"global health" ) 
AND ( "AMR" 
OR "anti* 
resistance" ) AND 
( "integration" OR 
"silo*" ) 

31 Singh, Samradhi, et al. “Advancing AMR Surveillance: Confluence of One Health 
and Big Data Integration.” EcoHealth., vol. 22, no. 3, 2025, pp. 403–14, 
https://doi.org/10.1007/s10393-025-01724-y. 
Abavisani, Mohammad, et al. “Chatting with Artificial Intelligence to Combat 
Antibiotic Resistance: Opportunities and Challenges.” Current Research in 
Biotechnology., vol. 7, 100197, 2024, https://doi.org/10.1016/j.crbiot.2024.100197. 
 

10/10/2025 MacOdrum 
Library 
 

("Artificial 
Intelligence" OR 
"AI") AND 
("global health") 
AND (silo*) 

5  

10/15/2025 MacOdrum 
Library 
 

AI AND Health 
AND Silo* 

197 de Graaf, Ysanne, et al. “Societal Factors Influencing the Implementation of AI-
Driven Technologies In.” PloS One, vol. 20, no. 6, 2025, p. e0325718, 
https://doi.org/10.1371/journal.pone.0325718. 
Shoshana Zuboff, “The Age of Surveillance Capitalism: The Fight for a Human Future at the 
New Frontier of Power” (New York: Public Affairs, 2019), 8. 
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10/15/2025 MacOdrum 
Library 
 

epistemic AND AI 
AND "Global 
health" 

10 Morley, Jessica, et al. “Global Health in the Age of AI: Charting a Course for 
Ethical Implementation and Societal Benefit.” Minds and Machines (Dordrecht), 
vol. 35, no. 3, 31, 2025. 
Leah Shipton and Lucia Vitale, “Artificial Intelligence and the Politics of Avoidance in Global 
Health,” Social Science & Medicine 359 (2024): 3.  
 

10/15/2025 MacOdrum 
Library 
 

epistemic AND AI 
research 

1274  

10/15/2025 MacOdrum 
Library 
 

epistemic AND AI 
research AND 
health 

222  

10/15/2025 PubMed ("Artificial 
Intelligence" OR 
"AI") AND 
("global health") 
AND (silo*) 

22  

10/15/2025 PubMed AI AND Health 
AND Silo* 

157 Calvino, Giulia, et al. “Federated Learning: Breaking Down Barriers in Global 
Genomic Research.” Genes., vol. 15, no. 12, 1650, 2024, 
https://doi.org/10.3390/genes15121650. 
 

10/15/2025 PubMed epistemic AND AI 
AND "Global 
health" 

6 Bhaumik S. On the ethical and moral dimensions of using artificial intelligence 
for evidence synthesis. PLOS Glob Public Health. 2025 Mar 19;5(3):e0004348. 
doi: 10.1371/journal.pgph.0004348. PMID: 40106511; PMCID: PMC11922218. 
 

10/15/2025 PubMed epistemic AND AI 
research AND 
health 

60  
 

11/05/2025 Google Scholar AMR AND AI 
AND Africa 

22400 Essack, Sabiha, and Sabiha Y. Essack. "AMR Surveillance in Africa: Are We There 
Yet?." International Journal of Infectious Diseases 152 (2025): 107828. 
Ayesiga, Innocent, et al. "Artificial intelligence-enhanced biosurveillance for antimicrobial 
resistance in sub-Saharan Africa." International Health 17.5 (2025): 795-803. 
Okolie, Obiageli Jovita, et al. "Systematic review of surveillance systems for AMR in 
Africa." Journal of Antimicrobial Chemotherapy 78.1 (2023): 31-51. 
Kariuki, Samuel, et al. "Antimicrobial resistance rates and surveillance in sub-Saharan Africa: 
where are we now?." Infection and drug resistance (2022): 3589-3609. 
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Adedeji, Roqeeb, et al. "Supervised Learning Model Systems to Predict and Identify Drivers of 
AMR in Africa." Wellcome Open Research 10 (2025): 410. 
Kasse, Gashaw Enbiyale, et al. "Leveraging artificial intelligence for One Health: opportunities 
and challenges in tackling antimicrobial resistance-scoping review." One Health Outlook 7.1 
(2025): 51. 
Chindelevitch, Leonid, et al. "Applying data technologies to combat AMR: current status, 
challenges, and opportunities on the way forward." arXiv preprint arXiv:2208.04683 (2022). 
Mohammed, Aeshah M., et al. "Enhancing antimicrobial resistance strategies: Leveraging 
artificial intelligence for improved outcomes." South African Journal of Chemical 
Engineering 51.1 (2025): 272-286. 
Sartorius, Benn, et al. "The burden of bacterial antimicrobial resistance in the WHO African 
region in 2019: a cross-country systematic analysis." The Lancet Global Health 12.2 (2024): 
e201-e216. 
 

11/05/2025 Google Scholar AMR AND AI 
AND “surveillance 
in Africa” 

1  

11/05/2025 Google Scholar AMR AND AI 
AND LMIC 

2,200 Popoola, Possible Okikiola, et al. "Integrating One Health Approaches into AMR Global 
Surveillance and Control." Asian Journal of Medicine and Health 23.9 (2025): 43-53. 
Perrella, Alessandro, et al. "From Guidelines to Real-Time Guardrails: The Emerging Role of AI 
in AMR Surveillance and IPC Decision-Making." (2025). 
 

11/05/2025 Google Scholar  AMR AND silo  5,470 Only duplicates retrieved 

11/05/2025 MacOdrum 
Library 
 

AMR AND AI 
AND Africa 

20 Sartorius, Benn, et al. "The burden of bacterial antimicrobial resistance in the WHO African 
region in 2019: a cross-country systematic analysis." The Lancet Global Health 12.2 (2024): 
e201-e216. 
 

11/05/2025 MacOdrum 
Library 
 

AMR AND AI 
AND LMIC 

10  

 
 

 


